JP2005203433A - Method of forming fine wiring and electronic component having the fine wiring - Google Patents

Method of forming fine wiring and electronic component having the fine wiring Download PDF

Info

Publication number
JP2005203433A
JP2005203433A JP2004005665A JP2004005665A JP2005203433A JP 2005203433 A JP2005203433 A JP 2005203433A JP 2004005665 A JP2004005665 A JP 2004005665A JP 2004005665 A JP2004005665 A JP 2004005665A JP 2005203433 A JP2005203433 A JP 2005203433A
Authority
JP
Japan
Prior art keywords
polypeptide
fine particles
hydrophobic
conductive fine
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004005665A
Other languages
Japanese (ja)
Other versions
JP4324668B2 (en
Inventor
Takatoshi Kinoshita
隆利 木下
Toshihiko Niwa
敏彦 丹羽
Kenji Sumiyama
兼治 隅山
Sukemasu Yamamuro
佐益 山室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2004005665A priority Critical patent/JP4324668B2/en
Publication of JP2005203433A publication Critical patent/JP2005203433A/en
Application granted granted Critical
Publication of JP4324668B2 publication Critical patent/JP4324668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming the fine wiring of a nanometer size on a base. <P>SOLUTION: The fine wiring forming method comprises a step of preparing a hydrophilic-hydrophobic linear polypeptide 20 having at least one hydrophilic portion 22 and at least one hydrophobic portion 24A, 24B in the axial direction, a step of forming a polypeptide thin film 50A composed of the polypeptide portions regularly arranged on the surface of a specified base, a step of feeding the polypeptide thin film with conductive particulates 40 having hydrophobic groups to add the particulates to the hydrophobic portion of the polypeptide thin film through the hydrophobic group, and a step of eliminating the hydrophobic group of the conductive particulates and the polypeptide to form fine wiring composed of the conductive particulates corresponding to a regularly arranged pattern of the polypeptide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ナノメーターサイズの微細な配線を基材上に作製する方法に関し、そのような微細配線を備えた電子部品の製造に関する。   The present invention relates to a method for producing a nanometer-sized fine wiring on a substrate, and relates to the manufacture of an electronic component provided with such a fine wiring.

近年、電子情報機器の小型化及び高性能化に伴い、そのような機器に使用され得る電子部品(デバイス)として、従来より更に小型で高集積なものが要求されている。
かかる要求を実現化するための一手段として、半導体パッケージ用配線基板やDRAM等の半導体デバイスに形成される配線(具体的には配線幅や配線厚さ)の微細化が挙げられる。そこで、より微細な配線を形成するため、レジスト材料を電子線等で露光する所謂リソグラフィー技術の改良の他、インクジェットプリンティング技術の応用が考えられている。例えば、特許文献1及び2には、平均粒子径1〜100nmの金属微粒子を含むペーストをインクジェット印刷することにより、基材上に微細配線を形成する方法が記載されている。
In recent years, along with the downsizing and high performance of electronic information equipment, electronic parts (devices) that can be used in such equipment are required to be smaller and more highly integrated.
One means for realizing such a requirement is miniaturization of wiring (specifically, wiring width and wiring thickness) formed in a semiconductor device such as a semiconductor package wiring board or DRAM. Therefore, in order to form finer wiring, in addition to so-called lithography technology for exposing a resist material with an electron beam or the like, application of inkjet printing technology is considered. For example, Patent Documents 1 and 2 describe a method of forming fine wiring on a substrate by inkjet printing a paste containing metal fine particles having an average particle diameter of 1 to 100 nm.

特開2002−324966号公報JP 2002-324966 A 特開2003−311944号公報JP 2003-31944 A 特開2002−284900号公報JP 2002-284900 A 特開2002−285000号公報JP 2002-285000 A

しかしながら、現状のリソグラフィー技術により形成される配線幅はせいぜい0.1μm程度が限界とされている。また、インクジェット技術によっても0.1μm以下のナノサイズの超微細配線を形成するのは困難である。従って、デバイスのさらなる小型化・高集積化を達成するために、例えば1〜100nm程度のナノサイズの配線幅を実現する微細配線作製方法が望まれている。
本発明は、かかる要求に応えるべく開発されたものであり、基材上にナノサイズの微細配線を作製する方法の提供を目的とする。また、他の目的は、そのような方法により作製された微細配線を有する超高集積半導体デバイス等の超小型電子部品を提供することである。
However, the width of wiring formed by the current lithography technique is limited to about 0.1 μm at most. In addition, it is difficult to form nano-sized ultrafine wiring with a size of 0.1 μm or less by the ink jet technique. Therefore, in order to achieve further miniaturization and higher integration of the device, a fine wiring manufacturing method that realizes a nano-sized wiring width of, for example, about 1 to 100 nm is desired.
The present invention has been developed to meet such a demand, and an object thereof is to provide a method for producing nano-sized fine wiring on a substrate. Another object is to provide a microelectronic component such as an ultra-highly integrated semiconductor device having a fine wiring manufactured by such a method.

本発明者は、前記特許文献3及び4に記載されるような両親媒性物質を導電性超微粒子のキャリヤーとして使用することにより、基材表面にナノサイズの配線幅の微細配線を規則的に形成する方法を見出し、本発明を完成するに至った。
すなわち、本明細書で開示される一つの方法は、ナノサイズ(典型的には1〜100nm程度のサイズ)の微細配線を基材上に作製する方法である。この方法は、親水性部分と疎水性部分とが軸方向(長手方向)に少なくとも一つずつ形成されている両親媒性の線状ポリペプチドを用意する工程と、所定の基材の表面に、前記ポリペプチドが規則的に配列して成るポリペプチド薄膜を形成する工程と、前記ポリペプチド薄膜に疎水基を備えた導電性微粒子を供給し該疎水基を介して該ポリペプチド薄膜の疎水性部分に導電性微粒子を付加する工程とを包含する。典型的には前記基材を加熱することによって、前記ポリペプチド及び導電性微粒子の疎水基を消失(典型的には焼失)させ、前記ポリペプチドの規則的配列パターンに対応した導電性微粒子から成る微細配線を形成する工程を更に包含する。
The inventor regularly uses the amphiphile as described in Patent Documents 3 and 4 as a carrier of conductive ultrafine particles to regularly form nano-sized fine wiring on the substrate surface. The method of forming was found and the present invention was completed.
That is, one method disclosed in the present specification is a method of forming nano-sized (typically about 1 to 100 nm) fine wiring on a substrate. In this method, a step of preparing an amphipathic linear polypeptide in which at least one hydrophilic part and a hydrophobic part are formed in the axial direction (longitudinal direction), and on the surface of a predetermined substrate, A step of forming a polypeptide thin film in which the polypeptides are regularly arranged; and a conductive fine particle having a hydrophobic group is supplied to the polypeptide thin film, and the hydrophobic portion of the polypeptide thin film is interposed through the hydrophobic group. And adding a conductive fine particle. Typically, by heating the substrate, the hydrophobic groups of the polypeptide and the conductive fine particles disappear (typically burned out), and the conductive fine particles correspond to the regular arrangement pattern of the polypeptide. The method further includes a step of forming fine wiring.

また、ここで開示される他の一つの微細配線作製方法は、親水性部分と疎水性部分とが軸方向(長手方向)に少なくとも一つずつ形成されている両親媒性の線状ポリペプチドを用意する工程と、前記ポリペプチドに疎水基を備えた導電性微粒子を供給し、該疎水基を介して該ポリペプチドの疎水性部分に導電性微粒子を付加する工程と、所定の基材の表面に、前記導電性微粒子が付加されたポリペプチドが規則的に配列して成るポリペプチド薄膜を形成する工程とを包含する。典型的には前記基材を加熱することによって、前記ポリペプチド及び導電性微粒子の疎水基を消失(典型的には焼失)させ、前記ポリペプチドの規則的配列パターンに対応した導電性微粒子から成る微細配線を形成する工程を更に包含する。   In addition, another micro-wiring fabrication method disclosed herein includes an amphiphilic linear polypeptide in which at least one hydrophilic portion and one hydrophobic portion are formed in the axial direction (longitudinal direction). A step of supplying the conductive fine particles having a hydrophobic group to the polypeptide, and adding the conductive fine particles to the hydrophobic portion of the polypeptide via the hydrophobic group; and a surface of a predetermined substrate. And forming a polypeptide thin film in which the polypeptides to which the conductive fine particles are added are regularly arranged. Typically, by heating the substrate, the hydrophobic groups of the polypeptide and the conductive fine particles disappear (typically burned out), and the conductive fine particles correspond to the regular arrangement pattern of the polypeptide. The method further includes a step of forming fine wiring.

