JP2005199163A - Collection by filtration apparatus and method utilizing magnetic bead - Google Patents

Collection by filtration apparatus and method utilizing magnetic bead Download PDF

Info

Publication number
JP2005199163A
JP2005199163A JP2004007574A JP2004007574A JP2005199163A JP 2005199163 A JP2005199163 A JP 2005199163A JP 2004007574 A JP2004007574 A JP 2004007574A JP 2004007574 A JP2004007574 A JP 2004007574A JP 2005199163 A JP2005199163 A JP 2005199163A
Authority
JP
Japan
Prior art keywords
fluid
filter medium
magnetic beads
medium layer
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004007574A
Other languages
Japanese (ja)
Inventor
Gen Sugano
弦 菅野
Kenzo Susa
憲三 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trial Corp
Original Assignee
Trial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trial Corp filed Critical Trial Corp
Priority to JP2004007574A priority Critical patent/JP2005199163A/en
Publication of JP2005199163A publication Critical patent/JP2005199163A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtration Of Liquid (AREA)
  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for not only filtering and removing a solid substance, i.e., an impurity existing in a material fluid but also collecting (collecting by filtration) and sorting the desired solid substance existing in the material fluid or a means for separating to the solid substance and the clean fluid in the means in which a filter medium is not made disposal and is repeatedly used (semi-permanently usable). <P>SOLUTION: The collection by filtration apparatus is provided with a fluid to be treated chamber 4 for receiving the material fluid containing the solid substance 7; a filter medium layer 11 provided on a lower part of the fluid to be treated chamber; a fluid permeating member 9 for supporting the filter medium layer; and a clean fluid chamber 5 provided below the fluid permeating member. In the collection by filtration apparatus, the magnetic beads 6 are closely filled in the filter medium layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、濾取装置、多段の濾取装置(すなわち、分級装置)、及び原料流体の処理方法に関するものである。   The present invention relates to a filtering device, a multi-stage filtering device (that is, a classification device), and a raw material fluid processing method.

近年、バイオ、エレクトロニクス、メカニクスなどの産業分野において、原料流体中に存在する種々の固体物質、特に、サブミクロンないしミクロン級の懸濁性又は浮遊性固体物質(鉄サビ、異物、その他の不純物;酵母、細菌、ウィルス等の黴菌類;赤血球、白血球、血小板等の血中細胞;ミトコンドリア、リソゾーム等の細胞内小器官;その他)を濾過によって除去したり、目的とするものを採取(濾取)したり、分別するニーズが高まっている。
ミクロン級の固体物質を除く濾材の一つとして、古くから精密濾紙が知られているが、その孔形状は不定であり、目詰まりを起こしやすく、使い捨てである。また、ミクロン級の孔径を有するフィルム(メンブランフィルタ)も多種類提供され便利であるが、目詰まりの問題を解消するには至っておらず、これも使い捨てである。更には、サブミクロン級の孔を多数有する中空繊維膜(ホローファイバー)を使った限外濾過装置も浄水分野等で用いられているが、目詰りすると新品と交換しなければならない。
In recent years, in various industrial fields such as biotechnology, electronics, and mechanics, various solid substances existing in a raw material fluid, especially submicron to micron grade suspended or floating solid substances (iron rust, foreign matters, other impurities; Nematodes such as yeast, bacteria and viruses; blood cells such as red blood cells, white blood cells and platelets; intracellular organelles such as mitochondria and lysosomes; There is a growing need for sorting and sorting.
As one of filter media except micron-class solid materials, precision filter paper has been known for a long time, but its pore shape is indefinite, easily clogged, and disposable. Also, many types of films (membrane filters) having micron-class pore diameters are provided and are convenient, but they have not yet solved the problem of clogging and are also disposable. Furthermore, an ultrafiltration device using a hollow fiber membrane (hollow fiber) having a large number of submicron-class holes is also used in the water purification field and the like, but if it is clogged, it must be replaced with a new one.

一方、濾材として繰り返し使用可能な(すなわち、使い捨てではない)磁性粉体を用いた浄水器や濾過器が、下記の特許文献1〜4等で提案されており、注目に値する。しかしこれらの浄水器や濾過器で用いられる濾材は磁性粉体であって磁性ビーズではない。また、いずれも水道水の鉄サビや濁り成分、風呂水の細菌や汚濁物質等の異物や不純物を濾過によって除く装置であり、所望の固体物質を採取(濾取)したり、分別する装置ではない。   On the other hand, water purifiers and filters using magnetic powder that can be repeatedly used as a filter medium (that is, not disposable) have been proposed in the following Patent Documents 1 to 4 and the like, and are notable. However, the filter medium used in these water purifiers and filters is magnetic powder, not magnetic beads. In addition, these are devices that remove foreign substances and impurities such as iron rust and turbid components in tap water, bacteria and pollutants in bath water, etc., and devices that collect (filter) or separate desired solid substances Absent.

特開平9−253426号公報JP-A-9-253426 特開2000−93715号公報JP 2000-93715 A 特開2000−153104号公報JP 2000-153104 A 特開2000−342914号公報JP 2000-342914 A

本発明の課題は、濾材を使い捨てにするのではなく、これを繰り返し使用する(半永久的に使用できる)手段であって、単に、原料流体中に存在する不純物の固体物質を濾過して除くだけではなく、原料流体中に存在する目的の固体物質を採取(濾取)したり、分別する手段、あるいは、固体物質と清浄な流体とに分離するための手段を提供することである。   The object of the present invention is not to make the filter medium disposable, but to use it repeatedly (can be used semi-permanently), simply by filtering out solid substances of impurities present in the raw fluid. Rather, it is to provide a means for collecting (filtering) or separating a target solid substance present in the raw material fluid, or a means for separating the solid substance into a clean fluid.

本発明は、次のようないくつかの重要な知見及び着眼に基づいてなされたものである。
第1点目は、先に、本発明者の一人は、真球状で、サブミクロンないしはミクロン級の粒径の磁性ビーズを、所望する大きさでほぼ均一に製造する方法を開発しており、真球状で、粒径がほぼ均一な磁性ビーズが容易に入手できたこと、
第2点目は、ほぼ均一な真球(微粒子)を濾材として最密充填したときの粒子間空隙の孔径はその真球(微粒子)の粒子径(D)の約8分の1で、この粒子間空隙孔を利用すれば、濾材であるその真球の約8分の1の小さな固体物質も捕捉できること、
第3点目は、メンブランフィルタ用のフィルムもしくはシートに、正確な大きさ(例えば、1μm)の微小孔を均一に穿孔するよりも、約1桁上(例えば、粒径が8μm)の大きさの均一な真球(磁性ビーズ)をつくるほうが容易であること、などである。
The present invention has been made on the basis of several important findings and viewpoints as follows.
The first point is that one of the inventors of the present invention has previously developed a method for manufacturing a spherical magnetic beads having a spherical shape and a submicron or micron grade particle size almost uniformly. The spherical shape of the magnetic beads with almost uniform particle size was easily available,
The second point is that the pore diameter of the interparticle void when the almost uniform true sphere (fine particle) is packed as a filter medium is about 1/8 of the particle diameter (D) of the true sphere (fine particle). By using the interparticle voids, it is possible to capture a small solid substance that is about one-eighth of the true sphere that is the filter medium.
The third point is about one order of magnitude (for example, a particle size of 8 μm) rather than uniformly punching micropores of an accurate size (for example, 1 μm) in a film or sheet for a membrane filter. It is easier to produce uniform spheres (magnetic beads).

上記課題を達成するために、本発明では以下の構成をとった。
すなわち、本発明は、図1に例示するように、固体物質7を含んだ原料流体を受け入れる被処理流体室4と、被処理流体室4の下部(又は底部)に設けた濾材層11と、濾材層11を支える流体透過性部材(支持体)9と、流体透過性部材(支持体)9の下方に設けた清浄流体室5とを備える濾取装置であって、その濾材層11には磁性ビーズ6が密に充填されていることを特徴とする濾取装置1である。
In order to achieve the above object, the present invention has the following configuration.
That is, as illustrated in FIG. 1, the present invention includes a fluid chamber 4 to receive a raw material fluid containing a solid substance 7, a filter material layer 11 provided in a lower portion (or bottom) of the fluid chamber 4, A filter device comprising a fluid-permeable member (support) 9 that supports the filter medium layer 11 and a clean fluid chamber 5 provided below the fluid-permeable member (support) 9, The filter device 1 is characterized in that the magnetic beads 6 are closely packed.

