JP2005203213A - Conductive paste and laminated ceramic electronic component using it - Google Patents

Conductive paste and laminated ceramic electronic component using it Download PDF

Info

Publication number
JP2005203213A
JP2005203213A JP2004007690A JP2004007690A JP2005203213A JP 2005203213 A JP2005203213 A JP 2005203213A JP 2004007690 A JP2004007690 A JP 2004007690A JP 2004007690 A JP2004007690 A JP 2004007690A JP 2005203213 A JP2005203213 A JP 2005203213A
Authority
JP
Japan
Prior art keywords
silicon dioxide
conductive paste
average particle
internal electrode
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004007690A
Other languages
Japanese (ja)
Inventor
Keiji Kobayashi
恵治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004007690A priority Critical patent/JP2005203213A/en
Publication of JP2005203213A publication Critical patent/JP2005203213A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that although a laminated ceramic component is required to make thin a ceramic layer and an inner electrode to miniaturize the laminated ceramic component, and with proceeding thinning of the inner electrode, a break or unevenness of the film thickness is easily generated, and it leads to deterioration in electric characteristics. <P>SOLUTION: Conductive paste contains 100 mol of metal powder mainly comprising nickel to 0.2-6.0 mol of silicon dioxide, and also contains 1/50-1 times in molar ratio at least one element selected from alkali earth metal elements and rare earth elements or a compound containing this element to silicon dioxide, and by using the conductive paste, the generation of the break of the inner electrode is prevented even if the inner electrode is made thin, and the laminated ceramic electronic component having high electric characteristic can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導電性ペーストおよびこれを用いた積層セラミック電子部品に関するものである。   The present invention relates to a conductive paste and a multilayer ceramic electronic component using the same.

従来の積層セラミック電子部品の製造方法について積層セラミックコンデンサを例に説明する。   A conventional method for manufacturing a multilayer ceramic electronic component will be described by taking a multilayer ceramic capacitor as an example.

図1は積層セラミックコンデンサ11の一部切欠斜視図であり、チタン酸バリウムなどよりなるセラミック層12と内部電極13とが交互に積層されて積層体を構成し、内部電極13はその端面が積層体の対向する両端面に交互に露出するよう積層されており、積層体の両端面に形成された一対の外部電極14に交互に接続されている。   FIG. 1 is a partially cutaway perspective view of a multilayer ceramic capacitor 11, in which ceramic layers 12 and internal electrodes 13 made of barium titanate or the like are alternately stacked to form a multilayer body, and the end surfaces of the internal electrodes 13 are stacked. They are laminated so as to be alternately exposed at opposite end faces of the body, and are alternately connected to a pair of external electrodes 14 formed on both end faces of the laminate.

近年、積層セラミック電子部品の小型化に対する要望がますます強く、セラミック層を薄くすると同時に内部電極を薄くすることが必要とされている。   In recent years, there is an increasing demand for miniaturization of multilayer ceramic electronic components, and it is necessary to make the internal electrode thinner while making the ceramic layer thinner.

ところが、セラミック層と同時に焼結される内部電極は、一般にセラミック層に比べてより低温で焼成収縮を開始するため、焼成工程における昇温過程でのセラミック層と内部電極の収縮率差により内部電極に途切れ現象が発生し、内部電極の有効面積が減少し、静電容量が低下してしまうという現象が生じる。   However, internal electrodes that are sintered at the same time as the ceramic layer generally start firing shrinkage at a lower temperature than the ceramic layer. Therefore, the internal electrode is affected by the difference in shrinkage between the ceramic layer and the internal electrode during the temperature rising process in the firing process. In this case, a discontinuity phenomenon occurs, the effective area of the internal electrode decreases, and the electrostatic capacity decreases.

そのため従来は内部電極の主成分として用いられるニッケル等の金属粉末の焼結を制御するため、ニッケルにチタン酸塩を粒状に一体化させて内部電極形成用のニッケル複合導体とする技術が用いられていた。   Therefore, in order to control the sintering of metal powders such as nickel used as the main component of internal electrodes, the technology used to form a nickel composite conductor for internal electrode formation by integrating titanate with nickel in granular form has been used. It was.

この出願の発明に関連する先行技術文献情報としては、例えば特許文献1が知られている。
特開2000−232032号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 2000-233202 A

しかしながら、上記従来の方法においては、内部電極を例えば1μm以下など、より薄くするためにニッケル複合導体を微粉化した場合には内部電極の焼結が進みやすくなり、薄層化が困難になっている。   However, in the conventional method, when the nickel composite conductor is pulverized in order to make the internal electrode thinner, for example, 1 μm or less, the internal electrode is easily sintered, and thinning becomes difficult. Yes.

本発明は上記課題を解決するために焼成工程における内部電極の焼結を制御すると同時に、金属ニッケルからなる内部電極とセラミック層との界面での接合性を保つことにより、途切れ現象の発生なく内部電極を薄層化できる導電性ペーストおよびこれを用いた積層セラミック電子部品を得ることを目的とするものである。   In order to solve the above-mentioned problems, the present invention controls the sintering of the internal electrode in the firing step, and at the same time maintains the bondability at the interface between the internal electrode made of metallic nickel and the ceramic layer, so that the internal phenomenon does not occur. An object of the present invention is to obtain a conductive paste capable of thinning an electrode and a multilayer ceramic electronic component using the same.

この目的を達成するために、本発明は以下の構成を有する。   In order to achieve this object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、ニッケル粉末を主成分とする金属粉末100モルに対して、二酸化ケイ素を0.2〜6.0モルと、アルカリ土類金属元素および希土類元素の中から選ばれた少なくとも一種類の元素またはこの元素を含む化合物を二酸化ケイ素に対してモル比率で1/50〜1倍含む導電性ペーストであり、積層セラミック電子部品の内部電極に使用した場合、焼成工程における昇温過程において二酸化ケイ素とアルカリ土類金属元素または希土類元素を含む化合物が内部電極の焼結を制御すると同時に内部電極とセラミック層の界面接合性を強固にするため、内部電極を途切れの発生なく薄層化することができる。   According to the first aspect of the present invention, 0.2 to 6.0 moles of silicon dioxide per 100 moles of metal powder mainly composed of nickel powder is present in the alkaline earth metal elements and rare earth elements. It is a conductive paste containing at least one element selected from 1 or a compound containing this element in a molar ratio of 1/50 to 1 time with respect to silicon dioxide, and when used as an internal electrode of a multilayer ceramic electronic component, firing In the temperature rising process in the process, the compound containing silicon dioxide and alkaline earth metal element or rare earth element controls the sintering of the internal electrode and at the same time strengthens the interfacial bond between the internal electrode and the ceramic layer. It can be made thin without generation.

