JP2005205401A - Composite-oxide catalyst manufacturing method - Google Patents

Composite-oxide catalyst manufacturing method Download PDF

Info

Publication number
JP2005205401A
JP2005205401A JP2004363637A JP2004363637A JP2005205401A JP 2005205401 A JP2005205401 A JP 2005205401A JP 2004363637 A JP2004363637 A JP 2004363637A JP 2004363637 A JP2004363637 A JP 2004363637A JP 2005205401 A JP2005205401 A JP 2005205401A
Authority
JP
Japan
Prior art keywords
oxide catalyst
producing
composite oxide
dispersion
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004363637A
Other languages
Japanese (ja)
Inventor
Hisao Kinoshita
久夫 木下
Tsutomu Teshigawara
力 勅使河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004363637A priority Critical patent/JP2005205401A/en
Publication of JP2005205401A publication Critical patent/JP2005205401A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite-oxide catalyst manufacturing method for manufacturing unsaturated carboxylic acid corresponding to unsaturated aldhyde by catalytically oxidizing the unsaturated aldehyde in gas phase with gas including molecular oxygen. <P>SOLUTION: The method for producing the composite-oxide catalyst having formula (1) shown below comprises the steps of heating a water solution or dispersion liquid made by dissolving and/or dispersing material compounds of metals constituting the catalyst and a material compound of Si and C including a chemical bond of Si and C into an aqueous medium at a temperature not lower than 70°C, blowing a gas including ozone into the water solution or the dispersion, then drying it to obtain powder, and molding and burning the power. The formula (1) is Mo<SB>12</SB>Nb<SB>a</SB>V<SB>b</SB>Sb<SB>c</SB>Cu<SB>d</SB>Si<SB>e</SB>C<SB>f</SB>O<SB>g</SB>, wherein a, b, c, d, e, f, and g represent the atomic ratio of the elements and, assuming that molybdenum atom is 12, 0<a≤10, 0<b≤10, 0<c≤5, 0<d≤5, 0<e≤1000, and 0<f≤1000, and g is the number determined by the oxidation degree of each component excluding Si and C among the components. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して、長期にわたり安定して、かつ高収率で対応する不飽和カルボン酸を製造するための複合酸化物触媒の製造方法に関する。   The present invention relates to a method for producing a composite oxide catalyst for producing a unsaturated carboxylic acid corresponding to a long-term stable and high yield by gas-phase catalytic oxidation of an unsaturated aldehyde with a molecular oxygen-containing gas. About.

従来、アクロレイン、メタクロレインなどの不飽和アルデヒドを分子状酸素により気相接触酸化してアクリル酸、メタクリル酸などの不飽和カルボン酸を製造するための触媒が種々提案されている。これらの触媒は、オレフィンから製造される不飽和アルデヒド原料の有効利用及び反応における工程の合理化の観点から、少しでも高い不飽和アルデヒドの転化率や目的物である不飽和カルボンの選択率が求められる。例えば、アクロレインからアクリル酸を製造する反応を6万トン/年規模のプラントで製造する場合、上記転化率や選択率が0.1%でも向上すると、得られる生成物である、アクリル酸の量は、数百トンのレベルで大きく増加する。したがって、転化率や選択率等の触媒性能の向上は、たとえ少しの向上であっても、資源の有効活用や工程の合理化に大幅に寄与する。   Conventionally, various catalysts for producing unsaturated carboxylic acids such as acrylic acid and methacrylic acid by vapor-phase catalytic oxidation of unsaturated aldehydes such as acrolein and methacrolein with molecular oxygen have been proposed. From the viewpoint of effective utilization of unsaturated aldehyde raw materials produced from olefins and rationalization of processes in the reaction, these catalysts are required to have a slightly higher unsaturated aldehyde conversion rate and the selectivity of the unsaturated carboxylic acid as the target product. . For example, when the reaction for producing acrylic acid from acrolein is produced in a plant with a scale of 60,000 tons / year, the amount of acrylic acid that is a product obtained when the conversion rate and selectivity are improved even by 0.1%. Greatly increases at the level of several hundred tons. Therefore, improvement in catalyst performance such as conversion rate and selectivity greatly contributes to effective utilization of resources and rationalization of processes even if a slight improvement.

従来、これらの反応の原料転化率や選択率等の触媒性能の改善を目指して種々の提案がなされている。例えば、特許文献1には、水性媒体中でMo、V及びSbを加熱反応させ、該反応の間または終了後、反応液中に過酸化水素を加える工程を経て製造されたMo−V−Sb−Nb(又はTa)系の触媒が開示されており、また、特許文献2には、水性媒体中でMo、V及びSbを加熱反応させ、該反応の間または終了後、反応液中に分子状酸素又は該酸素を含むガスを吹き込む工程を経て製造されたMo−V−Sb−Nb(又はTa)系の触媒が開示されている。   Conventionally, various proposals have been made with the aim of improving the catalyst performance such as the raw material conversion rate and selectivity of these reactions. For example, Patent Document 1 discloses that Mo-V-Sb produced through a process in which Mo, V and Sb are heated and reacted in an aqueous medium, and hydrogen peroxide is added to the reaction solution during or after the reaction. -Nb (or Ta) -based catalyst is disclosed, and Patent Document 2 heat-reacts Mo, V, and Sb in an aqueous medium, and molecules in the reaction solution during or after the reaction. A Mo-V-Sb-Nb (or Ta) -based catalyst manufactured through a step of blowing gaseous oxygen or a gas containing the oxygen is disclosed.

