JP2018040066A - Nonwoven fabric retaining functional powder and manufacturing method thereof - Google Patents

Nonwoven fabric retaining functional powder and manufacturing method thereof Download PDF

Info

Publication number
JP2018040066A
JP2018040066A JP2016172733A JP2016172733A JP2018040066A JP 2018040066 A JP2018040066 A JP 2018040066A JP 2016172733 A JP2016172733 A JP 2016172733A JP 2016172733 A JP2016172733 A JP 2016172733A JP 2018040066 A JP2018040066 A JP 2018040066A
Authority
JP
Japan
Prior art keywords
functional powder
fiber
powder
nonwoven fabric
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016172733A
Other languages
Japanese (ja)
Other versions
JP6779718B2 (en
Inventor
史典 岩城
Fuminori Iwaki
史典 岩城
剛士 山本
Takeshi Yamamoto
剛士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ambic Co Ltd
Original Assignee
Ambic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ambic Co Ltd filed Critical Ambic Co Ltd
Priority to JP2016172733A priority Critical patent/JP6779718B2/en
Publication of JP2018040066A publication Critical patent/JP2018040066A/en
Application granted granted Critical
Publication of JP6779718B2 publication Critical patent/JP6779718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nonwoven fabric capable of obtaining an effect equivalent to a content of functional powder without coating the surface of the functional powder, and yet not exfoliating the functional powder by applying the functional powder to a nonwoven fabric without using a binder.SOLUTION: The nonwoven fabric retaining functional powder is obtained by disposing a compressed air injection device and a powder shake down device in the vicinity of a spinneret of a melt spinning machine, jetting a molten thermoplastic resin in a horizontal direction as a fiber flow from the spinneret while injecting compressed air toward the fiber flow from the compressed air injection device to have the fiber flow a spirally entangled fiber, and shaking down functional powder onto the fiber from the powder shake down device to entangle.SELECTED DRAWING: Figure 1

Description

本発明は、機能性粉体を保持した不織布及びその製造方法に関する。 The present invention relates to a nonwoven fabric holding functional powder and a method for producing the same.

不織布や織布等の繊維構造体に、構造体を構成する繊維が有する機能以外の機能を付与する場合、一般的に機能性粉体を繊維構造体に付与する方法が用いられている。機能性粉体を繊維構造体に付与する方法としては、あらかじめ機能性粉体を練り込んだ繊維材料を用いて紡糸を行い、不織布・織布を作製する方法、機能性粉体をバインダーとなる溶液に混ぜて含浸又はスプレー等で不織布・織布に塗布し乾燥させる方法等が用いられる。例えば、特許文献1には、原料繊維の少なくとも一部分が熱可塑性高分子繊維からなる不織布の少なくとも表面上に機能性粒子を乾式法で担持させ、次いで、熱処理により不織布中の熱可塑性高分子繊維の少なくとも表面を軟化させて繊維表面に機能性粒子を固着させる方法が開示されている。 When a function other than the function of the fibers constituting the structure is imparted to a fiber structure such as a nonwoven fabric or a woven fabric, a method of imparting functional powder to the fiber structure is generally used. As a method of imparting functional powder to the fiber structure, spinning is performed using a fiber material in which the functional powder is kneaded in advance to produce a nonwoven fabric / woven fabric, and the functional powder is used as a binder. A method of mixing with a solution and applying to a nonwoven fabric or woven fabric by impregnation or spraying and drying is used. For example, in Patent Document 1, functional particles are supported on at least the surface of a nonwoven fabric in which at least a part of the raw material fibers are thermoplastic polymer fibers by a dry method, and then the thermoplastic polymer fibers in the nonwoven fabric are subjected to heat treatment. A method is disclosed in which at least the surface is softened and the functional particles are fixed to the fiber surface.

しかし、あらかじめ機能性粉体を練り込んだ繊維材料を用いて紡糸を行い、不織布・織布を作製する方法では、機能性粉体が繊維材料に練り込まれているため、機能性粉体の表面の大部分が繊維材料でコーティングされた状態となっており、機能性粉体の含有量(総表面積)相当の効果を得ることができなかった。また、機能性粉体には、例えば、耐熱性、耐酸アルカリ性等、繊維の紡糸条件に耐え得る性質が要求されるため、実際に繊維に練り込むことのできる機能性粉体は限定されるという問題があった。 However, in the method of producing a nonwoven fabric or woven fabric by spinning using a fiber material kneaded with a functional powder in advance, the functional powder is kneaded into the fiber material. Most of the surface was coated with a fiber material, and an effect equivalent to the content (total surface area) of the functional powder could not be obtained. The functional powder is required to have a property capable of withstanding the fiber spinning conditions such as heat resistance and acid / alkali resistance, so that the functional powder that can be actually kneaded into the fiber is limited. There was a problem.

一方、機能性粉体をバインダーとなる溶液に混ぜて含浸又はスプレー等で不織布・織布に塗布し乾燥させる方法では、接着剤であるバインダーが繊維と機能性粉体との接点を中心に付着して、機能性粉体の表面が部分的にコーティングされた状態となるため、機能性粉体を練り込む方法と同様に機能性粉体の含有量相当の効果を得ることができないという問題があった。そこで、機能性粉体の含有量相当の効果を得ることができる方法が望まれていた。 On the other hand, in a method in which functional powder is mixed with a binder solution and impregnated or sprayed onto a nonwoven fabric or woven fabric and dried, the binder, which is an adhesive, adheres mainly to the contact points between the fibers and the functional powder. Then, since the surface of the functional powder is partially coated, there is a problem that the effect equivalent to the content of the functional powder cannot be obtained as in the method of kneading the functional powder. there were. Therefore, a method capable of obtaining an effect equivalent to the content of the functional powder has been desired.

特開平7−268767号公報JP-A-7-268767

本発明は、バインダーを用いることなく不織布に機能性粉体を付与することで、機能性粉体の表面がコーティングされることなく、機能性粉体の含有量相当の効果を得ることができ、しかも、機能性粉体の脱落が起こらない不織布を提供することを目的とする。 The present invention can provide an effect equivalent to the content of the functional powder without coating the surface of the functional powder by applying the functional powder to the nonwoven fabric without using a binder, Moreover, an object is to provide a nonwoven fabric in which functional powder does not fall off.

本発明者らは、鋭意検討の結果、溶融紡糸装置の紡糸口金近傍に、圧搾空気噴射装置と粉体振り落とし装置とを配置し、紡糸口金から、溶融された熱可塑性樹脂を繊維流として水平方向に噴射するとともに、圧搾空気噴射装置から繊維流に向けて圧搾空気を噴射して、繊維流を渦状に絡み合った繊維とし、粉体振り落とし装置から、繊維に機能性粉体を振り落として絡み合わせて得られた機能性粉体を保持した不織布では、機能性粉体の表面がコーティングされることなく、機能性粉体の含有量相当の効果を得ることができ、しかも、機能性粉体の脱落が起こらないことを見出し、本発明を完成させた。 As a result of intensive studies, the inventors have arranged a compressed air injection device and a powder shake-off device in the vicinity of the spinneret of the melt-spinning device, and the molten thermoplastic resin from the spinneret as a fiber stream is horizontally disposed. In addition to jetting in the direction, compressed air is jetted from the compressed air jetting device toward the fiber flow, and the fiber flow is made into a spirally entangled fiber, and the functional powder is shaken off to the fiber from the powder shaker In the nonwoven fabric holding the functional powder obtained by entanglement, the surface of the functional powder is not coated, and an effect equivalent to the content of the functional powder can be obtained. The present invention was completed by finding that no body dropout occurred.

