JP2005200492A - Product formed from polymer compound having functionality and method for producing the same - Google Patents

Product formed from polymer compound having functionality and method for producing the same Download PDF

Info

Publication number
JP2005200492A
JP2005200492A JP2004006439A JP2004006439A JP2005200492A JP 2005200492 A JP2005200492 A JP 2005200492A JP 2004006439 A JP2004006439 A JP 2004006439A JP 2004006439 A JP2004006439 A JP 2004006439A JP 2005200492 A JP2005200492 A JP 2005200492A
Authority
JP
Japan
Prior art keywords
polymer compound
particles
functionality
compound molded
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004006439A
Other languages
Japanese (ja)
Inventor
Minoru Yagi
穣 八木
Yoji Yanagi
陽二 柳
Ryoichi Nagashima
良一 永嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Engineering Ltd
Teijin Entech Co Ltd
Original Assignee
Teijin Engineering Ltd
Teijin Entech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Engineering Ltd, Teijin Entech Co Ltd filed Critical Teijin Engineering Ltd
Priority to JP2004006439A priority Critical patent/JP2005200492A/en
Publication of JP2005200492A publication Critical patent/JP2005200492A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a product formed from a polymer compound having functionality, with which functionality-imparting particles are supported on the product formed from a polymer compound without substantially changing properties which the product formed from a polymer compound originally has. <P>SOLUTION: The method for producing a product formed from a polymer compound having functionality comprises providing a system having the product formed from a polymer compound and functionality-imparting particles with at least one kind selected from compression force, impact force, grinding force and shear force as mechanochemical energy to support the functionality-imparting particles on the surface of the product formed from a polymer compound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、触媒能や抗菌性等の機能を有する高分子化合物成型品を得る方法に関する。更に詳しくは、本発明は、触媒能や抗菌性等の機能性を付与する粒子を高分子化合物成型品の表面へ担持させて、機能性を有する高分子化合物成型品を得る方法に関する。   The present invention relates to a method for obtaining a polymer compound molded article having functions such as catalytic ability and antibacterial properties. More specifically, the present invention relates to a method for obtaining a polymer compound molded product having functionality by supporting particles imparting functionality such as catalytic ability and antibacterial property on the surface of the polymer compound molded product.

従来、高分子化合物成型品(繊維、フィルム等)の付加価値を高めるために、高分子化合物成型品に各種機能を有する機能性付与粒子を担持させることが広く行われており、例えば、溶液状のバインダーに機能性付与粒子を分散させたバインダー溶液中に高分子化合物成型品を浸漬させる「ディッピング法」や、同じく溶液状のバインダーに機能性付与粒子を分散させたバインダー溶液を高分子化合物成型品表面にスプレーして固着する「スプレーコート法」などが知られている。   Conventionally, in order to increase the added value of a polymer compound molded product (fiber, film, etc.), it has been widely carried out that functional polymer particles having various functions are supported on the polymer compound molded product. "Dipping method" in which a polymer compound molded product is immersed in a binder solution in which functional particles are dispersed in a binder, or a binder solution in which functional particles are dispersed in a solution-like binder. The “spray coating method” is known in which the product surface is sprayed and fixed.

これらの方法では、バインダー溶液の化学的組成や、浸漬、スプレー等の処理条件を工夫することにより、固着粒子の脱落耐久性や加工性を高める試みが多くなされているが、バインダー溶液にはバインダー成分のほかにも分散剤成分など多くの成分が必要とされるため、必然的にコストが高くなるという問題があった。また、上記バインダー溶液を高分子化合物成型品に塗布した後、バインダー溶液中の揮発成分を除去するために多くの熱エネルギーと時間とを要するという問題もある。   In these methods, many attempts have been made to increase the durability and processability of the fixed particles by devising the chemical composition of the binder solution and the processing conditions such as dipping and spraying. In addition to the components, many components such as a dispersant component are required, which inevitably increases the cost. In addition, after the binder solution is applied to a polymer compound molded article, there is also a problem that much heat energy and time are required to remove volatile components in the binder solution.