本発明の微細配線作製方法では、前記両親媒性線状ポリペプチドの疎水性部分に対し、前記疎水基を備えた導電性微粒子を当該疎水基の疎水性相互作用を利用して吸着させることができる。そして、線状ポリペプチドを基材表面に規則的に配列させることにより、結果的に当該ポリペプチドの疎水性部分に吸着された導電性微粒子群の基材上における規則的配置が実現される。この状態で基材ごと加熱し、或いはレーザ照射によって、基材表面に存在するポリペプチド及び疎水基を消失(焼失、蒸散)させることによって、規則的に配置された導電性微粒子群から成る線状物すなわち微細配線が基材上に形成される。
このように、本発明の方法によると、キャリヤーたる両親媒性ポリペプチドの規則的配列に応じて規則的に配置されたナノサイズの微細配線を容易に作成することができる。
In the fine wiring manufacturing method of the present invention, the conductive fine particles having the hydrophobic group can be adsorbed to the hydrophobic portion of the amphiphilic linear polypeptide by utilizing the hydrophobic interaction of the hydrophobic group. it can. Then, by regularly arranging the linear polypeptides on the surface of the substrate, the regular arrangement of the conductive fine particle groups adsorbed on the hydrophobic portion of the polypeptide as a result on the substrate is realized. In this state, the whole substrate is heated, or laser irradiation is performed to eliminate the polypeptide and hydrophobic groups present on the substrate surface (burnout, transpiration), thereby forming a linear array of conductive fine particles arranged regularly. An object, that is, a fine wiring is formed on the substrate.
Thus, according to the method of the present invention, nano-sized fine wirings regularly arranged according to the regular arrangement of the amphipathic polypeptide as a carrier can be easily prepared.

好ましくは、前記ポリペプチド薄膜の少なくとも一部が、前記基材の水平方向に前記ポリペプチドの疎水性部分が相互に隣接して並列するように軸方向を揃えて配列した(即ち1軸配向した)ポリペプチド集合体により構成されるように、ポリペプチド薄膜を形成する。この場合、特に好ましくは、前記ポリペプチド薄膜は、ラングミュア−ブロジェット法(Langmuir‐Blodgett technique)に基づいて形成された単分子膜又は累積膜(LB膜)である。
このようなポリペプチド薄膜を形成すると、特に配線幅が狭く(例えば1〜50nm)、整然と配置されたナノサイズの微細配線を作製することができる。
Preferably, at least a part of the polypeptide thin film is aligned in the axial direction so that the hydrophobic portions of the polypeptide are juxtaposed adjacent to each other in the horizontal direction of the substrate (that is, uniaxially oriented). ) A polypeptide thin film is formed so as to be constituted by polypeptide aggregates. In this case, the polypeptide thin film is particularly preferably a monomolecular film or a cumulative film (LB film) formed on the basis of the Langmuir-Blodgett technique.
When such a polypeptide thin film is formed, nano-sized fine wirings with particularly narrow wiring width (for example, 1 to 50 nm) and orderly arrangement can be produced.

また、好ましくは、前記導電性微粒子として、平均粒子サイズ100nm以下(例えば1〜100nm)の金属又は合金から成る微粒子を使用する。これにより、高導電率のナノサイズ微細配線を得ることができる。
また、好ましくは、前記疎水基を備えた導電性微粒子として、該微粒子に長鎖炭化水素基(典型的には炭素数10以上の長鎖炭化水素基、好ましくはアルキル基)を備えた両親媒性分子を結合させて得られたものを使用する。このような疎水基を備えた導電性微粒子は、前記両親媒ポリペプチドの疎水性部分と高い疎水性相互作用を奏し得る。このため、ポリペプチドの疎水性部分に、かかる導電性微粒子を容易且つ高密度に吸着させることができる。その結果、より高密度のナノサイズ微細配線を作製することができる。
Preferably, fine particles made of a metal or alloy having an average particle size of 100 nm or less (for example, 1 to 100 nm) are used as the conductive fine particles. Thereby, a nano-sized fine wiring with high conductivity can be obtained.
Preferably, as the conductive fine particles having the hydrophobic group, an amphiphile having a long chain hydrocarbon group (typically a long chain hydrocarbon group having 10 or more carbon atoms, preferably an alkyl group) on the fine particle. A product obtained by binding a sex molecule is used. The conductive fine particles having such a hydrophobic group can exhibit a high hydrophobic interaction with the hydrophobic portion of the amphipathic polypeptide. For this reason, the conductive fine particles can be easily and densely adsorbed to the hydrophobic portion of the polypeptide. As a result, a higher density nano-sized fine wiring can be produced.

また、本明細書において開示したいずれかの方法によって作製された所定パターンの微細配線を備えた電子部品が提供される。
ここで「電子部品」とは、本発明の適用があり得る種々のデバイス、素子、回路等(即ち微細配線及び該配線を形成する基材(基板)を有する電子部品)を包含する。例えば、微細配線を有するLSI等のIC(チップ)は、ここでいう電子部品に包含される典型例である。
In addition, an electronic component including a fine wiring having a predetermined pattern manufactured by any of the methods disclosed in the present specification is provided.
Here, the “electronic component” includes various devices, elements, circuits and the like to which the present invention can be applied (that is, an electronic component having a fine wiring and a substrate (substrate) for forming the wiring). For example, an IC (chip) such as an LSI having fine wiring is a typical example included in the electronic component here.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している内容以外の技術的事項であって本発明の実施に必要な事項は、従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書及び図面によって開示されている技術内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. It should be noted that technical matters other than the contents particularly mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters for those skilled in the art based on the prior art. The present invention can be carried out based on the technical contents disclosed in the present specification and drawings and the common general technical knowledge in the field.

本発明の微細配線作製方法では、親水性部分と疎水性部分とが軸方向に少なくとも一つずつ形成されている両親媒性の線状(鎖状)ポリペプチドを使用する。かかる両親媒性ポリペプチドは、導電性微粒子のキャリヤー及び基材(基板)上において規則的配列を形成し得る好適な分子直線性と両親媒性とを有していればよく、ポリペプチドを構成するアミノ酸配列の内容、アミノ酸残基数、側鎖の有無及び側鎖の種類等によって限定されない。
ポリペプチド鎖を構成するアミノ酸残基数は、概ね10以上1000以下であることが好ましい。全アミノ酸残基数が10未満であると、両親媒性となり難く適当でない。また、全アミノ酸残基数が1000を上回ると、基材上に規則的に配列させることが困難となるため好ましくない。
In the fine wiring manufacturing method of the present invention, an amphiphilic linear (chain) polypeptide in which at least one hydrophilic portion and one hydrophobic portion are formed in the axial direction is used. Such an amphipathic polypeptide only needs to have suitable molecular linearity and amphipathic properties capable of forming a regular arrangement on the carrier and substrate (substrate) of the conductive fine particles, and constitutes the polypeptide. It is not limited by the content of the amino acid sequence, the number of amino acid residues, the presence or absence of side chains, the type of side chains, and the like.
The number of amino acid residues constituting the polypeptide chain is preferably about 10 or more and 1000 or less. If the total number of amino acid residues is less than 10, it is not suitable because it is difficult to be amphiphilic. In addition, if the total number of amino acid residues exceeds 1000, it is not preferable because it is difficult to regularly arrange them on the substrate.