本発明は、また、微小な固体物質を含む原料流体の処理方法も提供する。すなわち、
流体を通すが濾材を通さない流体透過性部材9の上に、磁性ビーズ(濾材)6を密に充填することによって、ビーズ間空隙孔(濾過穴の大きさ)が磁性ビーズの径(D)の約8分の1(D/8)の大きさの濾材層11を形成させたのち、前記ビーズ間空隙孔よりも大きな固体物質7を含む原料流体をこの濾材層11に通し、濾材層11に捕捉された固体物質7と、濾材層11を通過した清浄な流体とに分離することを特徴とする原料流体の処理方法である。
The present invention also provides a method for treating a raw fluid containing a fine solid substance. That is,
By tightly filling magnetic beads (filter medium) 6 onto a fluid permeable member 9 that allows fluid to pass but not filter medium, the inter-bead gap hole (size of the filtration hole) is reduced to the diameter (D) of the magnetic beads. After forming the filter medium layer 11 having a size of about one-eighth (D / 8) of the above, a raw material fluid containing the solid substance 7 larger than the inter-bead gap hole is passed through the filter medium layer 11, and the filter medium layer 11. The raw material fluid treatment method is characterized by separating the solid material 7 trapped in the filter material into a clean fluid that has passed through the filter medium layer 11.

この処理方法は、見方を変えれば、次のようにも言える。すなわち、
捕捉したい最低の粒子径がdの固体物質を含む原料流体を、固体物質と清浄な流体とに分離する処理方法において、流体を通すが濾材を通さない流体透過性部材9の上に粒子径が約8d近辺に揃った磁性ビーズを密に充填した濾材層11を形成させたのち、固体物質を含む原料流体をこの濾材層11に通し、濾材に捕捉された固体物質と濾材層を通過した清浄な流体とに分離することを特徴とする原料流体の処理方法、である。
This processing method can also be said as follows if the view is changed. That is,
In a processing method for separating a raw material fluid containing a solid substance having a minimum particle diameter d desired to be captured into a solid substance and a clean fluid, the particle diameter is placed on the fluid permeable member 9 that passes the fluid but does not pass the filter medium. After forming the filter medium layer 11 closely packed with magnetic beads aligned in the vicinity of about 8d, the raw material fluid containing the solid substance is passed through the filter medium layer 11 and the solid substance trapped by the filter medium and the clean medium that has passed through the filter medium layer are passed. A raw material fluid treatment method, wherein the raw material fluid is separated into different fluids.

なお、本明細書では、採取する意味合いが強い場合を「濾取」といい、除去する意味合いが強い場合を「濾過」というが、両者は必ずしも厳密に区別できるものではない。
また、微小な固体物質を含む原料流体の流体が液体の場合は、原水、原料液、被処理液などといい、流体が気体の場合は、原料ガス、被処理ガス、汚染空気などという。
In the present specification, a case where the meaning of collection is strong is referred to as “filtering”, and a case where the meaning of removal is strong is referred to as “filtration”, but the two are not necessarily strictly distinguishable.
When the fluid of the raw material fluid containing a minute solid substance is liquid, it is called raw water, raw material liquid, liquid to be processed, and when the fluid is gas, it is called raw material gas, gas to be processed, contaminated air.

<作用>
各々の粒子径が全く等しい多数の真球(粒径D)を最密充填した場合の粒子間空隙は、数学的には、D/6.45の大きさの細孔をもつ空隙と計算される。ところで、実際に用いる磁性ビーズの粒径(平均値:D)は多少のバラツキがあるので、これらを密に充填した粒子間空隙は、約D/8である。すなわち、用いた磁性ビーズの粒径よりも概ね一桁低い細孔を均一にもつ粒子間空隙が得られる。この粒子間空隙を利用して、液体や排気ガスに存在する懸濁性又は浮遊性固体物質を濾取又は濾過することができる。
<Action>
The interparticle voids in the case of closely packing a large number of true spheres (particle size D) with exactly the same particle size are mathematically calculated as voids having pores with a size of D / 6.45. The By the way, since the particle diameter (average value: D) of the magnetic beads actually used varies somewhat, the inter-particle gap in which these are closely packed is about D / 8. That is, interparticle voids having uniform pores that are approximately an order of magnitude lower than the particle size of the magnetic beads used are obtained. The interparticle voids can be used to filter or filter suspended or floating solid substances present in liquids and exhaust gases.

本発明によれば、濾材を使い捨てにするのではなく、これを繰り返し使用する(半永久的な使用が可能な)装置又は方法を提供できる。また、単に、原料流体中に存在する不純物の固体物質を濾過して除くだけではなく、原料流体中に存在する目的の固体物質を採取(濾取)したり、大きさの順に分別したりする装置又は方法、あるいは、固体物質と清澄濾液(又は清浄な気体等)とに分離するための装置又は方法を提供できる。
本発明の装置は、超純水製造用等の各種の濾過装置又は濾取装置、家庭用又は産業用の浄水器、あるいは空気清浄器、エアフィルタ、排気ガス用フィルタなどに好適に使用できる。また、簡単な操作で濾材を洗浄・再使用できるので、新品と交換する手間及び費用がかからない。
According to the present invention, it is possible to provide an apparatus or a method in which the filter medium is not disposable but can be used repeatedly (semi-permanent use is possible). Moreover, not only the solid substances of impurities present in the raw material fluid are filtered out, but also the target solid substances existing in the raw material fluid are collected (filtered) or sorted in order of size. An apparatus or method, or an apparatus or method for separating a solid material and a clarified filtrate (or a clean gas, etc.) can be provided.
The apparatus of the present invention can be suitably used for various types of filtration devices or filtration devices for producing ultrapure water, household or industrial water purifiers, air purifiers, air filters, exhaust gas filters, and the like. In addition, since the filter medium can be washed and reused with a simple operation, there is no need for labor and cost for replacement with a new one.

本発明を更に詳しく説明する。
本発明の濾取装置は、先に述べたように、固体物質7を含んだ原料流体を受け入れる被処理流体室4と、被処理流体室4の下部(又は底部)に設けた濾材層11と、濾材層11を支える流体透過性部材(支持体)9と、流体透過性部材(支持体)9の下方に設けた清浄流体室5とを備える濾取装置であって、その濾材層11には磁性ビーズ6が密に充填されていることを特徴とする濾取装置1である。
The present invention will be described in more detail.
As described above, the filtering device of the present invention includes a processing fluid chamber 4 that receives a raw material fluid containing a solid substance 7, and a filter material layer 11 provided in a lower portion (or bottom) of the processing fluid chamber 4. A filter device comprising a fluid-permeable member (support) 9 that supports the filter medium layer 11 and a clean fluid chamber 5 provided below the fluid-permeable member (support) 9, Is a filtration device 1 in which magnetic beads 6 are closely packed.

ここで、上記濾取装置においては、被処理流体室4と、濾材層11と、流体透過性部材(支持体)9と、清浄流体室5とは、一体構成とすることが好ましい。
更に、磁性ビーズを吸引するために、磁石(電磁石)8を付設することが好ましい。ただし、このときの磁石(電磁石)8は上記一体構成物に一体的に組み付けることも、また、別体とすることもできる。
Here, in the filtration device, it is preferable that the fluid chamber 4 to be processed, the filter medium layer 11, the fluid permeable member (support) 9 and the clean fluid chamber 5 are integrated.
Furthermore, it is preferable to attach a magnet (electromagnet) 8 to attract the magnetic beads. However, the magnet (electromagnet) 8 at this time can be integrally assembled to the above-described integrated structure, or can be separated.

また、均一な濾取又は濾過をするためには、磁性ビーズの粒径(D)は揃っているほうが好ましい。「粒径が揃っている」とは、磁性ビーズの粒径のバラツキを変動係数で表すとき、20%以下を意味し、好ましくは15%以下である。粒径が揃った磁性ビーズを用いることにより、均一な粒子間空隙(濾過穴)を有する濾材層(濾過層)を作ることができ、その際の粒子間空隙孔径は、磁性ビーズ群の平均粒径の約8分の1(D/8)となる。すなわち、所定の粒径の磁性ビーズを用いて、0.1〜40μmの範囲で、穴の大きさが所望の大きさの濾材層(濾過層)を任意につくることができる。   In order to perform uniform filtration or filtration, it is preferable that the magnetic beads have the same particle diameter (D). “Same particle size” means 20% or less, preferably 15% or less, when the variation in the particle size of the magnetic beads is expressed by a coefficient of variation. By using magnetic beads having a uniform particle size, a filter medium layer (filter layer) having uniform inter-particle voids (filter holes) can be made. It becomes about 1/8 of the diameter (D / 8). That is, using a magnetic bead having a predetermined particle diameter, a filter medium layer (filter layer) having a desired hole size can be arbitrarily formed within a range of 0.1 to 40 μm.

