JP2005207432A - Valve timing controller of internal combustion engine - Google Patents

Valve timing controller of internal combustion engine Download PDF

Info

Publication number
JP2005207432A
JP2005207432A JP2005118005A JP2005118005A JP2005207432A JP 2005207432 A JP2005207432 A JP 2005207432A JP 2005118005 A JP2005118005 A JP 2005118005A JP 2005118005 A JP2005118005 A JP 2005118005A JP 2005207432 A JP2005207432 A JP 2005207432A
Authority
JP
Japan
Prior art keywords
vane
hydraulic
housing
hydraulic chamber
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005118005A
Other languages
Japanese (ja)
Other versions
JP4115461B2 (en
Inventor
Hideshi Miyasaka
英志 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005118005A priority Critical patent/JP4115461B2/en
Publication of JP2005207432A publication Critical patent/JP2005207432A/en
Application granted granted Critical
Publication of JP4115461B2 publication Critical patent/JP4115461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the responsiveness of a valve timing control by always obtaining the smooth rotating action of a vane while securing high seal performance between hydraulic chambers. <P>SOLUTION: A timing sprocket 1 and a camshaft rotatable relative to the timing sprocket 1 are so formed that a vane 3 is normally and reversely rotated by the supply and discharge of a relative hydraulic pressure to and from a spark-advance angle side hydraulic chamber 32 and the spark-retard angle side hydraulic chamber 33 in a housing to convert a relative rotation phase between the timing sprocket and the camshaft so as to make variable the opening/closing timings of an intake valve. Dry film coats 50 and 51 for coating are formed on the front end face 3a of the vane in slidable contact with the inner peripheral surface 7a of a front cover 7 to reduce a sliding frictional resistance by the dry film coats 50 and 51 and seal between both hydraulic chambers 32 and 33. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の吸気弁,排気弁の開閉時期を運転状態に応じて可変にするいわゆるベーンタイプのバルブタイミング制御装置に関する。   The present invention relates to a so-called vane type valve timing control device that makes opening / closing timings of an intake valve and an exhaust valve of an internal combustion engine variable according to an operating state.

従来のバルブタイミング制御装置としては、以下の特許文献1に記載されたベーンタイプのものが知られている。   As a conventional valve timing control device, a vane type device described in Patent Document 1 below is known.

概略を説明すれば、このバルブタイミング制御装置は、前記開口端がフロントカバーとリアカバーで閉塞されたタイミングプーリの筒状のハウジング内部に、カムシャフトの端部に固定されたベーンが回転自在に収納されていると共に、ハウジングの内周面に直径方向から互いに内方へ突出されたほぼ台形状の2つの隔壁部とベーンの2つの羽根部との間に進角側油圧室と遅角側油圧室が画成されている。そして、機関運転状態に応じて前記進角側と遅角側の各油圧室に油圧が給排されてベーンを正逆回転させることによりタイミングプーリとカムシャフトとの相対回動位相を変化させて、吸気弁の開閉時期を可変にするようになっている。
特開平8−121124号公報
Briefly, in this valve timing control device, the vane fixed to the end of the camshaft is rotatably housed in the cylindrical housing of the timing pulley whose opening end is closed by the front cover and the rear cover. And an advance side hydraulic chamber and a retard side hydraulic pressure between two substantially trapezoidal partition walls projecting inward from the diameter direction on the inner peripheral surface of the housing and the two vane parts of the vane. A room is defined. Then, the hydraulic pressure is supplied to and discharged from the advance side and retard side hydraulic chambers according to the engine operating state, and the vane is rotated forward and backward to change the relative rotational phase of the timing pulley and the camshaft. The intake valve opening and closing timing is made variable.
JP-A-8-121124

しかしながら、前記従来のバルブタイミング制御装置によれば、進角側油圧室と遅角側油圧室との間の作動油のリークを防止するために、例えばベーンとフロントカバー及びリアカバーとの間の摺動隙間をきわめて小さく設定している。したがって、該ベーンと各カバーとの間の摺動摩擦抵抗が大きくなり、該ベーンの円滑な回転が阻害される可能性がある。この結果、機関運転状態の変化に応じたバルブタイミングの高い制御精度が得られないおそれがある。   However, according to the conventional valve timing control device, in order to prevent leakage of hydraulic oil between the advance side hydraulic chamber and the retard side hydraulic chamber, for example, the sliding between the vane and the front cover and the rear cover is performed. The moving gap is set very small. Therefore, the sliding frictional resistance between the vane and each cover increases, and smooth rotation of the vane may be hindered. As a result, there is a risk that control accuracy with high valve timing according to changes in the engine operating state cannot be obtained.

また、この従来例では、前述のように両油圧室間の作動油のリークを防止するために、ベーンの基部側の巾長さと各隔壁部の先端側の巾長さとを規定するようになっている。すなわち、遅角側油圧室と進角側油圧室,別異の遅角側油圧室と進角側油圧室との間をそれぞれ軸方向の両端面でシールする各ベーンの最短距離を、遅角側油圧室と進角側油圧室,別異の遅角側油圧室と進角側油圧室との間を軸方向の両端面でシールする各隔壁部の最短距離とほぼ等しく設定することによって、ベーンとフロントカバー及びリアカバーとの間を通る各油圧室間の油の漏れを防止するようになっている。   Further, in this conventional example, in order to prevent the leakage of hydraulic oil between both hydraulic chambers as described above, the width length on the base side of the vane and the width length on the tip side of each partition wall portion are defined. ing. That is, the shortest distance of each vane that seals between the retard angle side hydraulic chamber and the advance angle side hydraulic chamber, and between the different retard angle side hydraulic chamber and the advance angle side hydraulic chamber at both axial end surfaces, By setting the side hydraulic chamber and the advance side hydraulic chamber, and between the different retard side hydraulic chamber and the advance side hydraulic chamber to be almost equal to the shortest distance of each partition wall portion sealed at both end faces in the axial direction, Oil leakage between the hydraulic chambers passing between the vane and the front cover and the rear cover is prevented.