しかしながら、これらの従来の複合酸化物触媒は、それぞれ優れた性能を示すものの、更なる高い原料不飽和アルデヒド転化率や不飽和カルボン酸選択率の性能向上が望まれている。さらに、特許文献1の触媒の場合は過酸化水素の使用に際し安全性への配慮が不可欠であり、また、特許文献2の触媒の場合は、分子状酸素を長時間吹き込む必要があり、改良が求められていた。
特開平11−343261号公報 特開平11−343262号公報
However, although these conventional complex oxide catalysts each show excellent performance, further improvement in performance of raw material unsaturated aldehyde conversion rate and unsaturated carboxylic acid selectivity is desired. Furthermore, in the case of the catalyst of Patent Document 1, it is indispensable to consider safety when using hydrogen peroxide, and in the case of the catalyst of Patent Document 2, it is necessary to blow molecular oxygen for a long time. It was sought after.
Japanese Patent Laid-Open No. 11-343261 Japanese Patent Laid-Open No. 11-343262

本発明は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して不飽和カルボン酸を製造する際に、製造工程において安全性が高くガス吹き込みに要する時間を短縮可能で、原料不飽和アルデヒドの高転化率及び不飽和カルボン酸の高選択率を与え、かつ長期にわたって安定した性能を示す複合酸化物触媒の製造方法を提供する。   The present invention is highly safe in the production process and can reduce the time required for gas injection when producing unsaturated carboxylic acid by gas phase catalytic oxidation of unsaturated aldehyde with molecular oxygen-containing gas. Provided is a method for producing a composite oxide catalyst that provides high conversion of aldehyde and high selectivity of unsaturated carboxylic acid and exhibits stable performance over a long period of time.

本発明者は、上記の目的を達成すべく研究を重ねたところ、触媒成分としてCu成分、及びSi−C成分を新たに含有し、かつ、水性媒体中で Mo−Nb−V−Sb−Cu−Si−Cの全成分存在下にMo、V及びSbを加熱反応させ、該反応中にオゾン含有ガスを吹き込むことにより、安全性が高く、ガス吹き込み時間の短縮化が可能で、原料不飽和アルデヒドの高転化率及び不飽和カルボン酸の高選択率を与え、かつ長期にわたって安定した性能を示す複合酸化物触媒の製造方法を実現できることを見出した。   The present inventor has conducted research to achieve the above object, and as a result, newly contains a Cu component and a Si—C component as catalyst components, and Mo—Nb—V—Sb—Cu in an aqueous medium. -By heating and reacting Mo, V and Sb in the presence of all components of Si-C, and blowing ozone-containing gas during the reaction, safety is high and the gas blowing time can be shortened. It has been found that it is possible to realize a method for producing a composite oxide catalyst that gives high conversion of aldehyde and high selectivity of unsaturated carboxylic acid and exhibits stable performance over a long period of time.

かくして、本発明は、下記の要旨を特徴とするものである。
(1)不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して対応する不飽和カルボン酸を製造する際に使用される下記の式(1)を有する複合酸化物触媒の製造方法であって、触媒を構成する各金属成分の原料化合物、及びSiとCの化学結合を含むSi及びC成分の原料化合物を水性媒体に溶解及び/又は分散した水溶液又は分散液を70℃以上に加熱し、該水溶液又は分散液中にオゾン含有ガスを吹き込み、次いで該水溶液又は分散液を乾燥して粉体にし、該粉体を成形し、焼成することを特徴とする触媒の製造方法。

Mo12NbSbCuSi (1)

(式中、各変数は次の意味を有する。a、b、c、d、e、f及びgは各元素の原子比を表し、モリブデン原子12に対して、0<a≦10、0<b≦10、0<c≦5、0<d≦5、0<e≦1000、0<f≦1000、gは(1)の前記各成分のうちSiとCを除いた各成分の酸化度によって決まる数である)
(2)前記水溶液又は分散液を噴霧乾燥により乾燥する上記(1)に記載の複合酸化物触媒の製造方法。
(3)前記SiとCの化学結合を含むSi及びC成分の原料化合物がシリコンカーバイドである上記(1)又は(2)に記載の複合酸化物触媒の製造方法。
(4)前記粉体をシリカ、グラファイト及び結晶性セルロースからなる群から選ばれる一種以上のバインダーを使用して成形する上記(1)〜(3)のいずれかに記載の複合酸化物触媒の製造方法。
(5)上記(1)〜(4)のいずれかに記載の製造方法によって製造された複合酸化物触媒。
(6)上記(5)に記載の複合酸化物触媒の存在下にアクロレインを分子状酸素含有ガスにより気相接触酸化して対応するアクリル酸を製造する方法。
Thus, the present invention is characterized by the following gist.
(1) A method for producing a composite oxide catalyst having the following formula (1) used when producing a corresponding unsaturated carboxylic acid by gas phase catalytic oxidation of an unsaturated aldehyde with a molecular oxygen-containing gas. Then, an aqueous solution or dispersion obtained by dissolving and / or dispersing a raw material compound of each metal component constituting the catalyst and a raw material compound of Si and C components containing a chemical bond of Si and C in an aqueous medium is heated to 70 ° C. or higher. A method for producing a catalyst, wherein an ozone-containing gas is blown into the aqueous solution or dispersion, then the aqueous solution or dispersion is dried to form a powder, the powder is molded, and calcined.

Mo 12 Nb a V b Sb c Cu d Si e C f O g (1)

(In the formula, each variable has the following meaning: a, b, c, d, e, f and g represent the atomic ratio of each element, and 0 <a ≦ 10, 0 < b ≦ 10, 0 <c ≦ 5, 0 <d ≦ 5, 0 <e ≦ 1000, 0 <f ≦ 1000, g is the degree of oxidation of each component except Si and C among the above components of (1). (The number is determined by
(2) The method for producing a composite oxide catalyst according to (1), wherein the aqueous solution or dispersion is dried by spray drying.
(3) The method for producing a composite oxide catalyst according to the above (1) or (2), wherein the raw material compound of Si and C components containing a chemical bond between Si and C is silicon carbide.
(4) The composite oxide catalyst according to any one of (1) to (3), wherein the powder is molded using one or more binders selected from the group consisting of silica, graphite, and crystalline cellulose. Method.
(5) The composite oxide catalyst manufactured by the manufacturing method in any one of said (1)-(4).
(6) A method for producing a corresponding acrylic acid by vapor-phase catalytic oxidation of acrolein with a molecular oxygen-containing gas in the presence of the composite oxide catalyst according to (5) above.