すなわち、第一の本発明の機能性粉体を保持した不織布は、
溶融紡糸装置の紡糸口金近傍に、圧搾空気噴射装置と粉体振り落とし装置とを配置し、
紡糸口金から、溶融された熱可塑性樹脂を繊維流として水平方向に噴射するとともに、
圧搾空気噴射装置から繊維流に向けて圧搾空気を噴射して、繊維流を渦状に絡み合った繊維とし、
粉体振り落とし装置から、繊維に機能性粉体を振り落として絡み合わせて得られたことを特徴とする。
That is, the nonwoven fabric holding the functional powder of the first invention is
In the vicinity of the spinneret of the melt spinning device, a compressed air jet device and a powder shaker device are arranged,
From the spinneret, the molten thermoplastic resin is injected in the horizontal direction as a fiber stream,
Compressed air is sprayed from the compressed air injection device toward the fiber flow, and the fiber flow is entangled into fibers,
It is characterized in that it was obtained from a powder shake-off device by swinging the functional powder around the fiber and intertwining it.

第一の本発明の機能性粉体を保持した不織布において、機能性粉体の保持量は、繊維100重量部に対して50重量部以上であることが好ましい。 In the nonwoven fabric holding the functional powder of the first aspect of the present invention, the amount of the functional powder held is preferably 50 parts by weight or more with respect to 100 parts by weight of the fiber.

第一の本発明の機能性粉体を保持した不織布において、繊維は平均繊維径が10μm以下であり、平均繊維長が150mm以上であることが好ましい。 In the nonwoven fabric holding the functional powder of the first aspect of the present invention, the fibers preferably have an average fiber diameter of 10 μm or less and an average fiber length of 150 mm or more.

第一の本発明の機能性粉体を保持した不織布において、機能性粉体は、比重が7.0以下、かつ、平均粒子径が60μm以下の粉末、顆粒又は多孔質顆粒であることが好ましい。 In the nonwoven fabric holding the functional powder of the first invention, the functional powder is preferably a powder, granule or porous granule having a specific gravity of 7.0 or less and an average particle size of 60 μm or less. .

本発明の機能性粉体を保持した不織布の製造方法は、
溶融紡糸装置の紡糸口金近傍に、圧搾空気噴射装置と粉体振り落とし装置とを配置し、
紡糸口金から、溶融された熱可塑性樹脂を繊維流として水平方向に噴射する工程、
圧搾空気噴射装置から繊維流に向けて圧搾空気を噴射して、繊維流を渦状に絡み合った繊維とする工程、及び、
粉体振り落とし装置から、繊維に機能性粉体を振り落として絡み合わせる工程
を含むことを特徴とする。
The method for producing a nonwoven fabric holding the functional powder of the present invention is as follows.
In the vicinity of the spinneret of the melt spinning device, a compressed air jet device and a powder shaker device are arranged,
A step of injecting a molten thermoplastic resin in the horizontal direction as a fiber stream from a spinneret;
A process of jetting compressed air from the compressed air jetting device toward the fiber stream to form a fiber stream entangled with the fiber stream; and
From the powder shaker, the process includes a step of tangling the functional powder onto the fiber.

第二の本発明の機能性粉体を保持した不織布は、
熱可塑性樹脂の繊維からなる不織布であって、
機能性粉体を保持し、機能性粉体の表面積の50%以上が露出していることを特徴とする。
The nonwoven fabric holding the functional powder of the second invention is
A non-woven fabric made of thermoplastic resin fibers,
The functional powder is held, and 50% or more of the surface area of the functional powder is exposed.

第一の本発明の機能性粉体を保持した不織布は、機能性粉体が繊維の隙間にバインダーを使用しない状態で保持されているため、機能性粉体の表面を覆うものがなく、従来の機能性粉体を練り込む方法やバインダーを用いる方法で製造された不織布と比較して、機能性粉体が機能する表面積が大きい。これにより、機能性粉体の性能を落とすことなく、含有量相当の効果を得ることができる。
本発明の機能性粉体を保持した不織布の製造方法によれば、第一の本発明の機能性粉体を保持した不織布を好適に製造することができる。
第二の本発明の機能性粉体を保持した不織布は、機能性粉体の表面積の50%以上が露出しているため、従来の機能性粉体を練り込む方法やバインダーを用いる方法で製造された不織布と比較して、機能性粉体が機能する表面積が大きい。これにより、機能性粉体の性能を落とすことなく、含有量相当の効果を得ることができる。
The non-woven fabric holding the functional powder of the first aspect of the present invention has no functional surface covering the surface of the functional powder because the functional powder is held without using a binder in the gap between the fibers. Compared with the nonwoven fabric manufactured by the method of kneading the functional powder or the method of using a binder, the functional powder has a larger surface area. Thereby, the effect equivalent to content can be acquired, without reducing the performance of functional powder.
According to the method for producing a nonwoven fabric holding the functional powder of the present invention, the nonwoven fabric holding the functional powder of the first present invention can be suitably produced.
The nonwoven fabric holding the functional powder of the second aspect of the present invention is produced by a conventional method of kneading the functional powder or a method using a binder because 50% or more of the surface area of the functional powder is exposed. Compared with the non-woven fabric, the functional powder has a larger surface area. Thereby, the effect equivalent to content can be acquired, without reducing the performance of functional powder.

第一の本発明の機能性粉体を保持した不織布の製造に使用される溶融紡糸装置、圧搾空気噴射装置及び粉体振り落とし装置の一例を示す模式図である。It is a schematic diagram which shows an example of the melt spinning apparatus used for manufacture of the nonwoven fabric holding the functional powder of 1st this invention, a compressed air injection apparatus, and a powder shake-off apparatus. 実施例1で得られた機能性粉体を保持した不織布の表面状態の光学顕微鏡写真である。2 is an optical micrograph of the surface state of a nonwoven fabric holding the functional powder obtained in Example 1. FIG. 比較例1で得られた機能性粉体を保持した不織布の表面状態の光学顕微鏡写真である。4 is an optical micrograph of the surface state of a nonwoven fabric holding the functional powder obtained in Comparative Example 1. 比較例3で得られた機能性粉体を保持した不織布の表面状態の光学顕微鏡写真である。4 is an optical micrograph of the surface state of a nonwoven fabric holding the functional powder obtained in Comparative Example 3.

<第一の本発明の機能性粉体を保持した不織布>
以下、第一の本発明の機能性粉体を保持した不織布について、詳細に説明する。
第一の本発明の機能性粉体を保持した不織布は、溶融紡糸装置の紡糸口金近傍に、圧搾空気噴射装置と粉体振り落とし装置とを配置し、紡糸口金から、溶融された熱可塑性樹脂を繊維流として水平方向に噴射するとともに、圧搾空気噴射装置から繊維流に向けて圧搾空気を噴射して、繊維流を渦状に絡み合った繊維とし、粉体振り落とし装置から、繊維に機能性粉体を振り落として絡み合わせて得られたことを特徴とする。
<Nonwoven fabric holding functional powder of first invention>
Hereinafter, the nonwoven fabric holding the functional powder of the first invention will be described in detail.
The nonwoven fabric holding the functional powder of the first aspect of the present invention is a thermoplastic resin melted from the spinneret by arranging a compressed air jet device and a powder shaker near the spinneret of the melt spinning device. Is sprayed in the horizontal direction as a fiber stream, and compressed air is sprayed from the compressed air spray device toward the fiber stream to form a fiber stream that is entangled with the fiber stream. It is characterized by being obtained by shaking the body and entangled it.

第一の本発明の機能性粉体を保持した不織布は、渦状に絡み合った繊維で構成される不織布であり、繊維間に機能性粉体がバインダーを使用しない状態で保持され、機能性粉体の脱落が起こらないことを特徴とする。溶融紡糸装置の紡糸口金から噴射された熱可塑性樹脂は、紡糸口金近傍に配置された圧搾空気噴射装置からの圧搾空気により、数十から数百本の繊維流となり、且つ、それらの繊維流が渦状に絡み合うことを特徴とする。 The non-woven fabric holding the functional powder of the first invention is a non-woven fabric composed of fibers entangled in a spiral shape, and the functional powder is held without using a binder between the fibers. It is characterized by no dropout. The thermoplastic resin injected from the spinneret of the melt spinning apparatus becomes a flow of several tens to several hundreds of fibers by the compressed air from the compressed air injection device disposed in the vicinity of the spinneret. It is characterized by being intertwined in a spiral.

