JP2005199329A - βチタン合金ボルトの製造方法 - Google Patents

βチタン合金ボルトの製造方法 Download PDF

Info

Publication number
JP2005199329A
JP2005199329A JP2004009822A JP2004009822A JP2005199329A JP 2005199329 A JP2005199329 A JP 2005199329A JP 2004009822 A JP2004009822 A JP 2004009822A JP 2004009822 A JP2004009822 A JP 2004009822A JP 2005199329 A JP2005199329 A JP 2005199329A
Authority
JP
Japan
Prior art keywords
plating
bolt
titanium alloy
plating layer
cold forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009822A
Other languages
English (en)
Inventor
Takashi Sako
崇 佐古
Tatsuo Fukuda
達雄 福田
Shigeru Usui
繁 碓井
Minoru Nakamura
稔 中村
Jun Yatazawa
純 谷田沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004009822A priority Critical patent/JP2005199329A/ja
Publication of JP2005199329A publication Critical patent/JP2005199329A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)
  • Chemically Coating (AREA)

Abstract

【課題】低コストでβチタン合金ボルトを製造し得る製造方法を提供する。
【解決手段】鍍金工程P4、P5において円柱状素材18の表面20に鍍金層22,24が形成された後、冷間鍛造工程P7においてその円柱状素材18が冷間鍛造によりボルト形状のブランク50に成型される。そのため、冷間鍛造の際にはダイ26,34,44と円柱状素材18との間に鍍金層22,24が介在させられることからβチタン合金がダイ26等に接触しないので、そのダイ26等に円柱状素材18やブランク32,42,50が焼付くことが好適に抑制される。したがって、冷間鍛造によってボルト形状のブランク50を成型することが可能となるため、低コストでβチタン合金ボルト10を製造することができる。
【選択図】 図1