本発明によれば、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して不飽和カルボン酸を製造する場合において、安全性が高く、ガス吹き込み時間の短縮化が可能で、原料不飽和アルデヒドの高転化率及び不飽和カルボン酸の高選択率を与え、かつ長期にわたって安定した性能を示す複合酸化物触媒の製造方法が提供される。   According to the present invention, when an unsaturated aldehyde is produced by gas phase catalytic oxidation with a molecular oxygen-containing gas to produce an unsaturated carboxylic acid, the safety is high and the gas blowing time can be shortened. Provided is a method for producing a composite oxide catalyst that provides high conversion of aldehyde and high selectivity of unsaturated carboxylic acid and exhibits stable performance over a long period of time.

特に、触媒単位あたりのアクロレインの転化率が向上し、さらに触媒のアクリル酸の選択率が改良され、アクロレインの気相接触酸化反応を効率よく行える活性の高い複合酸化物触媒が製造できる。   In particular, the conversion rate of acrolein per catalyst unit is improved, the selectivity of acrylic acid of the catalyst is improved, and a highly active composite oxide catalyst capable of efficiently performing the gas phase catalytic oxidation reaction of acrolein can be produced.

本発明において、触媒成分としてCu、Si−C成分を新たに含有し、かつ、水性媒体中で Mo−Nb−V−Sb−Cu−Si−Cの全成分存在下Mo、V及びSbを加熱反応させ、該反応中にオゾン含有ガスを吹き込むことにより、何故に上記の如き優れた効果が達成できるかについては、必ずしも明らかではないが、ほぼ次のように推定される。   In the present invention, Cu, Si-C components are newly contained as catalyst components, and Mo, V, and Sb are heated in the presence of all the components of Mo-Nb-V-Sb-Cu-Si-C in an aqueous medium. The reason why the above-described excellent effect can be achieved by reacting and blowing ozone-containing gas during the reaction is not necessarily clear, but is estimated as follows.

本触媒系の活性成分構造は、Mo、Vを基本とするイソポリ酸構造と推定され、Sbの添加はイソポリ酸構造の安定化、及び触媒性能に大きな効果を与えることを見出している。しかしながら、Sbがイソポリ酸構造に取り込まれるには、活性種の前駆体調製工程条件に大きく影響する。特に調製工程スラリー溶液でのMo‐Vを還元状態で保持することがリジットなMo‐V−Sb構造を生成させるのに極めて重要である。しかしながら、Mo‐V−Sb還元体構造では活性が著しく低下してしまい、還元体構造を適正な酸化状態に戻すことが重要であり、活性種の前駆体調製工程でのオゾン酸化による酸化還元状態制御が重要であると推定している。   The active component structure of this catalyst system is presumed to be an isopolyacid structure based on Mo and V, and it has been found that the addition of Sb has a great effect on the stabilization of the isopolyacid structure and the catalyst performance. However, the incorporation of Sb into the isopolyacid structure greatly affects the process conditions for the preparation of the active species precursor. In particular, maintaining Mo-V in the reduced slurry state in the preparation process slurry solution is extremely important for producing a rigid Mo-V-Sb structure. However, in the Mo-V-Sb reductant structure, the activity is remarkably lowered, and it is important to return the reductant structure to an appropriate oxidation state, and the redox state by ozone oxidation in the precursor preparation step of the active species We estimate that control is important.

本発明で製造される複合酸化物触媒は前記の式(1)で表される。前記の式において、Moはモリブデン、Nbはニオブ、Vはバナジウム、Sbはアンチモン、Cuは銅、Siはケイ素、Cは炭素、Oは酸素を示し、また、a、b、c、d、e、f、及びgは、それぞれ前記したとおりであるが、なかでも、1≦a≦8、0.5≦b≦5、0.5≦c≦5、0.5≦d≦5、5≦e≦500、fは5≦f≦500が好ましい。   The composite oxide catalyst produced in the present invention is represented by the above formula (1). In the above formula, Mo is molybdenum, Nb is niobium, V is vanadium, Sb is antimony, Cu is copper, Si is silicon, C is carbon, O is oxygen, and a, b, c, d, e , F, and g are as described above. Among them, 1 ≦ a ≦ 8, 0.5 ≦ b ≦ 5, 0.5 ≦ c ≦ 5, 0.5 ≦ d ≦ 5, 5 ≦ e ≦ 500 and f are preferably 5 ≦ f ≦ 500.

本発明の複合酸化物触媒は、式(1)で示した触媒組成を構成する各金属成分の原料化合物、及びSiとCの化学結合を含むSi及びC成分の原料化合物を水性媒体に溶解及び/又は分散した水溶液又は分散液中にオゾン含有ガスを吹き込み、次いで該水溶液又は分散液を乾燥して粉体にし、該粉体を成形し、焼成することにより製造される。   The composite oxide catalyst of the present invention is obtained by dissolving a raw material compound of each metal component constituting the catalyst composition represented by the formula (1) and a raw material compound of Si and C components containing a chemical bond of Si and C in an aqueous medium. The ozone-containing gas is blown into the dispersed aqueous solution or dispersion, and then the aqueous solution or dispersion is dried to form a powder, the powder is molded and fired.

本発明の複合酸化物触媒における各金属成分の原料化合物は、焼成によって酸化物になる化合物であれば、水溶性でも水難溶性でも特に制限されるものではない。原料化合物の具体例としては、各成分のハロゲン化物、硫酸塩、硝酸塩、アンモニウム塩、酸化物、カルボン酸塩、カルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、水素酸、アセチルアセトナート、アルコキシド等が挙げられる。   The raw material compound of each metal component in the composite oxide catalyst of the present invention is not particularly limited as long as it is a compound that becomes an oxide by calcination, either water-soluble or poorly water-soluble. Specific examples of the raw material compounds include halides, sulfates, nitrates, ammonium salts, oxides, carboxylates, ammonium carboxylates, ammonium halides, hydrogen acids, acetylacetonates, alkoxides, and the like of each component. It is done.