第一の本発明の機能性粉体を保持した不織布において、機能性粉体は、紡糸口金近傍に配置された粉体振り落とし装置から繊維流が渦状に絡み合った繊維に振り落とされることで、バインダーを使用しなくても繊維の隙間に物理的に保持されるとともに、繊維の隙間から脱落しないことを特徴とする。なお、熱可塑性樹脂の種類により静電気的力が加わり機能性粉体の保持力が強化される場合もある。 In the nonwoven fabric holding the functional powder of the first aspect of the present invention, the functional powder is shaken off to the fibers in which the fiber flow is spirally entangled from the powder shaker arranged in the vicinity of the spinneret, Even if it does not use a binder, it is physically held in the gap between the fibers and does not fall off from the gap between the fibers. In some cases, the holding force of the functional powder may be enhanced by applying an electrostatic force depending on the type of the thermoplastic resin.

図1は、第一の本発明の機能性粉体を保持した不織布の製造に使用される溶融紡糸装置、圧搾空気噴射装置及び粉体振り落とし装置の一例を示す模式図である。図1において、熱可塑性樹脂の繊維(以下、長繊維ともいう)はメルトブロー法により作製される。溶融紡糸装置1内に設置したヒーター(図示せず)で繊維となる熱可塑性樹脂2を溶融させ、溶融押出機4の回転スクリュー(図示せず)により紡糸口金5から水平方向に噴射する。噴射された熱可塑性樹脂2は、その後、圧搾空気噴射装置6の圧搾空気噴射口7から噴射された高速の圧搾空気8を当てることで、その衡撃により分割され、その後空気の気流に乗ることで延伸され、数十〜数百本の長繊誰となる。その際、圧搾空気8の気流で押し出された長繊維は空気抵抗を受けて、カルマン渦状に移動する。そのため、長繊維同士は平行に移動するのではなく、渦状に絡み合いながら移動する。なお、本発明において、長繊維とは見かけの平均繊維長が150mm以上のものと定義する。 FIG. 1 is a schematic view showing an example of a melt spinning apparatus, a compressed air injection apparatus, and a powder shake-off apparatus used for manufacturing a nonwoven fabric holding the functional powder of the first aspect of the present invention. In FIG. 1, thermoplastic resin fibers (hereinafter also referred to as long fibers) are produced by a melt-blowing method. A thermoplastic resin 2 serving as a fiber is melted by a heater (not shown) installed in the melt spinning apparatus 1 and sprayed from the spinneret 5 in a horizontal direction by a rotating screw (not shown) of the melt extruder 4. The injected thermoplastic resin 2 is then divided by striking by applying high-speed compressed air 8 injected from the compressed air injection port 7 of the compressed air injection device 6, and then rides on the air stream. It will be stretched at tens and hundreds of long filaments. At that time, the long fibers pushed out by the air flow of the compressed air 8 receive air resistance and move in a Karman vortex. Therefore, the long fibers do not move in parallel but move while being intertwined in a spiral shape. In the present invention, long fibers are defined as those having an apparent average fiber length of 150 mm or more.

紡糸口金5の数は、1個に限定されず、複数個であってもよい。生産性の観点からは、紡糸口金の数は複数個であることが好ましい。一方、押出圧を高くしてより細い繊維を作製することができるという観点からは、紡糸口金の数は1個であることが好ましい。 The number of the spinneret 5 is not limited to one and may be plural. From the viewpoint of productivity, the number of spinnerets is preferably plural. On the other hand, from the viewpoint that a finer fiber can be produced by increasing the extrusion pressure, the number of spinnerets is preferably one.

圧搾空気噴射装置6は、噴射された熱可塑性樹脂2に高速の圧搾空気8を当てるために使用される。圧搾空気噴射口7の位置は紡糸口金5の周囲であれば特に限定されないが、紡糸口金5から噴射された熱可塑性樹脂2は重力により下方向に落下するため、紡糸口金5の高さより下部分に設置されることが望ましい。紡糸口金5が複数個ある場合等は、圧搾空気噴射口7を複数個設置してもよい。 The compressed air injection device 6 is used to apply high-speed compressed air 8 to the injected thermoplastic resin 2. The position of the compressed air injection port 7 is not particularly limited as long as it is around the spinneret 5. However, since the thermoplastic resin 2 injected from the spinneret 5 falls downward due to gravity, a portion below the height of the spinneret 5 is used. It is desirable to be installed in When there are a plurality of spinnerets 5, a plurality of compressed air injection ports 7 may be provided.

圧搾空気8の空圧は、特に限定されないが、通常0.1Mpa以上である。圧搾空気の空圧を高くすると、圧搾空気の速度は速くなる。なお、高粘度の熱可塑性樹脂を用いる揚合、空圧0.1Mpaとすると繊維径を細くすることが難しいため、一般的には0.2Mpa以上に設定することが好ましい。 The air pressure of the compressed air 8 is not particularly limited, but is usually 0.1 Mpa or more. Increasing the air pressure of the compressed air increases the speed of the compressed air. In addition, since it is difficult to make the fiber diameter small when using a high-viscosity thermoplastic resin and an air pressure of 0.1 Mpa, it is generally preferable to set it to 0.2 Mpa or more.

圧搾空気8の温度は、特に限定されないが、熱可塑性樹脂の融点〜分解点の温度であることが好ましく、分解点−30℃までであることがより好ましい。圧搾空気の温度が熱可塑性樹脂の融点未満であると、熱可塑性樹脂の塊(ショット)が発生しやすくなったり、平均繊維径が10μmを超えて太くなることがあり、熱可塑性樹脂の分解点の温度を超えると、熱可塑性樹脂の一部が分解し歩留が悪くなり、またショットが発生しやすくなることがある。 The temperature of the compressed air 8 is not particularly limited, but is preferably from the melting point to the decomposition point of the thermoplastic resin, more preferably up to a decomposition point of −30 ° C. If the temperature of the compressed air is less than the melting point of the thermoplastic resin, thermoplastic resin lumps (shots) are likely to occur or the average fiber diameter may exceed 10 μm and become thick, and the decomposition point of the thermoplastic resin If the temperature is exceeded, a part of the thermoplastic resin may be decomposed to deteriorate the yield, and shots may easily occur.

熱可塑性樹脂2としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系樹脂、イソフタル酸及びフタル酸等の重合物、ポリアミド系樹脂、ポリプロピレン等のポリオレフィン系樹脂、これらの共重合体等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの熱可塑性樹脂の中では、静電気的力により機能性粉体の保持力を強化することができるという観点から、ポリプロピレン等が好ましい。 The thermoplastic resin 2 is not particularly limited. For example, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polymers such as isophthalic acid and phthalic acid, polyolefin resins such as polyamide resin, and polypropylene. Examples thereof include resins and copolymers thereof. These may be used alone or in combination of two or more. Among these thermoplastic resins, polypropylene and the like are preferable from the viewpoint that the holding power of the functional powder can be enhanced by electrostatic force.

熱可塑性樹脂2の粘度は、特に限定されないが、MFRが10以上であることが好ましく、1000以上であることがより好ましい。ここでいうMFR(メルトフローレート)とは、押出式プラストメーターで、230℃、2.16kgで加圧し10分間で押し出される樹脂量(単位はg)のことを指す。MFRが10未満であると、粘度が高いため繊維になりにくく、繊維になった場合でも平均繊維径が10μmを超えて太くなる傾向にある。 The viscosity of the thermoplastic resin 2 is not particularly limited, but the MFR is preferably 10 or more, and more preferably 1000 or more. Here, MFR (melt flow rate) refers to the amount of resin (unit: g) that is extruded at 230 ° C. and 2.16 kg and extruded in 10 minutes by an extrusion plastometer. When the MFR is less than 10, the viscosity is high, so that it is difficult to become a fiber, and even when it becomes a fiber, the average fiber diameter tends to be thicker than 10 μm.