Description

本発明は、βチタン合金ボルトの製造方法、特にねじ転造前のボルト素材の成形方法に関する。
近年、ボルト材料としてチタン合金が用いられるようになっている。チタン合金は、鋼と同程度の機械的強度を持ち乍ら比重がその60(%)程度と軽く、しかも、耐蝕性に優れている利点がある。そのため、チタン合金ボルトは、高強度を保ちつつ軽量化することが望まれる用途、例えば、レーシング・カーや自転車等のボルトとして好適である。
上記チタン合金ボルトの一種に、例えばTi-16V-4Sn-3Al-3NbやTi-16V-4Sn-3Al-1Mo等から成るβチタン合金製のボルト形状素材の軸部外周面に、冷間転造加工によって雄ねじ部を形成したものがある(例えば特許文献1等参照)。チタン合金はその組織(結晶相)によりα型、β型、およびα+β型に分類されるが、従来、比較的高い強度を要求される用途では例えばTi-6Al-4Vから成るα+β型チタン合金が用いられていた。このα+β型チタン合金は変形抵抗(すなわち永久変形させるのに要する加圧方向に直角な単位断面積当たりの力(JIS B0112-2102))が高いことからボルトのような加工度の高い冷間塑性加工が困難であるため、例えば切削加工或いは熱間圧延や熱間鍛造で頭部および軸部を成形されたボルト形状素材の軸部外周面に切削加工により雄ねじ部を形成することで製造されていた。そのため、製造コストが高くなることから、チタン合金ボルトは一般用途には用いられていなかった。これに対して、βチタン合金はα+β型チタン合金に比較して冷間加工性に優れることから、例えば雄ねじ部を転造加工によって形成できるのである。
特開平07−214217号公報
しかしながら、チタン合金は他材料との親和性が高く、βチタン合金も例外ではないため、鋼製ボルトと同様に冷間鍛造によってボルト形状素材を成形しようとすると成形型に焼付きが発生する。このため、上記公報に記載された技術でも、冷間塑性加工が可能となるのは雄ねじ部の転造に留まるので、ボルト形状素材の成形が例えば熱間圧延や溶体化処理で行われることから、製造コストが未だ高い問題があった。
本発明は、以上の事情を背景として為されたものであって、その目的は、低コストでβチタン合金ボルトを製造し得る製造方法を提供することにある。
斯かる目的を達成するため、本発明の要旨とするところは、βチタン合金から成る円柱状素材を所定のボルト形状素材に成形するボルト素材成形工程と、そのボルト形状素材の外周面に雄ねじを転造形成する転造工程とを含むβチタン合金ボルトの製造方法であって、前記ボルト素材成形工程は、(a)前記円柱状素材の表面に鍍金層を形成する鍍金工程と、(b)その鍍金層が形成された前記円柱状素材を所定の成形型を用いて冷間鍛造して前記ボルト形状素材を成形する冷間鍛造工程とを、含むことにある。
このようにすれば、鍍金工程において円柱状素材の表面に鍍金層が形成された後、冷間鍛造工程においてその円柱状素材が冷間鍛造により所定のボルト形状素材に成型される。そのため、冷間鍛造の際には成形型と円柱状素材との間に鍍金層が介在させられることからβチタン合金が成形型に接触しないので、その成形型に円柱状素材が焼付くことが好適に抑制される。したがって、冷間鍛造によってボルト形状素材を成型することが可能となるため、低コストでβチタン合金ボルトを製造することができる。
ここで、好適には、前記βチタン合金ボルトの製造方法は、前記円柱状素材の表面を所定の表面粗さに荒らす表面粗化工程を含み、前記鍍金工程は、その所定の表面粗さに荒らされた円柱状素材の表面に鍍金層を形成するものである。このようにすれば、鍍金層の形成面が所定の表面粗さに荒らされているので、その固着強度が高められる。そのため、冷間鍛造工程において成形型との間で発生する圧力に起因する鍍金層の膜切れ或いは剥離が一層抑制されることから、円柱状素材の焼付きが一層抑制される。
また、好適には、前記表面粗化工程は、前記円柱状素材にバレル研磨を施すものである。表面粗化工程は、円柱状素材の表面を所定の表面粗さに荒らし得るものであれば特に方法を問わず、例えばショットブラストや酸洗浄等で行われてもよいが、バレル研磨が特に好適であり、鍍金層の固着強度が高められる。
また、好適には、前記所定の表面粗さは最大表面粗さRmaxで7乃至13(μm)の範囲内の値である。このようにすれば、表面粗さが適度に調整されているので、鍍金層の固着強度が一層高められる。そのため、冷間鍛造時の断面減少率を大きくしても膜切れや剥離が生じ難いので、据込率を大きくしなくとも、大径の頭部と小径の軸部とを備えたボルトも容易に製造できる利点がある。なお、7(μm)未満の表面粗さでは平滑過ぎて十分な固着強度を確保できず、反対に13(μm)を越える表面粗さでは却って接触面積が小さくなるので固着強度を確保できない。ここで、「断面減少率」は、成形前の断面積をA0、成形後の断面積をA1とするとき、断面積が減少する前方押出等において(1-(A1/A0))×100で与えられる値である。また、「据込率」は、据込み加工前の長さをL0、加工後の長さ寸法をL1とするとき、(1-(L1/L0))×100で与えられる値である。
また、好適には、前記鍍金層は、3(μm)以上の厚さ寸法で設けられるものである。このようにすれば、鍍金層が十分な厚さ寸法で設けられることから、冷間鍛造の際に成形型との間で発生する圧力に起因して鍍金層が膜切れし或いは剥離して、円柱状素材の焼付きが生じることが一層抑制される。すなわち、断面減少率が大きい冷間鍛造も好適に実施し得る。一層好適には、鍍金層厚みは5(μm)以下である。このようにすれば、鍍金除去コストの増大延いてはβチタン合金ボルトの製造コスト増大が抑制される。