このため、ベーンの巾長さや隔壁部の巾長さを必然的に大きく設定せざるを得ず、この結果、ベーンの羽根部を枚数やタイミングプーリとカムシャフトとの位相変換角度に自ずと制限が生じ、ベーンの羽根部の枚数を3つ以上に増加させることが困難になる。したがって、羽根部の枚数の制約に伴い該ベーンの回転による位相変換の応答性が低下し易くなると共に、位相変換角度の制約に伴ってバルブタイミング制御範囲が制約を受けて機関性能を十分に発揮させることができなくなる。   For this reason, the width of the vane and the width of the partition wall are inevitably set to be large.As a result, the number of vane blades and the phase conversion angle between the timing pulley and the camshaft are naturally limited. This makes it difficult to increase the number of vane blades to three or more. Therefore, the response of phase conversion due to the rotation of the vane is likely to be reduced due to the restriction on the number of blades, and the valve timing control range is restricted due to the restriction of the phase conversion angle, so that the engine performance is sufficiently exhibited. Can not be made.

しかも、ベーンの一つの羽根部の外周面とハウジングの内周面との摺接面積が大きくなるため、両者間で摩擦抵抗がさらに大きくなるおそれがある。   And since the sliding contact area of the outer peripheral surface of one blade | wing part of a vane and the inner peripheral surface of a housing becomes large, there exists a possibility that a friction resistance may become further larger between both.

本発明は、前記従来装置の技術的課題に鑑みて案出されたもので、請求項1記載の発明は、機関のクランクシャフトによって回転駆動する回転体と、該回転体と相対回動可能なカムシャフトと、該カムシャフトの端部に固定されて、円環状の基部の外周側に複数の羽根部が一体に形成されたベーンと、該ベーンを回転自在に収容したハウジングと、該ハウジングの内周面に内方へ突設された複数の隔壁部と、前記各羽根部に設けられ、前記ハウジングの内周面に摺接するように外方に押圧されるシール部材と、前記隔壁部と前記各羽根部の両側面との間に画成された遅角側油圧室及び進角側油圧室と、該両油圧室に相対的に油圧を給排して前記ベーンを正逆回転させる油圧回路と、該油圧回路から供給される油圧が低い状態では、前記ベーンの回動位置を前記ハウジングに対して維持させるロック機構と、を備えたバルブタイミング制御装置であって、前記ベーンの少なくとも摺動する前端面にコーティングを施したことを特徴としている。   The present invention has been devised in view of the technical problem of the conventional apparatus, and the invention according to claim 1 is a rotating body that is driven to rotate by a crankshaft of an engine, and is rotatable relative to the rotating body. A camshaft, a vane fixed to the end of the camshaft and integrally formed with a plurality of blades on the outer peripheral side of an annular base, a housing that rotatably accommodates the vane, A plurality of partition walls projecting inwardly on an inner peripheral surface, a seal member provided on each of the blades and pressed outward so as to be in sliding contact with the inner peripheral surface of the housing, and the partition walls; The retard-side hydraulic chamber and the advance-side hydraulic chamber defined between both side surfaces of each of the blade portions, and the hydraulic pressure for rotating the vane forward and backward by supplying and discharging the hydraulic pressure relative to both the hydraulic chambers. In the state where the hydraulic pressure supplied from the circuit and the hydraulic circuit is low, the vane A valve timing control device including a locking mechanism for maintaining the rotational position relative to the housing, and is characterized in that the coated front end face of at least sliding of said vane.

したがって、この請求項1に記載の発明によれば、ベーンの前端面にコーティングを施すことによって、前記遅角側油圧室と進角側油圧室間のシール作用が得られる。   Therefore, according to the first aspect of the invention, the sealing action between the retard side hydraulic chamber and the advance side hydraulic chamber can be obtained by coating the front end face of the vane.

図1〜図3は本発明に係る内燃機関のバルブタイミング制御装置の実施形態を示し、吸気弁側に適用したものを示している。   1 to 3 show an embodiment of a valve timing control device for an internal combustion engine according to the present invention, which is applied to an intake valve side.

すなわち、機関の図外のクランクシャフトにより合成樹脂製のタイミングチェーンを介して回転駆動される回転体たるタイミングスプロケット1と、該タイミングスプロケット1に対して相対回動可能に設けられたカムシャフト2と、該カムシャフト2の端部に固定されてタイミングスプロケット1内に回転自在に収容されたベーン3と、該ベーン3を油圧によって正逆回転させる油圧回路4と、タイミングスプロケット1とベーン3との相対回動を所定位置でロックするか、あるいはロックを解除するロック機構10とを備えている。   That is, a timing sprocket 1 that is a rotating body that is rotationally driven by a crankshaft not shown in the figure via a synthetic resin timing chain, and a camshaft 2 that is provided to be rotatable relative to the timing sprocket 1. A vane 3 fixed to the end of the camshaft 2 and rotatably accommodated in the timing sprocket 1, a hydraulic circuit 4 for rotating the vane 3 forward and backward by hydraulic pressure, and the timing sprocket 1 and the vane 3. A lock mechanism 10 that locks the relative rotation at a predetermined position or releases the lock is provided.

前記タイミングスプロケット1は、図3にも示すように、外周にタイミングチェーンが噛合する歯部5aを有する回転部材5と、該回転部材5の前方に配置されてベーン3を回転自在に収容したハウジング6と、該ハウジング6の前端開口を閉塞する蓋体たる円板状のフロントカバー7と、ハウジング6と回転部材5との間に配置されてハウジング6の後端開口を閉塞するほぼ円板状のリアカバー8とから構成され、これら回転部材5とハウジング6及びフロントカバー7,リアカバー8は、4本の小径ボルト9によって軸方向から一体的に結合されている。   As shown in FIG. 3, the timing sprocket 1 includes a rotating member 5 having a tooth portion 5 a that engages with a timing chain on the outer periphery, and a housing that is disposed in front of the rotating member 5 and rotatably accommodates the vane 3. 6, a disc-shaped front cover 7 that is a lid that closes the front end opening of the housing 6, and a substantially disc-like shape that is disposed between the housing 6 and the rotating member 5 and closes the rear end opening of the housing 6. The rotating member 5, the housing 6, the front cover 7, and the rear cover 8 are integrally coupled from the axial direction by four small diameter bolts 9.

前記回転部材5は、ほぼ円環状を呈し、周方向の約90°の等間隔位置に各小径ボルト9が螺着する4つの雌ねじ孔5bが前後方向へ貫通形成されていると共に、内部中央位置に後述する通路構成用のスリーブ25が嵌合する段差径状の嵌合孔11が貫通形成されている。さらに、前端面には、前記リアカバー8が嵌合する円板状の嵌合溝12が形成されている。   The rotating member 5 has a substantially annular shape, and has four female screw holes 5b through which the small-diameter bolts 9 are screwed in the circumferentially equidistant positions of about 90 ° in the front-rear direction. A step-diameter fitting hole 11 into which a passage-forming sleeve 25 described later is fitted is formed through. Further, a disc-like fitting groove 12 into which the rear cover 8 is fitted is formed on the front end surface.