更に、機能性付与粒子の表面のみならず、高分子化合物成型品の表面をもバインダー溶液が被覆してしまうため、表面に吸着サイトなどの微小な機能性高次構造を有する材料においては、その機能が制限されてしまうという問題もあった。   Furthermore, since the binder solution covers not only the surface of the functionalized particles but also the surface of the polymer compound molded product, in the material having a fine functional higher order structure such as an adsorption site on the surface, There was also a problem that the function was limited.

これらの問題を解決すべく、バインダーを使用しない機能性付与粒子の不織布への担持方法についても検討がなされており、熱可塑性高分子繊維から成る不織布に機能性付与粒子を乾式法で担持させた後、熱処理により熱可塑性高分子不織布の少なくとも表面を軟化させて、該繊維表面に機能性付与粒子を固着させる方法(例えば、特許文献1等参照。)が提案されている。   In order to solve these problems, a method for supporting functionally imparted particles without using a binder on a nonwoven fabric has also been studied, and functionally imparted particles are supported by a dry method on a nonwoven fabric composed of thermoplastic polymer fibers. Thereafter, a method has been proposed in which at least the surface of the thermoplastic polymer nonwoven fabric is softened by heat treatment to fix the functional particles to the fiber surface (for example, see Patent Document 1).

この方法を用いることにより、少ない操作工程で生産が可能な上、担持した機能性付与粒子が水洗処理などによって脱落しないなどの利点が得られる。しかし、乾式法によって機能性付与粒子を担持する際に機能性付与粒子の凝集が起こったり、熱処理時に不織布全体を、不織布を構成する繊維表面が軟化する程度まで加熱する必要があるため、不織布の性状が変化したりするという問題があった。
特開平07−268767号公報(特許請求の範囲)
By using this method, it is possible to produce with a small number of operation steps, and there are advantages that the supported functionally imparted particles do not fall off due to washing treatment or the like. However, when the functional particles are supported by the dry method, the functional particles may aggregate, or the entire nonwoven fabric needs to be heated to the extent that the surface of the fibers constituting the nonwoven fabric is softened during heat treatment. There was a problem that the properties changed.
JP 07-268767 A (Claims)

本発明の目的は、上記従来技術が有していた問題点を解消し、高分子化合物成型品が元来有する性状を実質的に変化させることなく機能性付与粒子を担持させ、機能性を有する高分子化合物成型品を製造する方法を提供することにある。   The object of the present invention is to solve the problems of the prior art described above, and to support the functional particles without substantially changing the properties inherent in the polymer compound molded product, thus having functionality. It is providing the method of manufacturing a high molecular compound molded article.

本発明者らは上記の従来技術に鑑みて鋭意検討を重ねた結果、本発明に到達した。
すなわち、本発明の目的は、高分子化合物成型品と機能性付与粒子とを共存させた系に、圧縮力、衝撃力、摩砕力及びせん断力から選ばれる少なくとも一種をメカノケミカルなエネルギーとして付与することにより、高分子化合物成型品に機能性付与粒子を担持させる、機能性を有する高分子化合物成型品の製造方法によって達成することができる。
The inventors of the present invention have reached the present invention as a result of intensive studies in view of the above prior art.
That is, the object of the present invention is to impart at least one kind selected from compressive force, impact force, grinding force and shear force as mechanochemical energy to a system in which a polymer compound molded product and functionality-imparting particles coexist. By doing so, it can be achieved by a method for producing a polymer compound molded product having functionality in which the functional compound-imparted particles are supported on the polymer compound molded product.

本発明によれば、バインダーや熱処理を必要とすることなく、高分子化合物成型品に機能性付与粒子を担持することができるため、機能性付与粒子が有する機能と高分子化合物成型品が元来有する機能とを最大限発揮させることができる。   According to the present invention, the functional compound-imparted product can be supported on the polymer compound molded product without the need for a binder or heat treatment. The functions it has can be maximized.

また、メカノケミカルなエネルギーにより、機能性付与粒子の粉砕、又は粉砕及び解砕と同時に、機能性付与粒子の高分子化合物成型品への担持をも同時に行うこともでき、担持された機能性付与粒子の分散性が著しく向上するとともに微粒子化することができるので、機能が発揮される有効比表面積を増大させることができる。   In addition, the mechanochemical energy enables the functionalized particles to be pulverized, or simultaneously pulverized and pulverized, and the functionalized particles to be supported on the polymer compound molded product at the same time. Since the dispersibility of the particles is remarkably improved and the particles can be made into fine particles, the effective specific surface area where the function is exhibited can be increased.