また、好適には、前記鍍金層は、ニッケル、銅、または亜鉛から成るものである。これらの金属は冷間鍛造時に成形型との間で圧力が発生してもその成形型に焼付き難く、また、チタン合金に強固に固着することからその冷間鍛造時に膜切れや剥離も生じ難いので、鍍金層の形成材料として好適である。
また、好適には、前記鍍金工程は、前記円柱状素材の表面にニッケルから成る下地鍍金を施す下地鍍金工程と、その下地鍍金の表面に軟質金属を鍍金する上鍍金工程とを含むものである。このようにすれば、ニッケルはチタン合金との密着性が特に優れているので、冷間鍛造時の鍍金層の膜切れや剥離が特に生じ難い。しかも、軟質金属から成る上鍍金層との二層構造であることから、鍍金層全体をニッケルで構成した場合に比較して鍍金層形成に伴う製造コストの増大が抑制される。すなわち、ニッケルとチタン合金との密着性に基づいて鍍金層の固着強度を高めながら、鍍金層の形成に伴う製造コスト増大を抑制することができる。
また、好適には、前記軟質金属は銅または亜鉛である。これらはニッケルから成る下地鍍金層に強固に固着されることから膜切れや剥離が生じ難く、しかも、成形型に焼付くこともないので、鍍金層を二層構造とする場合の上鍍金層の鋼製材料として好適である。
また、好適には、前記冷間鍛造工程の後に前記ボルト形状素材の表面から前記鍍金層を剥離する鍍金剥離工程を含むものである。βチタン合金ボルトは、鍍金層が表面に形成されたまま雄ねじを転造形成して用いられても良く、その場合には鍍金層が使用時の焼付き防止効果を奏することとなるが、そのような目的の鍍金層が無用な場合は、例えば冷間鍛造後、好適には転造前に除去すればよい。
また、好適には、上記鍍金剥離工程は、ボルト形状素材にバレル研磨を施すものである。鍍金剥離工程は、ボルト形状素材の表面に形成されている鍍金層を剥離し得るものであれば特に方法を問わず、例えばショットブラスト等で行われてもよいが、バレル研磨が特に好適であり、冷間鍛造後の平滑な表面を保ちつつ鍍金層を除去できる利点がある。
また、好適には、前記βチタン合金ボルトの製造方法は、前記転造工程の後に所定温度で熱処理を施すことによりα相を析出させるための時効処理工程を含むものである。βチタン合金は冷間鍛造したままでも十分な機械的強度を有しているが、適当な温度で時効処理を施してα相を析出させれば引張り強度や耐力等の機械的強度を向上させ得る。一方、このような時効処理は、絞り(すなわち材料の粘り強さ)を小さくするので、冷間鍛造後の機械的強度が十分に高く且つ大きい絞りを望む場合には時効処理は無用である。ここで、引張り強度、耐力、絞りは、それぞれJIS G0202-1166、JIS G0202-1164、JIS G0202-1175に規定されているものである。
なお、上記の時効処理は、β相が安定となる変態点よりも十分に低温で行われ、例えば450〜600(℃)の範囲内の温度が好適である。この温度範囲内において、例えば機械的強度が必要な場合には比較的低温、例えば450(℃)程度で時効処理を施すことが好ましく、一方、絞りを大きくすることを望む場合には比較的高温、例えば550(℃)程度で時効処理を施すことが好ましい。
以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
図1は、本発明のβチタン合金ボルトの製造方法の一例における製造工程を説明する工程図である。この工程は、例えば、図2に示されるような六角穴付ボルト10を製造するためのものであるが、六角ボルト等の他のβチタン合金ボルトの製造にも適用し得る。なお、図示のボルト10は、例えば、頭部12がd=13(mm)程度の直径およびk=8(mm)程度の長さ寸法に構成されると共に、軸部14がl=25(mm)程度の長さ寸法に構成された呼びM8のものであり、頭部12の上面(図における左端面)には、例えば差渡し寸法が8(mm)程度の六角穴16がt=4(mm)程度の深さ寸法で設けられている。この寸法は一例であり、上記図1に示される工程は、他の種々の寸法のボルトにも同様に適用される。以下、この図1に従って、このボルト10の製造方法を説明する。
先ず、素材用意工程P1では、適当な直径、例えばφ=9.7(mm)程度の丸棒やコイル状のβチタン合金素材を用意する。本実施例で用いられるβチタン合金は、例えばTi-4Al-22Vから成るものであって、図3に●で示すような歪−応力特性を有している。なお、この図は横軸に歪みの大きさの対数値をとり、縦軸にその歪みに対応する変形応力(MPa)をとったものであり、下方に位置するものほど歪みに対して発生する応力が小さく容易に変形することになる。また、図において、×はSUS304、○はTi-6Al-4Vから成るα+β型チタン合金、◇はTi-3Al-15V-3Cr-3Sn、◆はTi-4Al-15V-6Cr、△はTi-3Al-13V-11Cr、□はTi-5Al-2Sn-2Zr-4Mo-4Crである。○で表されたTi-6Al-4V(α+β型チタン合金)の他の5種のチタン合金は全てβチタン合金であり、何れもα+β型チタン合金に比較して歪みに対する変形応力が小さいので冷間加工性に優れ、本発明の実施に用い得る。この中でもTi-4Al-22V合金は特に変形応力が低く、冷間鍛造によるボルト製造に好適である。