両親媒性ポリペプチドにおける疎水性部分は、バリン(Val)、ロイシン(Leu)、イソロイシン(Ile)、メチオニン(Met)、フェニルアラニン(Phe)、トリプトファン(Trp)、グリシン(Gly)、アラニン(Ala)、プロリン(Pro)等の疎水性アミノ酸を主体に構成され得る。他方、親水性部分は、アスパラギン酸(Asp)、グルタミン酸(Glu)、アルギニン(Arg)、リジン(Lys)、ヒスチジン(His)、セリン(Ser)、スレオニン(Thr)、アスパラギン(Asn)、グルタミン(Gln)、チロシン(Tyr)等の親水性アミノ酸を主体に構成され得る。
なお、ポリペプチド鎖を構成するアミノ酸残基の側鎖部分を修飾又は改変することによっても疎水性部分若しくは親水性部分を形成することができる。例えば、側鎖のカルボキシル基をエステル化することによりその部分を疎水性にすることができる。また、後述するように、そのようなエステル化されたカルボキシル基を加水分解することによりその部分を親水性にすることもできる。
Hydrophobic moieties in amphipathic polypeptides include: valine (Val), leucine (Leu), isoleucine (Ile), methionine (Met), phenylalanine (Phe), tryptophan (Trp), glycine (Gly), alanine (Ala) It can be composed mainly of hydrophobic amino acids such as proline (Pro). On the other hand, the hydrophilic moiety includes aspartic acid (Asp), glutamic acid (Glu), arginine (Arg), lysine (Lys), histidine (His), serine (Ser), threonine (Thr), asparagine (Asn), glutamine ( Gln), tyrosine (Tyr), and other hydrophilic amino acids may be mainly used.
The hydrophobic part or the hydrophilic part can also be formed by modifying or altering the side chain part of the amino acid residue constituting the polypeptide chain. For example, the side chain carboxyl group can be esterified to make it hydrophobic. Moreover, as described later, the portion can be made hydrophilic by hydrolyzing such esterified carboxyl group.

疎水性部分を構成するポリペプチド鎖の長さ(即ちアミノ酸残基数)は、基材上に作製しようとする導電性微粒子の線状集合体即ち微細配線の幅(厚さ、サイズ)によって適宜異ならせるとよい。他方、親水性部分を構成するポリペプチド鎖の長さは、基材上に作製しようとする所定パターンの回路(微細配線)における配線と配線の間隔によって適宜異ならせるとよい。   The length of the polypeptide chain constituting the hydrophobic part (that is, the number of amino acid residues) is appropriately determined depending on the width (thickness and size) of the linear aggregate of conductive fine particles to be produced on the substrate, that is, the fine wiring. It is good to make it different. On the other hand, the length of the polypeptide chain constituting the hydrophilic portion may be appropriately changed depending on the distance between wirings in a circuit (fine wiring) having a predetermined pattern to be produced on the substrate.

また、使用する両親媒性ポリペプチドの形状(高次構造)は、ポリペプチド鎖を構成するアミノ酸の種類(例えば、アスパラギン酸(Asp)、グルタミン酸(Glu)、アルギニン(Arg)、リジン(Lys)、ヒスチジン(His)、アスパラギン(Asn)、グルタミン(Gln)、セリン(Ser)、スレオニン(Thr)、アラニン(Ala)、バリン(Val)、ロイシン(Leu)、イソロイシン(Ile)、システイン(Cys)、メチオニン(Met)、チロシン(Tyr)、フェニルアラニン(Phe)、或いはトリプトファン(Trp))とその配列によって所望する形状(αへリックス構造、βシート構造、ランダムコイル構造、およびこれらの混合した構造)に設計することが可能である。
少なくとも疎水性部分がαへリックス構造であるポリペプチドが好ましい。αへリックスは極めて小さい径(例えば1〜2nm)の鎖状構造であり得る。このため、疎水性部分がαへリックス構造であると、そこに付与された導電性微粒子群から成る極薄の配線(例えば厚さ10nm以下の配線)を形成することが容易である。親水性部分を含む分子全体がαへリックス構造であるポリペプチドが特に好ましい。かかるへリックス構造の線状ポリペプチドを規則的に配列することによって、より緻密なポリペプチド薄膜を形成することができる。
なお、使用する両親媒性ポリペプチドは、アミノ酸配列や鎖長に応じて、一般的に知られる化学合成或いは遺伝子工学的生合成によって作製することができる。かかるポリペプチドの合成法自体は本発明を何ら特徴付けるものではないため、詳細な説明は省略する。
The shape (higher order structure) of the amphipathic polypeptide used is the type of amino acid constituting the polypeptide chain (for example, aspartic acid (Asp), glutamic acid (Glu), arginine (Arg), lysine (Lys). Histidine (His), asparagine (Asn), glutamine (Gln), serine (Ser), threonine (Thr), alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), cysteine (Cys) , Methionine (Met), tyrosine (Tyr), phenylalanine (Phe), or tryptophan (Trp)) and their desired shapes (α helix structure, β sheet structure, random coil structure, and mixed structures thereof) It is possible to design.
A polypeptide having at least a hydrophobic portion having an α-helix structure is preferred. The α helix may have a chain structure with a very small diameter (for example, 1 to 2 nm). For this reason, when the hydrophobic portion has an α-helix structure, it is easy to form an extremely thin wiring (for example, a wiring having a thickness of 10 nm or less) composed of a group of conductive fine particles applied thereto. Particularly preferred are polypeptides in which the entire molecule including the hydrophilic moiety has an α-helix structure. By arranging such helix-structured linear polypeptides regularly, a denser polypeptide thin film can be formed.
The amphipathic polypeptide to be used can be prepared by generally known chemical synthesis or genetic engineering biosynthesis depending on the amino acid sequence and chain length. Since the polypeptide synthesis method itself does not characterize the present invention, a detailed description thereof will be omitted.

図1及び図2に、本発明の実施にあたって好適に用いられるポリペプチドの典型的な構造を模式的に示す。図1に示す線状ポリペプチド10は、軸方向に親水性部分12と疎水性部分14とが1区画ずつ並んで形成されている両親媒性ポリペプチド(以下「ジブロック型ポリペプチド」という。)である。他方、図2に示す線状ポリペプチド20は、1区画の親水性部分22を挟んでその軸方向の両側に疎水性部分24A,24Bが1区画ずつ形成されている両親媒性ポリペプチド20(以下「トリブロック型ポリペプチド」という。)である。これら線状のジブロック型ポリペプチド及びトリブロック型ポリペプチドを使用することにより、例えばラングミュア−ブロジェット法(以下「LB法」と略称する。)に基づいて、軸方向を揃えて配列した(好ましくは1軸配向した)単分子膜或いは累積膜、典型的には個々のポリペプチド分子の疎水性部分が相互に隣接して並列した単分子膜又は累積膜を容易に形成することができる。
特に限定することを意図したものではないが、以下の化学構造式1及び2でそれぞれ示されるポリペプチドは、本発明の実施に好ましく用いられる両親媒性ポリペプチドの好適例である。
1 and 2 schematically show typical structures of polypeptides preferably used in the practice of the present invention. The linear polypeptide 10 shown in FIG. 1 is an amphipathic polypeptide (hereinafter referred to as “diblock polypeptide”) in which a hydrophilic portion 12 and a hydrophobic portion 14 are arranged in a single section in the axial direction. ). On the other hand, the linear polypeptide 20 shown in FIG. 2 has an amphipathic polypeptide 20 (one hydrophobic portion 24A, 24B is formed on both sides in the axial direction with one hydrophilic portion 22 sandwiched therebetween ( Hereinafter referred to as “triblock polypeptide”). By using these linear diblock type polypeptide and triblock type polypeptide, for example, based on the Langmuir-Blodgett method (hereinafter abbreviated as “LB method”), they are arranged with their axial directions aligned ( Monomolecular films or cumulative films (preferably uniaxially oriented), typically monomolecular films or cumulative films in which the hydrophobic portions of individual polypeptide molecules are adjacent and juxtaposed can be readily formed.
Although not intended to be particularly limited, the polypeptides represented by the following chemical structural formulas 1 and 2, respectively, are suitable examples of amphiphilic polypeptides that are preferably used in the practice of the present invention.