また、SiとCの化学結合を含むSi及びC成分の原料化合物としては、シリコンカーバイドが好ましく、具体例としては緑色炭化珪素、黒色炭化珪素などが挙げられる。シリコンカーバイドは、その大きな熱伝導性から活性点の大きな発熱の蓄熱を低減するとともに、活性成分の分散性、細孔構造を最適化する機能を付与するために、0.2〜80ミクロンの微紛状のものが好ましい。このSiとCの化学結合を含むSi及びC成分の原料化合物は、後述する成形助剤におけるSi及びCとは異なり、焼成によって消失することなく、触媒構成元素の均一分散及び焼成時のホットスポット抑制などに寄与する重要な成分である。   Moreover, as a raw material compound of Si and C component containing a chemical bond of Si and C, silicon carbide is preferable, and specific examples thereof include green silicon carbide and black silicon carbide. Silicon carbide has a fine thermal conductivity of 0.2 to 80 microns in order to reduce heat storage due to its large thermal conductivity due to its large thermal conductivity, and to provide functions for optimizing the dispersibility of active ingredients and the pore structure. A powdery one is preferred. The Si and C raw material compounds containing the chemical bond between Si and C are different from Si and C in the molding aid described later, and do not disappear by firing. It is an important component that contributes to suppression.

これらの原料化合物は、各成分を単独で含有するものを用いてもよく、2種以上の成分を含有する原料化合物を用いてもよい。
本発明においては、まず上記原料化合物を水性媒体に溶解及び/又は分散し、全触媒成分を含む水溶液又は分散液を調製する。水性媒体としては、特に限定されないが、水が好ましく使用できる。多くの場合は一部の成分が溶解しないためスラリー状になる。かかる水溶液又は分散液中の水の量は、各成分の原料化合物を完全に溶解又は均一に分散できる量であれば特に限定されないが、続いて行われる乾燥方法や乾燥温度や乾燥時間等の乾燥条件を勘案して適宜に決定すればよい。水の量は、通常、原料化合物の合計100重量部に対して100〜2000重量部である。水の量が上記所定量未満の少量では化合物を完全に溶解できず、又は均一に混合できないことがある。また、水の量が多量であれば、熱処理時のエネルギーコストがかさむという恐れが生じる。多くの場合、スラリー状である分散液は、好ましくは室温〜200℃で、1分〜24時間熟成処理されるのが好適である。
As these raw material compounds, those containing each component alone may be used, or raw material compounds containing two or more kinds of components may be used.
In the present invention, first, the raw material compound is dissolved and / or dispersed in an aqueous medium to prepare an aqueous solution or dispersion containing all catalyst components. The aqueous medium is not particularly limited, but water can be preferably used. In many cases, some components do not dissolve, resulting in a slurry. The amount of water in the aqueous solution or dispersion is not particularly limited as long as the raw material compound of each component can be completely dissolved or uniformly dispersed, but drying such as the subsequent drying method, drying temperature, drying time, etc. What is necessary is just to determine suitably considering conditions. The amount of water is usually 100 to 2000 parts by weight with respect to a total of 100 parts by weight of the raw material compounds. If the amount of water is less than the above predetermined amount, the compound may not be completely dissolved or may not be uniformly mixed. Further, if the amount of water is large, there is a risk that the energy cost during the heat treatment is increased. In many cases, the dispersion in the form of a slurry is preferably aged at room temperature to 200 ° C. for 1 minute to 24 hours.

次いで、上記の水溶液又は分散液を70℃以上、好ましくは80〜100℃の温度に加熱し、該水溶液又は分散液中にオゾン含有ガスを吹き込む。オゾン含有ガスにおけるオゾン濃度は、0.1容量%以上、特に、0.5容量%以上であることが好ましい。オゾン含有ガス流量は、水溶液又は分散液の液量にもよるが、液量が0.5〜1リットル程度であれば、10〜30リットル/時間が望ましい。オゾン含有ガス吹き込みは、後述するようにMo+5が消失するまで続けるのが望ましく、Mo+5が消失するまでの吹き込み時間は、液量にもよるが、通常0.5時間以上、特に2〜10時間である。オゾン含有ガス吹き込み中は、水溶液又は分散液を攪拌するのが好ましい。 Next, the aqueous solution or dispersion is heated to a temperature of 70 ° C. or higher, preferably 80 to 100 ° C., and an ozone-containing gas is blown into the aqueous solution or dispersion. The ozone concentration in the ozone-containing gas is preferably 0.1% by volume or more, and particularly preferably 0.5% by volume or more. The ozone-containing gas flow rate depends on the amount of the aqueous solution or dispersion, but is desirably 10 to 30 liters / hour if the amount of the fluid is about 0.5 to 1 liter. The ozone-containing gas blowing is preferably continued until Mo +5 disappears, as will be described later. The blowing time until Mo +5 disappears depends on the amount of liquid, but is usually 0.5 hours or more, particularly 2 to 10 It's time. During the ozone-containing gas blowing, the aqueous solution or dispersion is preferably stirred.

本発明における水溶液又は分散液においても、Sb3+の存在下、70℃以上で下記(I)、(II)式の酸化還元反応が進行する。

5+ + Sb3+ → V3+ + Sb5+ (I)
3+ + Mo+6 → V4+ + Mo5+ (II)
Also in the aqueous solution or dispersion in the present invention, redox reactions of the following formulas (I) and (II) proceed at 70 ° C. or higher in the presence of Sb 3+ .