本発明の請求項2に記載の発明は、ニッケル粉末が平均粒径0.01〜0.2μmである請求項1に記載の導電性ペーストであり、ニッケル粉末と二酸化ケイ素およびアルカリ土類金属元素または希土類元素を含む化合物とが均一に分散された導電性ペーストが得られ、より内部電極とセラミック層の界面接合性を強固にすることができるため内部電極を途切れの発生なく薄層化することができる。   The invention according to claim 2 of the present invention is the conductive paste according to claim 1, wherein the nickel powder has an average particle size of 0.01 to 0.2 μm, and the nickel powder, silicon dioxide and alkaline earth metal element Alternatively, a conductive paste in which a compound containing a rare earth element is uniformly dispersed can be obtained, and the interfacial bondability between the internal electrode and the ceramic layer can be further strengthened, so that the internal electrode can be made thin without interruption. Can do.

本発明の請求項3に記載の発明は、二酸化ケイ素の平均粒径、およびアルカリ土類金属元素および希土類元素の中から選ばれた少なくとも一種類の元素またはこの元素を含む化合物の平均粒径が0.005〜0.1μmである請求項1に記載の導電性ペーストであり、ニッケル粉末と二酸化ケイ素およびアルカリ土類金属元素または希土類元素を含む化合物とがさらに均一に分散された導電性ペーストが得られ、より内部電極とセラミック層の界面接合性を強固にすることができるため内部電極を途切れの発生なく薄層化することができる。   According to a third aspect of the present invention, the average particle size of silicon dioxide and the average particle size of at least one element selected from an alkaline earth metal element and a rare earth element or a compound containing this element are 2. The conductive paste according to claim 1, which is 0.005 to 0.1 μm, wherein the conductive paste further uniformly disperses nickel powder and silicon dioxide and a compound containing an alkaline earth metal element or a rare earth element. As a result, the interfacial bondability between the internal electrode and the ceramic layer can be further strengthened, so that the internal electrode can be made thin without interruption.

本発明の請求項4〜6に記載の発明は、導電性ペーストを用い、かつ前記セラミック層はABO3と表わされるペロブスカイト型の結晶構造で、A/Bの元素比率が0.980〜1.020である積層セラミック電子部品であり、セラミック層の電気特性を低下させずに内部電極を薄層化することができ、小型の積層セラミック電子部品を提供することができる。 According to the fourth to sixth aspects of the present invention, a conductive paste is used, and the ceramic layer has a perovskite type crystal structure represented by ABO 3, and an A / B element ratio is 0.980 to 1. The multilayer ceramic electronic component is 020, the internal electrode can be thinned without deteriorating the electrical characteristics of the ceramic layer, and a small multilayer ceramic electronic component can be provided.

本発明はニッケル粉末を主成分とする金属粉末100モルに対して、二酸化ケイ素を0.2〜6.0モルと、アルカリ土類金属元素および希土類元素の中から選ばれた少なくとも一種類の元素またはこの元素を含む化合物を二酸化ケイ素に対してモル比率で1/50〜1倍含む導電性ペーストであり、内部電極の焼結を制御すると同時に内部電極とセラミック層の界面接合性を強固にすることにより、内部電極と薄層化に対応可能な電極形成用の導電性ペーストを提供することができる。   In the present invention, 0.2 to 6.0 mol of silicon dioxide with respect to 100 mol of metal powder containing nickel powder as a main component, at least one element selected from alkaline earth metal elements and rare earth elements Alternatively, it is a conductive paste containing a compound containing this element in a molar ratio of 1/50 to 1 time with respect to silicon dioxide, and controls the sintering of the internal electrode and at the same time strengthens the interfacial bonding between the internal electrode and the ceramic layer. Thereby, the conductive paste for electrode formation which can respond to an internal electrode and thickness reduction can be provided.

さらに本発明による積層セラミックコンデンサにおいては、本発明はニッケル粉末を主成分とする金属粉末100モルに対して、二酸化ケイ素を0.2〜6.0モルと、アルカリ土類金属元素および希土類元素の中から選ばれた少なくとも一種類の元素またはこの元素を含む化合物を二酸化ケイ素に対してモル比率で1/50〜1倍含む導電性ペーストを内部電極に使用することにより、内部電極を薄層化できるためより小型で電気特性の良好な積層セラミック電子部品が得られるものである。   Furthermore, in the multilayer ceramic capacitor according to the present invention, the present invention relates to 0.2 to 6.0 moles of silicon dioxide with respect to 100 moles of metal powder mainly composed of nickel powder, and includes alkaline earth metal elements and rare earth elements. The internal electrode is thinned by using a conductive paste containing at least one element selected from the above or a compound containing this element in a molar ratio of 1/50 to 1 times that of silicon dioxide. Therefore, it is possible to obtain a multilayer ceramic electronic component having a smaller size and good electrical characteristics.

(実施の形態1)
以下、本発明の実施の形態1を用いて本発明の特に請求項1〜6に記載の発明について積層セラミックコンデンサを例に説明する。
(Embodiment 1)
The invention according to the first to sixth aspects of the invention will be described below by taking a multilayer ceramic capacitor as an example, using the first embodiment of the invention.

図1は、本実施の形態における積層セラミックコンデンサ11の一部切欠斜視図であり、セラミック層12と内部電極13とが交互に積層されて積層体を構成し、内部電極13はその端面が積層体の対向する両端面に交互に露出するよう積層されており、積層体の両端面に形成された一対の外部電極14に交互に接続されている。   FIG. 1 is a partially cutaway perspective view of a multilayer ceramic capacitor 11 according to the present embodiment, in which ceramic layers 12 and internal electrodes 13 are alternately stacked to form a stacked body, and the end surfaces of the internal electrodes 13 are stacked. They are laminated so as to be alternately exposed at opposite end faces of the body, and are alternately connected to a pair of external electrodes 14 formed on both end faces of the laminate.