以下、本発明について詳細に説明する。
本発明の製造方法においては、まず高分子化合物成型品と機能性付与粒子とを共存させた系とすることが必要である。
Hereinafter, the present invention will be described in detail.
In the production method of the present invention, it is necessary to first make a system in which a polymer compound molded product and functionally imparted particles coexist.

ここで、機能性粒子と共存させる高分子化合物成型品としては、機能付与しようとする高分子化合物成型品をいずれも用いることができ、ポリエステル系樹脂、脂肪族ポリアミド系樹脂、芳香族ポリアミド系樹脂、全芳香族ポリアミド系樹脂、ビニル系樹脂、ポリウレタン系樹脂、アクリル系樹脂及びポリオレフィン系樹脂等からなる繊維、フィルムなどを好ましい例として挙げることができる。   Here, as the polymer compound molded product coexisting with the functional particles, any of the polymer compound molded products to be imparted with functions can be used, such as polyester resins, aliphatic polyamide resins, aromatic polyamide resins. Preferred examples include fibers, films and the like made of wholly aromatic polyamide resins, vinyl resins, polyurethane resins, acrylic resins and polyolefin resins.

繊維の形態としては、いずれも採用することができ、フィラメント形態やステープル形態、これらの集合したヤーン形態、織物形態、編物形態、不織布形態、フェルト形態等の繊維集合体形態、また繊維集合体を構成する繊維の一部が固着された繊維構造体形態をとることができ、これらは前述の素材を混合したものであってもよい。また、繊維断面形状は、通常の中実断面のほか、断面形状の異なる異形断面であってもよく、例えば中空断面、三角断面、四角断面、中実断面が2つ以上組み合わさって形成される幅広断面などの異形断面形状や、異種ポリマーを組み合わせた繊維としてもよく、例えば、芯鞘型複合繊維、サイド・バイ・サイド型複合繊維や混合紡糸繊維としてもよい。またこれら異種ポリマーの組み合わせにより繊維を異形断面形状としてもよい。   As the fiber form, any of them can be adopted, such as filament form, staple form, aggregated yarn form, woven form, knitted form, non-woven form, felt form, etc., and fiber aggregate form. It can take the form of a fiber structure in which some of the constituent fibers are fixed, and these may be a mixture of the aforementioned materials. Further, the fiber cross-sectional shape may be an ordinary solid cross-section, or an irregular cross-section having a different cross-sectional shape, for example, a combination of two or more hollow cross-sections, triangular cross-sections, square cross-sections, and solid cross-sections. It may be an irregular cross-sectional shape such as a wide cross-section, or a fiber combining different polymers, for example, a core-sheath type composite fiber, a side-by-side type composite fiber, or a mixed spun fiber. Further, the fiber may have an irregular cross-sectional shape by a combination of these different polymers.

フィルムの形態としては、通常の面状体以外にも、表面に微多孔を多数有するものや、複数の面状体が貼り合わせたものを用いることが出来る。   As a form of the film, in addition to a normal planar body, a film having a large number of micropores on the surface or a laminate of a plurality of planar bodies can be used.

他方、本発明において上記高分子化合物成型品と共存させる機能性付与粒子としては、特に制限はなく、様々なものを用いることができ、例えば、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛等の金属酸化物や、金、白金、銀、鉄、アルミニウム、ステンレス、銅、ニッケル、マンガン等の金属類、ポリエチレン、ポリスチレン、ポリプロピレン、ポリエステル、ポリフェニレンスルサイド等の合成樹脂類などを用いることが出来る。   On the other hand, in the present invention, there are no particular limitations on the functional particles that coexist with the polymer compound molded product, and various types of particles can be used, such as titanium oxide, aluminum oxide, zirconium oxide, and zinc oxide. Metal oxides, metals such as gold, platinum, silver, iron, aluminum, stainless steel, copper, nickel, and manganese, and synthetic resins such as polyethylene, polystyrene, polypropylene, polyester, and polyphenylene sulfide can be used.