上記式1のポリペプチドは、アミノ酸無水物(NCA)の重合によって調製され得るポリ(ε−カルボベンゾキシL−リジン)−ポリ(γ−メチルL−グルタメート)(PLLZ25−PMLG60:ここで25,60はそれぞれ数平均重合度である。)のPMLGセグメントを部分的に加水分解して一部L−グルタミン酸(LGA)とすることによって得られ得るジブロック型ポリペプチド(PLLZ25−P(MLG42−LGA18))である。
このPLLZ25−P(MLG42−LGA18)は、典型的には軸方向の長さが12.8nm、疎水性部分(図1の符号14で示す部分)の長さが3.8nm、その直径が1.7nm、親水性部分(図1の符号12で示す部分)の長さが9.0nm、そしてその直径が1.2nmであり得る。
なお、このようなジブロック型ポリペプチドにおける疎水性部分及び/又は親水性部分の長さ(鎖長)は、当該部分を構成するアミノ酸残基数を調整することによって容易に変更することができる。また、疎水性部分及び/又は親水性部分における直径(分子構造の厚さ)は、当該部分を構成するアミノ酸残基の種類(側鎖の有無及びその大きさが影響する。)を変えることによって容易に変更することができる。
Polypeptide of formula 1 above can be prepared by polymerization of amino acid anhydride (NCA) poly (ε-carbobenzoxy L-lysine) -poly (γ-methyl L-glutamate) (PLLZ 25 -PMLG 60 : 25 and 60 are the number average degree of polymerization.) Diblock type polypeptide (PLLZ 25 -P () which can be obtained by partially hydrolyzing the PMLG segment of L) to partially L-glutamic acid (LGA). MLG 42 -LGA 18 )).
This PLLZ 25 -P (MLG 42 -LGA 18 ) typically has an axial length of 12.8 nm, and a hydrophobic portion (portion indicated by reference numeral 14 in FIG. 1) has a length of 3.8 nm. The diameter may be 1.7 nm, the length of the hydrophilic portion (the portion indicated by reference numeral 12 in FIG. 1) may be 9.0 nm, and its diameter may be 1.2 nm.
In addition, the length (chain length) of the hydrophobic portion and / or the hydrophilic portion in such a diblock polypeptide can be easily changed by adjusting the number of amino acid residues constituting the portion. . Further, the diameter (the thickness of the molecular structure) in the hydrophobic portion and / or the hydrophilic portion is changed by changing the type of amino acid residue constituting the portion (the presence or absence of the side chain and the size thereof). It can be easily changed.

一方、上記式2のポリペプチドは、アミノ酸無水物(NCA)の重合によって調製され得るポリ(L−ロイシン)−ポリ(γ−ベンジルL−グルタメート)−ポリ(L−ロイシン)(PLL54−PBLG80−PLL54:ここで54,80はそれぞれ数平均重合度である。)のPBLGセグメントを加水分解して全てL−グルタミン酸(PLGA)とすることによって得られ得るトリブロック型ポリペプチド(PLL54−PLGA80−PLL54)である。
このPLL54−PLGA80−PLL54は、典型的には軸方向の長さが28.2nm、疎水性部分(図2の符号24A,24Bで示す部分)の長さがそれぞれ8.1nm、その直径が1.3nm、親水性部分(図2の符号22で示す部分)の長さが12.0nm、そしてその直径が1.2nmであり得る。
なお、ジブロック型と同様、このようなトリブロック型ポリペプチドにおける各疎水性部分及び/又は親水性部分の長さ(鎖長)は、当該部分を構成するアミノ酸残基数を調整することによって容易に変更し得る。また、各疎水性部分及び/又は親水性部分における直径(分子構造の厚さ)は、当該部分を構成するアミノ酸残基の種類を変えることによって容易に変更することができる。
On the other hand, the polypeptide of formula 2 is poly (L-leucine) -poly (γ-benzyl L-glutamate) -poly (L-leucine) (PLL 54 -PBLG) which can be prepared by polymerization of amino acid anhydride (NCA). 80 -PLL 54:. where 54,80 is the number average polymerization degree of each triblock polypeptide of PBLG segments can be obtained by all hydrolyze L- glutamic acid (PLGA) of) (PLL 54 -PLGA 80 -PLL 54 ).
This PLL 54 -PLGA 80 -PLL 54 typically has an axial length of 28.2 nm, and hydrophobic portions (portions shown by reference numerals 24A and 24B in FIG. 2) each have a length of 8.1 nm. The diameter may be 1.3 nm, the length of the hydrophilic portion (the portion indicated by reference numeral 22 in FIG. 2) may be 12.0 nm, and the diameter may be 1.2 nm.
As with the diblock type, the length (chain length) of each hydrophobic portion and / or hydrophilic portion in such a triblock polypeptide can be adjusted by adjusting the number of amino acid residues constituting the portion. Can be easily changed. In addition, the diameter (the thickness of the molecular structure) in each hydrophobic part and / or hydrophilic part can be easily changed by changing the type of amino acid residue constituting the part.

次に、導電性微粒子について説明する。導電性微粒子としては、種々の電子部品において導体(電線、電極)を構成するものであれば特に制限なく使用し得る。例えば、金属、合金、カーボン(カーボンブラック、カーボンナノチューブ等)、種々の導電性セラミック等から成るものが挙げられる。このうち、金属又は合金から成る導電性微粒子が好ましい。例えば、金、銀、銅、鉄、白金、パラジウム、ニッケル、クロム、亜鉛、コバルト、マグネシウム、アルミニウム等の金属、またはそれらの合金、またはそれら金属を構成要素とする金属酸化物が挙げられる。使用する微粒子は1種類でもよいし、同時に組成の異なる2種類以上を使用してもよい。
使用する導電性微粒子の平均粒子サイズ(顕微鏡観察、X線小角散乱法、光散乱法等に基づく平均粒径をいう。)は特に限定されないが、より微細な配線を作製するためには、使用する微粒子のサイズは小さいほうが望ましい。平均粒子サイズ100nm以下(例えば1〜100nm)、特に平均粒子サイズ10nm以下(例えば0.5〜10nm)のいわゆるナノ粒子(或いはクラスター)と呼ばれるサイズの微粒子を使用することが好ましい。平均粒子が異なる2種以上の微粒子を同時に使用してもよい。例えば、主ナノ粒子とそれよりも平均粒子サイズが1/4程度又はそれ以下の副ナノ粒子を同時に用いることによって、緻密な微細配線を形成することができる。
このようなナノ粒子は種々の方法で調製される。本発明では、液相合成法、気相合成法、粉砕法等によって調製されたナノ粒子を使用することができる。化学的還元法例えばアルコール還元法(即ち溶液中に含まれる有機金属化合物を多価アルコールで還元して金属核を発生させ、それを成長させて金属ナノ粒子を得る方法)、電解法、アトマイズ法等によって得られた鉄、金、銀、白金等の導電性金属ナノ粒子を好ましく使用することができる。
Next, the conductive fine particles will be described. The conductive fine particles can be used without particular limitation as long as they constitute conductors (electric wires, electrodes) in various electronic components. For example, those made of metal, alloy, carbon (carbon black, carbon nanotube, etc.), various conductive ceramics and the like can be mentioned. Among these, conductive fine particles made of a metal or an alloy are preferable. Examples thereof include metals such as gold, silver, copper, iron, platinum, palladium, nickel, chromium, zinc, cobalt, magnesium, and aluminum, alloys thereof, and metal oxides containing these metals as constituent elements. One kind of fine particles may be used, or two or more kinds having different compositions may be used at the same time.
The average particle size of the conductive fine particles to be used (meaning the average particle size based on microscopic observation, X-ray small angle scattering method, light scattering method, etc.) is not particularly limited, but is used for producing finer wiring. It is desirable that the size of fine particles to be reduced is small. It is preferable to use fine particles of a so-called nanoparticle (or cluster) having an average particle size of 100 nm or less (for example, 1 to 100 nm), particularly an average particle size of 10 nm or less (for example, 0.5 to 10 nm). Two or more kinds of fine particles having different average particles may be used at the same time. For example, a dense fine wiring can be formed by simultaneously using main nanoparticles and sub-nanoparticles having an average particle size of about 1/4 or less.
Such nanoparticles are prepared by various methods. In the present invention, nanoparticles prepared by a liquid phase synthesis method, a gas phase synthesis method, a pulverization method, or the like can be used. Chemical reduction method, for example, alcohol reduction method (that is, a method in which an organic metal compound contained in a solution is reduced with a polyhydric alcohol to generate a metal nucleus and is grown to obtain metal nanoparticles), electrolytic method, atomization method Conductive metal nanoparticles such as iron, gold, silver, and platinum obtained by the above can be preferably used.