V 5+ + Sb 3+ → V 3+ + Sb 5+ (I)
V 3+ + Mo +6 → V 4+ + Mo 5+ (II)

この過程で、Mo‐V−Sbイソポリ酸還元体構造が生成し、オゾン含有ガスの吹き込みによって還元体構造が酸化され、高活性複合酸化物触媒の前駆体が得られるものと推定される。本発明においては、反応液中のMo及びVの原子価は、電子スピン共鳴スペクトル等の分析的手段によって求められ、Mo5+が消失するまでオゾン含有ガスの吹き込みを継続するのが好ましい。 In this process, it is presumed that a reduced structure of Mo-V-Sb isopolyacid is generated, and the reduced body structure is oxidized by blowing in ozone-containing gas to obtain a precursor of a highly active composite oxide catalyst. In the present invention, the valences of Mo and V in the reaction solution are determined by analytical means such as an electron spin resonance spectrum, and it is preferable to continue blowing ozone-containing gas until Mo 5+ disappears.

次いで、上記水溶液又は分散液を乾燥して粉体とする。乾燥は、水溶液又は分散液を充分に乾燥でき、粉体が得られる方法であれば特に制限はなく、例えばドラム乾燥、凍結乾燥、噴霧乾燥等が好ましい方法として挙げられる。噴霧乾燥は、水溶液又は水分散液から短時間に均質な粉末状態に乾燥することができるので、本発明に好ましく適用できる方法である。   Next, the aqueous solution or dispersion is dried to obtain a powder. The drying is not particularly limited as long as the aqueous solution or dispersion can be sufficiently dried and a powder can be obtained. For example, drum drying, freeze drying, spray drying and the like are preferable methods. Spray drying is a method that can be preferably applied to the present invention because it can be dried from an aqueous solution or aqueous dispersion into a homogeneous powder state in a short time.

上記乾燥の温度は、水溶液又は分散液の触媒成分量、液量等によっても異なるが、通常100〜300℃、好ましくは120〜250℃にて、0.5〜24時間、好ましくは1〜10時間行う。かかる乾燥により得られる粉体の粒径は、10〜200μmとなるようにするのが好ましい。このため粉体は、場合により乾燥後粉砕することもできる。   The drying temperature varies depending on the amount of catalyst components and the amount of the aqueous solution or dispersion, but is usually 100 to 300 ° C, preferably 120 to 250 ° C, and 0.5 to 24 hours, preferably 1 to 10 hours. Do time. The particle size of the powder obtained by such drying is preferably 10 to 200 μm. For this reason, the powder can optionally be pulverized after drying.

次いで、上記で得られた乾燥粉体を熱処理するのが好ましい。熱処理の温度は通常160〜450℃、好ましくは200〜350℃、熱処理の時間は通常1〜20時間、好ましくは2〜10時間である。また、具体的な熱処理方法としては、公知の方法が可能であり特に制限はない。このような熱処理を行うことにより、より均一性に優れた、粉化の少ない触媒が得られる。   Subsequently, it is preferable to heat-treat the dry powder obtained above. The heat treatment temperature is usually 160 to 450 ° C., preferably 200 to 350 ° C., and the heat treatment time is usually 1 to 20 hours, preferably 2 to 10 hours. Moreover, as a specific heat treatment method, a known method is possible and there is no particular limitation. By performing such heat treatment, a catalyst with better uniformity and less powdering can be obtained.

次に、上記乾燥後の粉体、又は乾燥後熱処理された粉体を成形する。成形方法に特に制限はなく、好ましくはバインダーを使用し成形する。好ましいバインダーは、シリカ、グラファイト及び結晶性セルロースからなる群から選ばれる。バインダーは、粉体100重量部に対して好ましくは約1〜50重量部程度使用できる。また、必要によりセラミックス繊維、ウイスカー等の無機繊維を触媒粒子の機械的強度向上材として用いることもできる。しかし、チタン酸カリウムウイスカーや塩基性炭酸マグネシウムウイスカーのような触媒成分と反応する繊維は好ましくない。強度向上のためには、セラミックス繊維が特に好ましい。これらの繊維の使用量は、粉体100重量部に対して好ましくは1〜30重量部である。上記成形助剤は、通常予め粉体と混合して用いられる。   Next, the dried powder or the heat-treated powder after drying is formed. There is no restriction | limiting in particular in a shaping | molding method, Preferably it shape | molds using a binder. Preferred binders are selected from the group consisting of silica, graphite and crystalline cellulose. The binder is preferably used in an amount of about 1 to 50 parts by weight with respect to 100 parts by weight of the powder. If necessary, inorganic fibers such as ceramic fibers and whiskers can be used as a material for improving the mechanical strength of the catalyst particles. However, fibers that react with catalyst components such as potassium titanate whiskers and basic magnesium carbonate whiskers are not preferred. For improving the strength, ceramic fiber is particularly preferable. The amount of these fibers used is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the powder. The molding aid is usually used in advance mixed with powder.

バインダーなどの成形助剤と混合された粉体は、(A)打錠成形、(B)押出成形、(C)球状その他の所望の周知形状の担持成形法などの適当な方法を採用できる。成形体は、好ましくは球状、円柱状、リング状などの適宜の形状が選択される。   For the powder mixed with a molding aid such as a binder, an appropriate method such as (A) tableting molding, (B) extrusion molding, (C) spherical or other desired well-known support molding method can be employed. As the molded body, an appropriate shape such as a spherical shape, a cylindrical shape, or a ring shape is preferably selected.

次いで、このようにして成形された成形物を焼成して複合酸化物触媒を得る。焼成温度は、通常250〜500℃を採用でき、好ましくは300〜420℃であり、焼成時間は1〜50時間である。焼成は、不活性ガス又は分子状酸素の存在下の雰囲気で行うことができる。焼成温度が低すぎる場合は、原料由来のアンモニウム塩の残存が問題となり、高すぎる場合は活性成分構造の結晶化、構造破壊を引き起こし触媒性能が低下するからである。なお、雰囲気ガス中の分子状酸素は10容量%以下が好ましく、分子状酸素の含有量が10容量%を超えて多いと、触媒の活性が不充分となることがある。分子状酸素の含有量は0容量%でもよいが、好ましくは0.05容量%以上である。   Next, the molded product thus molded is fired to obtain a composite oxide catalyst. The firing temperature can be usually 250 to 500 ° C, preferably 300 to 420 ° C, and the firing time is 1 to 50 hours. Firing can be performed in an atmosphere in the presence of an inert gas or molecular oxygen. If the calcination temperature is too low, the remaining of the ammonium salt derived from the raw material becomes a problem, and if it is too high, the active component structure is crystallized and the structure is destroyed, resulting in a decrease in catalyst performance. The molecular oxygen in the atmospheric gas is preferably 10% by volume or less, and if the content of molecular oxygen exceeds 10% by volume, the activity of the catalyst may be insufficient. The content of molecular oxygen may be 0% by volume, but is preferably 0.05% by volume or more.