なお、ビーズ径が小さく揃った磁性ビーズ(濾材)6を用いた場合には、これを保持する流体透過性部材(支持体)9の孔の大きさは、その磁性ビーズ6を流出させないように小さくしなければならない。そうすると、流体透過性部材9での濾過抵抗が大きくなり、ここで目詰まりも生じやすくなる。これを防ぐため、磁性ビーズ(濾材)6を充填した濾材層11と流体透過性部材(支持体)9との間に、前記磁性ビーズ6よりも大きく、重くかつビーズ径が揃った別の磁性ビーズを密に充填した下敷層15を形成することによって、流体透過性部材(支持体)9の孔径を大きめに設計することも可能である(図4参照)。   When magnetic beads (filter medium) 6 having a small bead diameter are used, the size of the hole of the fluid permeable member (support) 9 that holds the beads is set so that the magnetic beads 6 do not flow out. Must be small. If it does so, the filtration resistance in the fluid permeable member 9 will become large, and it will become easy to produce clogging here. In order to prevent this, another magnetic material that is larger and heavier than the magnetic beads 6 and has a uniform bead diameter is provided between the filter medium layer 11 filled with the magnetic beads (filter medium) 6 and the fluid-permeable member (support) 9. It is also possible to design the pore size of the fluid permeable member (support) 9 larger by forming the underlay layer 15 in which beads are closely packed (see FIG. 4).

本発明は、また、上記図1の濾取装置を複数個連結した多段濾取装置であって、各段の濾材層11に充填した磁性ビーズの粒径は、下流側よりも上流側のほうが大きいことを特徴とする多段濾取装置(分級装置)3も提供する(図5参照)。   The present invention is also a multi-stage filtration apparatus in which a plurality of the filtration apparatuses of FIG. 1 are connected, and the particle size of the magnetic beads filled in the filter medium layer 11 at each stage is higher on the upstream side than on the downstream side. A multistage filtration device (classification device) 3 characterized by being large is also provided (see FIG. 5).

本発明は、先に述べたように、更に、微小な固体物質を含む原料流体の処理方法も提供する。すなわち、
流体を通すが濾材を通さない流体透過性部材9の上に、磁性ビーズ(濾材)6を密に充填することによって、ビーズ間空隙孔(濾過穴の大きさ)が磁性ビーズの径の約8分の1(D/8)の大きさの濾材層11を形成させたのち、前記ビーズ間空隙孔よりも大きな固体物質7を含む原料流体をこの濾材層11に通し、濾材層11に捕捉された固体物質7と、濾材層11を通過した清浄な流体とに分離することを特徴とする原料流体の処理方法である。
As described above, the present invention also provides a method for treating a raw material fluid containing a fine solid substance. That is,
By tightly filling magnetic beads (filter medium) 6 on a fluid permeable member 9 that allows fluid to pass but not filter medium, the inter-bead gap hole (size of the filtration hole) is about 8 times the diameter of the magnetic beads. After the filter medium layer 11 having a size of 1 / (D / 8) is formed, the raw material fluid containing the solid substance 7 larger than the inter-bead gap hole is passed through the filter medium layer 11 and captured by the filter medium layer 11. The raw material fluid treatment method is characterized in that the solid material 7 is separated into a clean fluid that has passed through the filter medium layer 11.

このとき、均一な濾取又は濾過をするためには、磁性ビーズの粒径(D)は揃っているほうが好ましい。「粒径が揃っている」とは、先に述べた意味と同じである。粒径が揃った磁性ビーズを用いることにより、均一な粒子間空隙(濾過穴)を有する濾材層(濾過層)を作ることができる。   At this time, in order to perform uniform filtration or filtration, it is preferable that the magnetic beads have the same particle diameter (D). “The particle size is uniform” has the same meaning as described above. By using magnetic beads having a uniform particle diameter, a filter medium layer (filter layer) having uniform interparticle voids (filter holes) can be produced.

この処理方法は、次のようにも言える。すなわち、
捕捉したい最低の粒子径がdの固体物質を含む原料流体を、固体物質と清浄な流体とに分離する処理方法において、流体を通すが濾材を通さない流体透過性部材9の上に粒子径が約8d近辺に揃った磁性ビーズを密に充填した濾材層11を形成させたのち、固体物質を含む原料流体をこの濾材層11に通し、濾材に捕捉された固体物質と濾材層を通過した清浄な流体とに分離することを特徴とする原料流体の処理方法、である。
This processing method can also be said as follows. That is,
In a processing method for separating a raw material fluid containing a solid substance having a minimum particle diameter d desired to be captured into a solid substance and a clean fluid, the particle diameter is placed on the fluid permeable member 9 that passes the fluid but does not pass the filter medium. After forming the filter medium layer 11 closely packed with magnetic beads aligned in the vicinity of about 8d, the raw material fluid containing the solid substance is passed through the filter medium layer 11 and the solid substance trapped by the filter medium and the clean medium that has passed through the filter medium layer are passed. A raw material fluid treatment method, wherein the raw material fluid is separated into different fluids.

次に、用いる磁性ビーズ、その製造法、用いる部材、原料流体、操作圧力、濾材の洗浄方法などについて説明する。
(1)磁性ビーズ
本発明で用いる磁性ビーズは、球状の磁性粒子であり、好ましくは、磁性粉末をポリマーで包み込んだ球状複合粒子である。ここで、球状とは、真球状、球形に近い形状、多少回転楕円体に近い形状をも含み、最も好ましいものは、真球状である。磁性ビーズ(粒径:D)を相互に隙間なく充填することにより、ビーズ間空隙孔径(濾過穴の大きさ)が均一な濾材層(濾過層)を形成できるからである。また、製造も容易である。
Next, the magnetic beads to be used, the production method thereof, the members to be used, the raw material fluid, the operating pressure, the cleaning method of the filter medium, etc. will be described.
(1) Magnetic beads The magnetic beads used in the present invention are spherical magnetic particles, preferably spherical composite particles in which magnetic powder is wrapped with a polymer. Here, the spherical shape includes a true spherical shape, a shape close to a spherical shape, and a shape somewhat close to a spheroid, and the most preferable one is a true spherical shape. This is because by filling the magnetic beads (particle size: D) with no gap between each other, a filter medium layer (filtration layer) having a uniform inter-bead pore size (size of the filtration hole) can be formed. Moreover, manufacture is also easy.

用いる磁性ビーズは、また、ある一定値(最低)以上の粒子径を有する必要があり、その最低粒子径は、濾取すべき固体物質の最低粒子径との関係で決まってくる。通常、濾取すべき物質の最低粒子径(その粒径をdとする)の約8倍である。ただし、濾取すべき固体物質の形状は、通常、不定形であるので、その固体物質の平面視における面積を実測し、これを同面積の円に置き換えたときの直径(平均値)をもって、固体物質の粒径とする。
磁性ビーズの最低粒子径は広い範囲をとることができ、通常は0.1μm〜300μm、好ましくは1μm〜100μmである。磁性ビーズの形状が真球でなく歪な場合は、その磁性ビーズの平面視における面積を実測し、これを同面積の円に置き換えたときの直径(平均値)をもって、磁性ビーズの粒径とする。
The magnetic beads to be used must also have a particle size of a certain value (minimum) or more, and the minimum particle size is determined in relation to the minimum particle size of the solid substance to be filtered. Usually, it is about 8 times the minimum particle size of the substance to be filtered (its particle size is d). However, since the shape of the solid substance to be filtered is usually indeterminate, the area in plan view of the solid substance is measured, and the diameter (average value) when this is replaced with a circle of the same area, The particle size of the solid material.
The minimum particle diameter of the magnetic beads can be in a wide range, and is usually 0.1 μm to 300 μm, preferably 1 μm to 100 μm. If the shape of the magnetic bead is not a true sphere but is distorted, measure the area of the magnetic bead in plan view, and use the diameter (average value) when this is replaced with a circle of the same area as the particle size of the magnetic bead. To do.