導電性微粒子に疎水基を与える典型的な方法として、疎水基(典型的には炭素数が10以上の長鎖アルキル基のような炭化水素基)を有する有機化合物でナノ粒子の表面を修飾(被覆)することが挙げられる。例えば、鉄、銀等の導電性微粒子の表面を疎水基を有する両親媒性分子、典型的には界面活性剤(例えばオレイン酸、ステアリン酸のような高級脂肪酸)で表面修飾(被覆)することにより、本発明の実施に好適な疎水基を備えた導電性微粒子を得ることができる。
例えば、上記アルコール還元法に基づいて金属ナノ粒子を作製する際、反応溶液に高級脂肪酸等の界面活性剤(保護剤)を添加しておくことにより、当該界面活性剤で被覆された、即ち疎水基を表面に備えた金属ナノ粒子(クラスター)を得ることができる。
なお、導電性微粒子の調製方法及び該微粒子の表面修飾法は従来公知の方法に従えばよく、本発明を特徴づけるものではないため詳細な説明は省略する。
As a typical method for imparting hydrophobic groups to conductive fine particles, the surface of the nanoparticles is modified with an organic compound having a hydrophobic group (typically a hydrocarbon group such as a long-chain alkyl group having 10 or more carbon atoms) ( Coating). For example, the surface of conductive fine particles such as iron and silver is surface-modified (coated) with an amphiphilic molecule having a hydrophobic group, typically a surfactant (for example, higher fatty acids such as oleic acid and stearic acid). Thus, conductive fine particles having a hydrophobic group suitable for the practice of the present invention can be obtained.
For example, when preparing metal nanoparticles based on the above alcohol reduction method, a surfactant (protective agent) such as a higher fatty acid is added to the reaction solution, so that the surfactant is coated with the surfactant. Metal nanoparticles (clusters) having groups on the surface can be obtained.
In addition, the preparation method of electroconductive fine particles and the surface modification method of the fine particles may be in accordance with a conventionally known method and do not characterize the present invention.

本発明では、上述した両親媒性の線状ポリペプチドを使用して基材表面に規則的に配列させて当該ポリペプチドから成る薄膜を形成する。
ここで基材の材質、形状、サイズは特に限定されず、その表面に対象とするポリペプチドを配置(付着)し得るものであれば特に限定されない。種々のセラミック製、ガラス製、或いは金属製の基材(基板)を使用することができる。導電性金属微粒子由来の配線を作製しようとする場合、マイカ、アルミナ、シリカ等のセラミック製又はガラス製の基材の使用が好ましい。両親媒性ポリペプチドが付着し易くなるように、予め基材表面を前処理(例えばアルコキシシラン等の薬剤やプラズマ利用による親水化処理、例えばポリメチルシロキサン等のポリ(アルキル)シロキサン修飾処理)しておくことが好ましい。
In the present invention, the above-described amphipathic linear polypeptide is used and regularly arranged on the surface of the substrate to form a thin film composed of the polypeptide.
Here, the material, shape, and size of the base material are not particularly limited as long as the target polypeptide can be arranged (attached) on the surface thereof. Various base materials (substrates) made of ceramic, glass, or metal can be used. When it is going to produce the wiring derived from conductive metal fine particles, it is preferable to use a base material made of ceramic or glass such as mica, alumina or silica. In order to facilitate the attachment of amphiphilic polypeptides, the substrate surface is pretreated in advance (for example, hydrophilization treatment using a chemical such as alkoxysilane or plasma, for example, poly (alkyl) siloxane modification treatment such as polymethylsiloxane). It is preferable to keep it.

基材表面に両親媒性で線状のポリペプチドを規則的に配列してポリペプチド薄膜(ポリペプチド集合体)を形成する方法としては、単分子膜のような分子が規則配列した薄膜を形成する従来の方法をそのまま若しくは適宜修正して適用することができる。
例えば、LB法の適用が好ましい。この方法によると、線状(鎖状)ポリペプチドは、基材上に1軸配向し、基材水平方向にポリペプチドの疎水性部分が相互に隣接して並列させることができる。具体的には、先ず、両親媒性線状ポリペプチドを水又は適当な有機溶媒上に浮かせる。このとき、溶媒上のポリペプチドは、規則的に配列した状態、典型的には1軸配向した状態で単分子膜を形成する。その状態を維持しつつ、当該溶媒の表面(単分子膜形成層)に対して所定の基材を垂直に上げ下げする。このことにより、液面上の単分子膜を基材表面に転写・配置することができる。これにより、トリブロック型ポリペプチド20を使用した場合の例示である図3に示すように、基材の水平方向に両親媒性ポリペプチド20の疎水性部分24A,24Bが相互に隣接して並列するように軸方向を揃えて配列した(即ち1軸配向した)ポリペプチド集合体から成る単分子膜50を形成することができる。ジブロック型ポリペプチド(図1参照)を使用した場合も同様の単分子膜を形成することができる。そして、かかる液面から基材表面への単分子膜の転写・配置を繰り返すことによって単分子膜が累積した累積膜(LB膜)を形成することができる。なお、LB法自体は周知の方法であるので、これ以上の詳細な説明は省略する。
As a method of forming a polypeptide thin film (polypeptide aggregate) by regularly arranging amphiphilic and linear polypeptides on the substrate surface, a thin film in which molecules such as a monomolecular film are regularly arranged is formed. The conventional method can be applied as it is or after being appropriately modified.
For example, application of the LB method is preferable. According to this method, linear (chain) polypeptides can be uniaxially oriented on the substrate, and the hydrophobic portions of the polypeptides can be juxtaposed in parallel with each other in the substrate horizontal direction. Specifically, the amphiphilic linear polypeptide is first floated on water or a suitable organic solvent. At this time, the polypeptide on the solvent forms a monomolecular film in a regularly arranged state, typically in a uniaxially oriented state. While maintaining this state, the predetermined substrate is raised and lowered vertically with respect to the surface of the solvent (monomolecular film forming layer). Thereby, the monomolecular film on the liquid surface can be transferred and arranged on the surface of the substrate. Thereby, as shown in FIG. 3 which is an example when the triblock type polypeptide 20 is used, the hydrophobic portions 24A and 24B of the amphiphilic polypeptide 20 are adjacent to each other in parallel in the horizontal direction of the base material. Thus, a monomolecular film 50 composed of polypeptide aggregates aligned in the axial direction (that is, uniaxially oriented) can be formed. A similar monomolecular film can also be formed when a diblock polypeptide (see FIG. 1) is used. Then, by repeating the transfer and arrangement of the monomolecular film from the liquid surface to the substrate surface, a cumulative film (LB film) in which the monomolecular film is accumulated can be formed. Since the LB method itself is a well-known method, further detailed description is omitted.

本発明の好ましい一態様では、上記のようにして疎水基を備えた導電性微粒子を基材上に形成したポリペプチド薄膜に供給し、該ポリペプチド薄膜の疎水性部分に導電性微粒子を付加する。典型的には従来公知の溶液キャスト法、スピンコート法等によって、ポリペプチド薄膜の疎水性部分に導電性微粒子を容易に付加することができる。例えば、適当な溶媒(ヘキサン等の無極性有機溶媒が好ましい)中に疎水基を備えた導電性微粒子を適当な濃度で分散した分散液を調製し、基材上のポリペプチド薄膜に該分散液の適量を滴下し、その後ゆっくりと溶媒を蒸発させることを特徴とするキャスト法が好適である。
これにより、トリブロック型ポリペプチド20から成るポリペプチド薄膜50Aを使用した場合の例示である図4に示すように、ポリペプチド薄膜50A上を分散した微粒子40がその表面にある疎水基を介して薄膜を構成するポリペプチド20の疎水性部分24A,24Bに疎水性相互作用により付加(吸着)される。
In a preferred embodiment of the present invention, the conductive fine particles having hydrophobic groups as described above are supplied to the polypeptide thin film formed on the substrate, and the conductive fine particles are added to the hydrophobic portion of the polypeptide thin film. . Typically, the conductive fine particles can be easily added to the hydrophobic portion of the polypeptide thin film by a conventionally known solution casting method, spin coating method or the like. For example, a dispersion is prepared by dispersing conductive fine particles having a hydrophobic group in an appropriate solvent (preferably a nonpolar organic solvent such as hexane) at an appropriate concentration, and the dispersion is applied to a polypeptide thin film on a substrate. A casting method characterized by dripping an appropriate amount of and then slowly evaporating the solvent is suitable.
As a result, as shown in FIG. 4 which is an example when the polypeptide thin film 50A made of the triblock type polypeptide 20 is used, the fine particles 40 dispersed on the polypeptide thin film 50A pass through the hydrophobic group on the surface thereof. It is added (adsorbed) to the hydrophobic portions 24A and 24B of the polypeptide 20 constituting the thin film by hydrophobic interaction.