熱可塑性樹脂2は、紡出性の向上や繊維の機能強化目的のため、慣用的に用いられる添加剤を含有していてもよい。添加剤としては、特に限定されないが、例えば、酸化防止剤、紫外線吸収剤、熱安定剤等の安定剤や、帯電防止剤、難燃剤、充填材、香料、蛍光増白剤、湿潤剤、可塑剤、増粘剤、分散剤、発泡剤等が挙げられる。これらの添加剤は、単独で用いてもよいし、2種以上を併用してもよい。 The thermoplastic resin 2 may contain a conventionally used additive for the purpose of improving the spinning property and reinforcing the function of the fiber. The additive is not particularly limited, and examples thereof include stabilizers such as antioxidants, ultraviolet absorbers, heat stabilizers, antistatic agents, flame retardants, fillers, fragrances, fluorescent whitening agents, wetting agents, plasticizers. Agents, thickeners, dispersants, foaming agents and the like. These additives may be used independently and may use 2 or more types together.

繊維の平均繊維径は、特に限定されないが、10μm以下であることが好ましく、3μm以下であることがより好ましい。一般的に繊維が同じ重量の場合、平均繊維径が細いほうが、機能性粉体の保持量を多くすることができるためである。平均繊維径が10μmを超えると、紡糸口金5から噴射される繊維の数が減少するため、機能性粉体の保持が困難となることがある。なお、本発明において平均繊維径とは、走査型電子顕微鏡(SEM)を用いて、倍率3000倍の写真を撮り、繊維50本の繊維径を計測した結果の平均値をいう。
平均繊維径は、熱可塑性樹脂の粘度、圧搾空気の空圧、温度等のバランスを調整することで調整することができる。一般的に、熱可塑性樹脂の粘度が低いほど、また、圧搾空気8の空圧と温度が高いほど、平均繊維径は小さく(細く)なる傾向を示す。
Although the average fiber diameter of a fiber is not specifically limited, It is preferable that it is 10 micrometers or less, and it is more preferable that it is 3 micrometers or less. This is because, in general, when the fibers have the same weight, the smaller the average fiber diameter, the larger the amount of functional powder that can be retained. When the average fiber diameter exceeds 10 μm, the number of fibers ejected from the spinneret 5 is decreased, and it may be difficult to hold the functional powder. In addition, in this invention, an average fiber diameter means the average value of the result of having taken the photograph of 3000 times magnification using the scanning electron microscope (SEM), and measuring the fiber diameter of 50 fibers.
The average fiber diameter can be adjusted by adjusting the balance of the viscosity of the thermoplastic resin, the air pressure of the compressed air, the temperature, and the like. Generally, the average fiber diameter tends to be smaller (thinner) as the viscosity of the thermoplastic resin is lower and as the air pressure and temperature of the compressed air 8 are higher.

繊維の平均繊維長は、特に限定されないが、150mm以上であることが好ましく、200mm以上であることがより好ましい。平均繊維長が150mm未満であると、繊維の捕集にバラツキが生じやすくなったり、繊維自身が機能性粉体を保持しにくくなることがある。 Although the average fiber length of a fiber is not specifically limited, It is preferable that it is 150 mm or more, and it is more preferable that it is 200 mm or more. If the average fiber length is less than 150 mm, the fiber collection tends to vary, and the fiber itself may be difficult to hold the functional powder.

第一の本発明の機能性粉体を保持した不織布を構成する繊維は、2種以上の熱可塑性樹脂を混合して得られた繊維であってもよいし、同一の熱可塑性樹脂から得られた繊維であって平均繊維径の異なる2種以上を混合したものであってもよいし、熱可塑性樹脂の種類及び平均繊維径がいずれも異なる2種以上の繊維を混合したものであってもよい。その際、複数のメルトブロー装置を用いてもよく、メルトブロー法にエレクトロスピニング法を併用してもよい。嵩高性が必要な場合は、50%未満の短繊維を混合することも可能である。 The fibers constituting the nonwoven fabric holding the functional powder of the first invention may be fibers obtained by mixing two or more thermoplastic resins, or may be obtained from the same thermoplastic resin. It may be a mixture of two or more types of fibers having different average fiber diameters, or a mixture of two or more types of fibers having different types of thermoplastic resins and different average fiber diameters. Good. At that time, a plurality of melt blowing apparatuses may be used, and an electrospinning method may be used in combination with the melt blowing method. When bulkiness is required, it is possible to mix short fibers of less than 50%.

機能性粉体9としては、特に制限されないが、例えば、活性炭、リン酸カルシウム系化合物、二酸化チタン、ゼオライト、シリカゲル、モレキュラーシーブ、無機質の脱臭剤、無機質の抗菌剤又はこれらの混合物や、色付としての顔料等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 The functional powder 9 is not particularly limited. For example, activated carbon, calcium phosphate compound, titanium dioxide, zeolite, silica gel, molecular sieve, inorganic deodorant, inorganic antibacterial agent or a mixture thereof, And pigments. These may be used alone or in combination of two or more.

機能性粉体の比重は、特に限定されないが、7.0以下であることが好ましく、3.0以下であることがより好ましい。機能性粉体の比重が7.0を超えると、機能性粉体の保持量が少なくなり、機能性粉体が有する効果を充分に得られないことがある。 The specific gravity of the functional powder is not particularly limited, but is preferably 7.0 or less, and more preferably 3.0 or less. When the specific gravity of the functional powder exceeds 7.0, the retained amount of the functional powder decreases, and the effects of the functional powder may not be sufficiently obtained.

機能性粉体の平均粒子径は、特に限定されないが、100μm以下であることが好ましく、60μm以下であることがより好ましい。平均粒子径が100μmを超えると、機能性粉体の保持量が少なくなり、機能性粉体が有する効果を充分に得られないことがある。 The average particle size of the functional powder is not particularly limited, but is preferably 100 μm or less, and more preferably 60 μm or less. When the average particle diameter exceeds 100 μm, the amount of the functional powder retained decreases, and the effects of the functional powder may not be sufficiently obtained.

機能性粉体は、振り落とすという観点から、粉末、顆粒又は多孔質顆粒であることが好ましい。ここで、粉末とは固形物を削って出来た粉体や、モノマーの重合反応など化学合成により作製される粉体を、顆粒とは粉末を集め成型した粉体を、多孔質顆粒とは顆粒成型時に意図的に気泡を形成して作製した粉体をそれぞれ示す。 The functional powder is preferably powder, granule or porous granule from the viewpoint of shaking off. Here, a powder is a powder obtained by cutting a solid material, a powder produced by chemical synthesis such as a monomer polymerization reaction, a granule is a powder obtained by collecting and molding a powder, and a porous granule is a granule Each of the powders produced by intentionally forming bubbles during molding is shown.

機能性粉体9は、粉体振り落とし装置10の先端のノズルから振動によって振り落とされる。振り落とし量は、振動数とノズル径とを変化させることでコントロールすることができる。粉体振り落とし装置10の設置場所は、振り落とされた機能性粉体が圧搾空気8の流れに乗る場所であればよく、一般的には圧搾空気噴射口7より後流側が好ましい。 The functional powder 9 is shaken off by vibration from the nozzle at the tip of the powder shaker 10. The amount of shake off can be controlled by changing the frequency and nozzle diameter. The installation place of the powder shake-off device 10 may be a place where the shaken-down functional powder rides on the flow of the compressed air 8, and generally the downstream side is preferable to the compressed air injection port 7.

機能性粉体9の保待量は、特に限定されないが、繊維100重量部に対して50重量部以上であることが好ましく、100重量部以上であることがより好ましい。機能性粉体の保持量が50重量部未満であると、機能性粉体の機能が十分に発揮されないことがある。 The retention amount of the functional powder 9 is not particularly limited, but is preferably 50 parts by weight or more, and more preferably 100 parts by weight or more with respect to 100 parts by weight of the fiber. When the amount of the functional powder retained is less than 50 parts by weight, the function of the functional powder may not be sufficiently exhibited.

本発明の機能性粉体を保持した不繊布は、紡糸口金5の上部近傍に機能性粉体を所定量振り落とす粉体振り落とし装置10を設置し、繊維が渦状に絡み合う際に機能性粉体を繊維に所定量振り落とした後、巻取りロール11等を用いて、必要な重量分回転させて捕集することで得られる。その後、表面に付着した余分な機能性粉体を振動装置(図示せず)で払い落とす。これらの操作を行うことにより、繊維間にバインダーを使用しない状態で物理的に機能性粉体が保持されるので、機能性粉体の脱落が起こらない。 The non-woven cloth holding the functional powder of the present invention is provided with a powder shaker 10 for dropping a predetermined amount of functional powder near the upper portion of the spinneret 5, and when the fibers are entangled in a spiral shape, the functional powder After a predetermined amount of the body is shaken off to the fiber, it is obtained by collecting it by rotating it by a necessary weight using a winding roll 11 or the like. Thereafter, excess functional powder adhering to the surface is removed with a vibration device (not shown). By performing these operations, the functional powder is physically held without using a binder between the fibers, so that the functional powder does not fall off.

<本発明の機能性粉体を保持した不織布の製造方法>
本発明の機能性粉体を保持した不織布の製造方法は、
溶融紡糸装置の紡糸口金近傍に、圧搾空気噴射装置と粉体振り落とし装置とを配置し、
紡糸口金から、溶融された熱可塑性樹脂を繊維流として水平方向に噴射する工程、
圧搾空気噴射装置から繊維流に向けて圧搾空気を噴射して、繊維流を渦状に絡み合った繊維とする工程、及び、
粉体振り落とし装置から、繊維に機能性粉体を振り落として絡み合わせる工程
を含むことを特徴とする。
本発明の機能性粉体を保持した不織布の製造方法に用いられる溶融紡糸装置、圧搾空気噴射装置、粉体振り落とし装置、熱可塑性樹脂、繊維、機能性粉体等については、第一の本発明の機能性粉体を保持した不織布と同様である。
<The manufacturing method of the nonwoven fabric holding the functional powder of this invention>
The method for producing a nonwoven fabric holding the functional powder of the present invention is as follows.
In the vicinity of the spinneret of the melt spinning device, a compressed air jet device and a powder shaker device are arranged,
A step of injecting a molten thermoplastic resin in the horizontal direction as a fiber stream from a spinneret;
A process of jetting compressed air from the compressed air jetting device toward the fiber stream to form a fiber stream entangled with the fiber stream; and
From the powder shaker, the process includes a step of tangling the functional powder onto the fiber.
The melt spinning device, compressed air jetting device, powder shaker device, thermoplastic resin, fiber, functional powder, etc. used in the method for producing the nonwoven fabric holding the functional powder of the present invention is the first book. This is the same as the nonwoven fabric holding the functional powder of the invention.

<第二の本発明の機能性粉体を保持した不織布>
第二の本発明の機能性粉体を保持した不織布は、
熱可塑性樹脂の繊維からなる不織布であって、
機能性粉体を保持し、機能性粉体の表面積の50%以上が露出していることを特徴とする。
第二の本発明の機能性粉体を保持した不織布は、例えば、本発明の機能性粉体を保持した不織布の製造方法により製造することができる。
<Nonwoven fabric holding functional powder of second invention>
The nonwoven fabric holding the functional powder of the second invention is
A non-woven fabric made of thermoplastic resin fibers,
The functional powder is held, and 50% or more of the surface area of the functional powder is exposed.
The nonwoven fabric holding the functional powder of the second present invention can be produced, for example, by the method for producing a nonwoven fabric holding the functional powder of the present invention.

第二の本発明の機能性粉体を保持した不織布において、機能性粉体の表面積のうち露出している面積は、50%以上である限り特に限定されないが、70%以上であることが好ましい。露出している面積が50%未満であると、従来の機能性粉体を練り込む方法やバインダーを用いる方法で製造された不織布と同様に機能性粉体の表面がコーティングされているため、機能性粉体の含有量相当の効果を得ることができないことがある。 In the nonwoven fabric holding the functional powder of the second aspect of the present invention, the exposed area of the surface area of the functional powder is not particularly limited as long as it is 50% or more, but is preferably 70% or more. . If the exposed area is less than 50%, the surface of the functional powder is coated in the same way as the nonwoven fabric produced by the conventional method of kneading the functional powder or using the binder. The effect corresponding to the content of the functional powder may not be obtained.

以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。 Specific examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
熱可塑性樹脂としてポリオレフィン系樹脂であるポリプロピレン樹脂(ポリミレイ社製、HP461X、MFR1100)を用い、機能性粉体として活性炭(大阪ガスケミカル社製、活性炭FP−3、平均粒子径58.7μm、比重2.0〜2.2g/ml)を用いた。ポリプロピレン樹脂の繊維化には溶融紡糸装置を用い、さらに溶融紡糸装置の紡糸口金近傍に所定量の機能性粉体を振り落とす粉体振り落とし装置を配置した。溶融紡糸装置の紡糸ロ金からポリプロピレン樹脂を噴射し、圧搾空気の空圧を0.3Mpa、温度を260℃とすることで平均繊維径1.2μm、平均繊維長200mmのポリプロピレン繊維を作製した。粉体振り落し装置から振り落す活性炭の重量は、紡糸口金から噴射されるポリプロピレン樹脂の約1.4倍に設定し、振り落としをすることで活性炭を保持した不織布を作製した。
その後、軽い振動を与えて表面に付着した余分な活性炭を振り落とし、最終的に、ポリプロピレン繊維に対し、重量比で1.3倍の量の活性炭を保持した不織布を得た。活性炭の表面積のうち露出している面積は、80%であった。
Example 1
Polypropylene resin (manufactured by Polymiley, HP461X, MFR1100) is used as the thermoplastic resin, and activated carbon (manufactured by Osaka Gas Chemical Co., activated carbon FP-3, average particle diameter 58.7 μm, specific gravity 2) is used as the functional powder. 0.0-2.2 g / ml). A melt spinning device was used for fiberizing the polypropylene resin, and a powder shaker for dropping a predetermined amount of functional powder was disposed near the spinneret of the melt spinning device. Polypropylene resin was injected from the spinning metal of the melt spinning apparatus, and the compressed fiber air pressure was 0.3 Mpa, and the temperature was 260 ° C., thereby producing polypropylene fibers having an average fiber diameter of 1.2 μm and an average fiber length of 200 mm. The weight of the activated carbon shaken off from the powder shaker was set to about 1.4 times that of the polypropylene resin sprayed from the spinneret, and a nonwoven fabric holding the activated carbon was produced by shaking.
Then, the extra activated carbon adhering to the surface by giving a light vibration was shaken off, and finally the nonwoven fabric which hold | maintained the activated carbon 1.3 times the weight ratio with respect to a polypropylene fiber was obtained. The exposed area of the activated carbon surface area was 80%.

(実施例2)
活性炭を振り落とす量を変更したこと以外は実施例1と同様にして、最終的に、ポリプロピレン繊維に対し、重量比で0.6倍の量の活性炭を保持した不織布を得た。
(Example 2)
Except having changed the amount which shakes off activated carbon, it carried out similarly to Example 1, and finally obtained the nonwoven fabric which hold | maintained the amount of activated carbon 0.6 times by weight with respect to polypropylene fiber.

(実施例3)
活性炭を振り落とす量を変更したこと以外は実施例1と同様にして、最終的に、ポリプロピレン繊維に対し、重量比で0.2倍の量の活性炭を保持した不織布を得た。
(Example 3)
Except having changed the amount which shakes off activated carbon, it carried out similarly to Example 1, and finally obtained the nonwoven fabric which hold | maintained the amount of activated carbon 0.2 times by weight with respect to polypropylene fiber.

(参考例1)
活性炭を振り落とさなかったこと以外、実施例1と同様にして、活性炭を保持していないポリプロピレン繊維のみからなる不織布を得た。
(Reference Example 1)
Except that the activated carbon was not shaken off, a nonwoven fabric consisting only of polypropylene fibers not holding activated carbon was obtained in the same manner as in Example 1.

(比較例1)
活性炭を振り落とさなかったこと以外、実施例1と同様にして、活性炭を保持していないポリプロピレン繊維のみからなる不織布を得た。実施例1で用いた活性炭をバインダーとなるアクリル溶液(DIC社製、DICNAL E8300K、固形分45%)に分散させ、ポリプロピレン繊維のみからなる不織布にスプレーにて含浸させ、100℃で30分乾燥することにより、活性炭をバインダーで保持させた不織布を作製した。含浸量を調整することで、ポリプロピレン繊維の量に対し、重量比で1.3倍の量の活性炭を保持した不織布を得た。なお、その際使用したバインダーのアクリル樹脂固形分重量はポリプロピレン繊維の重量比1.5倍の量であった。活性炭の表面積のうち露出している面積は、45%であった。
(Comparative Example 1)
Except that the activated carbon was not shaken off, a nonwoven fabric consisting only of polypropylene fibers not holding activated carbon was obtained in the same manner as in Example 1. The activated carbon used in Example 1 is dispersed in an acrylic solution as a binder (DICN, DICNAL E8300K, solid content: 45%), impregnated with a non-woven fabric consisting only of polypropylene fibers, and dried at 100 ° C. for 30 minutes. Thus, a nonwoven fabric in which activated carbon was held with a binder was produced. By adjusting the amount of impregnation, a nonwoven fabric holding activated carbon in an amount 1.3 times by weight with respect to the amount of polypropylene fiber was obtained. In addition, the acrylic resin solid content weight of the binder used in that case was 1.5 times the weight ratio of the polypropylene fiber. Of the surface area of the activated carbon, the exposed area was 45%.

(比較例2)
比較例1と同様にして、ポリプロピレン繊維の量に対し、重量比で1.3倍の量の活性炭を保持した不織布を得た。なお、その際使用したバインダーのアクリル樹脂固形分重量はポリプロピレン繊維の重量比1.0倍の量であった。
(Comparative Example 2)
In the same manner as in Comparative Example 1, a nonwoven fabric holding activated carbon in an amount 1.3 times by weight with respect to the amount of polypropylene fiber was obtained. The acrylic resin solid content weight of the binder used at that time was 1.0 times the weight ratio of the polypropylene fiber.

(比較例3)
実施例1で用いたポリプロピレン樹脂と活性炭とを溶融紡糸装置に投入し、紡糸口金からポリプロピレン樹脂と活性炭を同時に噴射することで、活性炭をあらかじめ練り込んだポリプロピレン繊維を作製した。活性炭の量がポリプロピレン繊維の量に対し重量比で1.3倍になるよう調整したが、活性炭の量が多いためポリプロピレン樹脂の流動性が悪く、安定して噴射することが出来ず作製することが出来なかった。諸条件を調整した結果、作製可能な活性炭の量である、ポリプロピレン繊維の量に対し0.2倍の量の活性炭を保持した、活性炭をあらかじめ練り込んだ不織布を得た。活性炭の表面積のうち露出している面積は、20%であった。
(Comparative Example 3)
The polypropylene resin and activated carbon used in Example 1 were put into a melt spinning apparatus, and the polypropylene resin and activated carbon were simultaneously sprayed from the spinneret to produce polypropylene fibers kneaded with activated carbon in advance. The amount of activated carbon was adjusted to 1.3 times the weight ratio of polypropylene fiber, but the flow rate of polypropylene resin was poor due to the large amount of activated carbon, and it was not possible to spray stably. I couldn't. As a result of adjusting various conditions, a nonwoven fabric in which activated carbon was kneaded in advance and retained 0.2 times the amount of activated carbon, which was the amount of activated carbon that could be produced, was obtained. The exposed area of the activated carbon surface area was 20%.

(比較例4)
活性炭そのものの性能評価として、実施例1で用いた活性炭を用意した。
(Comparative Example 4)
For the performance evaluation of the activated carbon itself, the activated carbon used in Example 1 was prepared.

(実施例4)
熱可塑性樹脂としてポリプロピレン樹脂(サンアロマー社製、PLBOOA)を用い、圧搾空気の空圧を0.2Mpa、温度を240℃としたこと以外、実施例1と同様にして平均繊維径17.7μmのポリプロピレン繊維を作製した。また、活性炭を振り落とす量は、繊維の量に対し活性炭を重量比で比較例1と同等量となる1.3倍の量になるよう調整したが、得られた不織布の活性炭の量は重量比0.8倍であった。
Example 4
A polypropylene resin having an average fiber diameter of 17.7 μm in the same manner as in Example 1 except that a polypropylene resin (PLBOOA, manufactured by Sun Allomer Co., Ltd.) is used as the thermoplastic resin, the compressed air pressure is 0.2 Mpa, and the temperature is 240 ° C. Fibers were made. Further, the amount of the activated carbon to be shaken off was adjusted so that the amount of activated carbon was 1.3 times as much as that of Comparative Example 1 in terms of weight ratio with respect to the amount of fibers. The ratio was 0.8 times.

(比較例5)
市販のポリプロピレン短繊維(ダイワボウポリテック社製、PN2.2dtex×76mm、平均繊維径17.7μm、平均繊維長76mm)を用い、カード機でポリプロピレン繊維を紡出することでポリプロピレン繊維ウエブを作製した。そのウエブに実施例1で用いた活性炭を振り落とし、ニードルパンチ法で繊維を絡めることによりバインダーを使用せずに不織布を作製した。活性炭の量を繊維の量に対し重量比で比較例1と同等量となる1.3倍の量になるよう調整したが、構造的に保持することができず、0.5倍の量しか保持することができなかった。
(Comparative Example 5)
A polypropylene fiber web was prepared by spinning polypropylene fibers with a card machine using commercially available polypropylene short fibers (Daiwabo Polytech Co., Ltd., PN2.2 dtex × 76 mm, average fiber diameter 17.7 μm, average fiber length 76 mm). The activated carbon used in Example 1 was shaken off to the web, and the nonwoven fabric was produced without using a binder by entwining the fiber by the needle punch method. The amount of activated carbon was adjusted to be 1.3 times the weight of fiber, which is equivalent to that of Comparative Example 1, but it could not be structurally maintained and only 0.5 times the amount. Could not hold.

(試験1)機能性粉体の効果確認
活性炭は、においを吸収するという特徴がある。そこで、三大悪臭の一つとされるアンモニアを用いて、アンモニア吸着量を測定して比較することで効果確認を行った。具体的には、におい袋(250mm角)に試験片(100mm角)を入れ、調整済の臭気成分ガス(アンモニア濃度100ppm)を3L入れ、2時間後及び24時間後のアンモニア成分濃度を検知管により測定した。各測定数値から、同時間経過後の試験片を入れていないにおい袋の測定数値を減算し、初発濃度からのアンモニア吸着量を算出した結果を表1に示す。
(Test 1) Confirmation of effect of functional powder Activated carbon has a feature of absorbing odor. Then, the effect was confirmed by measuring and comparing ammonia adsorption amount using ammonia considered as one of the three major odors. Specifically, a test piece (100 mm square) is put in an odor bag (250 mm square), 3 L of adjusted odor component gas (ammonia concentration 100 ppm) is added, and the ammonia component concentration after 2 hours and 24 hours is detected by a detector tube. It was measured. Table 1 shows the results of calculating the ammonia adsorption amount from the initial concentration by subtracting the measurement value of the odor bag without the test piece after the same time from each measurement value.