また、前記ハウジング6は、前後両端が開口形成された円筒状を呈し、内周面の周方向の90°位置には4つの隔壁部13が突設されている。この隔壁部13は、横断面台形状を呈し、それぞれハウジング6の軸方向に沿って設けられて、各両端縁がハウジング6の両端縁と同一面になっていると共に、基端側には、小径ボルト9が挿通する4つのボルト挿通孔14が軸方向へ貫通形成されている。さらに、各隔壁部13の内端面中央位置に軸方向に沿って切欠形成された保持溝13a内にコ字形のシール部材15と該シール部材15を内方へ押圧する板ばね16が嵌合保持されている。   The housing 6 has a cylindrical shape with openings at the front and rear ends, and four partition wall portions 13 project from the circumferential position of the inner peripheral surface at 90 °. The partition wall 13 has a trapezoidal shape in cross section, is provided along the axial direction of the housing 6, and both end edges are flush with the both end edges of the housing 6. Four bolt insertion holes 14 through which the small-diameter bolts 9 are inserted are formed penetrating in the axial direction. Further, a U-shaped seal member 15 and a leaf spring 16 that presses the seal member 15 inward are fitted and held in a holding groove 13a that is cut out along the axial direction at the center position of the inner end face of each partition wall portion 13. Has been.

さらに、前記フロントカバー7は、中央に比較的大径なボルト挿通孔17が穿設されていると共に、前記ハウジング6の各ボルト挿通孔14と対応する位置に4つのボルト孔18が穿設されている。   Further, the front cover 7 has a relatively large-diameter bolt insertion hole 17 formed in the center, and four bolt holes 18 formed at positions corresponding to the bolt insertion holes 14 of the housing 6. ing.

また、リアカバー8は、後端面に前記回転部材5の嵌合溝12内に嵌合保持される円板部8aを有していると共に、中央にスリーブ25の小径な円環部25aが嵌入する嵌入孔8cが穿設され、さらに前記ボルト挿通孔14に対応する位置に4つのボルト孔19が同じく形成されている。   The rear cover 8 has a disc portion 8a fitted and held in the fitting groove 12 of the rotating member 5 on the rear end surface, and a small-diameter annular portion 25a of the sleeve 25 is fitted in the center. A fitting hole 8c is formed, and four bolt holes 19 are similarly formed at positions corresponding to the bolt insertion holes 14.

前記カムシャフト2は、シリンダヘッド22の上端部にカム軸受23を介して回転自在に支持され、外周面所定位置に吸気弁をバルブリフターを介して開作動させる図外のカムが一体に設けられていると共に、前端部にはフランジ部24が一体に設けられている。   The camshaft 2 is rotatably supported at the upper end of the cylinder head 22 via a cam bearing 23, and an unillustrated cam for opening the intake valve via a valve lifter is integrally provided at a predetermined position on the outer peripheral surface. In addition, a flange portion 24 is integrally provided at the front end portion.

前記べーン3は、焼結合金材で一体に形成され、フランジ部24と嵌合孔11に夫々前後部が嵌合した前記スリーブ25を介して軸方向から挿通した固定ボルト26によってカムシャフト2の前端部に固定されており、中央に前記固定ボルト26が挿通するボルト挿通孔27aを有する円環状の基部27と、該基部27の外周面の周方向の90°位置に一体に設けられた4つの羽根部28とを備えている。   The vane 3 is integrally formed of a sintered alloy material, and is camshafted by a fixing bolt 26 inserted from the axial direction through the sleeve 25 in which the front and rear portions are fitted in the flange portion 24 and the fitting hole 11, respectively. 2 is fixed to the front end portion of the annular base portion 27. The annular base portion 27 has a bolt insertion hole 27a through which the fixing bolt 26 is inserted at the center thereof, and is integrally provided at a circumferential position of 90 ° on the outer peripheral surface of the base portion 27. And four blade portions 28.

前記第1〜第4羽根部28は、夫々断面ほぼ逆台形状を呈し、各隔壁部13間に配置されていると共に、各外周面の中央に軸方向に切欠された保持溝29にハウジング6の内周面6aに摺接するコ字形のシール部材30と該シール部材30を外方に押圧する板ばね31が夫々嵌着保持されている。また、この各羽根部28の両側と各隔壁部13の両側面との間に夫々4つの進角側油圧室32と遅角側油圧室33が隔成されている。   Each of the first to fourth blade portions 28 has a substantially inverted trapezoidal cross section, is disposed between the partition walls 13, and is provided in the holding groove 29 that is axially cut out in the center of each outer peripheral surface. A U-shaped seal member 30 that is in sliding contact with the inner peripheral surface 6a and a leaf spring 31 that presses the seal member 30 outward are fitted and held. Further, four advance-side hydraulic chambers 32 and retard-side hydraulic chambers 33 are formed between both sides of each blade 28 and both sides of each partition 13.

また、前記ベーン3の外面には、ドライフィルムコート50,51がコーティングされている。具体的には、このドライフィルムコート50,51は、テフロン(登録商標)あるいは二硫化モリブデンなどの材料から形成され、ベーン3のフロントカバー7の内端面7aと摺動する前端面3a全体と、各羽根部28のハウジング6の内周面6aと摺動する外周面28aとに夫々コーティングされている。また、このドライフィルムコート50,51は、図4及び図5に示すようにちどり格子状に形成されて、その格子間に矩形状の複数の凹部52が形成されている。   Further, dry film coats 50 and 51 are coated on the outer surface of the vane 3. Specifically, the dry film coats 50 and 51 are made of a material such as Teflon (registered trademark) or molybdenum disulfide, and the entire front end surface 3a sliding on the inner end surface 7a of the front cover 7 of the vane 3; The inner peripheral surface 6a of the housing 6 and the sliding outer peripheral surface 28a of each blade portion 28 are coated. Further, as shown in FIGS. 4 and 5, the dry film coats 50 and 51 are formed in a dust lattice shape, and a plurality of rectangular concave portions 52 are formed between the lattices.