まず、チタン酸バリウムを主成分とし、副成分としてDy23,Ho23,Er23,MgO,Mn34などのセラミック粉末と、有機バインダとしてポリビニルブチラール樹脂、溶剤としてn−酢酸ブチル、可塑剤としてジブチルフタレートを混合してセラミックスラリーを得る。 First, the main component is barium titanate, ceramic powders such as Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , MgO, Mn 3 O 4 as subcomponents, polyvinyl butyral resin as an organic binder, and n as a solvent. -Mixing butyl acetate and dibutyl phthalate as a plasticizer to obtain a ceramic slurry.

そしてドクターブレード法などにより、セラミックよりなる誘電体層12となる厚み1.5μmのセラミックシート(焼結後の誘電体層の厚みは約1μm)を作製する。   Then, a ceramic sheet having a thickness of 1.5 μm (a thickness of the sintered dielectric layer is about 1 μm) to be a dielectric layer 12 made of ceramic is produced by a doctor blade method or the like.

一方、ニッケル金属粉末と有機バインダとしてポリビニルブチラール樹脂、溶剤としてn−酢酸ブチル、可塑剤としてジブチルフタレートとを混合した後ロールミルにより混練して内部電極13となる金属ペーストを作製する。   On the other hand, a nickel metal powder and a polyvinyl butyral resin as an organic binder, n-butyl acetate as a solvent, and dibutyl phthalate as a plasticizer are mixed and then kneaded by a roll mill to produce a metal paste that becomes the internal electrode 13.

次にニッケル粉末100モルに対して(表1)に示す割合となるように、二酸化ケイ素(SiO2)、炭酸バリウム(BaCO3)、酸化ジスプロシウム(Dy23)を秤量し、媒体攪拌ミルを用いて有機溶剤中に均一分散した後、上記の金属ペーストに加えて導電性ペーストを作製する。 Next, silicon dioxide (SiO 2 ), barium carbonate (BaCO 3 ), and dysprosium oxide (Dy 2 O 3 ) are weighed so as to have the ratio shown in (Table 1) with respect to 100 mol of nickel powder, and a medium stirring mill Is then dispersed uniformly in an organic solvent, and then a conductive paste is prepared in addition to the above metal paste.

次に上記各導電性ペーストを用いて、グリーンシート上にスクリーン印刷により所望の内部電極パターンを同じ厚みで形成する。   Next, a desired internal electrode pattern is formed with the same thickness on the green sheet by screen printing using each of the conductive pastes.

印刷した内部電極が乾燥した後、内部電極がグリーンシートを介して対向するように300枚を配置し、加熱圧着して一体化した後、縦1.9mm、横1.0mmの寸法に切断して積層体を得る。   After the printed internal electrodes are dried, 300 sheets are arranged so that the internal electrodes face each other with a green sheet interposed therebetween, integrated by thermocompression bonding, and then cut into dimensions of 1.9 mm in length and 1.0 mm in width. To obtain a laminate.

次にこの積層体をジルコニア質の焼成用匣鉢(さやと称する)に入れ、空気中350℃でバインダを除去した後窒素と水素よりなる還元雰囲気中で、1300℃で焼成して焼結体を得る。   Next, this laminate is put in a zirconia firing mortar (referred to as a sheath), the binder is removed at 350 ° C. in the air, and then sintered at 1300 ° C. in a reducing atmosphere consisting of nitrogen and hydrogen. Get.

次にこの焼結体の角をバレル研磨にて面取りした後、内部電極の露出した両端面に外部電極として銅ペーストを塗布し、900℃の窒素雰囲気中で焼付を行い、積層セラミックコンデンサを得る。   Next, after chamfering the corners of the sintered body by barrel polishing, a copper paste is applied as an external electrode to both exposed end faces of the internal electrode, and baked in a nitrogen atmosphere at 900 ° C. to obtain a multilayer ceramic capacitor. .

次にこの積層セラミックコンデンサについて、20℃で周波数1kHz、1.0Vrmsにて静電容量を測定し、また直流10Vを1分間印加した後に絶縁抵抗を測定した。   Next, the capacitance of this multilayer ceramic capacitor was measured at 20 ° C. at a frequency of 1 kHz and 1.0 Vrms, and after applying a direct current of 10 V for 1 minute, the insulation resistance was measured.

さらに上記積層セラミックコンデンサ100個を樹脂に埋め込み、研磨して断面を観察し、内部の構造欠陥を数えて構造欠陥発生率とした。   Further, 100 of the above multilayer ceramic capacitors were embedded in a resin, polished and observed in cross section, and the number of internal structural defects was counted as the structural defect occurrence rate.

また上記断面の10箇所について内部電極厚みを測定し、その平均値を内部電極厚みとした。   The internal electrode thickness was measured at 10 points in the cross section, and the average value was defined as the internal electrode thickness.

次にセラミック誘電体層の見かけ上の比誘電率を次式により算出した。   Next, the apparent relative dielectric constant of the ceramic dielectric layer was calculated by the following equation.

C=ε0εrS/d・n
ただしCは静電容量、ε0は真空の誘電率、εrはセラミック誘電体層の誘電率、Sは内部電極の有効重なり面積、dはセラミック誘電体層の厚み、nは積層数である。
C = ε 0 ε r S / d · n
Where C is the capacitance, ε 0 is the dielectric constant of vacuum, ε r is the dielectric constant of the ceramic dielectric layer, S is the effective overlapping area of the internal electrodes, d is the thickness of the ceramic dielectric layer, and n is the number of layers. .

また、絶縁抵抗の評価のため、静電容量と絶縁抵抗の積(CR積)を算出した。   In addition, the product of the capacitance and the insulation resistance (CR product) was calculated for the evaluation of the insulation resistance.

これらの結果を(表1)にあわせて示す。   These results are shown together with (Table 1).

Figure 2005203213
Figure 2005203213

ここで、比誘電率については2000以上、容量と絶縁抵抗の積(CR積)については1000ΩF以上、構造欠陥発生率については0/100(100個中に構造欠陥がないこと)を良品とした。   Here, the relative dielectric constant was 2000 or more, the product of capacitance and insulation resistance (CR product) was 1000ΩF or more, and the structural defect occurrence rate was 0/100 (no structural defects in 100). .