参考例1の結果から、活性炭を保持しない場合であっても、24時間後にはアンモニアの一部がポリプロピレン繊維に吸着されるが、本実験に大きく影響する値ではないことが分かる。
実施例1の結果と比較例1の結果とを比較すると、実施例1の不織布はバインダーを使用した比較例1の不織布よりもアンモニア吸着量が多く、バインダーの使用により機能性粉体の効果が半減することが分かる。
実施例1のアンモニア吸着量は、比較例4のアンモニア吸着量と略同等の数値であることから、本発明の機能性粉体を保持した不織布は活性炭の含有量相当の効果があることが分かる。
実施例3の結果と比較例3の結果とを比較すると、実施例3の不織布は、あらかじめ機能性粉体を練り込んだ比較例3の不繊布よりもアンモニアの吸着量が多いことが分かる。
以上のことから、本発明の機能性粉体を保持した不織布は、機能性粉体の性能を落とすことなく、機能性粉体の含有量相当の効果があることから、機能性粉体の効果を十分発揮させていることが分かる。
From the results of Reference Example 1, it can be seen that, even when the activated carbon is not retained, a part of ammonia is adsorbed to the polypropylene fiber after 24 hours, but this is not a value that greatly affects this experiment.
When comparing the results of Example 1 and the results of Comparative Example 1, the nonwoven fabric of Example 1 has a larger amount of ammonia adsorption than the nonwoven fabric of Comparative Example 1 using a binder, and the effect of the functional powder is achieved by using the binder. It turns out that it halves.
Since the ammonia adsorption amount of Example 1 is a numerical value substantially equivalent to the ammonia adsorption amount of Comparative Example 4, it can be seen that the nonwoven fabric holding the functional powder of the present invention has an effect equivalent to the content of activated carbon. .
Comparing the results of Example 3 with the results of Comparative Example 3, it can be seen that the nonwoven fabric of Example 3 has a larger amount of ammonia adsorbed than the non-woven fabric of Comparative Example 3 in which the functional powder was previously kneaded.
From the above, the nonwoven fabric holding the functional powder of the present invention has an effect equivalent to the content of the functional powder without degrading the performance of the functional powder. It can be seen that is fully exerted.

(試験2)機能性粉体の脱落試験
20cm角の試料を両手に持ち、1秒で上下に約20cm振る動作を繰返し、10回後、20回後及び30回後の重量を測定した。初期重量からの減少量から振り落とされた活性炭の割合を算出した結果を表2に示す。
(Test 2) Functional powder dropout test A 20 cm square sample was held in both hands, and the operation of shaking about 20 cm up and down in 1 second was repeated, and the weights after 10, 20 and 30 times were measured. Table 2 shows the result of calculating the ratio of the activated carbon that was shaken off from the decrease from the initial weight.

実施例1の結果から、本発明の機能性粉体を保持した不織布では、機能性粉体である活性炭の脱落が起こらないことが分かる。同様に、比較例1のバインダーを用いた不織布や、比較例3の活性炭を練り込んだ不織布でも、活性炭の脱落が起こらないことが分かる。また、比較例2では活性炭の脱落が起きていることから、比較例1のバインダー量は適量であることが分かる。
実施例4の結果から、平均繊維径が10μmを超え、17.7μmである繊維で構成された不織布は、活性炭の保持量が少ないことが分かる。
比較例5より、平均繊維径が10μmを超え、且つ、平均繊維長が150mm未満の短繊維で構成されたニードルパンチ不織布は、活性炭の保持量が少ないだけでなく脱落も起きることが分かる。
以上の結果から、本発明の機能性粉体を保持した不織布は、繊維量に対して重量比で同量以上の機能性粉体をバインダーを使用することなく保持することができ、機能性粉体の含有量相当の効果を示していることから機能性粉体の機能を最大限に発揮し、且つ、機能性粉体の脱落も起こらない不織布であることが分かる。
From the results of Example 1, it can be seen that in the non-woven fabric holding the functional powder of the present invention, the activated carbon, which is the functional powder, does not fall off. Similarly, it can be seen that even when the nonwoven fabric using the binder of Comparative Example 1 and the nonwoven fabric kneaded with the activated carbon of Comparative Example 3, the activated carbon does not fall off. Moreover, since the fall of activated carbon has occurred in the comparative example 2, it turns out that the binder amount of the comparative example 1 is an appropriate amount.
From the results of Example 4, it can be seen that the nonwoven fabric composed of fibers having an average fiber diameter exceeding 10 μm and 17.7 μm has a small amount of activated carbon.
From Comparative Example 5, it can be seen that the needle punched nonwoven fabric composed of short fibers having an average fiber diameter of more than 10 μm and an average fiber length of less than 150 mm not only has a small amount of retained activated carbon but also falls off.
From the above results, the nonwoven fabric holding the functional powder of the present invention can hold the functional powder in the same amount or more by weight ratio with respect to the fiber amount without using a binder. Since the effect equivalent to the content of the body is shown, it is understood that the nonwoven fabric exhibits the function of the functional powder to the maximum and does not cause the functional powder to fall off.

1 溶融紡糸装置
2 熱可塑性樹脂
3 ホッパー
4 溶融押出機
5 紡糸口金
6 圧搾空気噴射装置
7 圧搾空気噴射口
8 圧搾空気
9 機能性粉体
10 粉体振り落とし装置
11 巻取りロール
12 巻き取られた機能性粉体を保持した不織布
DESCRIPTION OF SYMBOLS 1 Melt spinning apparatus 2 Thermoplastic resin 3 Hopper 4 Melt extrusion machine 5 Spinneret 6 Compressed air injection apparatus 7 Compressed air injection port 8 Compressed air 9 Functional powder 10 Powder shake-off apparatus 11 Winding roll 12 It wound up Non-woven fabric holding functional powder

Claims (6)

溶融紡糸装置の紡糸口金近傍に、圧搾空気噴射装置と粉体振り落とし装置とを配置し、
紡糸口金から、溶融された熱可塑性樹脂を繊維流として水平方向に噴射するとともに、
圧搾空気噴射装置から繊維流に向けて圧搾空気を噴射して、繊維流を渦状に絡み合った繊維とし、
粉体振り落とし装置から、繊維に機能性粉体を振り落として絡み合わせて得られたことを特徴とする機能性粉体を保持した不織布。
In the vicinity of the spinneret of the melt spinning device, a compressed air jet device and a powder shaker device are arranged,
From the spinneret, the molten thermoplastic resin is injected in the horizontal direction as a fiber stream,
Compressed air is sprayed from the compressed air injection device toward the fiber flow, and the fiber flow is entangled into fibers,
A non-woven fabric holding a functional powder obtained by pulverizing a functional powder onto a fiber and entangled it from a powder shaker.
機能性粉体の保持量は、繊維100重量部に対して50重量部以上である請求項1に記載の機能性粉体を保持した不織布。 The nonwoven fabric holding the functional powder according to claim 1, wherein a holding amount of the functional powder is 50 parts by weight or more with respect to 100 parts by weight of the fiber. 繊維は平均繊維径が10μm以下であり、平均繊維長が150mm以上である請求項1又は2に記載の機能性粉体を保持した不織布。 The nonwoven fabric holding the functional powder according to claim 1 or 2, wherein the fibers have an average fiber diameter of 10 µm or less and an average fiber length of 150 mm or more. 機能性粉体は、比重が7.0以下、かつ、平均粒子径が60μm以下の粉末、顆粒又は多孔質顆粒である請求項1〜3のいずれかに記載の機能性粉体を保持した不織布。 The non-woven fabric holding the functional powder according to any one of claims 1 to 3, wherein the functional powder is a powder, granule or porous granule having a specific gravity of 7.0 or less and an average particle diameter of 60 µm or less. . 溶融紡糸装置の紡糸口金近傍に、圧搾空気噴射装置と粉体振り落とし装置とを配置し、
紡糸口金から、溶融された熱可塑性樹脂を繊維流として水平方向に噴射する工程、
圧搾空気噴射装置から繊維流に向けて圧搾空気を噴射して、繊維流を渦状に絡み合った繊維とする工程、及び、
粉体振り落とし装置から、繊維に機能性粉体を振り落として絡み合わせる工程
を含むことを特徴とする機能性粉体を保持した不織布の製造方法。
In the vicinity of the spinneret of the melt spinning device, a compressed air jet device and a powder shaker device are arranged,
A step of injecting a molten thermoplastic resin in the horizontal direction as a fiber stream from a spinneret;
A process of jetting compressed air from the compressed air jetting device toward the fiber stream to form a fiber stream entangled with the fiber stream; and
The manufacturing method of the nonwoven fabric holding the functional powder characterized by including the process of sprinkling a functional powder on a fiber from a powder shake-off apparatus, and entwining it.
熱可塑性樹脂の繊維からなる不織布であって、
機能性粉体を保持し、機能性粉体の表面積の50%以上が露出していることを特徴とする、機能性粉体を保持した不織布。
A non-woven fabric made of thermoplastic resin fibers,
A nonwoven fabric holding functional powder, wherein the functional powder is held and 50% or more of the surface area of the functional powder is exposed.
JP2016172733A 2016-09-05 2016-09-05 Non-woven fabric holding functional powder and its manufacturing method Active JP6779718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016172733A JP6779718B2 (en) 2016-09-05 2016-09-05 Non-woven fabric holding functional powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016172733A JP6779718B2 (en) 2016-09-05 2016-09-05 Non-woven fabric holding functional powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018040066A true JP2018040066A (en) 2018-03-15
JP6779718B2 JP6779718B2 (en) 2020-11-04

Family

ID=61625499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016172733A Active JP6779718B2 (en) 2016-09-05 2016-09-05 Non-woven fabric holding functional powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6779718B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154308B1 (en) * 2019-07-12 2020-09-09 주식회사 메이스터 Functional filter media adhering apparatus for adhering functional filter media to fiber yarn
CN114717707A (en) * 2022-04-19 2022-07-08 苏州大学 Functional yarn and preparation method and device thereof
CN114836863A (en) * 2022-04-19 2022-08-02 苏州大学 Preparation method of antibacterial conductive polypropylene yarn

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105974A (en) * 1974-01-21 1975-08-21
WO1983001965A1 (en) * 1981-11-24 1983-06-09 Minto, Ahmad, Mansoor Microfibre web product
JPH07268767A (en) * 1994-03-23 1995-10-17 Asahi Optical Co Ltd Production of functional nonwoven fabric
JP2002235268A (en) * 2000-12-06 2002-08-23 Japan Vilene Co Ltd Nonwoven fabric comprising powder fixed thereto, method for producing the same, and sheet material comprising the same
JP2003082570A (en) * 2001-09-05 2003-03-19 Toyoda Spinning & Weaving Co Ltd Method for producing nonwoven fabric
JP2005054313A (en) * 2003-08-04 2005-03-03 Daiwabo Co Ltd Fiber having fixed filler, nonwoven fabric and method for producing those
JP2006214051A (en) * 2005-02-04 2006-08-17 Daiwabo Co Ltd Fiber structural product and method for producing the same
JP2008519173A (en) * 2004-11-08 2008-06-05 スリーエム イノベイティブ プロパティズ カンパニー Particle-containing fiber web
JP2009190269A (en) * 2008-02-14 2009-08-27 Teijin Techno Products Ltd Fiber laminate and filter for air cleaning using it
JP2015048543A (en) * 2013-08-30 2015-03-16 アキレス株式会社 Fiber substrate and heat insulation mat including fiber substrate
JP2015161049A (en) * 2014-02-28 2015-09-07 アンビック株式会社 Non-woven thermal insulating material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105974A (en) * 1974-01-21 1975-08-21
WO1983001965A1 (en) * 1981-11-24 1983-06-09 Minto, Ahmad, Mansoor Microfibre web product
JPS58502005A (en) * 1981-11-24 1983-11-24 キンバリ−クラ−ク リミテツド Fine fiber web products
JPH07268767A (en) * 1994-03-23 1995-10-17 Asahi Optical Co Ltd Production of functional nonwoven fabric
JP2002235268A (en) * 2000-12-06 2002-08-23 Japan Vilene Co Ltd Nonwoven fabric comprising powder fixed thereto, method for producing the same, and sheet material comprising the same
JP2003082570A (en) * 2001-09-05 2003-03-19 Toyoda Spinning & Weaving Co Ltd Method for producing nonwoven fabric
JP2005054313A (en) * 2003-08-04 2005-03-03 Daiwabo Co Ltd Fiber having fixed filler, nonwoven fabric and method for producing those
CN1833068A (en) * 2003-08-04 2006-09-13 大和纺织株式会社 Filler-fixed fiber, fiber structure, molded fiber, and processes for producing these
JP2008519173A (en) * 2004-11-08 2008-06-05 スリーエム イノベイティブ プロパティズ カンパニー Particle-containing fiber web
JP2006214051A (en) * 2005-02-04 2006-08-17 Daiwabo Co Ltd Fiber structural product and method for producing the same
JP2009190269A (en) * 2008-02-14 2009-08-27 Teijin Techno Products Ltd Fiber laminate and filter for air cleaning using it
JP2015048543A (en) * 2013-08-30 2015-03-16 アキレス株式会社 Fiber substrate and heat insulation mat including fiber substrate
JP2015161049A (en) * 2014-02-28 2015-09-07 アンビック株式会社 Non-woven thermal insulating material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154308B1 (en) * 2019-07-12 2020-09-09 주식회사 메이스터 Functional filter media adhering apparatus for adhering functional filter media to fiber yarn
CN114717707A (en) * 2022-04-19 2022-07-08 苏州大学 Functional yarn and preparation method and device thereof
CN114836863A (en) * 2022-04-19 2022-08-02 苏州大学 Preparation method of antibacterial conductive polypropylene yarn
CN114836863B (en) * 2022-04-19 2023-03-17 苏州大学 Preparation method of antibacterial conductive polypropylene yarn

Also Published As

Publication number Publication date
JP6779718B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US8668854B2 (en) Process and apparatus for producing nanofibers using a two phase flow nozzle
JP5579870B2 (en) High-performance spunbond fabric produced from particle-containing fibers and method for producing the same
JP5819832B2 (en) Nozzles, apparatus, systems and methods for forming nanofibrous webs and articles made by this method
US8808594B1 (en) Coform fibrous materials and method for making same
JP6141836B2 (en) Non-woven electret fiber web and method for producing the same
JP5654356B2 (en) Composite nonwoven web and method for making and using the same
CN103781956B (en) Non-woven electret fiber net and preparation method thereof
KR101519169B1 (en) Production of nanofibers by melt spinning
JP4820426B2 (en) Solid particle carrying fiber and solid particle carrying fiber sheet
Dias et al. The main blow spun polymer systems: processing conditions and applications
US20080023873A1 (en) Process for Preparing a Non-Woven Cellulosic Structure and the Non-Woven Cellulosic Structure Prepared Therefrom
JP2018040066A (en) Nonwoven fabric retaining functional powder and manufacturing method thereof
JP2017519913A (en) Multi-die meltblowing system and method for forming a mixed fiber structure
US10501876B2 (en) Highly functional spunbonded fabric made from particle-containing fibres and method for producing same
JP4300006B2 (en) Production method and production apparatus for solid particle carrying fiber and solid particle carrying fiber sheet
CN111989429A (en) Method for producing a textile fabric with electrostatically charged fibers and textile fabric
Nayak et al. Mechanism of nanofibre fabrication by meltblowing
JPH04257310A (en) Fine fiber of syndiotactic vinyl aromatic polymer, nonwoven mat of said fine fiber and melt spray method for production thereof
Nayak et al. Nanotextiles and recent developments
KR101575795B1 (en) Method of manufacturing functional yarn
CA2105074A1 (en) Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
Pourdeyhimi et al. Micro and Nanofibers
Joghataei Effects of Polymer Rheology on Meltblowing Fiber Formation Process and Fiber Diameter Distribution
WO2021255539A1 (en) Fibrous web
König Melt electrospinning towards industrial scale nanofiber production: an in-depth material and parameter study based on polypropylene and polylactic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201014

R150 Certificate of patent or registration of utility model

Ref document number: 6779718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250