図1に戻って、次いで、切断工程P2では、上記の素材をボルト10の質量に等しい質量となる例えば18.8(mm)程度の所定の長さ寸法に切断する。この切断加工には、例えば丸棒においては鋸等が、コイル材においてはシャー等が好適に用いられる。図4(a)に切断加工されたブランクすなわち円柱状素材18を示す。
次いで、表面粗化工程P3においては、上記の円柱状素材18の表面20を、例えばRmaxで7〜13(μm)程度の所定の表面粗さに荒らす。この工程は、例えば円柱状素材18をセラミックス系等のメディア(研磨材)、水、界面活性剤、アルカリ等のコンパウンド等と共に回転容器内に投入し、その回転容器を所定の速度で所定の時間だけ回転させるバレル研磨等によって行われる。また、この工程は、バレル研磨に代えて、ショットブラスト処理や酸洗浄等で実施することもできる。
次いで、下地鍍金工程P4では、上記のように荒らされた円柱状素材18の表面20に化学鍍金等で薄いニッケル鍍金を施す。このニッケル鍍金は、下地鍍金層22として設けられるものであって、厚く形成する必要は無いので、例えば1(μm)未満、例えば0.8(μm)程度の厚さ寸法で設けられる。また、ニッケルはチタン合金との親和性が比較的良いので高い固着強度を得ることができるが、前記の表面粗化工程P3は、この下地鍍金層22の固着強度を一層高めるために実施されるものである。
次いで、上鍍金工程P5では、上記の下地鍍金層22の上に、化学鍍金等で例えば3〜5(μm)程度の所定の厚さ寸法に銅鍍金等を施す。なお、この鍍金処理は、例えば、円柱状素材18を銅粉末と共にバレルで回すバレル鍍金によって行うこともできる。上記の下地鍍金層22は、上鍍金層24として設けられるこの銅鍍金の固着強度を高めるためのものである。βチタン合金から成る円柱状素材18には、譬えその表面20が荒らしてあっても銅鍍金を強固に固着形成することは困難であるが、銅鍍金から成る上鍍金層24はニッケル鍍金から成る下地鍍金層22には強固に固着されるので、円柱状素材18の表面20に十分な厚さ寸法の上鍍金層24を形成することができる。図4(b)は、上鍍金層24が形成された円柱状素材18の断面の一部を拡大して示している。
次いで、潤滑処理工程P6では、鍍金が施された円柱状素材18に良く知られたMoS2塗布等の潤滑化処理を施す。
次いで、冷間鍛造工程P7では、円柱状素材18に一般のステンレス鋼の場合と同様な冷間鍛造加工が施される。この工程は、円柱状素材18の寸法および形状やボルト10の形状等に応じて、一回の加工による各部の変形量が適切となるように定められた複数段階の適宜の加工を施すものであるが、例えば以下に説明するような前方押出、据え込み、後方押出の各工程によって構成される。
先ず、前方押出工程では、例えば図4(c)に示すようにダイ26内に円柱状素材18を配置してパンチ28で下方に向かって加圧する。ダイ26には、上部に円柱状素材18の直径と略同一内径の大径部に構成され且つ下部がそれよりも小径の小径部に構成されると共に、それらの中間部にテーパ面を備えた成形孔30が備えられており、円柱状素材18はその大径部に配置される。また、パンチ28は、円柱状素材18と略同一径に構成されている。そのため、この工程では、円柱状素材18がそのダイ26内で前方押出加工され、下端部がその小径部の直径に縮小されたブランク32が成形される。図4(d)は、加圧終了段階を示している。この段階で、ブランク32の下端部は例えば直径が7.02(mm)に縮小されるが、上端部は当初の9.7(mm)程度に保たれている。また、この下端部の断面減少率はRe=47.6(%)程度である。
次いで、据え込み工程では、ダイ26から取り出されたブランク32を他のダイ34内に配置し、パンチ36で押圧する。図4(e)(f)は、この工程における加圧開始前および加圧終了後をそれぞれ表している。ダイ34には、ブランク32の下端部の直径と略同一内径の挿入孔38が設けられており、ブランク32は、ダイ34内にその下端部のみが挿入されている。また、パンチ36は、ブランク32の大径部よりも十分に大きい加圧面を備えている。そのため、パンチ36で押圧されると、ダイ34の上面40との間でブランク32の大径部が押し潰され、その上端面が例えば直径12.7(mm)程度に拡大されたブランク42が成形される。
次いで、後方押出工程では、ダイ34から取り出されたブランク42を他のダイ44内に配置し、パンチ46で押圧する。図4(g)(h)は、この工程における加圧開始前および加圧終了後をそれぞれ表している。ダイ44には上端部がブランク42の大径部よりもやや大径に構成され且つ小径部がブランク42の小径部と略同一径に構成された段付孔48が備えられている。一方、パンチ46の下端部は、その下端面の差渡し寸法がブランク42の大径部よりも十分に小さく、例えばブランク42の小径部と同程度とされた六角形断面に構成されている。そのため、パンチ46で押圧されると、ブランク42の大径部の中央部が下方に押下げられると共に、それよりも外周側の部分が上方に流動させられるので、段付孔48の大径部と同一外径の大径部を有し且つその中央部に六角穴16を備えたボルト形状のブランク50が成形される。成型されたブランク50の大径部の直径はボルト10の直径に等しく、例えば13(mm)程度である。
以上の冷間鍛造の各工程において、本実施例によれば、円柱状素材18のダイ26,34,44への焼き付きは何ら発生せず連続成形が可能であり、しかも、据え込み工程においても何ら座屈等は認められなかった。本実施例においては、ダイ26,34,44が成形型に相当する。