本発明に使用する磁性ビーズはその表面に機能材料から成る被覆層を有していてもよい。機能材料は生化学的、機械的、電気的、磁気的、光学的、又は熱的性質を発現もしくは改良しうる性質を有し、少なくとも1種の有機材料、無機材料、有機無機複合材料およびこれらの2種以上の同種又は異種材料の混合物である。機能材料には生体親和性材料、紫外線を吸収ないし散乱する物質、顔料、染料、赤外線吸収剤、電磁波ないし放射線の吸収剤、各種蛍光体が含まれる。ここで、本発明において「生体親和性材料」とは、生体への毒性を持たず、また生体反応を引き起こさない材料をいう。
例えば、生体親和性材料としてヒドロキシアパタイト、多糖類及びその誘導体、デキストラン及びその誘導体、カルボキシル基やアミノ基を有する高分子材料、及びポリオレフィンと上記官能基を有するポリマーとの共重合体などが好ましい例として挙げられる。また被覆層として使用できる無機材料として、金属酸化物、金属ホウ化物、金属珪化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等を挙げることができる。無機材料の具体例としては、Ni、Cu、Cr、Al、金、白金、銀などの金属、酸化チタン(チタンホワイト)、酸化亜鉛、酸化鉄(ベンガラ、黄色酸化鉄、鉄黒、超微粒子酸化鉄)、酸化鉛、酸化アルミニウム、酸化ジルコニウム、酸化セレン、アルミン酸ストロンチウム、マンガンドープ珪酸亜鉛、セリウムドープイットリウムシリケート、希土類シリケートなどの金属酸化物、水酸化アルミニウム、窒化チタン、窒化ジルコニウム、炭化珪素、窒化珪素、炭化硼素、窒化硼素などが挙げられる。
被覆層の厚みは分子オーダー(約1nm)から数ミクロンであるが、機能材料の種類や微小粒子径、応用分野により最適な厚みを選ぶことができる。
The magnetic beads used in the present invention may have a coating layer made of a functional material on the surface thereof. The functional material has a property capable of expressing or improving biochemical, mechanical, electrical, magnetic, optical, or thermal properties, and includes at least one organic material, inorganic material, organic-inorganic composite material, and these A mixture of two or more of the same or different materials. Functional materials include biocompatible materials, substances that absorb or scatter ultraviolet rays, pigments, dyes, infrared absorbers, electromagnetic wave or radiation absorbers, and various phosphors. Here, in the present invention, the “biocompatible material” refers to a material that is not toxic to a living body and does not cause a biological reaction.
Examples of preferred biocompatible materials include hydroxyapatite, polysaccharides and derivatives thereof, dextran and derivatives thereof, polymer materials having carboxyl groups and amino groups, and copolymers of polyolefins and polymers having the above functional groups. As mentioned. Examples of inorganic materials that can be used as the coating layer include metal oxides, metal borides, metal silicides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides. Specific examples of inorganic materials include metals such as Ni, Cu, Cr, Al, gold, platinum, silver, titanium oxide (titanium white), zinc oxide, iron oxide (bengala, yellow iron oxide, iron black, ultrafine particle oxidation Iron), lead oxide, aluminum oxide, zirconium oxide, selenium oxide, strontium aluminate, manganese-doped zinc silicate, cerium-doped yttrium silicate, rare earth silicate, etc., aluminum hydroxide, titanium nitride, zirconium nitride, silicon carbide, Examples thereof include silicon nitride, boron carbide, and boron nitride.
The thickness of the coating layer is from the molecular order (about 1 nm) to several microns, but an optimum thickness can be selected depending on the type of functional material, the fine particle diameter, and the application field.

(2)磁性粉末
磁性ビーズの製造原料の磁性粉末としては、強磁性材料(フェロ磁性、フェリ磁性など自発磁化を有する磁性材料)、その他の磁性材料(特開2001−114901号公報参照)も使えるが、好ましいものは軟磁性材料である。軟磁性材料は磁場の印加を除去した後に残る残留磁化の小さな材料であり、このような材料から構成される磁性粉末は洗浄再生する工程で粒子同士の磁気的凝集が低減されるため、分散・洗浄が容易となる。また、軟磁性材料の中でもソフトフェライトと呼ばれる材料が特に好ましい。ソフトフェライトとしては、例えば、マンガンジンクフェライトやニッケルジンクフェライトなどがある。磁性粉末の使用量は、ポリマー量100重量部に対して1〜90重量部が好ましく、5〜50重量部が更に好ましい。
(2) Magnetic powder As a magnetic powder as a raw material for producing magnetic beads, ferromagnetic materials (magnetic materials having spontaneous magnetization such as ferromagnetism and ferrimagnetism) and other magnetic materials (see JP 2001-114901 A) can be used. However, a soft magnetic material is preferable. Soft magnetic materials are materials with small residual magnetization that remain after the application of a magnetic field is removed, and magnetic powders composed of such materials reduce the magnetic aggregation between particles in the process of washing and regenerating. Easy to clean. Of the soft magnetic materials, a material called soft ferrite is particularly preferable. Examples of the soft ferrite include manganese zinc ferrite and nickel zinc ferrite. The amount of magnetic powder used is preferably 1 to 90 parts by weight, more preferably 5 to 50 parts by weight, based on 100 parts by weight of the polymer.

(3)ポリマー
磁性粉末を包み込むポリマーは、有機ポリマーまたは無機のポリマーが使用できる。有機ポリマーとしては、熱硬化性樹脂なども使用できるが、製造上の観点から熱可塑性樹脂が好ましく使用できる。
熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリアミド類、特に各種ナイロン、例えばナイロン6、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン46、ポリエステル類、例えばポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、ポリテトラフルオロエチレン、ポリふっ化ビニリデン、ポリ酢酸ビニル、ポリアセタール、ポリスルホン、ポリスチレン、アクリル酸メチル・メタクリル酸メチルコポリマー、アクリルニトリル・スチレンコポリマー、エチレン・酢酸ビニルコポリマー(EVA)、エチレン・アクリル酸コポリマー、エチレン・プロピレンコポリマー、ABS樹脂(アクリルニトリル・ブタジエン・スチレンコポリマー)、熱可塑性弾性体、例えばスチレン・ブタジエンコポリマー等がある。
(3) Polymer An organic polymer or an inorganic polymer can be used as the polymer that wraps the magnetic powder. As the organic polymer, a thermosetting resin or the like can be used, but a thermoplastic resin can be preferably used from the viewpoint of production.
Examples of the thermoplastic resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyamides, particularly various nylons such as nylon 6, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, nylon 46, polyesters such as polyethylene. Terephthalate, polycarbonate, polymethyl methacrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl acetate, polyacetal, polysulfone, polystyrene, methyl acrylate / methyl methacrylate copolymer, acrylonitrile / styrene copolymer, ethylene / vinyl acetate copolymer ( EVA), ethylene / acrylic acid copolymer, ethylene / propylene copolymer, ABS resin (acrylonitrile / butadiene / styrene copolymer) Rimmer), thermoplastic elastomer, for example, a styrene-butadiene copolymer and the like.

(4)磁性ビーズの製造方法
本発明で用いる磁性ビーズは、本発明者の一人が先に開発した球状複合粉体の製造方法(特開2001−114901号公報)に従って、磁性粉末をポリマーで包み込んだ球状複合粒子として製造することができる。その方法は、熱可塑性樹脂及び磁性粉末からなる組成物を、前記組成物と相溶性のない分散媒と共に前記組成物の融点以上に加熱混合し、微粒子として分散した後、冷却することを特徴とするものである。これにより、0.1μm以上300μm以下の磁性ビーズが容易に得られる。
(4) Magnetic Bead Manufacturing Method The magnetic beads used in the present invention are encapsulated in a polymer in accordance with a spherical composite powder manufacturing method (Japanese Patent Laid-Open No. 2001-114901) previously developed by one of the inventors. It can be produced as spherical composite particles. The method is characterized in that a composition comprising a thermoplastic resin and magnetic powder is heated and mixed to a temperature equal to or higher than the melting point of the composition together with a dispersion medium incompatible with the composition, dispersed as fine particles, and then cooled. To do. Thereby, magnetic beads of 0.1 μm or more and 300 μm or less can be easily obtained.

(5)濾材層(濾過層)
被処理流体室の下部(又は底部)、あるいは、被処理流体室と清浄流体室の間に、流体を通すが磁性ビーズ(濾材)を通さない流体透過性部材(支持体)を設け、その上に(すなわち、被処理流体室側に)、磁性ビーズを充填した濾材層(濾過層)を形成させる。
濾材層(濾過層)の厚さは適宜選択できる。均一な濾過をするためには、磁性ビーズの平均粒径の50〜5000倍、好ましくは50〜500倍の濾材層とする。
(5) Filter medium layer (filter layer)
Provide a fluid-permeable member (support) that allows fluid to pass but not magnetic beads (filter medium) between the lower (or bottom) of the fluid chamber or between the fluid chamber and the clean fluid chamber. (I.e., on the fluid chamber side), a filter medium layer (filter layer) filled with magnetic beads is formed.
The thickness of the filter medium layer (filter layer) can be appropriately selected. In order to perform uniform filtration, the filter medium layer is 50 to 5000 times, preferably 50 to 500 times the average particle diameter of the magnetic beads.

(6)流体透過性部材(支持体)
流体透過性部材(支持体)の材質は、特に限定しない。金属繊維のメッシュ、セラミックの焼結体、ガラス繊維、ポリエチレンの繊維、ポリプロピレンの粉体の焼結体、セルロースの繊維などを用いることができる。支持体のメッシュの大きさ(目開き)は、濾材層に充填した磁性ビーズが流出しないように、その磁性ビーズの最低粒子径の約0.1〜0.8倍とする。
(6) Fluid permeable member (support)
The material of the fluid permeable member (support) is not particularly limited. Metal fiber meshes, ceramic sintered bodies, glass fibers, polyethylene fibers, polypropylene powder sintered bodies, cellulose fibers, and the like can be used. The size (opening) of the mesh of the support is about 0.1 to 0.8 times the minimum particle diameter of the magnetic beads so that the magnetic beads filled in the filter medium layer do not flow out.