あるいは、本発明の他の一態様として、基材上に薄膜を形成する前に、疎水基付き導電性微粒子をポリペプチドの疎水性部分に予め付与しておき、その後に当該微粒子付きポリペプチドをLB法等によって基材上に規則的に配列させてもよい。この態様は、ポリペプチド鎖が比較的長い一方で、使用する導電性微粒子の平均粒子サイズが比較的小さい場合に好適である。例えば、適当な溶媒(例えばヘキサン等の無極性有機溶媒)中に疎水基を備えた導電性微粒子を適当な濃度で分散した分散液に適量の両親媒性ポリペプチドを添加し、数分〜数時間保持することによって、図6に示すように、両親媒性ポリペプチド(図ではトリブロック型ポリペプチド)の疎水性部分24A,24Bに導電性微粒子40が付与されたポリペプチド20Aを調製することができる。そして、得られたポリペプチド20Aを用いて上述したようなLB法等を行うことによって、基材上に規則的に配列した導電性微粒子付きポリペプチドから成るポリペプチド薄膜(典型的には1軸配向した単分子膜50A:図4参照)を形成することができる。   Alternatively, as another embodiment of the present invention, before forming a thin film on a substrate, conductive fine particles with hydrophobic groups are previously applied to the hydrophobic portion of the polypeptide, and then the polypeptide with fine particles is added. You may arrange regularly on a base material by LB method etc. This embodiment is suitable when the average particle size of the conductive fine particles used is relatively small while the polypeptide chain is relatively long. For example, an appropriate amount of amphiphilic polypeptide is added to a dispersion in which conductive fine particles having a hydrophobic group are dispersed at an appropriate concentration in an appropriate solvent (for example, a nonpolar organic solvent such as hexane), and several minutes to several By maintaining the time, as shown in FIG. 6, the polypeptide 20A in which the conductive fine particles 40 are added to the hydrophobic portions 24A and 24B of the amphiphilic polypeptide (triblock polypeptide in the figure) is prepared. Can do. Then, by performing the LB method as described above using the obtained polypeptide 20A, a polypeptide thin film (typically uniaxial) composed of the polypeptide with conductive fine particles regularly arranged on the substrate. An oriented monomolecular film 50A (see FIG. 4) can be formed.

以上のようにして基材上に作製されたポリペプチド薄膜では、図4に示すように、規則的に配列したポリペプチド疎水性部分24A,24Bに対応して導電性微粒子40から成るパターン即ち配線が形成されている。次いでこの状態となった基材を適当な条件で加熱し、ポリペプチド及び疎水基を含む薄膜構成有機成分を焼失(換言すれば導電性微粒子を焼成)することによって、図5に例示するような導電性微粒子40の集合体から成る微細配線60を基材上に作製することができる。
なお、加熱(焼成)条件は使用した導電性微粒子及び/又は基材の組成に応じて適宜設定すればよい。例えば、金や銀のような比較的低温で焼成するタイプの金属微粒子を用いた場合には、典型的には500〜800℃程度に加熱する。また、白金、パラジウムのような比較的高温で焼成するタイプの金属微粒子を用いた場合には、1000〜1300℃程度に加熱するとよい。加熱時の雰囲気は導電性微粒子の組成、製造しようとする電子部品(基材)の用途に応じて適宜設定すればよい。例えば、金、銀等の貴金属から成る金属微粒子を使用した場合には典型的には大気中(酸素含有雰囲気)で加熱し、銅、鉄等の卑金属から成る金属微粒子を使用した場合には典型的には窒素等の非酸化的雰囲気で加熱する。
或いは、基材自体を加熱する手段に代えて、炭酸ガスレーザー、YAGレーザー等のレーザー光照射装置を用いて所定の波長のレーザー光を基材上に照射し、ポリペプチド及び疎水基を含む薄膜構成有機成分を消失(蒸散)させてもよい。かかるレーザー光照射によると、基材全体を加熱する必要がないため、より高精度の微細配線を形成することができる。かかる目的に、種々のレーザー加工装置(例えばレーザー焼入れ装置)、レーザーマーキング装置、レーザーメス等で使用されるレーザー光を適用することができる。
In the polypeptide thin film produced on the substrate as described above, as shown in FIG. 4, a pattern consisting of conductive fine particles 40 corresponding to the regularly arranged polypeptide hydrophobic portions 24A and 24B, that is, wiring Is formed. Next, the substrate in this state is heated under appropriate conditions, and the organic components constituting the thin film containing the polypeptide and the hydrophobic group are burned out (in other words, the conductive fine particles are baked), as illustrated in FIG. A fine wiring 60 made of an aggregate of conductive fine particles 40 can be produced on a substrate.
In addition, what is necessary is just to set a heating (baking) condition suitably according to the composition of the electroconductive fine particle and / or base material which were used. For example, when metal fine particles of a type that is fired at a relatively low temperature, such as gold or silver, are typically heated to about 500 to 800 ° C. Further, when metal fine particles of a type fired at a relatively high temperature, such as platinum and palladium, are used, it may be heated to about 1000 to 1300 ° C. What is necessary is just to set the atmosphere at the time of a heating suitably according to the use of the composition of electroconductive fine particles, and the use of the electronic component (base material) which it is going to manufacture. For example, when metal fine particles composed of noble metals such as gold and silver are used, it is typically heated in the atmosphere (oxygen-containing atmosphere), and when metal fine particles composed of base metals such as copper and iron are used. Specifically, heating is performed in a non-oxidizing atmosphere such as nitrogen.
Alternatively, instead of means for heating the substrate itself, a thin film containing a polypeptide and a hydrophobic group by irradiating the substrate with laser light of a predetermined wavelength using a laser beam irradiation device such as a carbon dioxide laser or a YAG laser. The constituent organic components may be eliminated (transpiration). According to such laser light irradiation, since it is not necessary to heat the whole substrate, a finer wiring with higher accuracy can be formed. For this purpose, laser beams used in various laser processing apparatuses (for example, laser hardening apparatuses), laser marking apparatuses, laser scalpels, and the like can be applied.

以下に説明する実施例によって、本発明を更に詳細に説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not intended to be limited to those shown in the examples.

<実施例1>
アルコール還元法によって、長鎖アルキル基を備えた鉄ナノ粒子を調製した。すなわち、鉄(III)アセチルアセトナート(Fe(acac)3)、1,2−ヘキサデカンジオール(還元剤)、オレイン酸(界面活性剤)およびジオクチルエーテル(高沸点有機溶媒)をそれぞれ適当量秤量して反応容器(マントルヒーター付きフラスコ)に充填した。スターラーを用いて溶液をよく撹拌しながらフラスコ内に不活性ガスとしてArガスを流してガス置換した。そして、溶液を有機溶媒の沸点近傍(ここでは286℃)まで還流・加熱した。かかるアルコール還元法の実施によって、表面がオレイン酸で被覆された平均粒子サイズ約7nmの鉄ナノ粒子を調製した。次いで、得られた鉄ナノ粒子を回収し、無極性有機溶媒(ここではn−ヘキサン)に再分散することにより、粒子濃度が1.41×10-7mol/Lである懸濁液を得た。
<Example 1>
Iron nanoparticles with long chain alkyl groups were prepared by the alcohol reduction method. That is, iron (III) acetylacetonate (Fe (acac) 3 ), 1,2-hexadecanediol (reducing agent), oleic acid (surfactant) and dioctyl ether (high-boiling organic solvent) are weighed appropriately. The reaction vessel (flask with mantle heater) was filled. While stirring the solution well using a stirrer, Ar gas was passed through the flask as an inert gas to replace the gas. The solution was then refluxed and heated to near the boiling point of the organic solvent (here, 286 ° C.). By performing the alcohol reduction method, iron nanoparticles having an average particle size of about 7 nm and having a surface coated with oleic acid were prepared. Next, the obtained iron nanoparticles are collected and redispersed in a nonpolar organic solvent (here, n-hexane) to obtain a suspension having a particle concentration of 1.41 × 10 −7 mol / L. It was.

一方、アミノ酸無水物(NCA)の重合体である疎水性ポリペプチドPLL54−PBLG80−PLL54のPBLGセグメントを完全加水分解し、式2に示すトリブロック型ポリペプチドPLL54−PLGA80−PLL54を得た。次いで、PLL54−PLGA80−PLL54をpH4に調整した水面上に展開してLB法を行い、PLL54−PLGA80−PLL54が1軸配向して成るポリペプチド薄膜(単分子膜)をマイカ製の基板(14mm×15mm)の表面に形成した。 On the other hand, the PBLG segment of the hydrophobic polypeptide PLL 54 -PBLG 80 -PLL 54 , which is a polymer of amino acid anhydride (NCA), is completely hydrolyzed to obtain the triblock polypeptide PLL 54 -PLGA 80 -PLL shown in Formula 2. 54 was obtained. Subsequently, PLL 54 -PLGA 80 -PLL 54 is developed on a water surface adjusted to pH 4 and subjected to the LB method, and a polypeptide thin film (monomolecular film) in which PLL 54 -PLGA 80 -PLL 54 is uniaxially oriented is obtained. It was formed on the surface of a mica substrate (14 mm × 15 mm).

次に、上記鉄ナノ粒子懸濁液2〜5μLをマイカ基板表面の上記薄膜に滴下(キャスト)した。その後、アスピレータを用いて基板を1時間ほど真空乾燥し、基板上のn−ヘキサンをほぼ完全に蒸発させた。
この処理の後、基板上に配置されている鉄ナノ粒子をAFM即ち原子間力顕微鏡(Digital Instrument社製品:Nanoscope IIIa(商標))を用いて観察した。ここでは、大気中タッピングモードで観測した。プローブは、タッピングモード用Si単結晶(Digital Instrument社製品:Nanoprobe TESP(商標)、カンチレバー長125μm)を用いた。観測結果のAFM画像(約100nm×100nm)を図7に示す。
図7に示すように、多数の微粒子が一定間隔をおいてレーン状に連結集合して存在することが明らかになった。また、そのレーン間隔は約31nmであった。この間隔は、テンプレートであった両親媒性ポリペプチドPLL54−PLGA80−PLL54から構成された単分子膜の縞間隔(29nm)にほぼ対応する値である。このことは、鉄ナノ粒子が疎水基(オレイン酸)を介して単分子膜中の疎水性部分に疎水性相互作用に基づいて選択的に吸着していることを示している。従って、本実施例において形成したLB法に基づく単分子膜は、その規則的配列構造ゆえに基材上に微細配線を形成するためのテンプレートとして好適であることが確認された。
AFM観測後、この基材を窒素雰囲気中、700℃以上に加熱し、有機成分を焼失させ、鉄ナノ粒子集合物の焼成体である微細配線(ナノ配線)がマイカ基板上に作製された。
Next, 2-5 μL of the iron nanoparticle suspension was dropped onto the thin film on the surface of the mica substrate. Thereafter, the substrate was vacuum-dried for about 1 hour using an aspirator, and n-hexane on the substrate was almost completely evaporated.
After this treatment, the iron nanoparticles arranged on the substrate were observed using an AFM, that is, an atomic force microscope (Digital Instrument product: Nanoscope IIIa (trademark)). Here, the observation was performed in the atmospheric tapping mode. As the probe, a single crystal for tapping mode (Digital Instrument product: Nanoprobe TESP (trademark), cantilever length: 125 μm) was used. FIG. 7 shows an AFM image (about 100 nm × 100 nm) as an observation result.
As shown in FIG. 7, it has been clarified that a large number of fine particles are connected and assembled in a lane shape at regular intervals. The lane interval was about 31 nm. This interval is a value substantially corresponding to the stripe interval (29 nm) of a monomolecular film composed of the amphipathic polypeptide PLL 54 -PLGA 80 -PLL 54 that was the template. This indicates that the iron nanoparticles are selectively adsorbed to the hydrophobic part in the monomolecular film through the hydrophobic group (oleic acid) based on the hydrophobic interaction. Therefore, it was confirmed that the monomolecular film based on the LB method formed in this example is suitable as a template for forming fine wiring on the substrate because of its regular arrangement structure.
After the AFM observation, this base material was heated to 700 ° C. or higher in a nitrogen atmosphere to burn off organic components, and fine wiring (nano wiring), which was a sintered body of iron nanoparticle aggregates, was produced on a mica substrate.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

両親媒性線状ポリペプチドの好適例(ジブロック型ポリペプチド)を示す模式図である。It is a schematic diagram which shows the suitable example (diblock type polypeptide) of an amphipathic linear polypeptide. 両親媒性線状ポリペプチドの好適例(トリブロック型ポリペプチド)を示す模式図である。It is a schematic diagram which shows the suitable example (triblock type polypeptide) of an amphipathic linear polypeptide. トリブロック型ポリペプチドから構成された単分子膜の構造を模式的に説明する図である。It is a figure which illustrates typically the structure of the monomolecular film comprised from the triblock type | mold polypeptide. トリブロック型ポリペプチドから構成された単分子膜に導電性微粒子が付与(吸着)された状態を模式的に説明する図である。It is a figure which illustrates typically the state by which electroconductive fine particles were provided (adsorbed) to the monomolecular film comprised from the triblock type | mold polypeptide. 基材上に形成された導電性微粒子の集合体から成る微細配線を模式的に説明する図である。It is a figure which illustrates typically the fine wiring which consists of an aggregate | assembly of the electroconductive fine particles formed on the base material. トリブロック型ポリペプチド分子の疎水性部分に導電性微粒子が付与(吸着)された状態を模式的に説明する図である。It is a figure which illustrates typically the state by which electroconductive fine particles were provided (adsorbed) to the hydrophobic part of a triblock type polypeptide molecule. 一実施例において得られたポリペプチド薄膜(単分子膜)における鉄ナノ粒子の配置状態を示す原子間力顕微鏡(AFM)画像である。It is an atomic force microscope (AFM) image which shows the arrangement | positioning state of the iron nanoparticle in the polypeptide thin film (monomolecular film) obtained in one Example.

符号の説明Explanation of symbols

10 両親媒性線状ポリペプチド(ジブロック型ポリペプチド)
20,20A 両親媒性線状ポリペプチド(トリブロック型ポリペプチド)
12,22 親水性部分
14,24A,24B 疎水性部分
40 導電性微粒子
50,50A ポリペプチド薄膜(単分子膜)
60 微細配線
10 Amphiphilic linear polypeptide (diblock polypeptide)
20,20A amphipathic linear polypeptide (triblock polypeptide)
12, 22 Hydrophilic part 14, 24A, 24B Hydrophobic part 40 Conductive fine particles 50, 50A Polypeptide thin film (monomolecular film)
60 fine wiring

Claims (7)

基材上に微細配線を作製する方法であって、以下の工程:
親水性部分と疎水性部分とが軸方向に少なくとも一つずつ形成されている両親媒性の線状ポリペプチドを用意する工程;
所定の基材の表面に、前記ポリペプチドが規則的に配列して成るポリペプチド薄膜を形成する工程;
前記ポリペプチド薄膜に疎水基を備えた導電性微粒子を供給し、該疎水基を介して該ポリペプチド薄膜の疎水性部分に導電性微粒子を付加する工程;および
前記ポリペプチド及び導電性微粒子の疎水基を消失させ、前記ポリペプチドの規則的配列パターンに対応した導電性微粒子から成る微細配線を形成する工程;
を包含する方法。
A method for producing fine wiring on a substrate, comprising the following steps:
Providing an amphiphilic linear polypeptide in which at least one hydrophilic part and one hydrophobic part are formed in the axial direction;
Forming a polypeptide thin film in which the polypeptides are regularly arranged on the surface of a predetermined substrate;
Supplying conductive fine particles having a hydrophobic group to the polypeptide thin film, and adding the conductive fine particles to the hydrophobic portion of the polypeptide thin film through the hydrophobic group; and hydrophobicity of the polypeptide and the conductive fine particles Eliminating the group and forming a fine wiring composed of conductive fine particles corresponding to the regular arrangement pattern of the polypeptide;
Including the method.
基材上に微細配線を作製する方法であって、以下の工程:
親水性部分と疎水性部分とが軸方向に少なくとも一つずつ形成されている両親媒性の線状ポリペプチドを用意する工程;
前記ポリペプチドに疎水基を備えた導電性微粒子を供給し、該疎水基を介して該ポリペプチドの疎水性部分に導電性微粒子を付加する工程;
所定の基材の表面に、前記導電性微粒子が付加されたポリペプチドが規則的に配列して成るポリペプチド薄膜を形成する工程;および
前記ポリペプチド及び導電性微粒子の疎水基を消失させ、前記ポリペプチドの規則的配列パターンに対応した導電性微粒子から成る微細配線を形成する工程;
を包含する方法。
A method for producing fine wiring on a substrate, comprising the following steps:
Providing an amphiphilic linear polypeptide in which at least one hydrophilic part and one hydrophobic part are formed in the axial direction;
Supplying conductive fine particles having a hydrophobic group to the polypeptide, and adding the conductive fine particles to the hydrophobic portion of the polypeptide via the hydrophobic group;
Forming a polypeptide thin film in which the polypeptide to which the conductive fine particles are added is regularly arranged on the surface of a predetermined substrate; and eliminating the hydrophobic groups of the polypeptide and the conductive fine particles, Forming a fine wiring composed of conductive fine particles corresponding to a regular arrangement pattern of the polypeptide;
Including the method.
前記ポリペプチド薄膜の少なくとも一部は、前記基材の水平方向に前記ポリペプチドの疎水性部分が相互に隣接して並列するように軸方向を揃えて配列したポリペプチド集合体により構成される、請求項1又は2に記載の方法。   At least a part of the polypeptide thin film is composed of a polypeptide assembly in which the hydrophobic portions of the polypeptide are aligned in the axial direction so as to be adjacent to each other in parallel in the horizontal direction of the base material. The method according to claim 1 or 2. 前記ポリペプチド薄膜は、ラングミュア−ブロジェット法に基づいて形成された単分子膜又は累積膜である、請求項3に記載の方法。   The method according to claim 3, wherein the polypeptide thin film is a monomolecular film or a cumulative film formed based on the Langmuir-Blodgett method. 前記導電性微粒子は、平均粒子サイズ100nm以下の金属又は合金から成る微粒子である、請求項1〜4のいずれかに記載の方法。   The method according to claim 1, wherein the conductive fine particles are fine particles made of a metal or an alloy having an average particle size of 100 nm or less. 前記疎水基を備えた導電性微粒子は、前記微粒子に長鎖炭化水素基を備えた両親媒性分子を結合させて得られたものである、請求項5に記載の方法。   The method according to claim 5, wherein the conductive fine particle having a hydrophobic group is obtained by binding an amphiphilic molecule having a long-chain hydrocarbon group to the fine particle. 請求項1〜6のいずれかの方法によって作製された所定パターンの微細配線を備えた電子部品。
The electronic component provided with the fine wiring of the predetermined pattern produced by the method in any one of Claims 1-6.
JP2004005665A 2004-01-13 2004-01-13 Method for producing fine wiring and electronic component provided with the fine wiring Expired - Lifetime JP4324668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005665A JP4324668B2 (en) 2004-01-13 2004-01-13 Method for producing fine wiring and electronic component provided with the fine wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005665A JP4324668B2 (en) 2004-01-13 2004-01-13 Method for producing fine wiring and electronic component provided with the fine wiring

Publications (2)

Publication Number Publication Date
JP2005203433A true JP2005203433A (en) 2005-07-28
JP4324668B2 JP4324668B2 (en) 2009-09-02

Family

ID=34819906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005665A Expired - Lifetime JP4324668B2 (en) 2004-01-13 2004-01-13 Method for producing fine wiring and electronic component provided with the fine wiring

Country Status (1)

Country Link
JP (1) JP4324668B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190153A (en) * 2008-02-18 2009-08-27 Nagoya Institute Of Technology Method of manufacturing microstructure and substrate with microstructure
JP2009190152A (en) * 2008-02-18 2009-08-27 Nagoya Institute Of Technology Method of manufacturing microstructure and substrate provided with microstructure
WO2009104537A1 (en) * 2008-02-18 2009-08-27 国立大学法人名古屋工業大学 Method of manufacturing microstructure and substrate provided with the microstructure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190153A (en) * 2008-02-18 2009-08-27 Nagoya Institute Of Technology Method of manufacturing microstructure and substrate with microstructure
JP2009190152A (en) * 2008-02-18 2009-08-27 Nagoya Institute Of Technology Method of manufacturing microstructure and substrate provided with microstructure
WO2009104537A1 (en) * 2008-02-18 2009-08-27 国立大学法人名古屋工業大学 Method of manufacturing microstructure and substrate provided with the microstructure
DE112009000353T5 (en) 2008-02-18 2011-02-24 Fujimi Incorporated, Kiyosu A method of making a microstructure and a substrate provided with the microstructure
US8716678B2 (en) 2008-02-18 2014-05-06 Fujimi Incorporated Method of manufacturing microstructure and substrate provided with the microstructure
KR101446167B1 (en) 2008-02-18 2014-10-01 가부시키가이샤 후지미인코퍼레이티드 Method of manufacturing microstructure and substrate provided with the microstructure

Also Published As

Publication number Publication date
JP4324668B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4155821B2 (en) Conductive metal paste and manufacturing method thereof
US7922939B2 (en) Metal nanoparticle inks
JP4414145B2 (en) Conductive nanoparticle paste
KR101165484B1 (en) A method of delivering ink to a substrate surface, a method of writing conductive metal, an ink formulation for nanolithography or microlithography, a method for depositing metallic traces, a method and device for repair of a flat panel display substrate
JP6704364B2 (en) Silver nanoparticle ink
US9145503B2 (en) Low temperature sintering conductive metal film and preparation method thereof
TW200934833A (en) Lithography of nanoparticle based inks
US20090274833A1 (en) Metallic ink
EP2441922A1 (en) Metal nanoparticle dispersion
JP2014116315A (en) Metallic ink
Wu et al. Microcontact printing of CdS/dendrimer nanocomposite patterns on silicon wafers
JP2015211032A (en) Elastic conductive film based on silver nanoparticle
JP5509283B2 (en) Heat-sinterable metal fine particle production method, paste-like metal fine particle composition, solid metal or solid metal alloy production method, metal member joining method, printed wiring board production method, and electrical circuit connection bump production Method
JP2016054098A (en) Silver paste, semiconductor device using the same and method for producing silver paste
WO2015060245A1 (en) Silver paste and semiconductor device using same, and production method for silver paste
KR20070049760A (en) Metallic ink, and method for forming of electrode using the same and substrate
TW200806760A (en) Nickel ink
TWI734797B (en) Conductive paste and forming method of conductive pattern
KR20120099476A (en) Block copolymer-assisted nanolithography
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP2014162966A (en) Metal fine particle composition, joining material, electronic component, formation method of junction layer, formation method of conductor layer, and ink composition
Samarasinghe et al. Printing gold nanoparticles with an electrohydrodynamic direct-write device
TW201637994A (en) Silver fine particle composition
JP4324668B2 (en) Method for producing fine wiring and electronic component provided with the fine wiring
Kiremitler et al. Writing chemical patterns using electrospun fibers as nanoscale inkpots for directed assembly of colloidal nanocrystals

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4324668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term