本発明により製造された触媒を使用し、不飽和アルデヒドを分子状酸素又は分子状酸素含有ガスを使用して気相酸化し、対応する不飽和カルボン酸を製造する手段は、既存の方法により行うことができる。例えば、反応器としては、固定床管型反応器を用いて行われる。この場合、反応は、反応器を通じて単流通法でもリサイクル法であってもよく、この種の反応に一般的に使用される条件下で実施できる。   The means for producing a corresponding unsaturated carboxylic acid by vapor phase oxidation of an unsaturated aldehyde using molecular oxygen or a molecular oxygen-containing gas using the catalyst produced according to the present invention is performed by an existing method. be able to. For example, a fixed bed tube reactor is used as the reactor. In this case, the reaction may be a single flow method or a recycle method through the reactor, and can be carried out under conditions generally used for this type of reaction.

例えば、アクロレイン4〜8容量%、分子状酸素6〜10容量%、水蒸気10〜20容量%、窒素、炭酸ガスなどの不活性ガス62〜80容量%などからなる混合ガスを、内径が好ましくは15〜50mmの各反応管の各反応帯に充填した触媒層に250〜450℃、0.1〜1MPaの加圧下、空間速度(SV)300〜5000hr-1で導入される。本発明では、より生産性を上げるために高負荷反応条件下、例えば、より高い原料ガス濃度、又は高い空間速度の条件下でも運転することもできる。かくして、本発明で製造された触媒により、高選択率及び高収率でアクリル酸を製造することができる。 For example, a mixed gas composed of 4 to 8% by volume of acrolein, 6 to 10% by volume of molecular oxygen, 10 to 20% by volume of water vapor, 62 to 80% by volume of an inert gas such as nitrogen or carbon dioxide, and the like preferably has an inner diameter. It is introduced at a space velocity (SV) of 300 to 5000 hr −1 under a pressure of 250 to 450 ° C. and a pressure of 0.1 to 1 MPa into a catalyst layer filled in each reaction zone of each reaction tube of 15 to 50 mm. In the present invention, it is possible to operate under high load reaction conditions, for example, higher raw material gas concentration or high space velocity conditions in order to increase productivity. Thus, acrylic acid can be produced with high selectivity and high yield by the catalyst produced in the present invention.

以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されて解釈されるべきでないことはもちろんである。なお、アクロレイン転化率、アクリル酸選択率、アクリル酸収率は、下記の式で定義されるものである。
アクロレイン転化率(モル%)=100×(反応したアクロレインのモル数)/(供給したアクロレインのモル数)
アクリル酸選択率(モル%)=100×(生成したアクリル酸モル数)/(転化したアクロレインモル数)
アクリル酸収率(モル%)=100×(生成したアクリル酸モル数)/(供給したアクロレインモル数)
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention should not be construed as being limited to these examples. The acrolein conversion rate, acrylic acid selectivity, and acrylic acid yield are defined by the following formulas.
Acrolein conversion (mol%) = 100 × (number of moles of reacted acrolein) / (number of moles of supplied acrolein)
Acrylic acid selectivity (mol%) = 100 × (number of moles of acrylic acid produced) / (number of moles of converted acrolein)
Acrylic acid yield (mol%) = 100 × (number of moles of acrylic acid produced) / (number of moles of acrolein supplied)

実施例
酸素を除く触媒組成がMo12Nb23.5Cu2SbSi150150である複合金属酸化物を以下のようにして調製した。
まず、純水1124mlを80℃に加熱し、パラモリブデン酸アンモニウム298.7g、メタバナジン酸アンモニウム57.94gを撹拌しながら溶解した。この水溶液に、蓚酸ニオブアンモニウム32.45gを80℃の純水324mlに溶解した水溶液を添加し、さらに、硫酸銅70.24gを80℃の純水95mlに溶解した水溶液を添加した。この水溶液に、三酸化アンチモン20.54gを添加し、撹拌した。この液に最大粒子径63ミクロン以下、累積高さ3%点の粒子径50ミクロン以下、累積高さ50%点の粒子径25±2.0ミクロン、累積高さ94%点の粒子径16ミクロン以下の粒度分布性状の炭化珪素粉末848gを加えて、充分に撹拌混合し、スラリー状分散液を得た。
Example A composite metal oxide in which the catalyst composition excluding oxygen was Mo 12 Nb 2 V 3.5 Cu 2 Sb 1 Si 150 C 150 was prepared as follows.
First, 1124 ml of pure water was heated to 80 ° C., and 298.7 g of ammonium paramolybdate and 57.94 g of ammonium metavanadate were dissolved with stirring. An aqueous solution in which 32.45 g of niobium ammonium oxalate was dissolved in 324 ml of pure water at 80 ° C. was added to this aqueous solution, and an aqueous solution in which 70.24 g of copper sulfate was dissolved in 95 ml of pure water at 80 ° C. was further added. To this aqueous solution, 20.54 g of antimony trioxide was added and stirred. This liquid has a maximum particle size of 63 microns or less, a particle size of 50% or less at a cumulative height of 3%, a particle size of 25 ± 2.0 microns at a cumulative height of 50%, and a particle size of 16 microns at a cumulative height of 94%. 848 g of silicon carbide powder having the following particle size distribution characteristics was added and sufficiently stirred and mixed to obtain a slurry dispersion.