前記ロック機構10は、前記回転部材5の嵌合溝12の外周側所定位置に形成された係合溝20と、前記係合溝20に対応した前記リアカバー8の所定位置に貫通形成されて、内周面がテーパ状の係合孔21と、該係合穴21に対応した前記1つの羽根部28のほぼ中央位置に内部軸方向に沿って貫通形成された摺動用孔35と、該1つの羽根部28の前記摺動用孔35内に摺動自在に設けられたロックピン34と、該ロックピン34の後端側に弾装されたばね部材であるコイルスプリング39と、ロックピン34と摺動用孔35との間に形成された受圧室40とから構成されている。   The locking mechanism 10 is formed to penetrate through a predetermined position of the rear cover 8 corresponding to the engaging groove 20 and an engaging groove 20 formed at a predetermined position on the outer peripheral side of the fitting groove 12 of the rotating member 5. An engagement hole 21 whose inner peripheral surface is tapered, a sliding hole 35 formed so as to penetrate along the inner axis direction at a substantially central position of the one blade portion 28 corresponding to the engagement hole 21, and the 1 A lock pin 34 slidably provided in the sliding hole 35 of the two blade portions 28, a coil spring 39 that is a spring member elastically mounted on the rear end side of the lock pin 34, and the lock pin 34 The pressure receiving chamber 40 is formed between the moving hole 35 and the pressure receiving chamber 40.

前記ロックピン34は、鋼材で成形され、図1〜図3に示すように中央側の中径状の本体34aと、該本体34aの先端側にほぼ先細り円錐状に形成された係合部34bと、本体34aの後端側に形成された段差大径状のストッパ部34cとから構成されており、ストッパ部34cの内部凹溝34dの底面とフロントカバー7の内端面との間に弾装された前記コイルスプリング39のばね力によって係合穴21方向へ付勢されるようになっていると共に、前記本体34aとストッパ34cとの間の外周面及び摺動用孔35の内周面との間に形成された前記受圧室40内の油圧によって係合穴21から抜け出る方向に摺動するようになっている。また、この受圧室40は、前記羽根部28の側部に形成された通孔36によって前記遅角側油圧室33に連通している。また、ロックピン34の係合部34bは、ベーン3の最大遅角側の回動位置において係合部34bが係合穴21内に係入するようになっている。   The lock pin 34 is formed of a steel material, and as shown in FIGS. 1 to 3, an intermediate-diameter main body 34a on the center side and an engaging portion 34b formed in a substantially conical shape on the tip side of the main body 34a. And a stepped large diameter stopper portion 34c formed on the rear end side of the main body 34a, and is mounted between the bottom surface of the inner concave groove 34d of the stopper portion 34c and the inner end surface of the front cover 7. The coil spring 39 is biased in the direction of the engagement hole 21 by the spring force of the coil spring 39, and the outer peripheral surface between the main body 34a and the stopper 34c and the inner peripheral surface of the sliding hole 35. It slides in the direction of coming out of the engagement hole 21 by the hydraulic pressure in the pressure receiving chamber 40 formed therebetween. The pressure receiving chamber 40 communicates with the retard angle side hydraulic chamber 33 through a through hole 36 formed in a side portion of the blade portion 28. Further, the engaging portion 34 b of the lock pin 34 engages with the engaging hole 21 in the rotation position on the maximum retard angle side of the vane 3.

また、この両者34b,21の係合時には、4枚の羽根部28のうちの一つの羽根部28を、これに対向する隔壁部13に当接させ、他の羽根部28,28とこれに対向するそれぞれの隔壁部13との間を微小隙間sをもって離間状態となるように、ロックピン34とその係合穴21との相対的な位置関係が設定されている。ここで、微小隙間sは、平均トルクや摺動フリクション及びベーン3の大きさによって決定されるようになっている。したがって、他のベーン3と隔壁部13との張り付きが防止されて、回転時の応答性を向上させることができる。尚、4枚の羽根部28の全てを離間状態に設定することも可能である。   Further, when the both 34b and 21 are engaged, one blade portion 28 of the four blade portions 28 is brought into contact with the partition wall portion 13 opposed thereto, and the other blade portions 28 and 28 are connected to this. The relative positional relationship between the lock pin 34 and the engagement hole 21 is set so that the opposing partition walls 13 are separated from each other with a small gap s. Here, the minute gap s is determined by the average torque, the sliding friction, and the size of the vane 3. Accordingly, sticking between the other vanes 3 and the partition wall portion 13 is prevented, and the response during rotation can be improved. It is also possible to set all the four blade portions 28 in the separated state.

前記受圧室40は、前記通孔36を介して遅角側油圧室33に連通し、該遅角側油圧室33から導入された油圧によってロックピン34をコイルスプリング39のばね力に抗して図中左方向、つまり係合部34bを係止穴21から抜け出す後退方向へ作動させるようになっている。   The pressure receiving chamber 40 communicates with the retarded hydraulic chamber 33 through the through hole 36, and the lock pin 34 resists the spring force of the coil spring 39 by the hydraulic pressure introduced from the retarded hydraulic chamber 33. The actuator is operated in the left direction in the drawing, that is, in the retracting direction in which the engaging portion 34b is pulled out from the locking hole 21.

一方、コイルスプリング39は、そのばね力が機関作動中にカムシャフト2及びベーン3に発生する正負の交番変動トルクと前記受圧室40に供給される油圧との関係で設定されている。すなわち、コイルスプリング39のばね力は、正の変動トルクの最大ピーク値と負の変動トルクの最大ピーク値の平均値よりも高い油圧が受圧室40に作用した場合、つまり、平均値から正あるいは負の最大ピーク値までの範囲内のトルク値に等しい油圧が作用したときにはじめて圧縮変形するばね力に設定されている。   On the other hand, the coil spring 39 is set based on the relationship between the positive and negative alternating fluctuation torque generated in the camshaft 2 and the vane 3 during the operation of the engine and the hydraulic pressure supplied to the pressure receiving chamber 40. That is, when the hydraulic pressure higher than the average value of the maximum peak value of the positive fluctuation torque and the maximum peak value of the negative fluctuation torque is applied to the pressure receiving chamber 40, that is, the spring force of the coil spring 39 is positive or negative from the average value. It is set to a spring force that compresses and deforms only when hydraulic pressure equal to the torque value within the range up to the negative maximum peak value is applied.

尚、図中60は、ロックピン34が前後移動する際において、摺動用孔35から空気が流入、流出する空気流通溝である。   In the figure, reference numeral 60 denotes an air circulation groove through which air flows in and out from the sliding hole 35 when the lock pin 34 moves back and forth.

前記油圧回路4は、図1〜図3に示すように進角側油圧室32に対して油圧を給排する第1油圧通路41と、遅角側油圧室33に対して油圧を給排する第2油圧通路42との2系統の油圧通路を有し、この両油圧通路41,42には、供給通路43とドレン通路44とが夫々通路切替用の電磁切替弁45を介して接続されている。前記供給通路43には、オイルパン46内の油を圧送するオイルポンプ47が設けられている一方、ドレン通路44の下流端がオイルパン46に連通している。   The hydraulic circuit 4 supplies and discharges hydraulic pressure to and from the first hydraulic passage 41 that supplies and discharges hydraulic pressure to the advance-side hydraulic chamber 32 and the retard-side hydraulic chamber 33 as shown in FIGS. There are two systems of hydraulic passages, the second hydraulic passage 42, and a supply passage 43 and a drain passage 44 are connected to both the hydraulic passages 41, 42 via a passage switching electromagnetic switching valve 45. Yes. The supply passage 43 is provided with an oil pump 47 that pumps the oil in the oil pan 46, while the downstream end of the drain passage 44 communicates with the oil pan 46.

前記第1油圧通路41は、シリンダヘッド22内からカムシャフト2の軸心内部に形成された第1通路部41aと、固定ボルト26の内部軸線方向を通って頭部26a内で分岐形成されて第1通路部41aと連通する第1油路41bと、該頭部26aの小径な外周面とベーン3の基部27内のボルト挿通孔27aの内周面との間に形成されて第1油路41bに連通する油室41cと、ベーン3の基部27内にほぼ放射状に形成されて油室41cと各進角側油圧室32に連通する4本の分岐路41dとから構成されている。   The first hydraulic passage 41 is branched from the cylinder head 22 in the head portion 26a through the first passage portion 41a formed in the shaft center of the camshaft 2 and the internal axial direction of the fixing bolt 26. The first oil passage 41b that communicates with the first passage portion 41a, and the first oil formed between the small-diameter outer peripheral surface of the head portion 26a and the inner peripheral surface of the bolt insertion hole 27a in the base portion 27 of the vane 3. The oil chamber 41c communicates with the passage 41b, and four branch passages 41d that are formed substantially radially in the base portion 27 of the vane 3 and communicate with the oil chamber 41c and each advance-side hydraulic chamber 32.

一方、第2油圧通路42は、シリンダヘッド22内及びカムシャフト2の内部一側に形成された第2通路部42aと、前記スリーブ25の内部にほぼL字形状に折曲形成されて第2通路部42aと連通する第2油路42bと、回転部材5の嵌合孔11の外周側孔縁に形成されて第2油路42bと連通する4つの油通路溝42cと、リアカバー8の周方向の約90°の位置に形成されて、各油通路溝42cと遅角側油圧室33とを連通する4つの油孔42dとから構成されている。   On the other hand, the second hydraulic passage 42 is formed into a second passage portion 42a formed inside the cylinder head 22 and one side of the camshaft 2 and the inside of the sleeve 25 so as to be bent in a substantially L shape. A second oil passage 42b communicating with the passage portion 42a, four oil passage grooves 42c formed at the outer peripheral side edge of the fitting hole 11 of the rotating member 5 and communicating with the second oil passage 42b, and the periphery of the rear cover 8. The four oil holes 42 d are formed at positions of about 90 ° in the direction and communicate with each oil passage groove 42 c and the retard side hydraulic chamber 33.

前記電磁切替弁45は、4ポート2位置型であって、内部の弁体が各油圧通路41,42と供給通路43及びドレン通路44とを相対的に切り替え制御するようになっていると共に、コントローラ48からの制御信号によって切り替え作動されるようになっている。コントローラ48は、機関回転数を検出するクランク角センサや吸入空気量を検出するエアフローメータからの信号によって現在の運転状態を検出すると共に、クランク角及びカム角センサからの信号によってタイミングスプロケット1とカムシャフト2との相対回動位置を検出している。   The electromagnetic switching valve 45 is a 4-port 2-position type, and an internal valve body is configured to relatively switch and control the hydraulic passages 41, 42, the supply passage 43, and the drain passage 44, and Switching is performed by a control signal from the controller 48. The controller 48 detects the current operating state based on signals from a crank angle sensor that detects the engine speed and an air flow meter that detects the amount of intake air, and the timing sprocket 1 and the cam based on signals from the crank angle and cam angle sensors. The relative rotation position with respect to the shaft 2 is detected.

以下、本実施形態の作用を説明する。まず、機関始動時及びアイドリング運転時には、コントローラ48から制御信号が出力された電磁切替弁48が供給通路43と第2油圧通路42を連通させると共に、ドレン通路44と第1油圧通路41とを連通させる。このため、オイルポンプ47から圧送された油圧は第2油圧通路42(油通路溝42c→油孔42d)を通って遅角側油圧室33に供給される一方、進角側油圧室32には、機関停止時と同じく油圧が供給されず低圧状態を維持している。   Hereinafter, the operation of the present embodiment will be described. First, at the time of engine start and idling operation, the electromagnetic switching valve 48 to which a control signal is output from the controller 48 causes the supply passage 43 and the second hydraulic passage 42 to communicate with each other, and the drain passage 44 and the first hydraulic passage 41 communicate with each other. Let For this reason, the hydraulic pressure pumped from the oil pump 47 is supplied to the retard-side hydraulic chamber 33 through the second hydraulic passage 42 (oil passage groove 42c → oil hole 42d), while the advanced-side hydraulic chamber 32 has In the same way as when the engine is stopped, the hydraulic pressure is not supplied and the low pressure state is maintained.

したがって、ベーン3は、図2に示すように各羽根部28が進角側油圧室32側の各隔壁部13の一側面に当接した状態になる。したがって、タイミングスプロケット1とカムシャフト2との相対回動位置が一方側(遅角側)に保持されて、吸気弁の開閉時期を遅角側に制御する。これによって、慣性吸気の利用による燃焼効率が向上して機関回転の安定化と燃費の向上が図れる。   Therefore, the vane 3 is in a state in which each blade portion 28 is in contact with one side surface of each partition wall portion 13 on the advance side hydraulic chamber 32 side, as shown in FIG. Accordingly, the relative rotational position of the timing sprocket 1 and the camshaft 2 is held on one side (retarded side), and the opening / closing timing of the intake valve is controlled to the retarded side. As a result, the combustion efficiency by using the inertial intake air is improved, and the engine rotation can be stabilized and the fuel consumption can be improved.

一方、この運転状態における遅角側油圧室33内の油圧は、今まだ十分に高くならずに比較的低い状態になっているため、ベーン3は図示の位置に保持されるもののロックピン34は、通孔36から受圧室40へ供給される油圧よりもコイルスプリング39のばね力が打ち勝って係合部34aがリアプレート8の係合穴21内に係合した状態を維持する。したがって、ベーン3は、当該遅角側の位置に安定かつ確実に保持されて、遅角側油圧室33内の油圧の変動やカムシャフト2に発生する正負の変動トルクによる揺動振動の発生を防止でき、ひいては、各羽根部28と隔壁部13との衝突音を防止できる。   On the other hand, since the hydraulic pressure in the retard side hydraulic chamber 33 in this operating state is not yet sufficiently high and is relatively low, the vane 3 is held at the illustrated position, but the lock pin 34 is The spring force of the coil spring 39 overcomes the hydraulic pressure supplied from the through hole 36 to the pressure receiving chamber 40, and the engagement portion 34a maintains the engaged state in the engagement hole 21 of the rear plate 8. Therefore, the vane 3 is stably and surely held at the retarded angle side position, and the fluctuation of the hydraulic pressure in the retarded angle side hydraulic chamber 33 and the occurrence of oscillation vibration due to the positive / negative fluctuation torque generated in the camshaft 2 are generated. This can prevent the collision noise between each blade 28 and the partition wall 13.

また、車両が走行を開始して所定の低回転低負荷域に移行すると、電磁切替弁45は現状の作動状態を維持し、遅角側油圧室33内の油圧が高くなると、同じく受圧室40内の油圧も高くなって、ロックピン34がコイルスプリング39を圧縮変形させながらばね力に抗して後退動し、係合部34aが係合穴21から抜け出して係合を解除する。このため、ベーン3は、自由な回動が許容されることになるが、遅角側油圧室33内の油圧が高くなっているので、図2に示す位置に安定に保持される。   Further, when the vehicle starts running and shifts to a predetermined low rotation / low load region, the electromagnetic switching valve 45 maintains the current operating state, and when the hydraulic pressure in the retarded side hydraulic chamber 33 becomes high, the pressure receiving chamber 40 is also the same. The internal hydraulic pressure also increases, the lock pin 34 moves backward against the spring force while compressing and deforming the coil spring 39, and the engaging portion 34a comes out of the engaging hole 21 to release the engagement. For this reason, the vane 3 is allowed to rotate freely, but since the hydraulic pressure in the retarded-side hydraulic chamber 33 is high, the vane 3 is stably held at the position shown in FIG.

その後、機関が中回転中負荷域に移行すると、コントローラ48からの制御信号によって電磁切替弁45が作動して、供給通路43と第1油圧通路41を連通させる一方、ドレン通路44と第2油圧通路42を連通させる。したがって、今度は遅角側油圧室33内の油圧が第2油圧通路42を通ってドレン通路44からオイルパン46内に戻されて遅角側油圧室33内が低圧になる一方、進角側油圧室32内に油圧が第1油路41a→41b→分岐路41dを経由して供給されて高圧となる。このため、ベーン3は、図2に示す位置から時計方向に回転して各羽根部28が反対側(遅角側油圧室側)の各隔壁部13の他側面に当接する位置まで最大に回転する。   Thereafter, when the engine shifts to a middle-rotation load range, the electromagnetic switching valve 45 is actuated by a control signal from the controller 48 to connect the supply passage 43 and the first hydraulic passage 41 while the drain passage 44 and the second hydraulic passage. The passage 42 is communicated. Accordingly, the hydraulic pressure in the retarded hydraulic chamber 33 is now returned to the oil pan 46 from the drain passage 44 through the second hydraulic passage 42 and the retarded hydraulic chamber 33 has a low pressure, while the advanced side is increased. The hydraulic pressure is supplied into the hydraulic chamber 32 via the first oil passage 41a → 41b → branch passage 41d and becomes high pressure. For this reason, the vane 3 rotates clockwise from the position shown in FIG. 2 to the maximum until the blades 28 come into contact with the other side surfaces of the partition walls 13 on the opposite side (retarding side hydraulic chamber side). To do.

また、この遅角側から進角側へ切り換えられた時点では、遅角側油圧室33の油圧が排出されて低圧になるものの、ベーン3の回転に伴って該遅角側油圧室33内の油圧が押圧されて該油圧も比較的高くなっているため、受圧室40内も高油圧に維持され、したがって、ロックピン34は、コイルスプリング39のばね力に抗して後退位置に保持された状態になっている。したがって、ベーン3は、自由な回転が規制されることなく、遅角側油圧室33方向へ速やかに回転する。   Further, at the time of switching from the retard angle side to the advance angle side, the oil pressure in the retard angle side hydraulic chamber 33 is discharged and becomes a low pressure, but as the vane 3 rotates, Since the hydraulic pressure is pressed and the hydraulic pressure is relatively high, the pressure receiving chamber 40 is also maintained at a high hydraulic pressure. Therefore, the lock pin 34 is held in the retracted position against the spring force of the coil spring 39. It is in a state. Therefore, the vane 3 rotates quickly in the direction of the retard side hydraulic chamber 33 without restricting free rotation.

したがって、タイミングスプロケット1とカムシャフト2とは、他方側へ相対回動して吸気弁の開閉時期を進角側へ制御する。これによって、機関のポンプ損失が低減して出力の向上が図れる。   Therefore, the timing sprocket 1 and the camshaft 2 are relatively rotated to the other side to control the opening / closing timing of the intake valve to the advance side. As a result, the pump loss of the engine is reduced and the output can be improved.

さらに、機関高回転高負荷域に移行すると、電磁切替弁45が作動してアイドリング運転時などと同じように供給通路43と第2油圧通路42,ドレン通路44と第1油圧通路41とを夫々連通させて、進角側油圧室32を低圧、遅角側油圧室33を高圧にするため、ベーン3は、図2に示すように反時計方向へ回動して、タイミングスプロケット1とカムシャフト2とを一方側へ相対回動させ、吸気弁の開閉時期を遅角側へ制御する。これによって、吸気充填効率の向上による出力の向上が図れる。   Further, when the engine shifts to the high engine speed / high load range, the electromagnetic switching valve 45 is operated to connect the supply passage 43, the second hydraulic passage 42, the drain passage 44, and the first hydraulic passage 41 in the same manner as during idling operation. In order to make the advance side hydraulic chamber 32 low and the retard side hydraulic chamber 33 high to communicate with each other, the vane 3 rotates counterclockwise as shown in FIG. 2 is rotated relative to one side, and the opening / closing timing of the intake valve is controlled to the retard side. As a result, the output can be improved by improving the intake charge efficiency.