なお、円柱状素材18の直径や上記の各工程で用いられるダイ26等の寸法は、例えば、図5に示されるような断面減少率と変形抵抗および据込率との関係に基づいて決定されたものである。なお、図において、断面減少率Reが例えば64(%)程度を越えると、変形抵抗が著しく1200(MPa)程度まで増大して成形型に発生する圧力が過大となる。すなわち、成形困難になる。また、断面減少率Reが例えば43(%)程度を下回ると、据込率が50(%)以上となるので据え込み工程で座屈が生じる。したがって、各工程における変形量は、断面減少率Reが43〜63(%)の範囲内の値となるように定められる必要があり、上記の各寸法はそのような値に設定されている。
また、上記のように焼き付きが生じないのは、鍍金層22,24が設けられることにより、βチタン合金が露出しておらず、ダイ26等に直接接触しないことに基づくものである。このような鍍金層22,24は、以下に説明する評価に基づいて形成条件を定めた。
先ず、鍍金層22,24の固着強度を高めるための表面粗化工程P3は、最大表面粗さRmaxを種々変更して評価したところ、下記の表1に示す結果を得た。表1において、鍍金剥離限界Reは、冷間鍛造工程P7において鍍金層22,24の剥離が生じた断面減少率Reである。この値が大きいほど冷間鍛造、特に軸部14を形成するための前方押出成形で大きく変形させることが可能であり、下記の通り、7〜13(μm)の表面粗さとしたときに最もよい結果が得られた。6(μm)以下の表面粗さでは平滑に過ぎるので固着強度の改善が見られず、一方、14(μm)以上の表面粗さでは、一応の改善効果が認められたが、却って接触面積が小さくなることに起因して十分な固着強度は得られず、不十分であった。なお、表面粗化方法は、バレル研磨およびショットブラストで評価したところ、何れも効果が認められるものの、バレル研磨の方がダイ26等への焼き付きが生じ難い結果を得た。
[表1]
最大表面粗さ(Rmax) 鍍金剥離限界Re 評価
≦6(μm) 30(%) ×
7〜13(μm) 90(%) ○
≧14(μm) 40(%) △
また、下記の表2は、鍍金の種類と焼付き限界Reとの関係を評価したものである。下記の鍍金のうち、銅および亜鉛はニッケルの下地鍍金層22の上に形成しており、クロムは十分な固着強度を確保できることからニッケルの下地鍍金層22を設けなかった。また、焼付き限界Reは、前方押出成形において、焼き付きが生じた断面減少率Reである。この表2に示される通り、ニッケルから成る下地鍍金層22の上に銅鍍金を施した場合には焼付き限界が90(%)まで向上した。また、下地鍍金層22の上に亜鉛鍍金を形成した場合にも僅かに改善が認められた。しかしながら、クロム鍍金では全く改善しなかった。また、フッ素樹脂(PTFE)についても評価したところ、焼付き防止効果は全く認められなかった。
[表2]
鍍金種類 焼付き限界Re 評価
銅 90(%) ○
亜鉛 40(%) △
クロム 30(%) ×
また、表3に示す評価結果は、鍍金厚み(鍍金層22,24の合計値)と焼付き限界Reおよび鍍金除去コストとの関係を評価したものである。3(μm)未満の鍍金厚みでは、焼付き限界の改善効果は認められなかった。また、5(μm)を越える鍍金厚みでは、焼付き限界は改善するが、厚みの増加に伴って除去コストが増大する。したがって、3(μm)以上の鍍金厚みとすれば、十分な効果を得ることができるが、更に低コスト化を図るために除去コストまでを考慮すると、3〜5(μm)が好ましいと言える。
[表3]
鍍金厚み 焼付き限界Re 鍍金除去コスト 評価
<3(μm) 30(%) − ×
3〜5(μm) 90(%) 1 ○
>5(μm) 90(%) 1.5 △
図1に戻って、鍍金層除去工程P8では、例えば、ショットブラスト処理やバレル研磨処理によって、下地鍍金層22および上鍍金層24を除去する。この工程は、ボルト10に鍍金層22,24が無用な場合に実施されるものであり、例えば、焼付き防止等の目的で鍍金されていることが望まれる場合には実施されない。
次いで、ねじ転造工程P9では、ブランク50の軸部(すなわち小径部)に良く知られた転造加工を施すことにより雄ねじを形成する。そして、時効処理工程P10において、例えば500(℃)×30分程度の加熱処理を施すことにより、引張り強さや耐力等が高められ、前記のボルト10が得られる。なお、この時効処理工程P10は、引張り強さや耐力等を高める必要が無い場合には実施されない。
なお、下記の表4は、時効処理条件と機械的特性の変化との関係を評価した結果を示したものである。このような時効処理は、例えば450〜600(℃)程度の範囲内で実施し得るが、450(℃)程度では未処理のものに比較して引張り強さおよび耐力の改善が著しいものの伸びおよび絞りが小さくなる。すなわち硬いボルトが得られる。また、500(℃)程度では引張り強さおよび耐力の改善が著しく、しかも、伸びおよび絞りも比較的大きな値に維持された。また、550(℃)では、引張り強さおよび耐力の向上はこれらに比較して小さく留まるが、絞りは殆ど変化せず、伸びは未処理のものよりも改善する結果が得られた。すなわち、粘りのあるボルトが得られた。したがって、要求されるボルトの特性に応じて下記のような時効条件の中から選択した時効処理を施せば、種々の特性を有するボルト10を得ることができる。
[表4]
時効条件 未処理 450(℃)×30分 500(℃)×30分 550(℃)×30分
引張り強さ(MPa) 952 1284 1256 1068
耐力(MPa) 736 1215 1143 970