かかるスラリー状分散液を90℃に加熱後、オゾン含有ガスを吹き込んだ。このオゾン含有ガスにおけるオゾン濃度は3容量%、オゾン含有ガス流量は15リットル/時間とした。電子スピン共鳴スペクトルにより、液中の5価のMoを検出し、5価のMoが消失するまで液を攪拌しながら4時間継続してオゾン含有ガスの吹き込みを行った。   After this slurry-like dispersion was heated to 90 ° C., ozone-containing gas was blown. The ozone concentration in the ozone-containing gas was 3% by volume, and the ozone-containing gas flow rate was 15 liters / hour. The pentavalent Mo in the liquid was detected by electron spin resonance spectrum, and the ozone-containing gas was blown in continuously for 4 hours while stirring the liquid until the pentavalent Mo disappeared.

かくして得られたスラリー状液を90℃に加熱して乾燥した。これを200℃で熱処理した後、1.5重量%のグラファイトを添加混合し、小型打錠成形器にて、高さ4mm、径5mmの円柱状に成形し、これを焼成炉にて窒素気流中380℃で3時間焼成して触媒を製造した。   The slurry liquid thus obtained was heated to 90 ° C. and dried. After heat-treating this at 200 ° C., 1.5% by weight of graphite was added and mixed, and formed into a cylindrical shape having a height of 4 mm and a diameter of 5 mm with a small tableting machine, and this was flown in a nitrogen stream in a firing furnace. The catalyst was produced by calcination at 380 ° C. for 3 hours.

得られた触媒を評価するために、20〜28メッシュに粉砕し整粒したもの0.3gを、内径4mmのU字型反応管に充填し、この反応管を加熱したナイター浴(温度:280℃)に入れ、アクロレイン:3.4容量%、酸素:9.3容量%、スチーム:41.5容量% 及び窒素ガス:45.8容量%の組成ガスを導入し、SV(空間速度;単位時間当たりの原料ガスの流量/充填した触媒の見かけ容積)を20000/hr-1で反応させた。 In order to evaluate the obtained catalyst, 0.3 g of a 20-28 mesh pulverized and sized particle was charged into a U-shaped reaction tube having an inner diameter of 4 mm, and this reaction tube was heated in a night bath (temperature: 280). And introducing a composition gas of acrolein: 3.4% by volume, oxygen: 9.3% by volume, steam: 41.5% by volume and nitrogen gas: 45.8% by volume, and SV (space velocity; unit) The reaction was performed at a flow rate of the raw material gas per hour / apparent volume of the packed catalyst) of 20000 / hr −1 .

なお、上記ナイター浴は、アルカリ金属の硝酸塩からなる熱媒体に反応管を入れて反応させる塩浴である。この熱媒体は200℃以上で溶融し、400℃まで使用可能で除熱効率がよいので、発熱量の大きな酸化反応に適した反応浴である。
反応の結果、アクロレイン転化率=99.0%、アクリル酸選択率=98.5%、アクリル酸収率=97.5%であった。
The nighter bath is a salt bath in which a reaction tube is placed in a heat medium made of an alkali metal nitrate and reacted. This heat medium melts at 200 ° C. or higher, can be used up to 400 ° C., and has a good heat removal efficiency.
As a result of the reaction, the acrolein conversion rate was 99.0%, the acrylic acid selectivity was 98.5%, and the acrylic acid yield was 97.5%.

比較例
触媒製造工程においてスラリー状分散液にオゾン含有ガスの吹き込みを行わなかったこと以外は実施例と同様にして、実施例と同一組成の触媒を得た。
この触媒を実施例と同一の条件でアクリル酸の製造を行った。反応結果は、反応浴温度が306℃でアクロレイン転化率=99.0%、アクリル酸選択率=95.5%、アクリル酸収率=94.5%であった。
Comparative Example A catalyst having the same composition as the example was obtained in the same manner as in the example except that the ozone-containing gas was not blown into the slurry dispersion in the catalyst production process.
Acrylic acid was produced from this catalyst under the same conditions as in the Examples. The reaction results were as follows: acrolein conversion = 99.0%, acrylic acid selectivity = 95.5%, and acrylic acid yield = 94.5% at a reaction bath temperature of 306 ° C.

このように、オゾン含有ガスの吹き込みを行った実施例では、吹き込みを行わなかった比較例と比べ、アクロレイン転化率、アクリル酸選択率及びアクリル酸収率のいずれの点でも優れ、アクロレインの気相接触酸化反応を効率よく行えた。   Thus, in the example in which the ozone-containing gas was blown, compared with the comparative example in which the blow was not carried out, the acrolein conversion, acrylic acid selectivity, and acrylic acid yield were all excellent, and the gas phase of acrolein The catalytic oxidation reaction was performed efficiently.

本発明の方法により製造された触媒は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化し、高い収率で対応する不飽和カルボン酸を製造するために使用される。製造された、アクリル酸などの不飽和カルボン酸は、各種化学品の原料、汎用樹脂のモノマー、吸水性樹脂などの機能性樹脂のモノマー、凝集剤、増粘剤となどとして広範な用途に使用される。   The catalyst produced by the process of the present invention is used for the gas phase catalytic oxidation of unsaturated aldehydes with molecular oxygen-containing gas to produce the corresponding unsaturated carboxylic acid in high yield. Produced unsaturated carboxylic acids such as acrylic acid are used in a wide range of applications as raw materials for various chemicals, monomers for general-purpose resins, monomers for functional resins such as water-absorbing resins, flocculants, and thickeners. Is done.