本発明においては、上述した高分子化合物成型品と機能性粒子とが共存された系にメカノケミカルなエネルギーを付与するが、このための装置としては、粉砕ボールを用いた粉砕装置を用いることができ、具体的には遊星型ボールミル、転動式ボールミル、振動式ボールミル等を挙げることができるが、圧縮力、衝撃力、摩砕力及びせん断力から選ばれる少なくとも一種を付与することができる限り、どのような手段を用いても良い。   In the present invention, mechanochemical energy is imparted to a system in which the above-described polymer compound molded product and functional particles coexist, and as a device for this purpose, a pulverizer using a pulverized ball may be used. Specific examples include a planetary ball mill, a rolling ball mill, a vibration ball mill, etc. As long as at least one selected from a compressive force, an impact force, a grinding force, and a shear force can be applied. Any means may be used.

本発明の製造方法は、担持処理する高分子化合物成型品の形態や処理量に応じて、回分式に処理しても連続式に処理してもどちらでもよい。   The production method of the present invention may be processed batchwise or continuously, depending on the form of the polymer compound molded product to be supported and the amount of treatment.

回分式で担持処理を行う場合は、使用形態に応じた形状に成型した高分子化合物成型品を容器内に固定し、該容器内に必要量の機能性付与粒子とメディアとを投入し、高分子化合物成型品に損傷が及ばない程度のメカノケミカルなエネルギーが付与できるように容器に外力を付加すればよく、容器に負荷する外力としては、容器を回転させる方法や振動させる方法など、使用する装置に応じた方法を選択すればよい。   When carrying the support in a batch system, a polymer compound molded product molded into a shape according to the usage form is fixed in a container, and the required amount of functional particles and media are put into the container. It is only necessary to apply external force to the container so that mechanochemical energy that does not damage the molecular compound molded product can be applied. The external force applied to the container can be a method of rotating the container or vibrating it. What is necessary is just to select the method according to an apparatus.

該メディアとしては、ジルコニアビーズ、ガラスビーズ等の粉砕用ボールメディアが好ましく使用されるが、圧縮力、衝撃力、摩砕力及びせん断力から選ばれる少なくとも一種を付与することができる限り、いずれを採用することもできる。また、機能性付与粒子自体がメディアとしての機能も持ちうる場合は、別途メディアを投入する必要はないが、担持後粒子の耐脱落性を向上させるためには高比重のメディアを投入するほうが好ましい。   As the media, ball media for grinding such as zirconia beads and glass beads are preferably used. As long as at least one selected from compressive force, impact force, grinding force and shearing force can be applied, any of them can be used. It can also be adopted. In addition, when the functionalized particles themselves can also function as media, it is not necessary to add media separately, but in order to improve the drop-off resistance of particles after loading, it is preferable to introduce media with high specific gravity. .

担持処理に用いる容器としては、ジルコニア製ポットや超高分子量ポリエチレン製ポットなどが好ましく使用される。更に、カートリッジフィルターのように、繊維状の高分子化合物成型品を容器内に固定して使用する製品に機能性付与粒子を担持する場合、製品の容器自体を担持に用いる容器として使用することも可能である。この場合、フィルター形状に加工した繊維を予め製品の容器内に組み付けた後、機能性付与粒子とメディアとを容器内に投入して密封し、製品の容器自体にメカノケミカルなエネルギーを付与した後に余分な機能性付与粒子とメディアとを排出すれば、機能性付与粒子を担持したカートリッジフィルターを容易に製造することが可能である。   As the container used for the supporting treatment, a pot made of zirconia, a pot made of ultra high molecular weight polyethylene, or the like is preferably used. In addition, when the functionalized particles are supported on a product that is used by fixing a fibrous polymer compound molded product in a container, such as a cartridge filter, the product container itself may be used as a container used for supporting. Is possible. In this case, after assembling the fibers processed into the filter shape in the product container in advance, the functional particles and media are put into the container and sealed, and mechanochemical energy is applied to the product container itself. By discharging excess functional particles and media, it is possible to easily produce a cartridge filter carrying functional particles.

他方、繊維やフィルム等の高分子化合物成型品に対して連続式で担持処理を行う場合は、該高分子化合物成型品が出入り可能な最小限のスリットを設けた容器の前後に、ニップロールやクローバーロール等の巻き出し機構及び/又は引き取り機構を設け、予めメディアを容器内に投入した上で、必要量の機能性付与粒子をホッパーなどの供給装置により容器内へ連続的に供給しながら容器に外力を付与すればよく、この外力としては、容器を回転させる方法や振動させる方法の他、固定した容器内部に、メディアと機能性付与粒子を持ち上げては自由落下させる回転フィンを設ける方法など、使用する装置に応じた方法を選択すればよい。   On the other hand, when a polymer compound molded product such as a fiber or a film is supported continuously, nip rolls and clovers are placed before and after a container provided with a minimum slit through which the polymer compound molded product can enter and exit. An unwinding mechanism such as a roll and / or a take-up mechanism is provided, and after a medium is put in the container in advance, a necessary amount of functionally imparted particles are continuously supplied into the container by a supply device such as a hopper. What is necessary is just to give external force, and as this external force, in addition to the method of rotating the container and the method of vibrating, a method of providing a rotating fin that lifts the media and functionally imparted particles and drops them freely inside the fixed container, etc. What is necessary is just to select the method according to the apparatus to be used.

担持する機能性付与粒子や高分子化合物成型品の性状によっては、機能性付与粒子及び高分子化合物成型品に影響が及ばない範囲で予備加熱を行った後、前記の担持方法を実施すれば、更に担持効果を高めることができる。   Depending on the properties of the functionally imparted particles and the polymer compound molded product to be supported, after carrying out the preheating in a range that does not affect the functionally imparted particles and the polymer compound molded product, Furthermore, the carrying effect can be enhanced.

また、機能性付与粒子及び高分子化合物成型品に影響が及ばない範囲であれば、加熱しつつ前記の担持方法を実施しても、更に担持効果を高めることができる。   In addition, the loading effect can be further enhanced by carrying out the loading method while heating, as long as the functionality-imparting particles and the polymer compound molded product are not affected.

担持加工後の高分子化合物成型品に余分な機能性付与粒子が付着している場合は、ガスブローや液体による洗浄により除去すればよい。除去した機能性付与粒子はフィルターなどの手段によって捕集し、再利用することが可能である。   If excess functional particles are attached to the polymer compound molded article after the supporting process, it may be removed by gas blowing or washing with a liquid. The removed functionality-imparting particles can be collected and reused by means such as a filter.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれにより何等限定を受けるものでは無い。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention does not receive any limitation by this.

[実施例1]
繊維径5〜10μmのポリエステル繊維から成る不織布を遊星ボールミルの粉砕容器壁面付近にホルダーを用いて固定し、平均粒径0.3μmの酸化チタン粉末とφ10mm鉄心入りナイロン製球を投入して、200rpmで10分間処理した。
処理後の不織布を水中で強撹拌して洗浄した後、その表面を電子顕微鏡で観察したところ、不織布上への酸化チタンの均一な担持が認められた。
[Example 1]
A non-woven fabric made of polyester fiber having a fiber diameter of 5 to 10 μm was fixed using a holder near the wall surface of the planetary ball mill crushing vessel, and a titanium oxide powder having an average particle diameter of 0.3 μm and a nylon ball with a φ10 mm iron core were added, and 200 rpm For 10 minutes.
After the treated non-woven fabric was vigorously stirred and washed in water, the surface thereof was observed with an electron microscope. As a result, uniform loading of titanium oxide on the non-woven fabric was observed.

[実施例2]
繊維径約10μmのアラミド繊維から成る不織布を遊星ボールミルの粉砕容器の容器壁面付近にホルダーを用いて固定し、平均粒径0.3μmの酸化チタン粉末とφ3mmジルコニアビーズを投入して、200rpmで10分間処理した。
処理後の不織布を水中で強撹拌して洗浄した後、その表面を電子顕微鏡で観察したところ、不織布上への酸化チタンの均一な担持が認められた。
[Example 2]
A non-woven fabric made of aramid fibers having a fiber diameter of about 10 μm is fixed with a holder near the container wall surface of the planetary ball mill grinding container. Treated for minutes.
After the treated non-woven fabric was vigorously stirred and washed in water, the surface thereof was observed with an electron microscope. As a result, uniform loading of titanium oxide on the non-woven fabric was observed.

[実施例3]
繊維径約5〜10μmのポリエステル繊維から成る不織布を遊星ボールミルの粉砕容器の容器壁面付近にホルダーを用いて固定し、平均粒径0.5μmの真ちゅう粉末とφ3mmジルコニアビーズを投入して、200rpmで10分間処理した。
処理後の不織布を水中で強撹拌して洗浄した後、その表面を電子顕微鏡で観察したところ、不織布上への真ちゅうの均一な担持が認められた。
[Example 3]
A non-woven fabric made of polyester fiber having a fiber diameter of about 5 to 10 μm is fixed using a holder near the container wall surface of a planetary ball mill grinding container, and brass powder with an average particle diameter of 0.5 μm and φ3 mm zirconia beads are charged at 200 rpm. Treated for 10 minutes.
After the treated non-woven fabric was vigorously stirred and washed in water, the surface was observed with an electron microscope. As a result, uniform support of brass on the non-woven fabric was observed.

[実施例4]
繊維径約30μmのポリ塩化ビニル繊維バンドル、平均粒径0.3μmの酸化チタン粉末、φ3mmジルコニアビーズを遊星ボールミルの粉砕容器内に投入して、200rpmで10分間処理した。
処理後の繊維バンドルを水中で強撹拌して洗浄した後、その表面を電子顕微鏡で観察したところ、繊維上への酸化チタンの均一な担持が認められた。
[Example 4]
A polyvinyl chloride fiber bundle having a fiber diameter of about 30 μm, a titanium oxide powder having an average particle diameter of 0.3 μm, and φ3 mm zirconia beads were placed in a pulverization vessel of a planetary ball mill and treated at 200 rpm for 10 minutes.
The treated fiber bundle was washed with strong stirring in water, and then its surface was observed with an electron microscope. As a result, uniform loading of titanium oxide on the fiber was observed.

[実施例5]
繊維径約20μmのアラミド繊維バンドル、平均粒径0.3μmの酸化チタン粉末、φ3mmジルコニアビーズを遊星ボールミルの粉砕容器内に投入して、200rpmで10分間処理した。
処理後の繊維バンドルを水中で強撹拌して洗浄した後、その表面を電子顕微鏡で観察したところ、繊維上への酸化チタンの均一な担持が認められた。
[Example 5]
An aramid fiber bundle having a fiber diameter of about 20 μm, titanium oxide powder having an average particle diameter of 0.3 μm, and φ3 mm zirconia beads were placed in a pulverization vessel of a planetary ball mill and treated at 200 rpm for 10 minutes.
The treated fiber bundle was washed with strong stirring in water, and then its surface was observed with an electron microscope. As a result, uniform loading of titanium oxide on the fiber was observed.

[実施例6]
繊維径約30μmのポリ塩化ビニル繊維バンドル、平均粒径0.4μmのポリスチレン粉末、φ3mmジルコニアビーズを遊星ボールミルの粉砕容器内に投入して、200rpmで10分間処理した。
処理後の繊維バンドルを水中で強撹拌して洗浄した後、その表面を電子顕微鏡で観察したところ、繊維上へのポリスチレンの均一な担持が認められた。
[Example 6]
A polyvinyl chloride fiber bundle having a fiber diameter of about 30 μm, polystyrene powder having an average particle diameter of 0.4 μm, and φ3 mm zirconia beads were placed in a pulverization vessel of a planetary ball mill and treated at 200 rpm for 10 minutes.
After the treated fiber bundle was washed with strong stirring in water, the surface thereof was observed with an electron microscope. As a result, uniform loading of polystyrene on the fiber was observed.

[実施例7]
繊維径約20μmのアラミド繊維バンドル、平均粒径0.4μmのポリスチレン、φ3mmジルコニアビーズを遊星ボールミルの粉砕容器内に投入して、200rpmで10分間処理した。
処理後の繊維バンドルを水中で強撹拌して洗浄した後、その表面を電子顕微鏡で観察したところ、繊維上へのポリスチレンの均一な担持が認められた。
[Example 7]
An aramid fiber bundle having a fiber diameter of about 20 μm, polystyrene having an average particle diameter of 0.4 μm, and φ3 mm zirconia beads were placed in a pulverization vessel of a planetary ball mill and treated at 200 rpm for 10 minutes.
After the treated fiber bundle was washed with strong stirring in water, the surface thereof was observed with an electron microscope. As a result, uniform loading of polystyrene on the fiber was observed.

[実施例8]
PTFE(ポリテトラフルオロエチレン)繊維からなる不織布、平均粒径0.3μmの酸化チタン粉末、φ3mmジルコニアビーズを遊星ボールミルの粉砕容器内に投入して、200rpmで10分間処理した。
処理後のPTFE不織布を水中で強撹拌して洗浄した後、その表面を電子顕微鏡で観察したところ、不織布上への酸化チタンの均一な担持が認められた。
[Example 8]
Nonwoven fabric made of PTFE (polytetrafluoroethylene) fiber, titanium oxide powder having an average particle size of 0.3 μm, and φ3 mm zirconia beads were put into a pulverization vessel of a planetary ball mill and treated at 200 rpm for 10 minutes.
After the treated PTFE nonwoven fabric was washed with strong stirring in water, the surface thereof was observed with an electron microscope. As a result, uniform loading of titanium oxide on the nonwoven fabric was observed.

[実施例9]
厚み約50μmのポリイミドフィルム、平均粒径0.3μmの酸化チタン粉末、φ3mmジルコニアビーズを遊星ボールミルの粉砕容器内に投入して、400rpmで15分間処理した。
処理後のフィルムを水中で強撹拌して洗浄した後、その表面を電子顕微鏡で観察したところ、フィルム上へのポリスチレンの均一な担持が認められた。
[Example 9]
A polyimide film having a thickness of about 50 μm, titanium oxide powder having an average particle size of 0.3 μm, and φ3 mm zirconia beads were put into a pulverization vessel of a planetary ball mill and treated at 400 rpm for 15 minutes.
After the treated film was vigorously stirred and washed in water, the surface was observed with an electron microscope, and uniform loading of polystyrene on the film was observed.

本発明の製造方法により得られた機能性付与粒子を担持した高分子化合物成型品は、高性能フィルター、抗菌性素材など各種の幅広い用途に適用することが可能であり、その工業的意義は大きい。   The polymer compound molded article carrying the functionalized particles obtained by the production method of the present invention can be applied to a wide variety of uses such as high-performance filters and antibacterial materials, and its industrial significance is great. .

Claims (8)

高分子化合物成型品と機能性付与粒子とを共存させた系に、圧縮力、衝撃力、摩砕力及びせん断力から選ばれる少なくとも一種をメカノケミカルなエネルギーとして付与することにより、高分子化合物成型品の表面に機能性付与粒子を担持させる、機能性を有する高分子化合物成型品の製造方法。   Polymer compound molding by applying at least one kind selected from compressive force, impact force, grinding force and shear force as mechanochemical energy to a system in which a polymer compound molded product and functionality-imparting particles coexist. A method for producing a functional polymer compound molded article in which functionally imparted particles are supported on the surface of the article. メカノケミカルなエネルギーを付与することにより、機能性付与粒子の粉砕、並びに粉砕及び解砕と同時に、高分子化合物成型品表面への機能性付与粒子の担持を行う、請求項1記載の製造方法。   The production method according to claim 1, wherein the mechanochemical energy is applied so that the functional particles are supported on the surface of the polymer compound molded article simultaneously with the pulverization of the functional particles and the pulverization and pulverization. メカノケミカルなエネルギーの付与を、粉砕ボールを用いた粉砕装置で行う、請求項1記載の製造方法。   The production method according to claim 1, wherein the mechanochemical energy is imparted by a pulverizer using a pulverized ball. 粉砕ボールを用いた粉砕装置として、遊星型ボールミル、転動式ボールミル及び振動式ボールミルから選ばれた少なくとも一種を用いる、請求項3記載の製造方法。   The production method according to claim 3, wherein at least one selected from a planetary ball mill, a rolling ball mill, and a vibration ball mill is used as a pulverizer using the pulverized balls. 高分子化合物成型品と機能性付与粒子とを予め加熱したのち、メカノケミカルなエネルギーを付与する、請求項1記載の製造方法。   The manufacturing method of Claim 1 which provides a mechanochemical energy after heating a high molecular compound molded article and functional provision particle | grains previously. 高分子化合物成型品と機能性付与粒子とを加熱しつつ、メカノケミカルなエネルギーを付与する、請求項1記載の製造方法。   The manufacturing method of Claim 1 which provides mechanochemical energy, heating a high molecular compound molded article and functionality provision particle | grains. 高分子化合物成型品が、フィラメント形態、ステープル形態、繊維集合体形態、繊維構造体形態、面状体からなる群から選ばれた少なくとも一種の形態を有する、請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the polymer compound molded article has at least one form selected from the group consisting of a filament form, a staple form, a fiber assembly form, a fiber structure form, and a planar body. 請求項1記載の製造方法によって得られる、機能性を有する高分子成型品。   A polymer molded product having functionality obtained by the production method according to claim 1.
JP2004006439A 2004-01-14 2004-01-14 Product formed from polymer compound having functionality and method for producing the same Pending JP2005200492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006439A JP2005200492A (en) 2004-01-14 2004-01-14 Product formed from polymer compound having functionality and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006439A JP2005200492A (en) 2004-01-14 2004-01-14 Product formed from polymer compound having functionality and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005200492A true JP2005200492A (en) 2005-07-28

Family

ID=34820402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006439A Pending JP2005200492A (en) 2004-01-14 2004-01-14 Product formed from polymer compound having functionality and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005200492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179934A (en) * 2006-12-28 2008-08-07 Kao Corp Composite fiber and molded article by using the same
JP2021059692A (en) * 2019-10-09 2021-04-15 住友化学株式会社 Method for producing short fiber-like filler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179934A (en) * 2006-12-28 2008-08-07 Kao Corp Composite fiber and molded article by using the same
JP2021059692A (en) * 2019-10-09 2021-04-15 住友化学株式会社 Method for producing short fiber-like filler
JP7398235B2 (en) 2019-10-09 2023-12-14 住友化学株式会社 Method for producing short fibrous filler

Similar Documents

Publication Publication Date Title
Greiner et al. Functional self-assembled nanofibers by electrospinning
Pereao et al. Electrospinning: polymer nanofibre adsorbent applications for metal ion removal
Feng et al. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization
KR101239720B1 (en) Abrasive cloth and method for preparing nano-fiber structure
Tijing et al. Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles
Wang et al. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets
McEachin et al. Production and characterization of polycaprolactone nanofibers via forcespinning™ technology
KR20160089427A (en) Dimensionally-stable melt blown nonwoven fibrous structures, and methods and apparatus for making same
Han et al. Incorporation of silver nanoparticles into the bulk of the electrospun ultrafine polyimide nanofibers via a direct ion exchange self-metallization process
Wang et al. Multilevel‐layer‐structured polyamide 6/poly (trimethylene terephthalate) nanofibrous membranes for low‐pressure air filtration
Amid et al. Hybrid adsorbent nonwoven structures: a review of current technologies
KR20110097252A (en) Heat insulation articles without segregation of insulating nano-powder and its manufacturing method
CN103392034B (en) Fibre web, its preparation method and include the filter of this fibre web
Liu et al. Fabrication of polypropylene-g-(diallylamino triazine) bifunctional nonwovens with antibacterial and air filtration activities by reactive extrusion and melt-blown technology
KR20040039286A (en) Flexible Adsorbent Filter with High Void Volume
WO2003060216A1 (en) Process for producing electret and production apparatus
Banerji et al. Porous fibers templated by melt blowing cocontinuous immiscible polymer blends
JP2005200492A (en) Product formed from polymer compound having functionality and method for producing the same
JP2018040066A (en) Nonwoven fabric retaining functional powder and manufacturing method thereof
JP4178997B2 (en) Functional fiber assembly and molded body using the same
JP2013002818A (en) Composite adsorbent for adsorbing cesium, filter, and column
Nazir Modelling and optimization of electrospun materials for technical applications
KR100628667B1 (en) Filter comprising antimicrobial nano metal components and process for preparing the same
KR20210137563A (en) A method for manufacturing a nanofiber integrated body, an apparatus for manufacturing a nanofiber integrated body, and a nanofiber integrated body
JP2006291443A (en) Non-linting water-absorbing polypropylene spun bond material and method for forming the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050527