(表1)に示すように、二酸化ケイ素の添加量が金属粉末100モルに対して0.2〜6.0モルであり、アルカリ土類金属元素および希土類元素の中から選ばれた少なくとも一種類の元素を含む化合物を二酸化ケイ素に対してモル比率で1/50〜1倍含む試料番号3〜6、10〜13、17〜20、23〜25では見かけの比誘電率、絶縁抵抗(静電容量と絶縁抵抗の積)が低下することなく、構造欠陥発生率が0となっている。   As shown in (Table 1), the addition amount of silicon dioxide is 0.2 to 6.0 moles with respect to 100 moles of the metal powder, and at least one kind selected from alkaline earth metal elements and rare earth elements In samples Nos. 3 to 6, 10 to 13, 17 to 20, and 23 to 25 containing 1 to 50 times the molar ratio of the compound containing the element of silicon dioxide, the apparent relative dielectric constant and insulation resistance (electrostatic The product of the capacity defect and the insulation resistance does not decrease, and the structural defect occurrence rate is zero.

さらに詳しくは、(表1)に示すように、二酸化ケイ素の含有量がニッケル粉末100モルに対して0.2モル未満の試料番号2の場合には、内部電極とセラミック誘電体層との界面における接合が殆ど生じず、内部電極の焼結挙動も制御できないため内部電極が薄い場合には途切れが発生し、構造欠陥の発生率は0であるが、見かけの比誘電率が低下するため好ましくない。   More specifically, as shown in Table 1, in the case of Sample No. 2 in which the content of silicon dioxide is less than 0.2 mol with respect to 100 mol of nickel powder, the interface between the internal electrode and the ceramic dielectric layer In the case where the internal electrode is thin, discontinuity occurs and the occurrence rate of structural defects is 0, but the apparent dielectric constant is decreased, which is preferable. Absent.

また、二酸化ケイ素の含有量が0.2モル未満の試料番号1,2の場合には、さらに内部電極とセラミック誘電体層との界面接合が少なく、内部電極の焼結挙動に対する制御効果も少なくなるため比誘電率が低下し、二酸化ケイ素を含まない試料番号1ではこれに加えて構造欠陥の発生も見られる。   In addition, in the case of sample numbers 1 and 2 having a silicon dioxide content of less than 0.2 mol, there is less interfacial bonding between the internal electrode and the ceramic dielectric layer, and the control effect on the sintering behavior of the internal electrode is also small. Therefore, the relative permittivity is lowered, and in addition to this, the occurrence of structural defects is also seen in Sample No. 1 which does not contain silicon dioxide.

一方、二酸化ケイ素の含有量が6.0モルを超える試料番号7の場合には、内部電極中の二酸化ケイ素がセラミック誘電体層に拡散し、内部電極とセラミック誘電体層の界面に比誘電率の低いケイ素を主成分とする酸化物の層が生成するため見かけの比誘電率を低下させてしまう。   On the other hand, in the case of sample number 7 in which the content of silicon dioxide exceeds 6.0 mol, silicon dioxide in the internal electrode diffuses into the ceramic dielectric layer, and the relative dielectric constant is at the interface between the internal electrode and the ceramic dielectric layer. Therefore, an apparent dielectric constant is lowered because an oxide layer mainly composed of low silicon is generated.

従って二酸化ケイ素の最適な含有量は、ニッケル粉末100モルに対して0.2〜6.0モル、より好ましくは0.6〜2.0モルである。   Accordingly, the optimum content of silicon dioxide is 0.2 to 6.0 mol, more preferably 0.6 to 2.0 mol, per 100 mol of nickel powder.

また(表1)より、アルカリ土類金属元素または希土類元素の含有量が二酸化ケイ素の添加量に対してモル比率で1/50倍未満の試料番号8,9,15,16の場合、静電容量と絶縁抵抗の積であるCR積の値が低く、積層セラミックコンデンサとしての電気特性を満足しない。   In addition, from Table 1, in the case of sample numbers 8, 9, 15, and 16 in which the content of the alkaline earth metal element or rare earth element is less than 1/50 times the molar ratio with respect to the added amount of silicon dioxide, The CR product, which is the product of capacitance and insulation resistance, is low and does not satisfy the electrical characteristics of a multilayer ceramic capacitor.

これはABO3と表されるペロブスカイト型化合物の比誘電率は、Aで表されるAサイト元素とBで表されるBサイト元素の比率であるA/B比と密接な関連性を有しており、このA/B比が最適範囲からずれた場合には比誘電率が低下することが知られており、二酸化ケイ素はペロブスカイト型化合物(ABO3)には固溶しないもののAサイト元素と選択的に反応するため、ペロブスカイト型化合物のAサイト元素とBサイト元素の比であるA/Bが低くなるためである。 This is because the relative dielectric constant of the perovskite type compound expressed as ABO 3 is closely related to the A / B ratio, which is the ratio of the A site element expressed as A and the B site element expressed as B. It is known that when the A / B ratio deviates from the optimum range, the relative permittivity decreases, and silicon dioxide does not form a solid solution in the perovskite type compound (ABO 3 ). This is because the A / B, which is the ratio of the A site element to the B site element of the perovskite type compound, decreases because of the selective reaction.

そのため、あらかじめAサイトの元素を補償もしくは置換することのできる元素またはその化合物を添加することにより、ケイ素との反応によりA/B比のバランスが低い方にずれて比誘電率が低下するのを抑制できるが、アルカリ土類金属元素または希土類元素の添加量が少ない場合にはこの作用が充分働かないためである。   Therefore, by adding an element capable of compensating or substituting the element at the A site or a compound thereof in advance, the A / B ratio balance is shifted to the lower side due to the reaction with silicon, and the relative permittivity is lowered. This can be suppressed, but this effect does not work sufficiently when the amount of the alkaline earth metal element or rare earth element is small.

一方、アルカリ土類金属元素または希土類元素の添加量が二酸化ケイ素の添加量に対してモル比率で1倍を超える試料番号14,21の場合は、これらの元素がセラミックの焼結反応を阻害する方向に働くため、焼結不足になり、積層セラミックコンデンサとしての機能を果たせなくなる。   On the other hand, in the case of Sample Nos. 14 and 21, in which the addition amount of alkaline earth metal element or rare earth element exceeds 1 time in terms of molar ratio with respect to the addition amount of silicon dioxide, these elements inhibit the ceramic sintering reaction. Since it works in the direction, it becomes insufficiently sintered and cannot function as a multilayer ceramic capacitor.

従って、アルカリ土類金属元素または希土類元素の最適な添加量の範囲は二酸化ケイ素の添加量に対してモル比率で1/50〜1倍、より好ましくは3/10〜1倍の範囲である。   Therefore, the range of the optimum addition amount of the alkaline earth metal element or rare earth element is 1/50 to 1 time, more preferably 3/10 to 1 time in terms of molar ratio with respect to the addition amount of silicon dioxide.

さらに(表1)よりペロブスカイト型セラミック誘電体層のA/B比が0.980未満の試料番号22の場合、アルカリ土類金属元素または希土類元素の添加により上記二酸化ケイ素の添加によるA/B比の低下をある程度は補償することができるものの、完全なペロブスカイト型構造を構成するまでには至らないため積層セラミックコンデンサの比誘電率が低下する。   Further, in the case of sample number 22 in which the A / B ratio of the perovskite type ceramic dielectric layer is less than 0.980 from (Table 1), the A / B ratio by the addition of the above silicon dioxide by the addition of the alkaline earth metal element or the rare earth element Can be compensated for to some extent, but it does not reach a complete perovskite structure, so the relative dielectric constant of the multilayer ceramic capacitor decreases.

また、A/B比が1.020を超える試料番号26の場合には、内部電極に含まれる適量の二酸化ケイ素が反応するAサイト元素量が限られているためAサイト元素が過剰な状態となり、A/B比のバランスが高い方にずれ、セラミック誘電体層が焼結不足になる。   In the case of sample number 26 where the A / B ratio exceeds 1.020, the amount of A site element with which an appropriate amount of silicon dioxide contained in the internal electrode reacts is limited, so that the A site element becomes excessive. , A / B ratio is shifted to a higher balance, and the ceramic dielectric layer becomes insufficiently sintered.

従って、最適なA/B比の範囲は0.980〜1.020、より好ましくは1.000〜1.020の範囲である。   Therefore, the optimal A / B ratio range is 0.980 to 1.020, more preferably 1.000 to 1.020.

以上のように、ペロブスカイト型セラミック誘電体層のA/B比を0.980〜1.020の範囲とすることにより、請求項1に記載の導電性ペーストを用いて薄い内部電極を形成した場合においても、導電性ペースト中の二酸化ケイ素がセラミック誘電体層に拡散してA/B比がずれ、比誘電率が低下することを防止し、焼結性が良好で電気特性に優れた積層セラミック電子部品を得ることができる。   As described above, when the A / B ratio of the perovskite ceramic dielectric layer is in the range of 0.980 to 1.020, a thin internal electrode is formed using the conductive paste according to claim 1 However, it is possible to prevent silicon dioxide in the conductive paste from diffusing into the ceramic dielectric layer, resulting in a shift in the A / B ratio and a decrease in the relative dielectric constant. An electronic component can be obtained.

(実施の形態2)
以下、実施の形態2を用いて、特に請求項2〜6に記載の発明について積層セラミックコンデンサを例に説明する。
(Embodiment 2)
Hereinafter, with reference to the second embodiment, the invention described in claims 2 to 6 will be described by taking a multilayer ceramic capacitor as an example.

まず実施の形態1と同様にして厚み1.5μmのセラミックグリーンシートを作製する。   First, a ceramic green sheet having a thickness of 1.5 μm is produced in the same manner as in the first embodiment.

一方、平均粒径が(表2)に示す5種類のニッケル粉末について、有機バインダとしてポリビニルブチラール樹脂、溶剤としてn−酢酸ブチル、可塑剤としてジブチルフタレートなどとともに予備混合した後、ロールミルで混練して金属ペーストを作製する。   On the other hand, five types of nickel powders having an average particle size shown in (Table 2) were premixed together with polyvinyl butyral resin as an organic binder, n-butyl acetate as a solvent, dibutyl phthalate as a plasticizer, etc., and then kneaded with a roll mill. A metal paste is prepared.

また、平均粒径が0.05μm以下のニッケル粉末については、分散性を向上させるため、予備混合においてはあらかじめ保護樹脂とともに有機溶剤中に分散されたものを用いている。   Moreover, about the nickel powder whose average particle diameter is 0.05 micrometer or less, in order to improve dispersibility, what was previously disperse | distributed in the organic solvent with the protective resin is used in preliminary mixing.

次に得られた金属ペーストに、ニッケル粉末100モルに対して二酸化ケイ素を1モル、酸化ジスプロシウムを0.5モルの割合で添加し、混合して内部電極用の導電性ペーストを作製する。   Next, 1 mol of silicon dioxide and 0.5 mol of dysprosium oxide are added to the obtained metal paste at a ratio of 1 mol to 100 mol of nickel powder and mixed to prepare a conductive paste for internal electrodes.

ここで用いたニッケル粉末、二酸化ケイ素、酸化ジスプロシウムの平均粒径は(表2)に示すものを用いた。   The average particle diameters of nickel powder, silicon dioxide, and dysprosium oxide used here were those shown in (Table 2).

ニッケル粉末、二酸化ケイ素、酸化ジスプロシウムの平均粒径については、走査型電子顕微鏡(SEM)ならびにTEM(透過型電子顕微鏡)を用いて測定したものである。   The average particle diameters of nickel powder, silicon dioxide, and dysprosium oxide are measured using a scanning electron microscope (SEM) and a TEM (transmission electron microscope).

また、二酸化ケイ素、酸化ジスプロシウムについては前もって媒体攪拌ミルによりこれらの化合物が有機溶剤中に均一に分散されたものを用いている。   As for silicon dioxide and dysprosium oxide, those in which these compounds are uniformly dispersed in an organic solvent by a medium stirring mill are used in advance.

さらにこれらの化合物を金属ペースト中に均一に分散させるため、ペーストの粘度を1Pa・sと低く調整して混合を行った。   Furthermore, in order to disperse these compounds uniformly in the metal paste, the viscosity of the paste was adjusted as low as 1 Pa · s and mixing was performed.

このようにして作製した導電性ペーストは、粉末粒子が凝集することなく、単一粒子として分散されたものであった。   The conductive paste thus produced was dispersed as single particles without agglomeration of the powder particles.

次にこの導電性ペーストを用いてセラミックシートに所望の形状の内部電極をグラビア印刷にて同じ厚みで形成した後、乾燥し、内部電極がセラミックシートを介して対向するように300枚重ね合わせ、加熱圧着して一体化した後、縦1.9mm、横1.0mmの寸法に切断して積層体を得る。   Next, using this conductive paste, an internal electrode having a desired shape is formed on the ceramic sheet with the same thickness by gravure printing, and then dried, and 300 sheets are stacked so that the internal electrodes face each other through the ceramic sheet. After being integrated by thermocompression bonding, the laminate is obtained by cutting into dimensions of 1.9 mm in length and 1.0 mm in width.

この積層体を実施の形態1と同様の条件でバインダ除去の後焼成して焼結体を得、面取りならびに外部電極形成を行って積層セラミックコンデンサを得る。   The multilayer body is fired after removing the binder under the same conditions as in the first embodiment to obtain a sintered body, and chamfering and external electrode formation are performed to obtain a multilayer ceramic capacitor.

このようにして得られた積層セラミックコンデンサについて、実施の形態1と同様に内部電極厚み、静電容量、絶縁抵抗を測定し、見かけの比誘電率ならびにCR積を算出した。   With respect to the multilayer ceramic capacitor thus obtained, the internal electrode thickness, capacitance, and insulation resistance were measured in the same manner as in Embodiment 1, and the apparent relative dielectric constant and CR product were calculated.

これらの測定結果について、ニッケル粉末、二酸化ケイ素、酸化ジスプロシウムの平均粒径とともに(表2)に示す。   About these measurement results, it shows in (Table 2) with the average particle diameter of nickel powder, silicon dioxide, and dysprosium oxide.

Figure 2005203213
Figure 2005203213

ここで、実施の形態1と同様に、比誘電率については2000以上、容量と絶縁抵抗の積(CR積)については1000ΩF以上、構造欠陥発生率については0/100(100個中に構造欠陥がないこと)を良品とした。   Here, as in the first embodiment, the relative dielectric constant is 2000 or more, the product of the capacitance and the insulation resistance (CR product) is 1000 ΩF or more, and the structural defect occurrence rate is 0/100 (the structural defects in 100). That there is no).

(表2)に示すように、ニッケル粉末の平均粒径が0.01〜0.2μmであり、二酸化ケイ素と酸化ジスプロシウムの平均粒径が0.005〜0.1μmである試料番号28〜30、33〜35、38〜40では見かけの比誘電率、絶縁抵抗(静電容量と絶縁抵抗の積により表す)が低下することなく、構造欠陥の発生率が0となっている。   As shown in (Table 2), sample numbers 28 to 30 in which the average particle diameter of nickel powder is 0.01 to 0.2 μm and the average particle diameters of silicon dioxide and dysprosium oxide are 0.005 to 0.1 μm. In 33 to 35 and 38 to 40, the apparent relative dielectric constant and the insulation resistance (represented by the product of the capacitance and the insulation resistance) are not lowered, and the occurrence rate of structural defects is zero.

これに対して、ニッケル粉末の平均粒径が0.2μmを超える試料番号31の場合には二酸化ケイ素と酸化ジスプロシウムを内部電極内に均一に分散することができず、内部電極とセラミック誘電体層との界面接合が充分行われないため内部電極の途切れが生じ、見かけの比誘電率が低下する。   On the other hand, in the case of the sample number 31 in which the average particle diameter of the nickel powder exceeds 0.2 μm, silicon dioxide and dysprosium oxide cannot be uniformly dispersed in the internal electrode, and the internal electrode and the ceramic dielectric layer As a result, the internal electrode is interrupted and the apparent relative permittivity is lowered.

またさらに1μm以下と薄層化した内部電極の厚みに比較してニッケル粉末の粒子径が大きいため内部電極をセラミックシートに印刷する際に厚みが不均一となり焼成後の内部電極途切れの原因となり、見かけの比誘電率の低下を招く。   Furthermore, since the particle diameter of the nickel powder is large compared to the thickness of the internal electrode thinned to 1 μm or less, the thickness becomes uneven when the internal electrode is printed on the ceramic sheet, causing internal electrode interruption after firing, The apparent dielectric constant is reduced.

一方、内部電極に用いるニッケル粉末の平均粒径が0.01μm未満の試料番号27の場合、二酸化ケイ素と酸化ジスプロシウムは内部電極中に均一に分散するが、ニッケル粉末が非常に細かいため反応性が高く、内部電極の焼結挙動の制御が充分行われなくなる。   On the other hand, in the case of sample number 27 in which the average particle diameter of nickel powder used for the internal electrode is less than 0.01 μm, silicon dioxide and dysprosium oxide are uniformly dispersed in the internal electrode, but the reactivity is low because the nickel powder is very fine. The control of the sintering behavior of the internal electrode is not sufficiently performed.

このため内部電極を薄くすると途切れ部分が発生し、見かけの比誘電率が低下すると共に構造欠陥も発生してしまう。   For this reason, when the internal electrode is made thin, a discontinuous portion is generated, the apparent relative dielectric constant is lowered, and a structural defect is also generated.

従って最適なニッケル粉末の平均粒径は0.01〜0.2μmの範囲である。   Therefore, the average particle diameter of the optimum nickel powder is in the range of 0.01 to 0.2 μm.

さらに(表2)より、二酸化ケイ素または酸化ジスプロシウムの平均粒径が0.1μmを超える試料番号36,41の場合には内部電極とセラミック誘電体層の界面接合に寄与するこれらの化合物がニッケル粒子間に均一に分散できないため、内部電極に途切れが生じる結果見かけの比誘電率が低下する。   Furthermore, from Table 2, in the case of sample numbers 36 and 41 where the average particle diameter of silicon dioxide or dysprosium oxide exceeds 0.1 μm, these compounds that contribute to the interface bonding between the internal electrode and the ceramic dielectric layer are nickel particles. Since the internal electrode cannot be uniformly dispersed, the apparent dielectric constant is reduced as a result of the interruption in the internal electrodes.

一方、内部電極に用いる二酸化ケイ素または酸化ジスプロシウムの平均粒径が0.005μm未満の試料番号32,37の場合にはこれらの化合物がニッケル粒子間に均一に分散できても、これらの化合物自身の焼結が早まるため内部電極の焼結挙動が充分に制御できず、内部電極を薄くすると途切れの発生により見かけの比誘電率が低下する。   On the other hand, in the case of sample numbers 32 and 37 in which the average particle diameter of silicon dioxide or dysprosium oxide used for the internal electrode is less than 0.005 μm, even if these compounds can be uniformly dispersed among the nickel particles, Since sintering is accelerated, the sintering behavior of the internal electrode cannot be sufficiently controlled, and when the internal electrode is thinned, the apparent relative dielectric constant is reduced due to the occurrence of breaks.

従って最適な二酸化ケイ素と酸化ジスプロシウムの平均粒径の範囲は0.005〜0.1μmである。   Therefore, the optimum average particle diameter range of silicon dioxide and dysprosium oxide is 0.005 to 0.1 μm.

なお、上記実施の形態1,2では積層セラミックコンデンサを例に説明したが、他の積層セラミック部品、例えば積層チップインダクタや積層サーミスタ、セラミック多層基板などでも同様の効果が得られるものである。   In the first and second embodiments, the multilayer ceramic capacitor has been described as an example. However, the same effect can be obtained with other multilayer ceramic components such as a multilayer chip inductor, a multilayer thermistor, and a ceramic multilayer substrate.

また、上記実施の形態1,2ではアルカリ土類金属元素の化合物として炭酸バリウムを用いたが、例えばマグネシウムやカルシウム、ストロンチウムの酸化物や炭酸塩、シュウ酸塩、塩化物などを用いても同様の効果が得られる。   In the first and second embodiments, barium carbonate is used as the alkaline earth metal element compound. For example, magnesium, calcium, strontium oxide, carbonate, oxalate, chloride, etc. are also used. The effect is obtained.

同様に希土類元素化合物として酸化ジスプロシウムを用いたが、例えばエルビウムやイッテルビウムの酸化物や炭酸塩、シュウ酸塩、塩化物などを用いても同様の効果が得られる。   Similarly, dysprosium oxide is used as the rare earth element compound, but the same effect can be obtained by using, for example, an oxide, carbonate, oxalate, chloride, or the like of erbium or ytterbium.

また、上記添加物を添加する際に、あらかじめ各添加物を混合し熱処理してガラス状にし、粉砕したものを添加しても良い。   Moreover, when adding the said additive, you may add what added each additive previously, heat-processed into glassy form, and grind | pulverized.

さらに、上記実施の形態1,2ではアルカリ土類金属元素や希土類元素の炭酸化合物や酸化物を用いたが、これらの化合物として添加する替わりに、ニッケル粉末上に真空蒸着法やスパッタ法などの薄膜形成法によりアルカリ土類金属元素や希土類元素を形成する方法も用いることができる。   Further, in the first and second embodiments, carbonates or oxides of alkaline earth metal elements or rare earth elements are used, but instead of adding these compounds, a vacuum deposition method, a sputtering method, or the like can be used on the nickel powder. A method of forming an alkaline earth metal element or rare earth element by a thin film forming method can also be used.

本発明の導電性ペーストは、特に耐還元性を有するセラミック組成物に対して有効である。   The conductive paste of the present invention is particularly effective for a ceramic composition having resistance to reduction.

また希土類元素、特にランタノイド元素の化合物は高温下で電子のドナーになる性質を持っており、このような元素の添加によって信頼性が向上するという作用効果も得られる。   In addition, rare earth elements, particularly lanthanoid element compounds, have the property of becoming electron donors at high temperatures, and the addition of such elements also has the effect of improving reliability.

本発明にかかる導電性ペーストならびに積層セラミック電子部品は、内部電極の厚みを薄くした場合においても、電極層が途切れることなく連続した薄層の内部電極が得られ、積層セラミック電子部品やセラミック多層基板、印刷導体等の用途にも適用できる。   The conductive paste and the multilayer ceramic electronic component according to the present invention provide a continuous thin internal electrode without interruption of the electrode layer even when the thickness of the internal electrode is reduced. It can also be applied to uses such as printed conductors.

本発明の実施の形態1における積層セラミックコンデンサの一部切欠斜視図1 is a partially cutaway perspective view of a multilayer ceramic capacitor according to a first embodiment of the present invention.

符号の説明Explanation of symbols

11 積層セラミックコンデンサ
12 誘電体層
13 内部電極
14 外部電極
11 Multilayer Ceramic Capacitor 12 Dielectric Layer 13 Internal Electrode 14 External Electrode

Claims (6)

ニッケル粉末を主成分とする金属粉末100モルに対して、二酸化ケイ素を0.2〜6.0モルと、アルカリ土類金属元素および希土類元素の中から選ばれた少なくとも一種類の元素またはこの元素を含む化合物を前記二酸化ケイ素に対してモル比率で1/50〜1倍含む導電性ペースト。 At least one element selected from alkaline earth metal elements and rare earth elements, or this element, from 0.2 to 6.0 mol of silicon dioxide with respect to 100 mol of metal powder containing nickel powder as a main component The electrically conductive paste which contains the compound containing 1 / 50-1 times in the molar ratio with respect to the said silicon dioxide. ニッケル粉末が平均粒径0.01〜0.2μmである請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the nickel powder has an average particle size of 0.01 to 0.2 μm. 二酸化ケイ素の平均粒径と、アルカリ土類金属元素および希土類元素の中から選ばれた少なくとも一種類の元素またはこの元素を含む化合物の平均粒径が0.005〜0.1μmであり、かつニッケル粉末が平均粒径0.01〜0.2μmである請求項1に記載の導電性ペースト。 The average particle diameter of silicon dioxide, the average particle diameter of at least one element selected from alkaline earth metal elements and rare earth elements or a compound containing this element is 0.005 to 0.1 μm, and nickel The conductive paste according to claim 1, wherein the powder has an average particle size of 0.01 to 0.2 μm. セラミック層と内部電極が交互に積層され、前記内部電極が露出した端面に外部電極を設けてなる積層セラミック電子部品において、前記内部電極はニッケル粉末を主成分とする金属粉末100モルに対して、二酸化ケイ素を0.2〜6.0モルと、アルカリ土類金属元素および希土類元素の中から選ばれた少なくとも一種類の元素またはこの元素を含む化合物を二酸化ケイ素に対してモル比率で1/50〜1倍含む導電性ペーストを用いて形成されており、かつ前記セラミック層はABO3と表わされるペロブスカイト型の結晶構造で、A/Bの元素比率が0.980〜1.020である積層セラミック電子部品。 In a multilayer ceramic electronic component in which ceramic layers and internal electrodes are alternately stacked, and external electrodes are provided on the exposed end surfaces of the internal electrodes, the internal electrodes are based on 100 mol of metal powder containing nickel powder as a main component. 0.2 to 6.0 moles of silicon dioxide, at least one element selected from alkaline earth metal elements and rare earth elements, or a compound containing this element in a molar ratio of 1/50 to silicon dioxide A multilayer ceramic having a perovskite crystal structure represented by ABO 3 and an A / B element ratio of 0.980 to 1.020. Electronic components. 導電性ペースト中のニッケル粉末の平均粒径が0.01〜0.2μmである請求項4に記載の積層セラミック電子部品。 The multilayer ceramic electronic component according to claim 4, wherein the nickel powder in the conductive paste has an average particle diameter of 0.01 to 0.2 μm. 二酸化ケイ素の平均粒径と、アルカリ土類金属元素および希土類元素の中から選ばれた少なくとも一種類の元素またはこの元素を含む化合物の平均粒径とが0.005〜0.1μmである請求項4に記載の積層セラミック電子部品。 The average particle diameter of silicon dioxide and the average particle diameter of at least one element selected from alkaline earth metal elements and rare earth elements or a compound containing this element is 0.005 to 0.1 µm. 4. The multilayer ceramic electronic component according to 4.
JP2004007690A 2004-01-15 2004-01-15 Conductive paste and laminated ceramic electronic component using it Pending JP2005203213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004007690A JP2005203213A (en) 2004-01-15 2004-01-15 Conductive paste and laminated ceramic electronic component using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007690A JP2005203213A (en) 2004-01-15 2004-01-15 Conductive paste and laminated ceramic electronic component using it

Publications (1)

Publication Number Publication Date
JP2005203213A true JP2005203213A (en) 2005-07-28

Family

ID=34821250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007690A Pending JP2005203213A (en) 2004-01-15 2004-01-15 Conductive paste and laminated ceramic electronic component using it

Country Status (1)

Country Link
JP (1) JP2005203213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277066A (en) * 2007-04-27 2008-11-13 Sumitomo Metal Mining Co Ltd Conductive paste, conductive paste drying film, and laminated ceramic capacitor using same
KR20130005812A (en) * 2011-07-07 2013-01-16 삼성전기주식회사 Conductive paste composition for internal electrode and multilayer ceramic electronic component
US9947475B2 (en) 2015-12-10 2018-04-17 Murata Manufacturing Co., Ltd. Ceramic capacitor and method for manufacturing same
KR20190019117A (en) * 2019-02-19 2019-02-26 삼성전기주식회사 Conductive paste composition for internal electrode and multilayer ceramic electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277066A (en) * 2007-04-27 2008-11-13 Sumitomo Metal Mining Co Ltd Conductive paste, conductive paste drying film, and laminated ceramic capacitor using same
KR20130005812A (en) * 2011-07-07 2013-01-16 삼성전기주식회사 Conductive paste composition for internal electrode and multilayer ceramic electronic component
JP2013021285A (en) * 2011-07-07 2013-01-31 Samsung Electro-Mechanics Co Ltd Conductive paste composition for internal electrodes and multilayer ceramic electronic component including the same
KR101952843B1 (en) * 2011-07-07 2019-02-27 삼성전기주식회사 Conductive paste composition for internal electrode and multilayer ceramic electronic component
US9947475B2 (en) 2015-12-10 2018-04-17 Murata Manufacturing Co., Ltd. Ceramic capacitor and method for manufacturing same
KR20190019117A (en) * 2019-02-19 2019-02-26 삼성전기주식회사 Conductive paste composition for internal electrode and multilayer ceramic electronic component
KR102029616B1 (en) * 2019-02-19 2019-10-08 삼성전기주식회사 Conductive paste composition for internal electrode and multilayer ceramic electronic component

Similar Documents

Publication Publication Date Title
JP4925958B2 (en) Multilayer ceramic capacitor
EP1528578B1 (en) Multilayer ceramic capacitor
EP2003665B1 (en) Dielectric ceramic composition with Core-Shell particles and electronic device
JP4809152B2 (en) Multilayer ceramic capacitor
JP4428187B2 (en) Dielectric ceramic composition and electronic component
JP5017792B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
US8592334B2 (en) Dielectric ceramic composition and an electronic component
JP2007331958A (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2005145791A (en) Electronic components, dielectric porcelain composition, and method for manufacturing the same
EP1125904A1 (en) Dielectric ceramic composition, electronic device, and method for producing the same
JP2007217205A (en) Electronic component, dielectric porcelain composition, and its production method
JP2006199536A (en) Electronic component, dielectric ceramic composition, and method for producing the same
JP4461679B2 (en) Dielectric porcelain composition and electronic component
JP2007063040A (en) Method for producing dielectric porcelain composition, and electronic component
JP2004155649A (en) Dielectric ceramic, method of producing the same, and multilayer ceramic capacitor
JP2004189588A (en) Dielectric ceramic, method of manufacturing the same, and monolithic ceramic capacitor
JP2008135638A (en) Multilayer ceramic capacitor
JP5229685B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP4576807B2 (en) Dielectric porcelain composition and electronic component
KR20050093799A (en) Dielectric porcelain composition, electronic device and methods for producing these
JP2007273684A (en) Manufacturing method of laminated electronic component
JP2005203213A (en) Conductive paste and laminated ceramic electronic component using it
JP3520053B2 (en) Dielectric porcelain composition, electronic component and method for producing electronic component
JP2003142331A (en) Laminated ceramic electronic component
JP2006036606A (en) Dielectric ceramic, method for manufacturing dielectric ceramic, and laminated ceramic capacitor