尚、機関停止時には、アイドリング運転等を経るためベーン3は、進角側油圧室32方向へ回転して図3に示す状態となり、ロックピン34の係合部34bがコイルスプリング39のばね力で係合孔21に係合する。また、万一アイドリング運転等を経ないで機関が停止しても、カムシャフト2に発生する変動トルクによりベーン3が進角側油圧室32方向へ回動して、ロックピン34が係合穴21に係合する。   When the engine is stopped, the vane 3 rotates in the direction of the advance side hydraulic chamber 32 in order to undergo idling operation and the like, and is brought into the state shown in FIG. 3, and the engaging portion 34 b of the lock pin 34 is driven by the spring force of the coil spring 39. Engage with the engagement hole 21. Even if the engine is stopped without idling, etc., the vane 3 is rotated in the direction of the advance side hydraulic chamber 32 by the fluctuating torque generated in the camshaft 2, and the lock pin 34 is engaged with the engagement hole. 21 is engaged.

また、各油圧室32,33には、機関の運転状態に応じて油圧を適宜給排することによりベーン3を所望の中間位置に保持することも可能である。   The hydraulic chambers 32 and 33 can also hold the vane 3 at a desired intermediate position by appropriately supplying and discharging the hydraulic pressure according to the operating state of the engine.

そして、本実施形態によれば、前記ベーン3の前端面3aと各羽根部28の外周面28aにコーティングされたドライフィルムコート50,51によってベーン3とハウジング6及びフロントカバー7との間の摺動摩擦抵抗が大巾に低減される。したがって、ベーン3の常時円滑な回転作用が得られ、この結果、機関運転状態の変化に対するバルブタイミング制御応答性が向上する。   According to the present embodiment, the sliding between the vane 3 and the housing 6 and the front cover 7 is achieved by the dry film coats 50 and 51 coated on the front end surface 3a of the vane 3 and the outer peripheral surface 28a of each blade 28. Dynamic frictional resistance is greatly reduced. Accordingly, the vane 3 can always rotate smoothly, and as a result, the valve timing control response to changes in the engine operating state is improved.

しかも、ドライフィルムコート50,51は、ちどり格子状に配置されているため、該格子状の内側に作動油を貯留することができる。したがって、かかる貯留油によってベーン3とハウジング6及びフロントカバー7との間の潤滑性能が向上し、該ベーン3の回転摺動摩擦抵抗が一層低減され、ベーン3の回転性がより良好になる。   In addition, since the dry film coats 50 and 51 are arranged in a grid pattern, the hydraulic oil can be stored inside the grid pattern. Therefore, the lubrication performance between the vane 3 and the housing 6 and the front cover 7 is improved by the stored oil, the rotational sliding frictional resistance of the vane 3 is further reduced, and the rotation property of the vane 3 becomes better.

また、ドライフィルムコート50,51の存在によって、ベーン3とハウジング6内周面6aやフロントカバー7内端面7aとの間のシール作用が得られるため、各進角側油圧室32と各遅角側油圧室33との間の作動油のリークが防止される。   Further, the presence of the dry film coats 50 and 51 provides a sealing action between the vane 3 and the inner peripheral surface 6a of the housing 6 and the inner end surface 7a of the front cover 7, so that each advance side hydraulic chamber 32 and each retard angle are provided. The leakage of hydraulic fluid between the side hydraulic chambers 33 is prevented.

尚、ドライフィルムコート50は、図6に示すような菱形やリボン状に配置することも可能であり、また、図7に示すように各羽根部28の外周面28bの周方向に沿って複数の直線帯状に配置することも可能である。   The dry film coat 50 can be arranged in a diamond shape or a ribbon shape as shown in FIG. 6, and a plurality of dry film coats 50 are provided along the circumferential direction of the outer peripheral surface 28b of each blade portion 28 as shown in FIG. It is also possible to arrange them in the form of straight strips.

さらに、本実施形態によれば、ロック機構10のコイルスプリング39のばね力を前述のように特異な設定値としたため、ロック解除初期における変動トルクによるベーン3の振動が抑制されて、隔壁部13との振動打音の発生が防止されると共に、ベーン3等の耐久性の向上が図れる。   Furthermore, according to the present embodiment, since the spring force of the coil spring 39 of the lock mechanism 10 is set to a unique set value as described above, the vibration of the vane 3 due to the fluctuating torque at the initial stage of unlocking is suppressed, and the partition wall 13 And the durability of the vane 3 and the like can be improved.

図8は本発明の第2の実施形態を示し、ドライフィルムコート53,54を羽根部28ではなく、ベーン3基部27の外周面27aとハウジング6の内周面6aにそれぞれコーティングしたものである。   FIG. 8 shows a second embodiment of the present invention, in which dry film coats 53 and 54 are coated on the outer peripheral surface 27a of the vane 3 base portion 27 and the inner peripheral surface 6a of the housing 6 instead of the blade portion 28. .

この実施形態によれば、ドライフィルムコート53,54によってベーン3の常時円滑な摺動性が確保できるとともに、シール機能をも十分に発揮させることができるので、各突起部13のシール機構15,16や各羽根部28のシール機構30,31を廃止することが可能になる。この結果、製造作業能率の向上とコストの低廉化が図れる。   According to this embodiment, the dry film coats 53 and 54 can ensure a smooth sliding property of the vane 3 at all times, and can sufficiently exhibit the sealing function. 16 and the sealing mechanisms 30 and 31 of each blade portion 28 can be eliminated. As a result, the manufacturing work efficiency can be improved and the cost can be reduced.

本発明は前記実施形態の構成に限定されるものではなく、例えばロック機構10の受圧室40に供給される油圧を遅角側油圧室33からではなく、これらとは独立した油圧回路を利用することも可能である。また、ドライフィルムコートは、その形状を種々変更することが可能である。ただし、その材料および接着力は、外周面28aなどから簡単に剥がれずに、長期にわたりコーティング状態が維持できるできるものでなければならない。   The present invention is not limited to the configuration of the above embodiment. For example, the hydraulic pressure supplied to the pressure receiving chamber 40 of the lock mechanism 10 is not from the retard side hydraulic chamber 33 but uses a hydraulic circuit independent of these. It is also possible. The dry film coat can be variously changed in shape. However, the material and the adhesive force must be capable of maintaining the coating state for a long period of time without being easily peeled off from the outer peripheral surface 28a or the like.