(7)上流体透過性部材(邪魔板)
原料流体を濾取装置に導入した際に濾材層が乱れないように、被処理流体室の上部には、濾材流出防止用の上流体透過性部材(邪魔板)を付設することが好ましい。また、この上流体透過性部材(邪魔板)を濾材層の直上に配置して濾材層全体を押さえつけるように固定してもよい。
(7) Upper fluid permeable member (baffle plate)
It is preferable to attach an upper fluid permeable member (baffle plate) for preventing the filter medium outflow to the upper part of the fluid chamber so that the filter medium layer is not disturbed when the raw material fluid is introduced into the filtration device. Alternatively, the upper fluid-permeable member (baffle plate) may be disposed immediately above the filter medium layer and fixed so as to press down the entire filter medium layer.

(8)原料流体及び原料流体に含まれる固体物質
本発明に適用できる原料流体(液体又は気体)は、磁性ビーズを溶解・損傷しない限り特に限定されない。また、そこに含有する固体物質は、無機物でも有機物でもよい。このような固体物質を含む原料流体としては、例えば、サブミクロンないしミクロン級の固体物質(鉄サビ、異物、その他の不純物)を含む水道水、酵母、細菌、ウィルス等の黴菌類を含む汚染水、赤血球、白血球、血小板等の血中細胞を含む血液、核、ミトコンドリア、リソゾーム等の細胞内小器官のほかに未破砕の完全細胞(whole cell)を含む細胞破砕液;1次〜2次処理後の汚水、大粒子を含む塗料用素材、生活排水、工業排水、各種の排気ガス、汚染空気などがある。
原料流体の粘度も特に限定されないが、液体である場合は、2.0×10−4〜1Pa・sであることが好ましく、2.0×10−4〜1.0×10−2Pa・sであることが更に好ましい。
(8) Raw material fluid and solid substance contained in the raw material fluid The raw material fluid (liquid or gas) applicable to the present invention is not particularly limited as long as it does not dissolve or damage the magnetic beads. Moreover, the solid substance contained therein may be inorganic or organic. Examples of the raw material fluid containing such a solid substance include tap water containing submicron to micron grade solid substances (iron rust, foreign matters, other impurities), contaminated water containing gonococci such as yeast, bacteria, and viruses. Cell disruption fluid containing blood cells including blood cells such as erythrocytes, leukocytes, platelets, etc., cell organelles such as nuclei, mitochondria, lysosomes and undisrupted complete cells (primary to secondary treatment) There are later sewage, paint materials containing large particles, domestic wastewater, industrial wastewater, various exhaust gases, and polluted air.
The viscosity of the fluid raw material is not particularly limited, if it is liquid is preferably 2.0 × 10 -4 ~1Pa · s, 2.0 × 10 -4 ~1.0 × 10 -2 Pa · More preferably, it is s.

(9)操作圧力
本発明の処理方法における操作圧力、又は装置にかける圧力としては、各々の方法及び装置に適した圧力とする。常圧、加圧あるいは減圧を適宜に選択することができる。濾過速度を上げるためには、加圧又は減圧での操作が好ましい。
(9) Operating pressure The operating pressure in the treatment method of the present invention or the pressure applied to the apparatus is a pressure suitable for each method and apparatus. Normal pressure, increased pressure, or reduced pressure can be selected as appropriate. In order to increase the filtration rate, operation under pressure or reduced pressure is preferred.

(10)濾材の洗浄又は濾材層の再形成
濾取/濾過の運転を続けると、濾材層は固体物質によって目詰まりし、濾過速度が落ちてくる。そこで、目詰まりしてきた濾材層の磁性ビーズ(固体物質付き濾材層)を洗浄液に懸濁し、磁石の吸引力を利用して、濾材である磁性ビーズから固体物質を分けるとともに磁性ビーズを洗浄し、得られた磁性ビーズを再使用して濾材層を(再び)形成させ、引き続き濾取/濾過の運転を続けることができる。
なお、洗浄方法としては、種々の方法がとりうるが、例えば、洗浄液で逆洗する方法、洗浄液中で撹拌(撹拌羽根による撹拌、通気撹拌、転倒撹拌等)する方法、超音波洗浄などがある。
(10) Washing the filter medium or re-forming the filter medium layer When the filtration / filtration operation is continued, the filter medium layer is clogged with solid substances, and the filtration speed decreases. Therefore, the magnetic beads (filter material layer with a solid substance) of the filter medium layer that has become clogged are suspended in the washing liquid, and the magnetic beads are separated from the magnetic beads as the filter medium by using the magnetic attraction force, and the magnetic beads are washed. The resulting magnetic beads can be reused to form the filter media layer (again) and the filter / filter operation can continue.
Various cleaning methods can be used, such as a method of backwashing with a cleaning solution, a method of stirring in a cleaning solution (stirring with a stirring blade, aeration stirring, overturning stirring, etc.), ultrasonic cleaning, and the like. .

先ず、磁性ビーズの製造例を示す。
<磁性ビーズの製造例>
ダイセル化学工業(株)製のダイアミド1640(ナイロン12)1kg及び堺化学(株)製のマンガンジンクフェライト微粉末300gを量りとり、分散媒であるポリエチレングリコールP20,000(三洋化成工業(株)製)1.3kgを加えよく混合し、更に2軸型加圧混練機中で230℃に均一に加熱しながら混合して、分散媒中にソフトフェライト内包ナイロン微粒子を含む混合物を得た。次に、得られた混合物を約150℃に冷却した後、これを水(展開溶媒)20リットル中に投入・混合し、ソフトフェライト内包ナイロン複合体の懸濁液とした。遠心分離法及び濾過法によりソフトフェライト内包ナイロン複合体(磁性ビーズ)を分離し、加熱・乾燥し、粒径80±10μmの真球状の磁性ビーズを得た。
First, an example of manufacturing magnetic beads is shown.
<Production example of magnetic beads>
1 kg of Daiamide 1640 (nylon 12) manufactured by Daicel Chemical Industries, Ltd. and 300 g of manganese zinc ferrite fine powder manufactured by Sakai Chemical Co., Ltd. are weighed, and polyethylene glycol P20,000 as a dispersion medium (manufactured by Sanyo Chemical Industries Co., Ltd.). 1.3 kg was added and mixed well, and further mixed in a biaxial pressure kneader while uniformly heating to 230 ° C. to obtain a mixture containing soft ferrite-encapsulated nylon fine particles in the dispersion medium. Next, after the obtained mixture was cooled to about 150 ° C., it was charged and mixed in 20 liters of water (developing solvent) to obtain a suspension of a soft ferrite-encapsulated nylon composite. Soft ferrite-encapsulated nylon composites (magnetic beads) were separated by centrifugation and filtration, and heated and dried to obtain true spherical magnetic beads with a particle size of 80 ± 10 μm.

以下、添付図面を参照しながら、本発明をさらに具体的に説明する。
図1は、本発明に係る第1実施例の濾取装置/濾過装置の概略構成図である。濾取装置/濾過装置1は、図示するように、被処理流体室4と、被処理流体室4の下部に設けた濾材層11と、その濾材層11を支える流体透過性部材(支持体)9と、流体透過性部材9の下方に設けた清浄流体室5と、電磁石8とを備えており、その濾材層11では粒子径の揃った磁性ビーズ(濾材)が密に充填されている。また、被処理流体室4の上部には、上流体透過性部材(邪魔板)10が配置され、そのやや下方の壁部に固体物質回収口14が設けられている。
被処理流体供給口12から流れ込んだ固体物質(例えば、異物)7を含む原料流体(例えば、水道水)は、そのまま上流体透過性部材(邪魔板)10を通り抜け、そのうちの固体物質7が濾材層11にて捕捉され、清浄流体だけが清浄流体室5を経て清浄流体排出口13から排出される。濾過を続けると、濾材層11が徐々に目詰まりし、濾過速度が次第に低下する。
Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of a filtering device / filtering device according to a first embodiment of the present invention. As shown in the drawing, the filtration device / filtration device 1 includes a fluid chamber 4 to be treated, a filter material layer 11 provided in a lower portion of the fluid chamber 4 to be treated, and a fluid-permeable member (support) that supports the filter material layer 11. 9, a clean fluid chamber 5 provided below the fluid permeable member 9, and an electromagnet 8. The filter medium layer 11 is densely filled with magnetic beads (filter medium) having a uniform particle diameter. Further, an upper fluid permeable member (baffle plate) 10 is disposed in the upper part of the fluid chamber 4 to be processed, and a solid substance recovery port 14 is provided in a slightly lower wall portion.
The raw material fluid (for example, tap water) including the solid material (for example, foreign matter) 7 that has flowed from the fluid supply port 12 passes through the upper fluid permeable member (baffle plate) 10 as it is, and the solid material 7 of the raw material fluid is filtered. Only the clean fluid is captured by the layer 11 and discharged from the clean fluid discharge port 13 through the clean fluid chamber 5. When the filtration is continued, the filter medium layer 11 is gradually clogged, and the filtration rate gradually decreases.