伸び(%) 13.6 7.3 14.3 21
絞り(%) 55.3 21 35 54
また、図6は、このようにして製造されたボルト10の硬さ分布を調べた結果を表したものである。図において、横軸は軸部の表面からの深さ位置を表しており、縦軸は各位置における硬さHmvを表している。また、「首下部」は、ボルト10の軸部14のうち頭部12の直下の部分であり、「ねじ部」は、軸部14のうち転造加工により雄ねじが形成された部分である。図に示されるように、軸部14の硬さは、表層部では僅かにばらつきが見られるが、0.5(mm)程度以上の内部では安定しており、本実施例のように冷間鍛造によるボルト10が十分な硬さ特性を有していることが確かめられた。
また、製造コストについても、本実施例によれば、切削加工による場合に比較して48(%)程度の費用でボルト10を製造することができる。すなわち、切削加工により素材の一部が除去される場合に比較して材料費が低減され、且つ、冷間鍛造加工は切削加工に比較して加工に必要とする工具費用や加工時間が短くなる等の理由で加工費も低減されるので、従来の半分以下の費用で製造できるのである。
要するに、本実施例によれば、鍍金工程P4、P5において円柱状素材18の表面20に鍍金層22,24が形成された後、冷間鍛造工程P7においてその円柱状素材18が冷間鍛造によりボルト形状のブランク50に成型される。そのため、冷間鍛造の際にはダイ26,34,44と円柱状素材18との間に鍍金層22,24が介在させられることからβチタン合金がダイ26等に接触しないので、そのダイ26等に円柱状素材18やブランク32,42,50が焼付くことが好適に抑制される。したがって、冷間鍛造によってボルト形状のブランク50を成型することが可能となるため、低コストでβチタン合金ボルト10を製造することができる。
また、本実施例によれば、鍍金工程P4,P5に先立って円柱状素材18の表面20を荒らす表面粗化工程P3が実施されることから、鍍金層22の形成面がRmax7〜13(μm)程度の表面粗さに荒らされているので、その固着強度が高められる。そのため、冷間鍛造工程P7においてダイ26等との間で発生する圧力に起因する鍍金層22,24の膜切れ或いは剥離が一層抑制されることから、円柱状素材18やブランク32等の焼付きが一層抑制される。
また、本実施例によれば、表面粗化工程P3は、円柱状素材18にバレル研磨を施すものである。そのため、鍍金層22,24の高い固着強度が得られる。
また、本実施例においては、円柱状素材18の表面20にニッケルから成る下地鍍金層22が形成されると共に、その下地鍍金層22の表面に銅から成る上鍍金層24が形成されることから、ニッケルはチタン合金との密着性が特に優れているので、冷間鍛造時の鍍金層22,24の膜切れや剥離が特に生じ難い。しかも、銅から成る上鍍金層24との二層構造であることから、鍍金層全体をニッケルで構成した場合に比較して鍍金層形成に伴う製造コストの増大が抑制される。すなわち、ニッケルとチタン合金との密着性に基づいて鍍金層22,24の固着強度を高めながら、鍍金層22,24の形成に伴う製造コスト増大を抑制することができる。
以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施できる。
例えば、実施例においては、六角穴付ボルト10の製造方法に本発明が適用された場合について説明したが、本発明は、頭部12が六角形に構成されたボルトや全体が略一様な直径に構成されたボルト等の他の形状のボルトの製造方法にも同様に適用される。
また、実施例においては、Ti-4Al-22Vから成るβチタン合金ボルト10の製造方法に本発明が適用された場合について説明したが、本発明は、図3に示されるものやその他の組成のβチタン合金から成るボルトの製造方法にも同様に適用される。
また、実施例においては、表面粗化工程P2が鍍金に先立って実施されていたが、鍍金の十分な固着強度を確保できる場合には、この工程は実施されなくとも良い。
また、実施例においては、銅鍍金層(上鍍金層)24を形成するに先立ってニッケル鍍金層(下地鍍金層)22を形成していたが、銅鍍金層24を直接形成しても十分な固着強度を確保できる場合には、ニッケル鍍金層22は不要である。また、反対に、コスト的には不利であるが、全体をニッケル鍍金層で構成してもよい。
また、実施例においては、冷間鍛造工程P7が前方押出、据え込み、および後方押出の3工程で構成されていたが、その構成は製造しようとするボルト10の形状に応じて適宜定められるものであり、これらに限られない。
その他、一々例示はしないが、本発明は、その主旨を逸脱しない範囲で種々変更を加え得るものである。
本発明の一実施例のβチタン合金ボルトの製造方法に係る工程図である。 図1に示される工程で製造されるβチタン合金ボルトの一例を示す寸法図である。 本発明で用い得るβチタン合金の歪みと変形応力との関係をα+β型チタン合金およびステンレス鋼と比較して示す図である。 (a)〜(h)は、それぞれ図1に示す製造工程の要部段階における素材の加工状態を説明する図である。 図1の冷間鍛造工程における断面減少率と変形抵抗および据込率との関係を示す図である。 図1に示す製造工程で製造されたβチタン合金ボルトの硬さ分布を示す図である。
符号の説明
10:βチタン合金ボルト、18:円柱状素材、22:下地鍍金層、24:上鍍金層、26,34,44:ダイ(成形型)、50:ブランク(ボルト形状素材)
P3:表面粗化工程、P4:下鍍金工程、P5:上鍍金工程、P7:冷間鍛造工程

Claims (8)

  1. βチタン合金から成る円柱状素材を所定のボルト形状素材に成形するボルト素材成形工程と、そのボルト形状素材の外周面に雄ねじを転造形成する転造工程とを含むβチタン合金ボルトの製造方法であって、前記ボルト素材成形工程は、
    前記円柱状素材の表面に鍍金層を形成する鍍金工程と、
    その鍍金層が形成された前記円柱状素材を所定の成形型を用いて冷間鍛造して前記ボルト形状素材を成形する冷間鍛造工程と
    を、含むことを特徴とするβチタン合金ボルトの製造方法。
  2. 前記円柱状素材の表面を所定の表面粗さに荒らす表面粗化工程を含み、前記鍍金工程は、その所定の表面粗さに荒らされた前記円柱状素材の表面に鍍金層を形成するものである請求項1のβチタン合金ボルトの製造方法。
  3. 前記表面粗化工程は、前記円柱状素材にバレル研磨を施すものである請求項2のβチタン合金ボルトの製造方法。
  4. 前記所定の表面粗さは最大表面粗さRmaxで7乃至13(μm)の範囲内の値である請求項2のβチタン合金ボルトの製造方法。
  5. 前記鍍金層は、3(μm)以上の厚さ寸法で設けられるものである請求項1のβチタン合金ボルトの製造方法。
  6. 前記鍍金工程は、前記円柱状素材の表面にニッケルから成る下地鍍金を施す下地鍍金工程と、その下地鍍金の表面に軟質金属を鍍金する上鍍金工程とを含むものである請求項1のβチタン合金ボルトの製造方法。
  7. 前記軟質金属は銅または亜鉛である請求項6のβチタン合金ボルトの製造方法。
  8. 前記冷間鍛造工程の後に前記ボルト形状素材の表面から前記鍍金層を剥離する鍍金剥離工程を含むものである請求項1のβチタン合金ボルトの製造方法。
JP2004009822A 2004-01-16 2004-01-16 βチタン合金ボルトの製造方法 Pending JP2005199329A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009822A JP2005199329A (ja) 2004-01-16 2004-01-16 βチタン合金ボルトの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009822A JP2005199329A (ja) 2004-01-16 2004-01-16 βチタン合金ボルトの製造方法

Publications (1)

Publication Number Publication Date
JP2005199329A true JP2005199329A (ja) 2005-07-28

Family

ID=34822733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009822A Pending JP2005199329A (ja) 2004-01-16 2004-01-16 βチタン合金ボルトの製造方法

Country Status (1)

Country Link
JP (1) JP2005199329A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071196A1 (ko) * 2009-12-09 2011-06-16 신진볼텍주식회사 타이타늄합금 볼트 제조설비 및 이를 이용한 타이타늄 합금볼트의 제조방법
CN102172756A (zh) * 2011-01-04 2011-09-07 无锡透平叶片有限公司 一种tc11合金收敛段的热成型方法
KR101065357B1 (ko) 2010-12-02 2011-09-16 한국기계연구원 타이타늄합금 볼트용 단조장치 및 이를 이용한 타이타늄 합금 볼트용 단조품 제조방법 및 타이타늄 합금 볼트의 제조방법
KR101078816B1 (ko) 2009-12-09 2011-11-01 한국기계연구원 타이타늄합금 볼트 제조설비를 이용한 타이타늄 합금볼트의 제조방법
JP2012176491A (ja) * 2006-02-10 2012-09-13 Mitsubishi Heavy Ind Ltd ボルト、および、ボルトの製造方法
CN102773389A (zh) * 2012-07-31 2012-11-14 宁波浩渤工贸有限公司 大型内六角螺栓坯热锻压模具
KR101226331B1 (ko) 2010-07-05 2013-01-24 영신금속공업 주식회사 백화와 백청 및 적청이 저감되는 파스너의 제조방법
RU2484914C1 (ru) * 2012-02-16 2013-06-20 Открытое акционерное общество "Нормаль" СПОСОБ ИЗГОТОВЛЕНИЯ КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ ДВУХФАЗНЫХ (α+β) ТИТАНОВЫХ СПЛАВОВ
RU2490087C1 (ru) * 2012-02-16 2013-08-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ изготовления крепежных элементов из высокопрочных титановых сплавов
RU2492017C2 (ru) * 2012-01-11 2013-09-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ изготовления крепежных элементов из высокопрочных титановых сплавов
JP2015134370A (ja) * 2014-01-17 2015-07-27 武蔵精密工業株式会社 鍛造品の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176491A (ja) * 2006-02-10 2012-09-13 Mitsubishi Heavy Ind Ltd ボルト、および、ボルトの製造方法
WO2011071196A1 (ko) * 2009-12-09 2011-06-16 신진볼텍주식회사 타이타늄합금 볼트 제조설비 및 이를 이용한 타이타늄 합금볼트의 제조방법
KR101078816B1 (ko) 2009-12-09 2011-11-01 한국기계연구원 타이타늄합금 볼트 제조설비를 이용한 타이타늄 합금볼트의 제조방법
KR101226331B1 (ko) 2010-07-05 2013-01-24 영신금속공업 주식회사 백화와 백청 및 적청이 저감되는 파스너의 제조방법
KR101065357B1 (ko) 2010-12-02 2011-09-16 한국기계연구원 타이타늄합금 볼트용 단조장치 및 이를 이용한 타이타늄 합금 볼트용 단조품 제조방법 및 타이타늄 합금 볼트의 제조방법
CN102172756A (zh) * 2011-01-04 2011-09-07 无锡透平叶片有限公司 一种tc11合金收敛段的热成型方法
RU2492017C2 (ru) * 2012-01-11 2013-09-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ изготовления крепежных элементов из высокопрочных титановых сплавов
RU2484914C1 (ru) * 2012-02-16 2013-06-20 Открытое акционерное общество "Нормаль" СПОСОБ ИЗГОТОВЛЕНИЯ КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ ДВУХФАЗНЫХ (α+β) ТИТАНОВЫХ СПЛАВОВ
RU2490087C1 (ru) * 2012-02-16 2013-08-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ изготовления крепежных элементов из высокопрочных титановых сплавов
CN102773389A (zh) * 2012-07-31 2012-11-14 宁波浩渤工贸有限公司 大型内六角螺栓坯热锻压模具
CN102773389B (zh) * 2012-07-31 2014-11-26 宁波浩渤工贸有限公司 大型内六角螺栓坯热锻压模具
JP2015134370A (ja) * 2014-01-17 2015-07-27 武蔵精密工業株式会社 鍛造品の製造方法

Similar Documents

Publication Publication Date Title
JP6626441B2 (ja) 鍛造製品および他の加工製品の製造方法
JP6091046B2 (ja) アルミ合金ボルトの製造方法及びアルミ合金ボルト
JP5808341B2 (ja) 冷間後方押出鍛造用パンチ
JP3597186B2 (ja) マグネシウム基合金管及びその製造方法
JP2005199329A (ja) βチタン合金ボルトの製造方法
CN108536948B (zh) 一种钛合金精冲成形方法
US20100299925A1 (en) Method for forming a gear
JP2006212699A (ja) チタン合金製段付軸状部品の製造方法
JP2006035298A (ja) チタン合金製ボルトおよびその製造方法
JP2006297479A (ja) メッキ用アノード銅ボールの製造方法及びメッキ用アノード銅ボール
JP6489412B2 (ja) 硬質皮膜層、及び冷間塑性加工用金型
CN109274231B (zh) 一种用钛金属生产马达外壳的加工工艺
CN111037244A (zh) 一种空心轴及其制造方法
JP2003260512A (ja) Al又はAl合金押出用ダイス
JP2008196662A (ja) 外輪製造方法
JP2006142325A (ja) アルミ合金形材の押出用ブリッジダイス
JP2006193765A (ja) アルミニウム合金製部材の製造方法
JP3653258B2 (ja) 締結部品の製造方法及び締結部品
CN111015134A (zh) 一种端面齿钟形壳及其制造方法
JP2020131252A (ja) 高強度アルミニウム合金ボルトの製造方法
JP3097476B2 (ja) 熱間塑性加工方法
JP2707232B2 (ja) 筒状成型体およびその製造方法
JP2006144063A (ja) チタン合金製エンジンバルブの製造方法
JP2000326047A (ja) ホイールナットの製造方法
JP2000094080A (ja) リング状部品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Effective date: 20080423

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Effective date: 20080626

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A02