Claims (6)

不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して対応する不飽和カルボン酸を製造する際に使用される下記の式(1)を有する複合酸化物触媒の製造方法であって、触媒を構成する各金属成分の原料化合物、及びSiとCの化学結合を含むSi及びC成分の原料化合物を水性媒体に溶解及び/又は分散した水溶液又は分散液を70℃以上に加熱し、該水溶液又は分散液中にオゾン含有ガスを吹き込み、次いで該水溶液又は分散液を乾燥して粉体にし、該粉体を成形し、焼成することを特徴とする触媒の製造方法。

Mo12NbSbCuSi (1)

(式中、各変数は次の意味を有する。a、b、c、d、e、f及びgは各元素の原子比を表し、モリブデン原子12に対して、0<a≦10、0<b≦10、0<c≦5、0<d≦5、0<e≦1000、0<f≦1000、gは(1)の前記各成分のうちSiとCを除いた各成分の酸化度によって決まる数である)
A method for producing a composite oxide catalyst having the following formula (1) used for producing a corresponding unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with a molecular oxygen-containing gas, An aqueous solution or dispersion obtained by dissolving and / or dispersing a raw material compound of each metal component and a raw material compound of Si and C components containing a chemical bond between Si and C in an aqueous medium is heated to 70 ° C. or higher, and the aqueous solution Alternatively, an ozone-containing gas is blown into the dispersion, then the aqueous solution or dispersion is dried to form a powder, the powder is molded, and calcined.

Mo 12 Nb a V b Sb c Cu d Si e C f O g (1)

(In the formula, each variable has the following meaning: a, b, c, d, e, f, and g represent the atomic ratio of each element, and 0 <a ≦ 10, 0 < b ≦ 10, 0 <c ≦ 5, 0 <d ≦ 5, 0 <e ≦ 1000, 0 <f ≦ 1000, g is the degree of oxidation of each component except Si and C among the above components of (1). (The number is determined by
前記水溶液又は分散液を噴霧乾燥により乾燥する請求項1に記載の複合酸化物触媒の製造方法。   The method for producing a composite oxide catalyst according to claim 1, wherein the aqueous solution or dispersion is dried by spray drying. 前記SiとCの化学結合を含むSi及びC成分の原料化合物がシリコンカーバイドである請求項1又は2に記載の複合酸化物触媒の製造方法。   3. The method for producing a composite oxide catalyst according to claim 1, wherein the raw material compound of the Si and C components including the chemical bond between Si and C is silicon carbide. 前記粉体をシリカ、グラファイト及び結晶性セルロースからなる群から選ばれる一種以上のバインダーを使用して成形する請求項1〜3のいずれかに記載の複合酸化物触媒の製造方法。   The method for producing a composite oxide catalyst according to any one of claims 1 to 3, wherein the powder is formed using one or more binders selected from the group consisting of silica, graphite and crystalline cellulose. 請求項1〜4のいずれかに記載の製造方法によって製造された複合酸化物触媒。   The composite oxide catalyst manufactured by the manufacturing method in any one of Claims 1-4. 請求項5に記載の複合酸化物触媒の存在下にアクロレインを分子状酸素含有ガスにより気相接触酸化して対応するアクリル酸を製造する方法。   A method for producing a corresponding acrylic acid by vapor-phase catalytic oxidation of acrolein with a molecular oxygen-containing gas in the presence of the composite oxide catalyst according to claim 5.
JP2004363637A 2003-12-26 2004-12-15 Composite-oxide catalyst manufacturing method Withdrawn JP2005205401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363637A JP2005205401A (en) 2003-12-26 2004-12-15 Composite-oxide catalyst manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003435087 2003-12-26
JP2004363637A JP2005205401A (en) 2003-12-26 2004-12-15 Composite-oxide catalyst manufacturing method

Publications (1)

Publication Number Publication Date
JP2005205401A true JP2005205401A (en) 2005-08-04

Family

ID=34914358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363637A Withdrawn JP2005205401A (en) 2003-12-26 2004-12-15 Composite-oxide catalyst manufacturing method

Country Status (1)

Country Link
JP (1) JP2005205401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520316A (en) * 2010-02-25 2013-06-06 サウディ ベーシック インダストリーズ コーポレイション Method for preparing heteropolyacid compound catalyst
KR20160018137A (en) * 2014-08-08 2016-02-17 주식회사 레이언스 Intraoral sensor apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520316A (en) * 2010-02-25 2013-06-06 サウディ ベーシック インダストリーズ コーポレイション Method for preparing heteropolyacid compound catalyst
KR20160018137A (en) * 2014-08-08 2016-02-17 주식회사 레이언스 Intraoral sensor apparatus
KR102336211B1 (en) * 2014-08-08 2021-12-09 주식회사 레이언스 Intraoral sensor apparatus

Similar Documents

Publication Publication Date Title
US7132384B2 (en) Process for producing composite oxide catalyst
US7217680B2 (en) Method for producing composite oxide catalyst
JP2006000850A (en) Catalytic oxidation catalyst for producing phthalic anhydride
JP2007061763A (en) Oxide catalyst for production of methacrolein, its manufacturing method and manufacturing method of methacrolein using it
JP4858266B2 (en) Method for producing composite oxide catalyst
JP2006007205A (en) Compound oxide catalyst and its manufacturing method
JP5831329B2 (en) Composite oxide catalyst
JP2005169311A (en) Production method for complex oxide catalyst
JP2017176932A (en) catalyst
JP6845473B2 (en) Method for manufacturing catalyst
JP2005305421A (en) Method of producing compound oxide catalyst
US20050261520A1 (en) Process for producing catalyst for production of unsaturated carboxylic acid
JP6136436B2 (en) Catalyst production method
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP2007090193A (en) Production method of catalyst for methacrylic acid production and production method of methacrylic acid
JP2004188231A (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
TW201400450A (en) Process for producing alkyl methacrylate
JP2005205401A (en) Composite-oxide catalyst manufacturing method
JP3999972B2 (en) Method for producing acrylic acid or methacrylic acid
JP3999965B2 (en) Method for producing acrylic acid or methacrylic acid
US7279442B2 (en) Process for producing catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid
JP2005186064A (en) Production method for catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP3999974B2 (en) Method for producing acrylic acid or methacrylic acid
JP2003200055A (en) Method for manufacturing compound oxide catalyst
JP2003236383A (en) Method for manufacturing multiple oxide catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090709