本発明の第1の実施形態を示す図2のA−A線断面図。The AA sectional view taken on the line of FIG. 2 which shows the 1st Embodiment of this invention. 図1のB−B線矢視図。The BB line arrow directional view of FIG. 本実施形態の分解斜視図。The exploded perspective view of this embodiment. 図2のC矢視図。C arrow line view of FIG. 図4のD−D線断面図。The DD sectional view taken on the line of FIG. ドライフィルムコートの他例を示す図2のC矢視図。The C arrow line view of FIG. 2 which shows the other example of a dry film coat. ドライフィルムコートのさらに異なる例を示す図2のC矢視図。The C arrow line view of FIG. 2 which shows the further different example of a dry film coat. 本発明の第2の実施形態を示す図1のB−B線矢視図。The BB arrow directional view of FIG. 1 which shows the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…タイミングスプロケット(回転体)
2…カムシャフト
3…ベーン
3a…前端面
4…油圧回路
6…ハウジング
7…フロントカバー
10…ロック機構
13…隔壁部
27…基部
28…羽根部
28a…外周面
32…進角側油圧室
33…遅角側油圧室
40…受圧室
50,51,53,54…ドライフィルムコート(潤滑材)
52…凹部
1. Timing sprocket (rotating body)
DESCRIPTION OF SYMBOLS 2 ... Cam shaft 3 ... Vane 3a ... Front end surface 4 ... Hydraulic circuit 6 ... Housing 7 ... Front cover 10 ... Lock mechanism 13 ... Partition part 27 ... Base part 28 ... Blade | wing part 28a ... Outer peripheral surface 32 ... Advance side hydraulic chamber 33 ... Delay side hydraulic chamber 40 ... Pressure receiving chamber 50, 51, 53, 54 ... Dry film coat (lubricant)
52 ... concave portion

Claims (1)

機関のクランクシャフトによって回転駆動する回転体と、
該回転体と相対回動可能なカムシャフトと、
該カムシャフトの端部に固定されて、円環状の基部の外周側に複数の羽根部が一体に形成されたベーンと、
該ベーンを回転自在に収容したハウジングと、
該ハウジングの内周面に内方へ突設された複数の隔壁部と、
前記各羽根部に設けられ、前記ハウジングの内周面に摺接するように外方に押圧されるシール部材と、
前記隔壁部と前記各羽根部の両側面との間に画成された遅角側油圧室及び進角側油圧室と、
該両油圧室に相対的に油圧を給排して前記ベーンを正逆回転させる油圧回路と、
該油圧回路から供給される油圧が低い状態では、前記ベーンの回動位置を前記ハウジングに対して維持させるロック機構と、
を備えたバルブタイミング制御装置であって、
前記ベーンの少なくとも摺動する前端面にコーティングを施したことを特徴とする内燃機関のバルブタイミング制御装置。
A rotating body that is rotationally driven by the crankshaft of the engine;
A camshaft rotatable relative to the rotating body;
A vane fixed to the end of the camshaft and integrally formed with a plurality of blades on the outer peripheral side of the annular base;
A housing that rotatably accommodates the vane;
A plurality of partition walls projecting inwardly on the inner peripheral surface of the housing;
A seal member provided on each of the blades and pressed outward so as to be in sliding contact with the inner peripheral surface of the housing;
A retard-side hydraulic chamber and an advance-side hydraulic chamber defined between the partition wall and both side surfaces of the blades;
A hydraulic circuit for supplying and discharging hydraulic pressure to and from the hydraulic chambers to rotate the vane forward and backward,
In a state where the hydraulic pressure supplied from the hydraulic circuit is low, a lock mechanism that maintains the rotational position of the vane with respect to the housing;
A valve timing control device comprising:
A valve timing control device for an internal combustion engine, wherein a coating is applied to at least a sliding front end surface of the vane.
JP2005118005A 2005-04-15 2005-04-15 Valve timing control device for internal combustion engine Expired - Fee Related JP4115461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118005A JP4115461B2 (en) 2005-04-15 2005-04-15 Valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118005A JP4115461B2 (en) 2005-04-15 2005-04-15 Valve timing control device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07676198A Division JP3688459B2 (en) 1998-03-25 1998-03-25 Valve timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005207432A true JP2005207432A (en) 2005-08-04
JP4115461B2 JP4115461B2 (en) 2008-07-09

Family

ID=34909849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118005A Expired - Fee Related JP4115461B2 (en) 2005-04-15 2005-04-15 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4115461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020492A1 (en) * 2008-08-19 2010-02-25 Schaeffler Kg Device for variably adjusting the control times of gas exchange valves of an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020492A1 (en) * 2008-08-19 2010-02-25 Schaeffler Kg Device for variably adjusting the control times of gas exchange valves of an internal combustion engine

Also Published As

Publication number Publication date
JP4115461B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP3688459B2 (en) Valve timing control device for internal combustion engine
JP4163700B2 (en) Valve timing control device for internal combustion engine
JP4498976B2 (en) Valve timing control device for internal combustion engine
JP4115461B2 (en) Valve timing control device for internal combustion engine
JP6514602B2 (en) Valve timing control system for internal combustion engine
JP2001055914A (en) Valve timing control device for internal combustion engine
JPH11182216A (en) Valve timing control device for internal combustion engine
JP6267608B2 (en) Valve timing control device for internal combustion engine
JP6312568B2 (en) Valve timing control device for internal combustion engine
JP3974165B2 (en) Valve timing control device for internal combustion engine
JP7064922B2 (en) Control valves used in internal combustion engine valve timing control devices and internal combustion engine valve timing control devices
JP4000127B2 (en) Valve timing control device for internal combustion engine
JP6775032B2 (en) Hydraulic control valve and valve timing control device for internal combustion engine
JP3974164B2 (en) Valve timing control device for internal combustion engine
JP3703291B2 (en) Valve timing control device for internal combustion engine
WO2018101155A1 (en) Valve timing control device for internal combustion engine
JP3817067B2 (en) Valve timing control device for internal combustion engine
JP3974139B2 (en) Valve timing control device for internal combustion engine
JP2003106113A (en) Valve timing control device of internal combustion engine
JP3974163B2 (en) Valve timing control device for internal combustion engine
WO2006022065A1 (en) Valve timing adjusting device
JP6533322B2 (en) Valve timing control system for internal combustion engine
JP3817065B2 (en) Valve timing control device for internal combustion engine
JP3688456B2 (en) Valve timing control device for internal combustion engine
WO2017119234A1 (en) Internal-combustion engine valve timing control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees