JP2005203313A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2005203313A
JP2005203313A JP2004010611A JP2004010611A JP2005203313A JP 2005203313 A JP2005203313 A JP 2005203313A JP 2004010611 A JP2004010611 A JP 2004010611A JP 2004010611 A JP2004010611 A JP 2004010611A JP 2005203313 A JP2005203313 A JP 2005203313A
Authority
JP
Japan
Prior art keywords
fuel gas
fuel
gas
oxidizing gas
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004010611A
Other languages
Japanese (ja)
Other versions
JP4385773B2 (en
Inventor
Masashi Maeda
正史 前田
Masaru Kadokawa
優 角川
Tetsuo Kikuchi
哲郎 菊地
Shinji Houchiyou
伸次 庖丁
Tomonori Imamura
朋範 今村
Manabu Kato
加藤  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2004010611A priority Critical patent/JP4385773B2/en
Publication of JP2005203313A publication Critical patent/JP2005203313A/en
Application granted granted Critical
Publication of JP4385773B2 publication Critical patent/JP4385773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To prevent flooding in a fuel gas passage without using a heating means. <P>SOLUTION: This fuel system comprises: an MEA 1 having an electrolyte film; a separator 2 at an oxidative gas side with an oxidative gas passage 21 formed thereon; a separator 3 at a fuel gas side with a fuel gas passage 31 formed thereon; a heat insulating layer 4 between cooling water passages 24, 34; and a fuel gas passage 31 which is composed of a material with thermal conductivity lower than that of the separator 3 at the fuel gas passage gas side. The fuel gas becomes hard to be cooled than the oxidative gas by the heat insulating layer 4, and therefore the temperature of the fuel gas is higher as compared to the temperature of the oxidative gas and the partial pressure of the water vapor of the fuel gas becomes higher than the partial pressure of the water vapor of the oxidative gas. By the difference between partial pressures of water vapor, moisture at the side of a fuel gas is moved to the side of the oxidative gas through the electrolyte film, and as a result, the flooding in the fuel gas passage 31 with the flow velocity thereof lower than that at the side of the oxidative gas can be prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水素と酸素との電気化学反応により電気エネルギを発生させる燃料電池システムに関するものである。   The present invention relates to a fuel cell system that generates electrical energy by an electrochemical reaction between hydrogen and oxygen.

燃料電池の酸化ガス側(空気極側)では発電に伴い水が生成されるが、生成水の一部は電解質膜を透過して燃料ガス側(燃料極側)へ移動する。燃料ガス側へ透過した水分が凝縮すると、酸化ガス側よりも流速の遅い燃料ガス側では、燃料ガス流路内でフラッディング(水滴がガス流路に滞留することにより、電解質膜へのガス供給が阻害され、発電性能が低下する現象)を起こしやすい。このフラッディングを防止するために、燃料ガス側のセパレータの厚みを酸化ガス側のセパレータの厚みに比べて厚くし、燃料ガスの冷却性をやや低下させて燃料ガス側へ透過した水分の凝縮を抑制するようにした方法が提案されている(例えば、特許文献1、2、3参照)。   Although water is generated with power generation on the oxidizing gas side (air electrode side) of the fuel cell, part of the generated water passes through the electrolyte membrane and moves to the fuel gas side (fuel electrode side). When moisture permeated to the fuel gas side is condensed, the fuel gas side, which has a slower flow rate than the oxidant gas side, floods in the fuel gas flow path (water drops stay in the gas flow path so that the gas supply to the electrolyte membrane is reduced). It is likely to cause a phenomenon that power generation performance is hindered). In order to prevent this flooding, the thickness of the separator on the fuel gas side is made larger than the thickness of the separator on the oxidant gas side, and the condensation of moisture permeated to the fuel gas side is suppressed by slightly reducing the cooling performance of the fuel gas. A method has been proposed (see, for example, Patent Documents 1, 2, and 3).

即ち、特許文献1および特許文献2ではアノード側(燃料極側)のセパレータ部分の厚みをカソード側(空気極側)のそれに対して厚くしている。特許文献3ではアノード側およびカソード側のセパレータの冷却水が接触する側をフィン形状としており、このフィン形状のため、セパレータの厚みが厚く設定される。
特開2002−270197号公報 特開2003−45451号公報 特開平8−321314号公報
That is, in Patent Document 1 and Patent Document 2, the thickness of the anode side (fuel electrode side) separator portion is larger than that of the cathode side (air electrode side). In Patent Document 3, the anode-side and cathode-side separators on which the cooling water contacts are in a fin shape, and the thickness of the separator is set to be thick because of this fin shape.
JP 2002-270197 A Japanese Patent Laid-Open No. 2003-45451 JP-A-8-321314

しかしながら、特許文献1〜特許文献3に示された従来の燃料電池システムでは、セパレータの厚さを大きくする必要がある。 本発明は上記点に鑑みて、セパレータの厚さを大きく設定することなくフラッディングを防止可能にすることを目的としている。   However, in the conventional fuel cell system shown in Patent Documents 1 to 3, it is necessary to increase the thickness of the separator. The present invention has been made in view of the above points, and has an object to prevent flooding without setting the thickness of the separator large.

上記目的を達成するため、請求項1に記載の発明では、酸素を主成分とする酸化ガスと水素を主成分とする燃料ガスとを電気化学反応させて電気エネルギを発生させる燃料電池を備える燃料電池システムにおいて、燃料電池は、電解質膜を有するMEA(1)と、酸化ガスが流れる酸化ガス流路(21)が一方の面側に形成されるとともに、MEAの一方の面側に酸化ガス流路を対向させて配置された酸化ガス側セパレータ(2)と、燃料ガスが流れる燃料ガス流路(31)が一方の面側に形成されるとともに、MEAの他方の面側に燃料ガス流路を対向させて配置された燃料ガス側セパレータ(3)とを備え、冷却水が流れる冷却水流路(24、34)が、酸化ガス側セパレータの他方の面側および燃料ガス側セパレータの他方の面側の少なくとも一方に形成され、冷却水流路と燃料ガス流路との間に、燃料ガス側セパレータよりも熱伝導率が低い材質よりなる断熱層(4)を備えることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, a fuel including a fuel cell that generates electric energy through an electrochemical reaction between an oxidizing gas containing oxygen as a main component and a fuel gas containing hydrogen as a main component. In the battery system, the fuel cell includes an MEA (1) having an electrolyte membrane and an oxidizing gas passage (21) through which an oxidizing gas flows on one surface side, and an oxidizing gas flow on one surface side of the MEA. An oxidizing gas side separator (2) arranged with the passages facing each other and a fuel gas flow path (31) through which the fuel gas flows are formed on one surface side, and a fuel gas flow path on the other surface side of the MEA And the fuel gas side separator (3) disposed so as to face each other, and the cooling water flow paths (24, 34) through which the cooling water flows are provided on the other surface side of the oxidizing gas side separator and the other surface of the fuel gas side separator. Small side Kutomo formed on one, between the cooling water passage and the fuel gas flow path, characterized in that it comprises a heat insulating layer thermal conductivity is lower material than the fuel gas side separator (4).

このような熱伝導率の低い材質により、燃料ガスは酸化ガスよりも冷却されにくいため、燃料ガスの温度は酸化ガスの温度に比べ高くなり、アノード側でのフラッディングの発生を抑制することができる。このように、セパレータの厚さを大きく設定することなくフラッディングを防止することができる。
また、断熱層は例えばコーティングにより形成することができ、その場合、各セパレータの形状、寸法、材質を変更する必要がないため、容易に実施することが可能である。
請求項2に記載の発明では、燃料ガス側セパレータ(3)と酸化ガス側セパレータ(2)とが、直接接触している部位を有することを特徴とする。
Due to such a material having a low thermal conductivity, the fuel gas is less likely to be cooled than the oxidizing gas, so that the temperature of the fuel gas is higher than the temperature of the oxidizing gas, and the occurrence of flooding on the anode side can be suppressed. . Thus, flooding can be prevented without setting the separator thickness large.
In addition, the heat insulating layer can be formed by coating, for example, and in that case, it is not necessary to change the shape, size, and material of each separator, and thus can be easily implemented.
The invention according to claim 2 is characterized in that the fuel gas side separator (3) and the oxidizing gas side separator (2) have a portion in direct contact.

これによると、両セパレータが直接接触する部位を有する結果、該部位にて導電性を確保することができる。このため、導電率を低下させずに熱伝導性を下げることができるものである。   According to this, as a result of having the part which both separators contact directly, electroconductivity can be ensured in this part. For this reason, thermal conductivity can be lowered without lowering the electrical conductivity.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の一実施形態に係る燃料電池システムについて説明する。図1は一実施形態に係る燃料電池システムにおける燃料電池の構成を示す断面図である。   A fuel cell system according to an embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a configuration of a fuel cell in a fuel cell system according to an embodiment.

燃料電池は、水素供給装置から燃料ガス(水素)が供給され、空気供給装置から酸化ガス(酸素を含んだ空気)が供給され、冷却装置から冷却水が供給されるようになっている。   The fuel cell is supplied with fuel gas (hydrogen) from a hydrogen supply device, supplied with oxidizing gas (air containing oxygen) from an air supply device, and supplied with cooling water from a cooling device.

図1において、燃料電池はセルを多数積層して構成されており、そのセルは、電解質膜と触媒層と拡散層からなる薄板状のMEA1を、酸化ガス側セパレータ2と燃料ガス側セパレータ3とで挟み込む格好で形成される。   In FIG. 1, the fuel cell is configured by laminating a number of cells. The cell includes a thin plate-like MEA 1 including an electrolyte membrane, a catalyst layer, and a diffusion layer, and an oxidizing gas side separator 2 and a fuel gas side separator 3. It is formed with the appearance of being sandwiched between.

酸化ガス側セパレータ2は、例えばカーボンにて板状に形成され、酸化ガスが流れる酸化ガス流路21が一方の面側に形成されている。空気供給装置から供給される酸化ガスは、酸化ガス入口22から流入し、酸化ガス流路21を通って酸化ガス出口23から流出するようになっている。そして、酸化ガス流路21をMEA1に対向して配置することにより、酸化ガス流路21を通る酸化ガスをMEA1に接触させるようになっている。また、酸化ガス側セパレータ2は、冷却水が流れる冷却水流路24が他方の面側に形成されており、この冷却水流路24は燃料ガス側セパレータ3に対向している。   The oxidizing gas side separator 2 is formed, for example, in a plate shape with carbon, and an oxidizing gas passage 21 through which the oxidizing gas flows is formed on one surface side. The oxidizing gas supplied from the air supply device flows from the oxidizing gas inlet 22 and flows out from the oxidizing gas outlet 23 through the oxidizing gas channel 21. The oxidizing gas passage 21 is arranged opposite to the MEA 1 so that the oxidizing gas passing through the oxidizing gas passage 21 is brought into contact with the MEA 1. Further, the oxidizing gas side separator 2 has a cooling water passage 24 through which cooling water flows on the other surface side, and the cooling water passage 24 faces the fuel gas side separator 3.

燃料ガス側セパレータ3は、酸化ガス側セパレータ2と同材質にて板状に形成され、燃料ガスが流れる燃料ガス流路31が一方の面側に形成されている。水素供給装置から供給される燃料ガスは、燃料ガス入口32から流入し、燃料ガス流路31を通って燃料ガス出口33から流出するようになっている。そして、燃料ガス流路31をMEA1に対向して配置することにより、燃料ガス流路31を通る燃料ガスをMEA1に接触させるようになっている。   The fuel gas side separator 3 is formed in a plate shape with the same material as the oxidizing gas side separator 2, and a fuel gas flow path 31 through which the fuel gas flows is formed on one surface side. The fuel gas supplied from the hydrogen supply device flows from the fuel gas inlet 32 and flows out from the fuel gas outlet 33 through the fuel gas passage 31. The fuel gas passage 31 is disposed opposite the MEA 1 so that the fuel gas passing through the fuel gas passage 31 is brought into contact with the MEA 1.

また、燃料ガス側セパレータ3は、冷却水が流れる冷却水流路34が他方の面側に形成されており、この冷却水流路34は酸化ガス側セパレータ2に対向している。そして、燃料ガス側セパレータ3の冷却水流路34と燃料ガス流路31との間、より詳細には、燃料ガス側セパレータ3の冷却水流路34における底部には、燃料ガス側セパレータ3よりも熱伝導率が低い材質(例えば、樹脂)よりなる断熱層4がコーティングによって形成されている。熱伝導率が低い断熱層4を設けることにより、燃料ガスは酸化ガスよりも冷却されにくくなり、燃料ガスの温度は酸化ガスの温度に比べ高くなる。   Further, the fuel gas side separator 3 is formed with a cooling water flow path 34 through which cooling water flows on the other surface side, and this cooling water flow path 34 faces the oxidizing gas side separator 2. Further, heat is generated between the cooling water channel 34 of the fuel gas side separator 3 and the fuel gas channel 31, more specifically, at the bottom of the cooling water channel 34 of the fuel gas side separator 3 than the fuel gas side separator 3. A heat insulating layer 4 made of a material having low conductivity (for example, resin) is formed by coating. By providing the heat insulating layer 4 having low thermal conductivity, the fuel gas is less likely to be cooled than the oxidizing gas, and the temperature of the fuel gas is higher than the temperature of the oxidizing gas.

酸化ガス側セパレータ2における冷却水流路24が形成された面と、燃料ガス側セパレータ3における冷却水流路34が形成された面とは、冷却水通路24、34の部位を除いて直接接触している。このように、両セパレータ2、3が直接接触する部位を有する結果、該部位にて導電性を確保することができる。このため、導電率を低下させずに熱伝導性を下げることができる。   The surface of the oxidant gas side separator 2 on which the cooling water passage 24 is formed and the surface of the fuel gas side separator 3 on which the cooling water passage 34 is formed are in direct contact except for the portions of the cooling water passages 24 and 34. Yes. Thus, as a result of having the part which both separators 2 and 3 contact directly, electroconductivity can be ensured in this part. For this reason, thermal conductivity can be reduced without reducing the electrical conductivity.

酸化ガスと燃料ガスの流れの向きは対向しており、MEA1を介して酸化ガス入口22の反対側に燃料ガス出口33が形成され、酸化ガス出口23の反対側に燃料ガス入口33が形成されている。   The flow directions of the oxidizing gas and the fuel gas are opposite to each other, the fuel gas outlet 33 is formed on the opposite side of the oxidizing gas inlet 22 via the MEA 1, and the fuel gas inlet 33 is formed on the opposite side of the oxidizing gas outlet 23. ing.

次に、上記構成になる燃料電池システムの作動を説明する。図2は、従来の燃料電池システム、すなわち酸化ガスの温度と燃料ガスの温度が等しい燃料電池システム(以下、従来システムという)の作動説明に供する図である。図3は本実施形態に係る燃料電池システムの作動説明に供する図である。図2および図3の横軸は、酸化ガス流路21および燃料ガス流路31の位置である。   Next, the operation of the fuel cell system configured as described above will be described. FIG. 2 is a diagram for explaining the operation of a conventional fuel cell system, that is, a fuel cell system in which the temperature of the oxidizing gas is equal to the temperature of the fuel gas (hereinafter referred to as a conventional system). FIG. 3 is a diagram for explaining the operation of the fuel cell system according to the present embodiment. 2 and 3 are the positions of the oxidizing gas passage 21 and the fuel gas passage 31.

まず、従来システムの作動を、図2に基づいて説明する。なお、図2中の水蒸気分圧は、酸化ガスおよび燃料ガスのガス温度がともに80℃のときの値である。   First, the operation of the conventional system will be described with reference to FIG. In addition, the water vapor partial pressure in FIG. 2 is a value when the gas temperatures of the oxidizing gas and the fuel gas are both 80 ° C.

酸化ガス側は、発電により酸化ガスが消費されるため、酸化ガス入口側から酸化ガス出口側へ向かってガス流量が減少する。ただし、一般に酸化ガスとして空気を使用する場合、その減少量は少ない(図2のa参照)。また酸化ガス側は発電に伴う生成水により、酸化ガス流路中の水分量が酸化ガス出口側へ向かって増加し(図2のb参照)、水蒸気分圧が飽和水蒸気圧に達すると(図2のc点)、酸化ガス流路内には水滴が現れる。   On the oxidizing gas side, the oxidizing gas is consumed by power generation, so the gas flow rate decreases from the oxidizing gas inlet side to the oxidizing gas outlet side. However, in general, when air is used as the oxidizing gas, the amount of decrease is small (see a in FIG. 2). On the oxidant gas side, the amount of water in the oxidant gas channel increases toward the oxidant gas outlet side due to the generated water accompanying power generation (see b in FIG. 2), and the water vapor partial pressure reaches the saturated water vapor pressure (see FIG. 2). 2), water droplets appear in the oxidizing gas flow path.

一方、燃料ガス側は、酸化ガスと同様に発電により燃料ガスが消費されるため、燃料ガス入口側から出口側へ向かってガス流量が減少する(図2のd参照)。燃料ガス側は酸化ガス側とは異なり発電に伴う生成水は存在しないが、電解質膜を透過する水分の影響により燃料ガス側の水分量は変動する。   On the other hand, on the fuel gas side, the fuel gas is consumed by power generation in the same way as the oxidizing gas, so the gas flow rate decreases from the fuel gas inlet side to the outlet side (see d in FIG. 2). Unlike the oxidant gas side, there is no generated water associated with power generation on the fuel gas side, but the amount of water on the fuel gas side varies due to the influence of moisture that permeates the electrolyte membrane.

燃料ガス入口付近(=酸化ガス出口付近)においては、酸化ガスの水蒸気分圧が燃料ガスの水蒸気分圧に比べ高いため、酸化ガス側から燃料ガス側へ透過する水分が存在し(図2のe参照)、これにより燃料ガス中の水分量は燃料ガス出口側へ向かって増加するとともに、燃料ガス中の水蒸気分圧は燃料ガス出口側へ向かって上昇する(図2のf参照)。酸化ガスと同様に燃料ガスの水蒸気分圧が飽和水蒸気圧に達すると(図2のg点)、燃料ガス流路内には水滴が現れる。   Near the fuel gas inlet (= near the oxidizing gas outlet), the water vapor partial pressure of the oxidizing gas is higher than the water vapor partial pressure of the fuel gas, so that there is moisture permeating from the oxidizing gas side to the fuel gas side (in FIG. 2). As a result, the amount of water in the fuel gas increases toward the fuel gas outlet side, and the water vapor partial pressure in the fuel gas increases toward the fuel gas outlet side (see f in FIG. 2). As with the oxidizing gas, when the water vapor partial pressure of the fuel gas reaches the saturated water vapor pressure (point g in FIG. 2), water droplets appear in the fuel gas flow path.

逆に、燃料ガス出口付近(=酸化ガス入口付近)においては、燃料ガスの水蒸気分圧が酸化ガスの水蒸気分圧に比べ高いため、燃料ガス側から酸化ガス側へ透過する水分が存在し(図2のh参照)、これにより燃料ガスの水分量は燃料ガス出口側へ向かって減少するが(図2のi参照)、燃料ガス側の飽和水分量も燃料ガス出口側に向かって減少するため、燃料ガスの水蒸気分圧は低下しない(図2のj参照)。   On the contrary, in the vicinity of the fuel gas outlet (= near the oxidizing gas inlet), the water vapor partial pressure of the fuel gas is higher than the water vapor partial pressure of the oxidizing gas, so there is moisture that permeates from the fuel gas side to the oxidizing gas side ( As a result, the moisture content of the fuel gas decreases toward the fuel gas outlet side (see i in FIG. 2), but the saturated moisture content on the fuel gas side also decreases toward the fuel gas outlet side. Therefore, the water vapor partial pressure of the fuel gas does not decrease (see j in FIG. 2).

次に、本実施形態に係る燃料電池システムの作動を、図3に基づいて説明する。なお、図3中の水蒸気分圧は、酸化ガスのガス温度が80℃、燃料ガスのガス温度が83℃のときの値である。   Next, the operation of the fuel cell system according to the present embodiment will be described with reference to FIG. In addition, the water vapor partial pressure in FIG. 3 is a value when the gas temperature of the oxidizing gas is 80 ° C. and the gas temperature of the fuel gas is 83 ° C.

本実施形態では、熱伝導率が低い断熱層4を設けることにより、燃料ガスは酸化ガスよりも冷却されにくくなり、燃料ガスの温度は酸化ガスの温度に比べ高くなる(図3のk参照)。燃料ガス側のガス温度が酸化ガス側のガス温度に比べ高くなると、燃料ガス側の飽和水蒸気圧は酸化ガス側の飽和水蒸気圧に比べ高くなる(図3のl参照)。燃料ガス側の飽和水蒸気圧が高くなると、今まで飽和に達していた燃料ガス側の水蒸気分圧はさらに高くなることができ、酸化ガス側の水蒸気分圧との分圧差が生じることにより、電解質膜を透過して、燃料ガス側から酸化ガス側への水分透過量を増やすことができる(図3のm参照)。この電解質膜を透過する水分量が変化すると、酸化ガス側の水分量も変化するが、その量は生成水量に比べて少なく、無視できる程度である。しかし、元々水分量の少ない燃料ガス側は、この透過水分量の変化の影響を大きく受ける。   In the present embodiment, by providing the heat insulating layer 4 having low thermal conductivity, the fuel gas is less likely to be cooled than the oxidizing gas, and the temperature of the fuel gas is higher than the temperature of the oxidizing gas (see k in FIG. 3). . When the gas temperature on the fuel gas side becomes higher than the gas temperature on the oxidizing gas side, the saturated water vapor pressure on the fuel gas side becomes higher than the saturated water vapor pressure on the oxidizing gas side (see l in FIG. 3). When the saturated water vapor pressure on the fuel gas side increases, the water vapor partial pressure on the fuel gas side that has reached saturation can be further increased, and a partial pressure difference from the water vapor partial pressure on the oxidizing gas side occurs, thereby The amount of moisture permeation from the fuel gas side to the oxidizing gas side can be increased through the membrane (see m in FIG. 3). When the amount of moisture that permeates through the electrolyte membrane changes, the amount of moisture on the oxidizing gas side also changes, but the amount is small compared to the amount of generated water and is negligible. However, the fuel gas side that originally has a low water content is greatly affected by the change in the permeated water content.

以下、従来システムと比較して説明する。従来システムの場合、燃料ガス入口32と燃料ガス出口33の中間付近においては、酸化ガス及び燃料ガスの各水蒸気分圧がともに飽和に達していたが、本実施形態の場合、燃料ガス入口32と燃料ガス出口33の中間付近において、燃料ガスの水蒸気分圧が酸化ガスの水蒸気分圧より高くなるため(図3のn参照)、燃料ガス側から酸化ガス側へ水分が透過するようになる(図3のo参照)。これにより、燃料ガス流路31における後半(下流域)での水蒸気分圧を低減でき(図3のp参照)、酸化ガス側よりも流速の遅い燃料ガス側でのフラッディングを防止することができる。   Hereinafter, it will be described in comparison with a conventional system. In the case of the conventional system, in the vicinity of the middle between the fuel gas inlet 32 and the fuel gas outlet 33, the water vapor partial pressures of the oxidizing gas and the fuel gas both reach saturation. In the vicinity of the middle of the fuel gas outlet 33, the water vapor partial pressure of the fuel gas becomes higher than the water vapor partial pressure of the oxidizing gas (see n in FIG. 3), so that moisture permeates from the fuel gas side to the oxidizing gas side ( (See o in FIG. 3). As a result, the partial pressure of water vapor in the latter half (downstream region) of the fuel gas channel 31 can be reduced (see p in FIG. 3), and flooding on the fuel gas side having a slower flow rate than the oxidizing gas side can be prevented. .

以上述べたように、本実施形態によると、熱伝導率が低い断熱層4を設けることにより、燃料ガスは酸化ガスよりも冷却されにくくなるため、燃料ガスの温度は酸化ガスの温度に比べ高くなる。その結果、燃料ガス側の水分を電解質膜を透過させて酸化ガス側へ移動させ、酸化ガス側よりも流速の遅い燃料ガス側流路31内でのフラッディングを防止することができる。   As described above, according to the present embodiment, by providing the heat insulating layer 4 with low thermal conductivity, the fuel gas is less likely to be cooled than the oxidizing gas, so the temperature of the fuel gas is higher than the temperature of the oxidizing gas. Become. As a result, moisture on the fuel gas side is allowed to pass through the electrolyte membrane and move to the oxidizing gas side, and flooding in the fuel gas side channel 31 having a slower flow rate than the oxidizing gas side can be prevented.

なお、本実施形態では、断熱層4をコーティングによって形成したが、断熱層4の形成方法としては、セパレータの表面全体に例えばステンレス、テトラフルオロエチレン樹脂をスパッタリングし、必要な部分を残して削り取る方法でもよい。   In the present embodiment, the heat insulating layer 4 is formed by coating. However, as a method for forming the heat insulating layer 4, for example, stainless steel or tetrafluoroethylene resin is sputtered on the entire surface of the separator, and a necessary part is left and scraped off. But you can.

また、図4のように、燃料ガス側セパレータの冷却水通路の全体に断熱層4を形成しても勿論よい。   Further, as shown in FIG. 4, the heat insulating layer 4 may be formed over the entire coolant passage of the fuel gas side separator.

本発明の一実施形態に係る燃料電池システムにおける燃料電池の構成を示す断面図である。It is sectional drawing which shows the structure of the fuel cell in the fuel cell system which concerns on one Embodiment of this invention. 従来の燃料電池システムの作動説明に供する図である。It is a figure where it uses for operation | movement description of the conventional fuel cell system. 一実施形態に係る燃料電池システムの作動説明に供する図である。It is a figure where it uses for operation | movement description of the fuel cell system which concerns on one Embodiment. 他の実施形態に係る燃料電池システムにおける燃料電池の構成を示す断面図である。It is sectional drawing which shows the structure of the fuel cell in the fuel cell system which concerns on other embodiment.

符号の説明Explanation of symbols

1…MEA、2…酸化ガス側セパレータ、21…酸化ガス流路、24、34…冷却水流路、3…燃料ガス側セパレータ、31…燃料ガス流路。   DESCRIPTION OF SYMBOLS 1 ... MEA, 2 ... Oxidizing gas side separator, 21 ... Oxidizing gas channel, 24, 34 ... Cooling water channel, 3 ... Fuel gas side separator, 31 ... Fuel gas channel

Claims (2)

酸素を主成分とする酸化ガスと水素を主成分とする燃料ガスとを電気化学反応させて電気エネルギを発生させる燃料電池を備える燃料電池システムにおいて、
前記燃料電池は、電解質膜を有するMEA(1)と、前記酸化ガスが流れる酸化ガス流路(21)が一方の面側に形成されるとともに、前記MEAの一方の面側に前記酸化ガス流路を対向させて配置された酸化ガス側セパレータ(2)と、前記燃料ガスが流れる燃料ガス流路(31)が一方の面側に形成されるとともに、前記MEAの他方の面側に前記燃料ガス流路を対向させて配置された燃料ガス側セパレータ(3)とを備え、
冷却水が流れる冷却水流路(24、34)が、前記酸化ガス側セパレータの他方の面側および前記燃料ガス側セパレータの他方の面側の少なくとも一方に形成され、
前記冷却水流路と前記燃料ガス流路との間に、前記燃料ガス側セパレータよりも熱伝導率が低い材質よりなる断熱層(4)を備えることを特徴とする燃料電池システム。
In a fuel cell system including a fuel cell that generates an electrical energy by electrochemically reacting an oxidizing gas mainly containing oxygen and a fuel gas mainly containing hydrogen,
In the fuel cell, an MEA (1) having an electrolyte membrane and an oxidizing gas passage (21) through which the oxidizing gas flows are formed on one surface side, and the oxidizing gas flow on one surface side of the MEA. An oxidizing gas side separator (2) disposed with the passages facing each other and a fuel gas flow path (31) through which the fuel gas flows are formed on one surface side, and the fuel is disposed on the other surface side of the MEA. A fuel gas side separator (3) arranged with the gas flow paths facing each other,
Cooling water flow paths (24, 34) through which cooling water flows are formed on at least one of the other surface side of the oxidizing gas side separator and the other surface side of the fuel gas side separator,
A fuel cell system comprising a heat insulating layer (4) made of a material having lower thermal conductivity than the fuel gas side separator between the cooling water channel and the fuel gas channel.
前記燃料ガス側セパレータ(3)と前記酸化ガス側セパレータ(2)とが、直接接触している部位を有することを特徴とする請求項1に記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the fuel gas side separator (3) and the oxidizing gas side separator (2) have a portion in direct contact.
JP2004010611A 2004-01-19 2004-01-19 Fuel cell system Expired - Fee Related JP4385773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010611A JP4385773B2 (en) 2004-01-19 2004-01-19 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010611A JP4385773B2 (en) 2004-01-19 2004-01-19 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2005203313A true JP2005203313A (en) 2005-07-28
JP4385773B2 JP4385773B2 (en) 2009-12-16

Family

ID=34823291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010611A Expired - Fee Related JP4385773B2 (en) 2004-01-19 2004-01-19 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4385773B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516351A (en) * 2005-11-18 2009-04-16 バラード パワー システムズ インコーポレイティド Method for operating a fuel cell stack under low pressure and low power conditions
JP2010257906A (en) * 2009-04-28 2010-11-11 Honda Motor Co Ltd Fuel cell stack
US8603692B2 (en) 2006-07-26 2013-12-10 Toyota Jidosha Kabushiki Kaisha Fuel cell stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516351A (en) * 2005-11-18 2009-04-16 バラード パワー システムズ インコーポレイティド Method for operating a fuel cell stack under low pressure and low power conditions
US8603692B2 (en) 2006-07-26 2013-12-10 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
JP2010257906A (en) * 2009-04-28 2010-11-11 Honda Motor Co Ltd Fuel cell stack

Also Published As

Publication number Publication date
JP4385773B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US20050233181A1 (en) Solid high polymer type cell assembly
JPH06267564A (en) Solid high polymer electrolyte fuel cell
JP5063350B2 (en) Bipolar plate with offset
JP2007115525A (en) Separator for fuel cell and fuel cell
JP2007103242A (en) Polymer electrolyte fuel cell
JP2005142001A (en) Fuel cell having stack structure
JP2006156411A (en) Polymer electrolyte fuel cell
JP4385773B2 (en) Fuel cell system
JP2006147425A (en) Electrolyte membrane for polymer electrolyte fuel cell, its manufacturing method and the polymer electrolyte fuel cell
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
JP2006156288A (en) Fuel cell and manufacturing method of fuel cell
JP2008053064A (en) Fuel cell
JP2006147506A (en) Fuel cell stack
KR101106331B1 (en) Fuel cell with electrolyte condensation zone
US20100104908A1 (en) Fuel cell system and operating method thereof
US8568941B2 (en) Fuel cell separator and fuel cell including same
JP2009081102A (en) Polymer electrolyte fuel cell
JP2009081116A (en) Membrane-electrode assembly for fuel cell
JP2007134089A (en) Fuel cell
JPH06251778A (en) Solid polymer electrolyte fuel cell
JP2003249243A (en) Fuel cell
JP5657429B2 (en) Fuel cell
JP2015153568A (en) fuel cell stack
JP2006134698A (en) Fuel cell and manufacturing method of fuel cell
JP2008071507A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees