JP2005203132A - Conductive glazed suspension insulator - Google Patents

Conductive glazed suspension insulator Download PDF

Info

Publication number
JP2005203132A
JP2005203132A JP2004005530A JP2004005530A JP2005203132A JP 2005203132 A JP2005203132 A JP 2005203132A JP 2004005530 A JP2004005530 A JP 2004005530A JP 2004005530 A JP2004005530 A JP 2004005530A JP 2005203132 A JP2005203132 A JP 2005203132A
Authority
JP
Japan
Prior art keywords
insulator
corrosion
conductive
fouling
corona
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004005530A
Other languages
Japanese (ja)
Inventor
Akihide Shinoda
明秀 篠田
Yasuhide Kinoshita
靖英 木下
Susumu Ito
進 伊藤
Shigeo Mori
重男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Chubu Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Chubu Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP2004005530A priority Critical patent/JP2005203132A/en
Publication of JP2005203132A publication Critical patent/JP2005203132A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive glazed suspension insulator without fear of heat runup nor generation of fouling corona, even if it is used for a power line or the like along a coastline of intense staining. <P>SOLUTION: Of the conductive glazed suspension insulator with a semiconductive glaze on the surface, a direct current resistance value of its insulator single body is 150 MΩ to 900 MΩ. With this, heat runup as well as generation of the fouling corona is prevented when an insulation string is stained. Further, it is desirable if corrosion-resistant aluminum alloy plating is applied on a cap metal fitting 3 to improve corrosion resistance to natural corrosion as well as to prevent corrosion due to a direct current component in leak current flowing on the surface of the insulators, and a pin metal fitting 5 is made provided with a zinc sleeve 7 to improve corrosion resistance to natural corrosion as well as to prevent corrosion of a cement boundary part due to leak current flowing on the surface of the insulators. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、懸垂碍子の磁器表面に半導電性の釉薬を施釉した導電釉懸垂碍子に関するものである。   The present invention relates to a conductive insulator having a semi-conductive glaze applied to the surface of the porcelain.

懸垂碍子の磁器表面に酸化錫系の半導電性の釉薬を施釉した導電釉懸垂碍子は、非特許文献1に示されるように古くから知られている。このような導電釉懸垂碍子はその直流抵抗値が20〜30MΩであり、釉薬中を流れる電流のジュール熱による発熱効果と、導電釉による均圧効果とによって汚損環境下において通常の懸垂碍子(直流抵抗値が2000MΩ以上)に比較して優れた耐汚損電圧特性と、局部放電(汚損コロナ)の抑制効果とを発揮することができる。   BACKGROUND ART As shown in Non-Patent Document 1, a conductive insulator suspended in which a tin oxide-based semiconductive glaze is applied to the porcelain surface of the suspended insulator has been known for a long time. Such a conductive insulator has a DC resistance value of 20 to 30 MΩ, and a normal suspension insulator (direct current) in a fouling environment due to the heat generation effect due to Joule heat of the current flowing in the glaze and the pressure equalization effect due to the conductive insulator. As compared with a resistance value of 2000 MΩ or more, the antifouling voltage characteristics and the effect of suppressing local discharge (fouling corona) can be exhibited.

ところが、従来の導電釉懸垂碍子を用いた碍子連を海水の飛沫がかかるような汚損の激しい箇所に設置すると、熱逸走と呼ばれる現象が生ずることがある。すなわち、導電釉懸垂碍子の表面が汚損されることによりその直流抵抗値が例えば10MΩ以下にまで低下すると漏れ電流による発熱が生じ、その発熱量が放熱量よりも大きいと碍子表面の温度が上昇する。汚損は不均一に生ずるから、碍子連中の最も汚損の激しい碍子でこの現象がスタートする。この温度上昇により碍子表面が乾燥すると、その碍子の分担電圧が碍子連中の他の碍子の分担電圧に比べて上昇するため、更に発熱量が増加して行く。このように、熱逸走は汚損の不均一がトリガーとなって特定碍子への分担電圧の集中を招き、その碍子の温度が大幅に上昇して碍子破損に至るおそれがある現象である。   However, when a conventional insulator chain using a conductive insulator is installed in a highly fouled place where seawater splashes, a phenomenon called heat escape may occur. That is, if the DC resistance value is reduced to, for example, 10 MΩ or less due to the surface of the conductive insulator suspended, the heat generated by the leakage current is generated. If the amount of generated heat is larger than the amount of heat released, the temperature of the insulator surface increases. . Since the contamination occurs unevenly, this phenomenon starts with the most heavily contaminated insulators in the insulators. When the insulator surface is dried due to this temperature rise, the shared voltage of the insulator increases as compared with the shared voltage of other insulators in the insulator series, and the amount of heat generation further increases. As described above, thermal runaway is a phenomenon in which nonuniformity of contamination causes a concentration of a shared voltage to a specific insulator, and the temperature of the insulator rises significantly, resulting in insulator damage.

そこでこのような熱逸走による碍子破損を防止するために電圧制限が設けられているが、模擬海水を用いた実験を行うと対地電圧相当の平均分担電圧(約7kV/個)でも大きな温度上昇が観察されることがある。このため、導電釉懸垂碍子は耐汚損電圧特性が優れるという特長を持つにもかかわらず、海水の飛沫がかかるような海岸線の送電線には設置できないという問題があった。
「がいし」、電気学会発行、1983年6月15日、226頁
Therefore, a voltage limit is provided to prevent insulator damage due to such thermal escape, but when an experiment using simulated seawater is performed, a large temperature rise occurs even with an average shared voltage equivalent to ground voltage (about 7 kV / piece). May be observed. For this reason, there is a problem that the conductive fence suspension insulator cannot be installed on the transmission line on the coastline where the splash of seawater is splashed even though it has a feature of excellent anti-fouling voltage characteristics.
"Gaishi", published by the Institute of Electrical Engineers of Japan, June 15, 1983, p. 226

本発明は上記した従来の問題点を解決し、優れたコロナの抑制効果を維持しながら、汚損の激しい海岸線の送電線などに使用しても熱逸走を発生するおそれのない新規な導電釉懸垂碍子を提供するためになされたものである。   The present invention solves the above-mentioned conventional problems, and maintains a superior corona suppression effect, and is a novel conductive suspension that does not cause heat escape even when used for a heavily fouled coastline transmission line. It was made to provide an eggplant.

上記の課題を解決するためになされた本発明は、表面の釉薬を半導電性とした導電釉懸垂碍子において、導電釉懸垂碍子単体の直流抵抗値の下限を150MΩとして碍子連が汚損を受けたときの熱逸走を防止するとともに、直流抵抗値の上限を900MΩとして汚損コロナの発生を防止したことを特徴とするものである。特に、汚損時の漏れ電流により加熱される碍子温度を、150℃以下に維持することが好ましい。   The present invention was made to solve the above-mentioned problems. In the conductive cage suspended insulator in which the glaze on the surface is semiconductive, the lower limit of the direct current resistance value of the conductive cage suspended insulator is set to 150 MΩ, and the insulator series is damaged. The thermal runaway at the time is prevented, and the upper limit of the direct current resistance value is set to 900 MΩ to prevent the occurrence of fouling corona. In particular, the insulator temperature heated by the leakage current at the time of fouling is preferably maintained at 150 ° C. or lower.

また、海塩汚損や工業汚損などによる自然腐食に対する耐食性を向上させると共にがいし表面を流れる漏れ電流中の直流成分による腐食防止、および漏れ電流中の直流成分によるセメント境界部の腐食防止のため、キャップ金具に耐食性のアルミ合金メッキを施し、ピン金具に亜鉛スリーブを設けることが好ましい。   Caps are also provided to improve corrosion resistance against natural corrosion due to sea salt pollution and industrial pollution, as well as to prevent corrosion due to the DC component in the leakage current flowing through the insulator surface, and to prevent corrosion at the cement boundary due to the DC component in the leakage current. It is preferable to apply corrosion-resistant aluminum alloy plating to the metal fitting and to provide a zinc sleeve on the pin metal fitting.

本発明の導電釉懸垂碍子は、碍子単体の直流抵抗値を従来の20〜30MΩからはるかに高い150〜900MΩに設定したものである。このように直流抵抗値の下限を150MΩとしたことにより、汚損の激しい海岸線の送電線などに使用し、表面が塩分で汚損された場合にも、漏れ電流による発熱量は従来の導電釉懸垂碍子よりも小さくなる。このため汚損時の碍子温度の上昇も150℃以下に抑制され、熱逸走に至ることがない。また直流抵抗値の上限を900MΩに設定したので、可聴ノイズの原因となる汚損コロナの発生も防止することができ、環境対策上も優れたものである。   In the conductive insulator of the present invention, the DC resistance value of the insulator alone is set to 150 to 900 MΩ, which is much higher than the conventional 20 to 30 MΩ. By setting the lower limit of the DC resistance value to 150 MΩ in this way, the heat generated by the leakage current can be reduced even when the surface is contaminated with salt and the surface is contaminated with salt. Smaller than. For this reason, the rise of the insulator temperature at the time of pollution is also suppressed to 150 degrees C or less, and it does not lead to heat escape. In addition, since the upper limit of the direct current resistance value is set to 900 MΩ, it is possible to prevent the occurrence of fouling corona that causes audible noise, which is excellent in terms of environmental measures.

さらに請求項3,4の発明のように、キャップ金具に耐食性のアルミ合金メッキを施したり、ピンに亜鉛スリーブを設けたりすることにより、海塩汚損や工業汚損などによる自然腐食に対する耐食性を向上させると共にがいし表面を流れる漏れ電流中の直流成分による腐食防止、および漏れ電流中の直流成分によるセメント境界部の腐食を防止することができ、その使用寿命の延長を図ることが可能となる。   Further, as in the third and fourth aspects of the invention, the corrosion resistance against natural corrosion due to sea salt pollution, industrial pollution, etc. is improved by applying a corrosion-resistant aluminum alloy plating to the cap metal or providing a pin with a zinc sleeve. At the same time, it is possible to prevent corrosion due to the direct current component in the leakage current flowing on the insulator surface and corrosion of the cement boundary due to the direct current component in the leakage current, and to extend the service life.

図1は本発明の導電釉懸垂碍子を示す断面図である。その寸法や基本的な形状は通常の懸垂碍子と同一であり、1は下面に多数のリブ2を備えた磁器製の碍子本体、3はその頭部にセメント4により取り付けられたキャップ金具、5はその中心部にセメント6により取り付けられたピン金具である。磁器製の碍子本体1の表面は施釉されているが、本発明の導電釉懸垂碍子は釉薬を半導電性釉薬とし、碍子単体の直流抵抗値を従来の導電釉懸垂碍子よりもはるかに高い150MΩ〜900MΩとした点に特徴を有するものである。   FIG. 1 is a cross-sectional view showing a conductive hanging suspension according to the present invention. Its dimensions and basic shape are the same as those of a normal suspended insulator. 1 is a porcelain insulator body having a number of ribs 2 on its lower surface, 3 is a cap fitting attached to its head with cement 4, 5 Is a pin fitting attached to the center portion thereof with cement 6. The surface of the porcelain insulator body 1 is decorated, but the conductive insulator of the present invention uses a glaze as a semiconductive additive, and the DC resistance of the insulator alone is 150 MΩ which is much higher than that of a conventional conductive insulator. It is characterized by a point of about 900 MΩ.

本発明において碍子単体の直流抵抗値の下限を150MΩに設定したのは、次の理由による。本発明者等は多数の導電釉懸垂碍子に対して海水成分に対応させた模擬海水を噴霧しながら通電試験を行い、碍子の温度上昇と碍子破損との関連性を求めた。その結果、温度上昇により最も破損され易いのはリブ2であることが判明した。   In the present invention, the lower limit of the DC resistance value of the single insulator is set to 150 MΩ for the following reason. The present inventors conducted an energization test while spraying simulated seawater corresponding to seawater components on a large number of conductive insulators to determine the relationship between insulator temperature rise and insulator damage. As a result, it has been found that the rib 2 is most easily damaged by the temperature rise.

また試験電圧を段階的に上昇させて漏れ電流を増加させ、碍子温度を上昇させながらリブ2の破損との関係を調べた結果、図2に示すように表面温度が150℃以上になるとリブの破損が生ずることを確認した。なお磁器の熱伝導時間を考慮してより詳細に調査すると、130℃×4分間以内であればリブの破損は生じず、140℃×12分以内であれば笠(碍子本体)の破損は生じない。   As a result of increasing the test voltage stepwise to increase the leakage current and investigating the relationship with the rib 2 breakage while increasing the insulator temperature, as shown in FIG. It was confirmed that damage occurred. In more detail, considering the heat conduction time of the porcelain, the rib will not break if it is within 130 ° C x 4 minutes, and the shade (insulator body) will break if it is within 140 ° C x 12 minutes. Absent.

次に、碍子の表面温度から周囲温度を差し引き温度上昇を求めるとともに、直流抵抗値との関係を実験的に求めた。その結果を図3に示す。実験結果から回帰式を求めると図3中のA式のようになり、1σを加えるとそれぞれB式のようになる。   Next, the ambient temperature was subtracted from the insulator surface temperature to determine the temperature rise, and the relationship with the DC resistance value was experimentally determined. The result is shown in FIG. When the regression equation is obtained from the experimental results, it is as shown in equation A in FIG. 3, and when 1σ is added, it becomes as in equation B.

この結果、温度上昇が110K(周囲温度が40℃であるので碍子表面温度としては150℃)以下であれば破損のおそれがなく、かつ近似式+1σを示すB式がこの限界温度である温度上昇110Kの線とクロスする点の直流抵抗値が147MΩであることが分る。   As a result, if the temperature rise is 110K (because the ambient temperature is 40 ° C., the insulator surface temperature is 150 ° C.) or less, there is no risk of breakage, and the temperature rise where the formula B representing the approximate expression + 1σ is the limit temperature It can be seen that the DC resistance value at the point where the line crosses the 110K line is 147 MΩ.

すなわち、碍子単体の直流抵抗値の下限を150MΩに設定しておけば、碍子連に模擬海水を噴霧するという過酷な汚損条件下においても、漏れ電流による碍子温度の上昇はほぼ破損限界以下に抑制され、熱逸走による碍子破損を防止することができる。   In other words, if the lower limit of the DC resistance value of a single insulator is set to 150 MΩ, the rise in the insulator temperature due to leakage current will be suppressed below the breakage limit even under severe fouling conditions in which simulated seawater is sprayed on the insulator series. And can prevent damage to the insulator due to thermal escape.

このように碍子単体の直流抵抗値を高めれば、熱逸走の危険は防止することができる。しかし碍子単体の直流抵抗値を高めて行くと、通常の碍子に近づいて汚損コロナが発生する。直流抵抗値を変化させた数種類の導電釉懸垂碍子を用い、汚損コロナの発生状況を洩れ電流オシログラムにより測定したところ、900MΩであればほとんど汚損コロナの発生はないが、それを超えて1000MΩになると汚損コロナの発生が見られることが確認された。   Thus, if the direct current resistance value of the insulator is increased, the risk of thermal escape can be prevented. However, when the DC resistance value of the insulator alone is increased, a fouling corona occurs near the normal insulator. Using several types of conductive insulators with varying DC resistance values, the occurrence of fouling corona was measured with a leakage current oscillogram, and if it was 900 MΩ, there was almost no fouling corona, but if it exceeded 1000 MΩ, It was confirmed that fouling corona was observed.

以上の理由により、本発明では導電釉懸垂碍子単体の直流抵抗値の下限を150MΩとして碍子連が汚損を受けたときの熱逸走を防止するとともに、直流抵抗値の上限を900MΩとして汚損コロナの発生を防止した。   For the above reasons, in the present invention, the lower limit of the direct current resistance value of the conductive insulators is set to 150 MΩ to prevent thermal escape when the insulators are damaged, and the upper limit of the DC resistance value is set to 900 MΩ to generate a fouling corona. Prevented.

なお、図1に示されるキャップ金具4は鋳鉄製のものであるが、キャップ金具4に耐食性のアルミ合金メッキを施し、自然腐食に対する耐食性を向上させると共にがいし表面を流れる漏れ電流による腐食を防止することが好ましい。また図1に示されるようにピン金具5の周囲に鉄よりも電流腐蝕を受け易い亜鉛スリーブ7を設け、自然腐食に対する耐食性を向上させると共にがいし表面を流れる漏れ電流によるセメント境界部の腐食を防止することが好ましい。このような漏れ電流による腐食対策を講ずれば、本発明の導電釉懸垂碍子の使用寿命を延ばすことができる。   The cap metal fitting 4 shown in FIG. 1 is made of cast iron. However, the cap metal fitting 4 is subjected to corrosion-resistant aluminum alloy plating to improve corrosion resistance against natural corrosion and prevent corrosion due to leakage current flowing through the insulator surface. It is preferable. In addition, as shown in FIG. 1, a zinc sleeve 7 is provided around the pin fitting 5 that is more susceptible to current corrosion than iron, improving corrosion resistance against natural corrosion and preventing corrosion at the cement boundary due to leakage current flowing through the insulator surface. It is preferable to do. If measures against corrosion due to such leakage currents are taken, the service life of the conductive insulators of the present invention can be extended.

以上に説明したように、本発明の導電釉懸垂碍子は直流抵抗値の下限を150MΩとしまた上限を900MΩとすることにより、コロナの抑制効果を維持しながら、汚損の激しい海岸線の送電線などに使用しても熱逸走を発生するおそれのないとの作用効果を達成したものである。   As described above, the conductive insulator of the present invention has a DC resistance lower limit of 150 MΩ and an upper limit of 900 MΩ, so that it can be used as a transmission line for severely damaged coastlines while maintaining the corona suppression effect. This achieves the effect that there is no risk of thermal escape even when used.

本発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of this invention. 碍子の表面温度と破損との関係を示すグラフである。It is a graph which shows the relationship between the surface temperature of an insulator and a failure | damage. 碍子単体の直流抵抗値と温度上昇との関係を示すグラフである。It is a graph which shows the relationship between the DC resistance value of a single insulator, and a temperature rise.

符号の説明Explanation of symbols

1 磁器製の碍子本体
2 リブ
3 キャップ金具
4 セメント
5 ピン金具
6 セメント
7 亜鉛スリーブ
DESCRIPTION OF SYMBOLS 1 Porcelain insulator main body 2 Rib 3 Cap metal fittings 4 Cement 5 Pin metal fittings 6 Cement 7 Zinc sleeve

Claims (4)

表面の釉薬を半導電性とした導電釉懸垂碍子において、導電釉懸垂碍子単体の直流抵抗値の下限を150MΩとして碍子連が汚損を受けたときの熱逸走を防止するとともに、直流抵抗値の上限を900MΩとして汚損コロナの発生を防止したことを特徴とする導電釉懸垂碍子。   For conductive insulators with semi-conductive glaze on the surface, the lower limit of the direct current resistance of the conductive insulator is 150 MΩ to prevent thermal escape when the insulator chain is damaged, and the upper limit of the direct current resistance value. A conductive cage suspension insulator characterized in that the occurrence of fouling corona was prevented by setting 900 MΩ. 汚損時の漏れ電流により加熱される碍子温度を、150℃以下に維持したことを特徴とする請求項1記載の導電釉懸垂碍子。   2. The conductive insulator suspension according to claim 1, wherein an insulator temperature heated by a leakage current at the time of fouling is maintained at 150 ° C. or lower. キャップ金具に耐食性のアルミ合金メッキを施し、自然腐食に対する耐食性を向上させると共にがいし表面を流れる漏れ電流による腐食を防止したことを特徴とする請求項1または2記載の導電釉懸垂碍子。   The conductive metal suspension insulator according to claim 1 or 2, wherein the cap metal fitting is subjected to corrosion-resistant aluminum alloy plating to improve corrosion resistance against natural corrosion and to prevent corrosion due to leakage current flowing through the insulator surface. ピン金具に亜鉛スリーブを設け、自然腐食に対する耐食性を向上させると共にがいし表面を流れる漏れ電流によるセメント境界部の腐食を防止したことを特徴とする請求項1〜3の何れかに記載の導電釉懸垂碍子。   The conductive metal suspension according to any one of claims 1 to 3, wherein a zinc sleeve is provided on the pin fitting to improve corrosion resistance against natural corrosion and to prevent corrosion of the cement boundary due to leakage current flowing through the insulator surface. insulator.
JP2004005530A 2004-01-13 2004-01-13 Conductive glazed suspension insulator Pending JP2005203132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005530A JP2005203132A (en) 2004-01-13 2004-01-13 Conductive glazed suspension insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005530A JP2005203132A (en) 2004-01-13 2004-01-13 Conductive glazed suspension insulator

Publications (1)

Publication Number Publication Date
JP2005203132A true JP2005203132A (en) 2005-07-28

Family

ID=34819820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005530A Pending JP2005203132A (en) 2004-01-13 2004-01-13 Conductive glazed suspension insulator

Country Status (1)

Country Link
JP (1) JP2005203132A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054943A (en) * 2011-09-05 2013-03-21 Railway Technical Research Institute Insulator
CN104992794A (en) * 2015-08-12 2015-10-21 苏州电瓷厂股份有限公司 Disc-shaped suspension-type porcelain insulator
CN108389664A (en) * 2017-10-11 2018-08-10 国家电网公司 The extra-high voltage direct-current plate-shaped suspension type insulator that metal electrode can be inhibited to corrode
WO2019071953A1 (en) * 2017-10-11 2019-04-18 中国电力科学研究院有限公司 Ultra high voltage direct current disk-type suspension insulator capable of inhibiting corrosion of metal electrodes
CN113488296A (en) * 2021-07-10 2021-10-08 萍乡强盛电瓷制造有限公司 High-strength pollution-resistant suspension type porcelain insulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054943A (en) * 2011-09-05 2013-03-21 Railway Technical Research Institute Insulator
CN104992794A (en) * 2015-08-12 2015-10-21 苏州电瓷厂股份有限公司 Disc-shaped suspension-type porcelain insulator
CN108389664A (en) * 2017-10-11 2018-08-10 国家电网公司 The extra-high voltage direct-current plate-shaped suspension type insulator that metal electrode can be inhibited to corrode
WO2019071953A1 (en) * 2017-10-11 2019-04-18 中国电力科学研究院有限公司 Ultra high voltage direct current disk-type suspension insulator capable of inhibiting corrosion of metal electrodes
CN108389664B (en) * 2017-10-11 2024-03-12 国家电网公司 Extra-high voltage direct current disc type suspension insulator capable of inhibiting corrosion of metal electrode
CN113488296A (en) * 2021-07-10 2021-10-08 萍乡强盛电瓷制造有限公司 High-strength pollution-resistant suspension type porcelain insulator

Similar Documents

Publication Publication Date Title
CN112038019B (en) Porcelain insulator capable of automatically wiping porcelain and manufacturing process thereof
JP2005203132A (en) Conductive glazed suspension insulator
CN104650396A (en) Insulating rubber cable sheath
Jamaludin et al. Considering the effects of a RTV coating to improve electrical insulation against lightning
US20220181852A1 (en) Spark Plug Housing Having a Galvanic Nickel and Zinc-Containing Protective Layer and a Silicon-Containing Sealing Layer, Spark Plug Having Said Housing, and Method for Producing Said Housing
Marzinotto et al. RTV pre-coated cap-and-pin toughened glass insulators-a wide experience in the Italian overhead transmission system
ATE516385T1 (en) APPLICATIONS FOR SACRIFICIAL ANODES
JPS6343845B2 (en)
CN100365892C (en) Ignition device, in particular, sparking plug
JP2005100925A (en) Suspension insulator with sealing faucet
JP2006328505A (en) Electric corrosion protection device
JP5433393B2 (en) Overhead wire spacer
RU176327U1 (en) GROUNDER
CN208157165U (en) A kind of double bolt formula zinc ring of DC power transmission line porcelain insulator
Goudie Silicones for outdoor insulator maintenance
JP2004047181A (en) Corrosion resistant electric wire and its manufacturing method
JP2007246619A5 (en)
CN205248038U (en) Heat -proof transformer case anticorrosives
RU2654076C1 (en) Electrically insulating construction with hydrophobic coating
BR102014012793A2 (en) anti-corrosion electronic equipment for metal assemblies
JP4493747B2 (en) Outdoor electrical equipment tank
RU2228973C2 (en) Method of obtaining thick-layer protective coats at high adhesion on parts made from rectifying metals or their alloys in mode of micro-arc oxidation
JP5992680B2 (en) Tracking prevention tool
TWI544709B (en) Method for preventing corrosion of power cord applied to highly corrosive environment
JP2004327254A (en) Highly corrosion resistant aluminum cable steel reinforced

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060822

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Effective date: 20090619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091016

Free format text: JAPANESE INTERMEDIATE CODE: A02