そこで、濾過速度の低下を解除するために、濾取装置/濾過装置の濾材層11を洗浄する。例えば、被処理流体供給口12、清浄流体排出口13及び固体物質回収口14を塞ぎ、電磁石8に通電し磁石化した状態で、濾取装置/濾過装置全体を天地逆転させ、振り混ぜると、固体物質7を捕捉した濾材(磁性ビーズ)6は各々バラバラになり、磁性ビーズ6は電磁石8に吸引され、固体物質7は媒体中に均一に懸濁・分散する状態になる。固体物質回収口14の栓をとれば、固体物質7が得られる(図2)。
その後、濾取装置/濾過装置の天地を元の状態に戻し、電磁石8への通電を止め、被処理流体供給口12から原料流体を供給すれば、初めと同じ状態で(水道水の場合は、その水圧下に)濾過を行うことができる。
Therefore, in order to cancel the decrease in the filtration rate, the filter medium layer 11 of the filter / filter is washed. For example, when the treated fluid supply port 12, the clean fluid discharge port 13, and the solid material recovery port 14 are closed and the electromagnet 8 is energized and magnetized, the entire filtering device / filtering device is turned upside down and shaken. The filter media (magnetic beads) 6 that have captured the solid substance 7 are separated, and the magnetic beads 6 are attracted by the electromagnet 8 so that the solid substance 7 is uniformly suspended and dispersed in the medium. If the plug of the solid substance recovery port 14 is taken, the solid substance 7 is obtained (FIG. 2).
Then, if the top of the filter / filter is returned to the original state, the energization of the electromagnet 8 is stopped, and the raw material fluid is supplied from the treated fluid supply port 12, the same state as the beginning (in the case of tap water) Under the water pressure).

なお、上記電磁石に代えて、被処理流体室に固定されていない別体の永久磁石を用い、洗浄時に永久磁石を被処理流体室に近づけ、磁性ビーズを吸引する方法でもよい。また、濾取装置/濾過装置全体を天地転倒させるのではなく、流体の流路の切替による逆洗浄等でも構わない。
また、用いる磁性ビーズの比重が原料流体の比重よりも小さい場合には、上記濾取装置/濾過装置の天地を逆さにして濾過を行うことも可能であり、その場合の原料流体の流れる方向は上向流となる。
Instead of the electromagnet, a separate permanent magnet that is not fixed to the fluid chamber to be treated may be used, and the permanent magnet may be brought close to the fluid chamber to be treated during cleaning to attract the magnetic beads. In addition, instead of overturning the entire filtering device / filtering device, reverse cleaning or the like by switching the fluid flow path may be used.
Further, when the specific gravity of the magnetic beads to be used is smaller than the specific gravity of the raw material fluid, it is possible to perform the filtration with the top of the filter / filter device upside down. In this case, the flow direction of the raw material fluid is It becomes an upward flow.

図3は、本発明に係る第2実施例の濾取装置/濾過装置で、流体が汚染空気や排気ガスなどの気体の場合に適する横置きタイプの概略構成図である。この場合、濾取装置/濾過装置を、図1のように垂直方向に立てて配置することもできるが、図3のように水平方向に倒して使うこともできる。その場合の原料流体(気体)の流れる方向は水平流となる。
さらに、原料流体が気体である場合には、明確に区切った清浄流体室を省くことも可能である。
FIG. 3 is a schematic configuration diagram of a horizontal type suitable for the case where the fluid is a gas such as polluted air or exhaust gas in the filter / filter of the second embodiment according to the present invention. In this case, the filtering device / filtering device can be arranged upright in the vertical direction as shown in FIG. 1, but can also be used in the horizontal direction as shown in FIG. In this case, the flow direction of the raw material fluid (gas) is a horizontal flow.
Furthermore, when the raw material fluid is a gas, it is possible to omit a clean fluid chamber that is clearly partitioned.

図4は、本発明に係る第3実施例の濾取装置/濾過装置の概略構成図である。濾取(又は濾過)するべき固体物質が非常に小さいサブミクロン級となると、用いる磁性ビーズの粒径も小さくなり、また、これを流出させないような流体透過性部材(支持体)の目開き(孔の大きさ)も当然に細かくなる。そうすると、流体透過性部材の濾過抵抗が大きくなるとともに、流体透過性部材における目詰まりも生じる。これを防止するために考え出した濾取装置/濾過装置である。
図4に示すように、磁性ビーズを充填した濾材層11と流体透過性部材9との間に、上記磁性ビーズよりも大きく、重く、かつ粒子径が揃った別の磁性ビーズを密に充填した下敷層15を形成させる。下敷層15の磁性ビーズの粒径は、濾材層11における磁性ビーズの約8倍にすることができるので、流体透過性部材の目開きをその分だけ粗くすることができ、濾過抵抗を軽減できる。
FIG. 4 is a schematic configuration diagram of the filter / filter device of the third embodiment according to the present invention. When the solid substance to be filtered (or filtered) is of a very small submicron class, the particle size of the magnetic beads to be used is also reduced, and the opening of the fluid-permeable member (support) that does not allow this to flow out ( Naturally, the size of the hole is also reduced. If it does so, while the filtration resistance of a fluid permeable member will become large, the clogging in a fluid permeable member will also arise. This is a filter / filter device that has been devised to prevent this.
As shown in FIG. 4, between the filter medium layer 11 filled with magnetic beads and the fluid permeable member 9, another magnetic bead that is larger, heavier, and has a uniform particle diameter than the magnetic beads is densely packed. The underlay layer 15 is formed. Since the particle size of the magnetic beads in the underlay layer 15 can be about eight times that of the magnetic beads in the filter medium layer 11, the opening of the fluid permeable member can be made coarser and the filtration resistance can be reduced. .

図1又は図4の濾取装置/濾過装置を複数個連結すれば、多段濾取装置又は分級装置(篩)とすることができる。図5は、図1(第1実施例)の濾取装置/濾過装置を3段に直列に連結した多段濾取装置/分級装置(第4実施例)の概略構成図である。但し、各々の濾材層に充填する磁性ビーズの粒子径は、下流側よりも上流側のほうを大きくしている。
なお、被処理流体室と一段下の清浄流体室とは結合させて、共通の一室(すなわち、最下段の清浄流体排出口を除いて、途中に清浄流体排出口を設けない)としてもよい。
If a plurality of the filtering devices / filtering devices in FIG. 1 or FIG. 4 are connected, a multi-stage filtering device or a classification device (sieving device) can be obtained. FIG. 5 is a schematic configuration diagram of a multistage filter / classifier (fourth embodiment) in which the filter / filter of FIG. 1 (first embodiment) is connected in series in three stages. However, the particle diameter of the magnetic beads filled in each filter medium layer is larger on the upstream side than on the downstream side.
The fluid chamber to be processed and the clean fluid chamber at the lower stage may be combined to form a common chamber (that is, the clean fluid discharge port is not provided in the middle except for the clean fluid discharge port at the lowermost stage). .

被処理流体室4及び清浄流体室5の材質は特に限定するものではないが、耐蝕性及び耐圧性の観点から、ガラス、陶磁器、ステンレス、プラスチック類等が好ましく用いられる。また、被処理流体室4及び清浄流体室5には、濾過の様子が観察できるように覗き窓を設けてもよい。固体物質回収口14の設置位置も適宜に選択できる。
なお、磁石として電磁石を用いる場合は、一つ又は二以上の電磁石を不連続に被処理流体室4の外側面に配置しても良いし、取り外し可能なリボン状の電磁石を被処理流体室4の内側面に張り付くように配置してもよい。
The materials of the fluid chamber 4 and the clean fluid chamber 5 are not particularly limited, but glass, ceramics, stainless steel, plastics, and the like are preferably used from the viewpoint of corrosion resistance and pressure resistance. Moreover, you may provide a viewing window in the to-be-processed fluid chamber 4 and the clean fluid chamber 5 so that the state of filtration can be observed. The installation position of the solid substance recovery port 14 can also be appropriately selected.
In addition, when using an electromagnet as a magnet, you may arrange | position one or two or more electromagnets discontinuously in the outer surface of the to-be-processed fluid chamber 4, and the removable ribbon-shaped electromagnet may be to-be-processed to the to-be-processed chamber 4. You may arrange | position so that it may stick to the inner surface of.

次に、本発明の濾取装置/濾過装置を用いた実験例を示す。
(実験例)塗料中の過大粒子の除去
磁性ビーズは、先の製造例で得た磁性ビーズ(100重量部のナイロン12中にソフトフェライト30重量部を含有せしめた真球状粒子)で、粒径80±10μmのものを用いた。また、濾取装置/濾過装置としては、図1(第1実施例)に相当する装置(但し、被処理流体室が直径30mmの円筒状で濾材層の厚みが2mm)を用いた。原料液としては、過大粒子(10μm以上)を含む塗料用無機顔料微粉の懸濁液を用いた。
上記濾取装置/濾過装置に原料液を供給して濾過したところ、10μm以上の過大粒子は濾材層で捕捉されるのが観察された。
Next, an experimental example using the filter / filter of the present invention is shown.
(Experimental example) Removal of excessive particles in paint The magnetic beads are magnetic beads obtained in the previous production example (spherical particles in which 30 parts by weight of soft ferrite is contained in 100 parts by weight of nylon 12), and the particle size The one with 80 ± 10 μm was used. In addition, as the filtration device / filtration device, a device corresponding to FIG. 1 (first example) (however, the fluid chamber to be treated has a cylindrical shape with a diameter of 30 mm and the thickness of the filter medium layer is 2 mm) was used. As the raw material liquid, a suspension of inorganic pigment fine powder for paints containing oversized particles (10 μm or more) was used.
When the raw material liquid was supplied to the filtration device / filtration device and filtered, it was observed that excessive particles of 10 μm or more were captured by the filter medium layer.

本発明に係る第1実施例の濾取装置/濾過装置(概略構成図)で、原水処理時の状態を説明する図である。It is a figure explaining the state at the time of raw | natural water processing with the filter / filter apparatus (schematic block diagram) of 1st Example which concerns on this invention. 第1実施例の濾取装置/濾過装置における転倒撹拌・逆洗と固体物質の回収とを説明する図である。It is a figure explaining the overturn stirring and backwashing in the filtration apparatus / filtration apparatus of 1st Example, and collection | recovery of a solid substance. 本発明に係る第2実施例の濾取装置/濾過装置で、流体が気体の場合に適する横置きタイプの概略構成図である。FIG. 6 is a schematic configuration diagram of a horizontal type suitable for the case where the fluid is a gas in the filter / filter of the second embodiment according to the present invention. 本発明に係る第3実施例の濾取装置/濾過装置の概略構成図である。It is a schematic block diagram of the filtration apparatus / filtration apparatus of 3rd Example which concerns on this invention. 本発明に係る多段濾取装置/分級装置(第4実施例)の概略構成図である。It is a schematic block diagram of the multistage filtration apparatus / classification apparatus (4th Example) which concerns on this invention.

符号の説明Explanation of symbols

1、1a、1b、1c 濾取装置(濾過装置)
2 濾取装置(濾過装置)
3 多段の濾取装置(分級装置)
4 被処理流体室
5 清浄流体室
6 磁性ビーズ(濾材)
7 固体物質(懸濁性又は浮遊性の固体物質)
8 磁石(電磁石)
9 流体透過性部材(支持板)
10 上流体透過性部材(邪魔板)
11 濾材層(濾過層)
12 被処理流体供給口
13 清浄流体排出口
14 固体物質回収口
15 下敷層
1, 1a, 1b, 1c Filtering device (filtering device)
2 Filtering device (filtering device)
3 Multi-stage filter (classifier)
4 Fluid chamber 5 Clean fluid chamber 6 Magnetic beads (filter medium)
7 Solid substances (suspended or floating solid substances)
8 Magnet (electromagnet)
9 Fluid-permeable member (support plate)
10 Upper fluid permeable member (baffle plate)
11 Filter media layer (filter layer)
12 Processed fluid supply port 13 Clean fluid discharge port 14 Solid material recovery port 15 Underlay layer

Claims (15)

固体物質を含んだ原料流体を受け入れる被処理流体室と、
前記被処理流体室の下部に設けた濾材層と、
前記濾材層を支える流体透過性部材と、
前記流体透過性部材の下方に設けた清浄流体室とを備える濾取装置であって、
前記濾材層には磁性ビーズが密に充填されている濾取装置。
A fluid chamber to receive a raw material fluid containing a solid substance;
A filter medium layer provided in a lower portion of the fluid chamber;
A fluid permeable member that supports the filter media layer;
A filtration device comprising a clean fluid chamber provided below the fluid permeable member,
A filter device in which the filter medium layer is closely packed with magnetic beads.
被処理流体室と、濾材層と、流体透過性部材と、清浄流体室とは一体構成である、請求項1記載の濾取装置。   The filtration device according to claim 1, wherein the fluid chamber to be treated, the filter medium layer, the fluid permeable member, and the clean fluid chamber are integrated. 更に、磁石を付設している請求項1又は請求項2記載の濾取装置。   Furthermore, the filter apparatus of Claim 1 or Claim 2 which attached the magnet. 磁性ビーズは、ビーズ径(D)が揃ったものを使用する請求項1〜請求項3いずれか1つに記載の濾取装置。   The filtration device according to any one of claims 1 to 3, wherein magnetic beads having a uniform bead diameter (D) are used. ビーズ径(D)が揃った磁性ビーズと流体透過性部材との間には、前記磁性ビーズよりも大きくかつビーズ径が揃った別の磁性ビーズを密に充填した下敷層が形成されている、請求項1〜請求項4いずれか1つに記載の濾取装置。   Between the magnetic beads having the same bead diameter (D) and the fluid permeable member, an underlay layer is formed that is densely filled with another magnetic bead having a larger bead diameter than the magnetic beads. The filter apparatus as described in any one of Claims 1-4. 被処理流体室の上部には、磁性ビーズ流出防止用の上流体透過性部材が付設されている、請求項1〜請求項5いずれか1つに記載の濾取装置。   The filtration device according to any one of claims 1 to 5, wherein an upper fluid-permeable member for preventing magnetic beads from flowing out is attached to an upper portion of the processing fluid chamber. 請求項4〜請求項6いずれか1つに記載の濾取装置を複数個連結した多段の濾取装置であって、
各段の濾材層に充填した磁性ビーズのビーズ径は、下流側よりも上流側のほうが大きい濾取装置。
A multi-stage filtration device in which a plurality of the filtration devices according to any one of claims 4 to 6 are connected,
A filtration device in which the bead diameter of the magnetic beads packed in the filter medium layer of each stage is larger on the upstream side than on the downstream side.
原料流体は液体である、請求項1〜請求項7いずれか1つに記載の濾取装置。   The filtration device according to any one of claims 1 to 7, wherein the raw material fluid is a liquid. 原料流体は気体である、請求項1〜請求項7いずれか1つに記載の濾取装置。   The filtration device according to any one of claims 1 to 7, wherein the raw material fluid is a gas. 流体を通すが磁性ビーズを通さない流体透過性部材の上に、密に磁性ビーズを充填することによって、ビーズ間空隙孔が前記磁性ビーズの径(D)の約8分の1(D/8)の大きさの濾材層を形成させる濾材層形成工程、及び
前記ビーズ間空隙孔よりも大きな固体物質を含む原料流体を前記濾材層に通すことにより、濾材層に捕捉された固体物質と、濾材層を通過した清浄な流体とに分離する分離工程を、
この順に含むことを特徴とする原料流体の処理方法。
By densely filling magnetic beads on a fluid-permeable member that allows fluid to pass but not magnetic beads, the inter-bead gap is about one-eighth of the diameter (D) of the magnetic beads (D / 8). A filter medium layer forming step of forming a filter medium layer having a size of), and a solid material trapped in the filter medium layer by passing a raw material fluid containing a solid substance larger than the inter-bead gap pores through the filter medium layer, and the filter medium A separation process that separates the clean fluid that has passed through the layers,
A processing method of a raw material fluid characterized by including in this order.
磁性ビーズは、ビーズ径(D)が揃ったものを使用する請求項10記載の処理方法。   The processing method according to claim 10, wherein magnetic beads having a uniform bead diameter (D) are used. 捕捉する最低の粒子径がdである固体物質を含む原料流体を、前記固体物質と清浄な流体とに分離する処理方法において、
流体を通すが磁性ビーズを通さない流体透過性部材の上にビーズ径が約8dに揃った磁性ビーズを密に充填することにより、濾材層を形成させる濾材層形成工程、次いで
前記原料流体を前記濾材層に通し、濾材層に捕捉された固体物質と濾材層を通過した清浄な流体とに分離する分離工程を、
この順に行うことを特徴とする原料流体の処理方法。
In a processing method for separating a raw material fluid containing a solid substance having a minimum particle size of d to be captured into the solid substance and a clean fluid,
A filter medium layer forming step of forming a filter medium layer by densely filling magnetic beads having a bead diameter of about 8d on a fluid permeable member that allows fluid to pass but does not pass magnetic beads, A separation step of separating the solid material trapped in the filter medium layer and the clean fluid that has passed through the filter medium layer through the filter medium layer,
A method for treating a raw material fluid, which is performed in this order.
固体物質を捕捉した濾材層を洗浄液に懸濁し、磁石の吸引力を利用して、磁性ビーズと固体物質とに分け、
得られた磁性ビーズを濾材として再使用する、請求項10〜請求項12いずれか1つに記載の処理方法。
The filter medium layer that has captured the solid substance is suspended in the cleaning solution, and the magnetic attraction force is used to divide it into magnetic beads and solid substance.
The processing method according to any one of claims 10 to 12, wherein the obtained magnetic beads are reused as a filter medium.
原料流体は液体である、請求項10〜請求項13いずれか1つに記載の処理方法。   The processing method according to claim 10, wherein the raw material fluid is a liquid. 原料流体は気体である、請求項10〜請求項13いずれか1つに記載の処理方法。   The processing method according to claim 10, wherein the raw material fluid is a gas.
JP2004007574A 2004-01-15 2004-01-15 Collection by filtration apparatus and method utilizing magnetic bead Pending JP2005199163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004007574A JP2005199163A (en) 2004-01-15 2004-01-15 Collection by filtration apparatus and method utilizing magnetic bead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007574A JP2005199163A (en) 2004-01-15 2004-01-15 Collection by filtration apparatus and method utilizing magnetic bead

Publications (1)

Publication Number Publication Date
JP2005199163A true JP2005199163A (en) 2005-07-28

Family

ID=34821164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007574A Pending JP2005199163A (en) 2004-01-15 2004-01-15 Collection by filtration apparatus and method utilizing magnetic bead

Country Status (1)

Country Link
JP (1) JP2005199163A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025643A2 (en) * 2011-08-12 2013-02-21 Mcalister Technologies, Llc Dynamic filtration system and associated methods
CN105126527A (en) * 2015-09-24 2015-12-09 四川川起钢结构有限公司 Portable smoke dust remover for steel structure
WO2016121699A1 (en) * 2015-01-28 2016-08-04 パウダーテック株式会社 Ferrite particles for filter material which have outer shell structure
US9409126B2 (en) 2009-02-17 2016-08-09 Mcalister Technologies, Llc Apparatuses and methods for storing and/or filtering a substance
US9511663B2 (en) 2013-05-29 2016-12-06 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
US9534296B2 (en) 2013-03-15 2017-01-03 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
CN107716097A (en) * 2017-10-24 2018-02-23 广西联壮科技股份有限公司 Magnetic ball dynamic adsorption deironing mechanism
CN108816513A (en) * 2018-05-30 2018-11-16 上海电力学院 Multistage alternation catching type magnetic force dust-precipitating system
KR20190010764A (en) * 2017-07-20 2019-01-31 한국기계연구원 Method of manufacturing magnetic porous membrane and magnetic porous membrane thereby
CN109433412A (en) * 2018-11-06 2019-03-08 中南大学 The method of combined magnetic medium, magnetic medium heap, intermittent magnetic plant, vertical ring high-gradient magnetic separator and magnetic concentration
CN111733072A (en) * 2020-06-08 2020-10-02 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 Circulating tumor cell screening and separating device and method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428691A (en) * 1977-08-08 1979-03-03 Hitachi Ltd High dust gas sampling apparatus
JPH05299A (en) * 1991-06-25 1993-01-08 Matsushita Electric Works Ltd Purifier of bathtub
JPH10192605A (en) * 1997-01-09 1998-07-28 Toshiba Corp Filter for filter bed and power generation plant provided with the same
JPH1190124A (en) * 1997-09-18 1999-04-06 Matsushita Electric Ind Co Ltd Filter
JPH11333212A (en) * 1998-05-26 1999-12-07 Japan Organo Co Ltd Filtration apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428691A (en) * 1977-08-08 1979-03-03 Hitachi Ltd High dust gas sampling apparatus
JPH05299A (en) * 1991-06-25 1993-01-08 Matsushita Electric Works Ltd Purifier of bathtub
JPH10192605A (en) * 1997-01-09 1998-07-28 Toshiba Corp Filter for filter bed and power generation plant provided with the same
JPH1190124A (en) * 1997-09-18 1999-04-06 Matsushita Electric Ind Co Ltd Filter
JPH11333212A (en) * 1998-05-26 1999-12-07 Japan Organo Co Ltd Filtration apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9409126B2 (en) 2009-02-17 2016-08-09 Mcalister Technologies, Llc Apparatuses and methods for storing and/or filtering a substance
WO2013025643A3 (en) * 2011-08-12 2013-04-25 Mcalister Technologies, Llc Dynamic filtration system and associated methods
US8617399B2 (en) 2011-08-12 2013-12-31 Mcalister Technologies, Llc Dynamic filtration system and associated methods
WO2013025643A2 (en) * 2011-08-12 2013-02-21 Mcalister Technologies, Llc Dynamic filtration system and associated methods
US9327226B2 (en) 2011-08-12 2016-05-03 Mcalister Technologies, Llc Dynamic filtration system and associated methods
US9534296B2 (en) 2013-03-15 2017-01-03 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US9511663B2 (en) 2013-05-29 2016-12-06 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
TWI686357B (en) * 2015-01-28 2020-03-01 日商保德科技股份有限公司 Ferrite magnet particles for filter material with shell structure
JP2016137448A (en) * 2015-01-28 2016-08-04 パウダーテック株式会社 Ferrite grain for filter medium having outer shell structure
WO2016121699A1 (en) * 2015-01-28 2016-08-04 パウダーテック株式会社 Ferrite particles for filter material which have outer shell structure
US10603614B2 (en) 2015-01-28 2020-03-31 Powdertech Co., Ltd. Ferrite particles having outer shell structure used for filtering medium
CN105126527A (en) * 2015-09-24 2015-12-09 四川川起钢结构有限公司 Portable smoke dust remover for steel structure
KR20190010764A (en) * 2017-07-20 2019-01-31 한국기계연구원 Method of manufacturing magnetic porous membrane and magnetic porous membrane thereby
KR101967213B1 (en) 2017-07-20 2019-04-10 한국기계연구원 Method of manufacturing magnetic porous membrane
CN107716097A (en) * 2017-10-24 2018-02-23 广西联壮科技股份有限公司 Magnetic ball dynamic adsorption deironing mechanism
CN108816513A (en) * 2018-05-30 2018-11-16 上海电力学院 Multistage alternation catching type magnetic force dust-precipitating system
CN109433412A (en) * 2018-11-06 2019-03-08 中南大学 The method of combined magnetic medium, magnetic medium heap, intermittent magnetic plant, vertical ring high-gradient magnetic separator and magnetic concentration
CN109433412B (en) * 2018-11-06 2023-11-10 中南大学 Combined magnetic medium, magnetic medium stack, intermittent magnetic separation equipment, vertical-ring high-gradient magnetic separator and magnetic ore separation method
CN111733072A (en) * 2020-06-08 2020-10-02 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 Circulating tumor cell screening and separating device and method and application
CN111733072B (en) * 2020-06-08 2023-06-30 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 Circulating tumor cell screening and separating device, method and application

Similar Documents

Publication Publication Date Title
Weimin et al. Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration
CN107875860A (en) Nanoscale bicylindrical hole filter membrane
US20090101559A1 (en) Microconcentrator/Microfilter
ATE417808T1 (en) DEVICE AND METHOD FOR SEPARATING AND FILTERING PARTICLES AND ORGANISMS FROM FLOWING LIQUIDS
JP2005199163A (en) Collection by filtration apparatus and method utilizing magnetic bead
Tarleton The role of field-assisted techniques in solid/liquid separation
US20080210636A1 (en) Fluid Filter
CA1165698A (en) Method of removing fine suspended solids from effluent stream
WO2013028726A1 (en) High-volume fast separation of multi-phase components in fluid suspensions
CN207581525U (en) A kind of novel ultrafiltration apparatus
KR970074672A (en) Filtration-integrated sedimentation tank and its backwashing method
CN201179370Y (en) Microfilter with unbiconical core microporous film
CN208120853U (en) A kind of high-turbidity sewage purification device
TW200946205A (en) Centrifugal liquid filter
WO2017168861A1 (en) Magnetic cyclone device and treatment method for same
AU2014288960B2 (en) Apparatus and methods
CN206996020U (en) Filter cartridge construction and cartridge apparatus
JP2004344875A (en) Filtering method and filtering device
Holdich et al. Clarification by slotted surface microfilters
Mohammadimehr et al. Impact of microfluidic cell and particle separation techniques on microplastic removal strategies
CN107879506A (en) A kind of new ultrafiltration apparatus
Kanade Disposable Filters-A Review
Tepper et al. High Performance Turbidity Filter
JP7141105B2 (en) Adsorbent for water treatment and its manufacturing method
EP1761320A1 (en) Fluid filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406