JP2005198255A - Antenna and electric wave time-piece using the same, keyless entry system, and rfid system - Google Patents

Antenna and electric wave time-piece using the same, keyless entry system, and rfid system Download PDF

Info

Publication number
JP2005198255A
JP2005198255A JP2004314101A JP2004314101A JP2005198255A JP 2005198255 A JP2005198255 A JP 2005198255A JP 2004314101 A JP2004314101 A JP 2004314101A JP 2004314101 A JP2004314101 A JP 2004314101A JP 2005198255 A JP2005198255 A JP 2005198255A
Authority
JP
Japan
Prior art keywords
path member
case
magnetic path
main magnetic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004314101A
Other languages
Japanese (ja)
Other versions
JP4592001B2 (en
Inventor
Masahiro Mita
正裕 三田
Hirokazu Araki
博和 荒木
Chiharu Mitsumata
千春 三俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004314101A priority Critical patent/JP4592001B2/en
Publication of JP2005198255A publication Critical patent/JP2005198255A/en
Application granted granted Critical
Publication of JP4592001B2 publication Critical patent/JP4592001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Clocks (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna capable of demonstrating high characteristics even in a cabinet which restricts the direction of an electromagnetic wave incident from the outside of the cabinet. <P>SOLUTION: A magnetic sensor type antenna comprises a main magnetic path member in which a coil is wound around the coil made of a magnetic material, and receives the magnetic field component of the electromagnetic wave by the main magnetic path member. The antenna is equipped with the main magnetic path member and a cabinet formed of a material of relative permeability of 2 or higher and smaller than that of the main magnetic path member. The cabinet can be formed by injection molding or potting etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、時刻情報を含む電磁波の中で磁界成分を受信して時刻を合わせる、電波時計、あるいは電磁波で所有者の接近を検知して自動車や住居のキーを開閉せしめるスマートキーレスエントリーシステム等(以下、キーレスエントリーシステムと言う)、あるいは電磁波に載せられた変調信号によって情報を授受するRFIDタグシステム等(以下、RFIDシステムと言う)に用いて好適な磁気センサ型の電磁波受信用アンテナに関するものである。   The present invention relates to a timepiece that receives a magnetic field component in an electromagnetic wave including time information and adjusts the time, a radio timepiece, or a smart keyless entry system that detects the approach of an owner by electromagnetic waves and opens and closes a car or a house key ( Hereinafter, it is referred to as a keyless entry system), or a magnetic sensor type electromagnetic wave receiving antenna suitable for use in an RFID tag system or the like (hereinafter referred to as an RFID system) that transmits and receives information by a modulation signal placed on an electromagnetic wave. is there.

ここでは電波時計用のアンテナを例に背景技術の説明を行う。
電波時計は、所定周波数の搬送波によって送られる時刻情報を受信し、その時刻情報を基に自身の時刻を修正する時計を指し、現在置時計、掛け時計、腕時計等さまざまな形態で実用化されている。
電波時計等に用いられている電波は40kHz〜200kHz以下と、長波帯を使用しており、その電波の一波長は数kmという長さになる。この電波を、電界として効率よく受信するには数百mを越す長さのアンテナ長が必要となり、小型化が必要な腕時計、キーレスエントリーシステム、RFIDシステム等に使用することは事実上困難であり、磁心を用いて磁界成分を受信することが必要である。
具体的には上記搬送波は、日本においては40kHz及び60kHzの2種類の電波を使用している。海外においても主に100kHz以下の周波数を用いて時刻情報を提供しているため、これらの周波数の電波を受信するには電磁波の磁界成分を効率良く収束させるために磁性体を磁心とし、これにコイルを巻き回した磁気センサ型のアンテナが主に使用されている。
Here, the background art will be described using an antenna for a radio timepiece as an example.
A radio clock is a clock that receives time information transmitted by a carrier wave of a predetermined frequency and corrects its own time based on the time information, and is currently put into practical use in various forms such as a table clock, a wall clock, and a wrist watch.
A radio wave used in a radio clock or the like uses a long wave band of 40 kHz to 200 kHz or less, and one wavelength of the radio wave has a length of several kilometers. In order to efficiently receive this radio wave as an electric field, an antenna length exceeding several hundred meters is required, and it is practically difficult to use it for wristwatches, keyless entry systems, RFID systems, etc. that require miniaturization. It is necessary to receive a magnetic field component using a magnetic core.
Specifically, the carrier wave uses two types of radio waves of 40 kHz and 60 kHz in Japan. Even overseas, time information is mainly provided using frequencies below 100 kHz, so in order to receive radio waves of these frequencies, a magnetic material is used as a magnetic core to efficiently converge the magnetic field component of the electromagnetic wave. A magnetic sensor type antenna in which a coil is wound is mainly used.

従来、電波時計用のアンテナとして、例えば特許文献1には、アモルファス金属積層体からなる磁心にコイルを巻回した主に腕時計に使用する小型アンテナが開示されている。
特許文献2には、フェライトからなる磁心にコイルを巻回してなる小型アンテナが開示されている。
また、特許文献3には、金属ケースとアンテナとの間に導電性を有するシール部材を設けたアンテナが開示されている。
さらに、特許文献4には、磁芯にコイルが巻回された主磁路部材と、磁芯にコイルが巻回されていない副磁路部材とを有し、磁芯に沿った閉ループ磁路の一部にエアギャップを設け、共振時には内部で発生した磁束が外部に漏れ難いようにしたアンテナが開示されている。
Conventionally, as an antenna for a radio timepiece, for example, Patent Document 1 discloses a small antenna mainly used for a wristwatch in which a coil is wound around a magnetic core made of an amorphous metal laminate.
Patent Document 2 discloses a small antenna formed by winding a coil around a magnetic core made of ferrite.
Patent Document 3 discloses an antenna in which a conductive sealing member is provided between a metal case and the antenna.
Further, Patent Document 4 includes a main magnetic path member in which a coil is wound around a magnetic core and a sub magnetic path member in which the coil is not wound around a magnetic core, and a closed loop magnetic path along the magnetic core. An antenna is disclosed in which an air gap is provided in a part of the antenna so that the magnetic flux generated inside does not easily leak to the outside during resonance.

特開2003−110341号公報JP 2003-110341 A 特開平8−271659号公報JP-A-8-271659 特開2002−168978号公報JP 2002-168978 A 特許第3512782号公報Japanese Patent No. 3512782

腕時計は、主に筐体(ケース)、ムーブメント(駆動部モジュール)とその周辺部品(文字盤、モータ、電池等)、非金属(ガラス)蓋および金属裏蓋とにより構成される。この中にアンテナを内蔵する場合、従来は筐体の外側に設けることが多かった。しかしながら、最近では小型軽量化の趨勢から筐体内部に設けることが求められるようになってきており、図10に示すようにムーブメント22と裏蓋24及び主として電池、時計針を動かすモータ等の周辺部品26の隙間に配置される。尚、図10の正面図のアンテナ1は構造を示すため実線で示しているが、実際は筐体25とムーブメント22、周辺部品26及び裏蓋24によって閉じられた空間に収められている。
上記した特許文献1、2のアンテナは、それぞれ磁心として比透磁率の高いアモルファス箔体やフェライトを用いて電磁波の磁界成分を収束させ、この収束させた磁束を磁心の外側に巻き回したコイルによって時間的に磁束が変化する成分を電圧として検知するアンテナである。従って、この点では筐体としては電磁波の磁界成分を阻害しない樹脂材とすることが望ましい。しかし、その反面一部を樹脂製にすると設計、デザイン面での制約がある。一般に腕時計は意匠性がセールスポイントとなり、例えば金属製の筐体が高級感や審美性の面で好まれる。そこで中高級時計や自動車に代表される機器類には筐体が金属ケースで作られることが多くなっている。この場合、従来のアンテナ構造、また配置によっては金属ケース等が電磁波に対するシールドとして働き、受信感度が大幅に低下すると言う問題があった。
A wristwatch is mainly composed of a housing (case), a movement (driving unit module) and its peripheral components (a dial, a motor, a battery, etc.), a non-metallic (glass) lid, and a metal back lid. In the case of incorporating an antenna in this, conventionally, it is often provided outside the casing. However, recently, it has been required to be provided inside the housing due to the trend of miniaturization and weight reduction. As shown in FIG. 10, the periphery of the movement 22 and the back cover 24, mainly the battery, the motor for moving the clock hand, etc. It arrange | positions in the clearance gap between the components 26. FIG. The antenna 1 in the front view of FIG. 10 is indicated by a solid line to show the structure, but is actually housed in a space closed by the casing 25, the movement 22, the peripheral component 26, and the back cover 24.
The antennas of Patent Documents 1 and 2 described above are formed by a coil in which the magnetic field component of electromagnetic waves is converged by using an amorphous foil or ferrite having a high relative permeability as a magnetic core, and the converged magnetic flux is wound around the outside of the magnetic core. It is an antenna that detects a component whose magnetic flux changes with time as a voltage. Therefore, in this respect, it is desirable that the casing is made of a resin material that does not inhibit the magnetic field component of electromagnetic waves. However, if a part of it is made of resin, there are restrictions in terms of design and design. In general, the design of a wristwatch is a selling point. For example, a metal casing is preferred in terms of luxury and aesthetics. In view of this, cases such as middle and high-end watches and automobiles are often made of metal cases. In this case, depending on the conventional antenna structure and arrangement, a metal case or the like acts as a shield against electromagnetic waves, and there is a problem that reception sensitivity is greatly reduced.

また、アンテナとしては外部から入ってきた電磁波による磁束が磁心に通った結果としてコイルに電圧が誘起される。図9の等価回路図に示すように、この電圧はコイル8と並列に接続されたコンデンサCにより所望の周波数に共振するようになっており、共振させることによりコイル8にはQ倍の電圧が発生し、コイル8にはその共振電流が流れる。この共振電流によってコイル8の周囲には磁界が発生し、磁束は主として磁心の両端から出入りする。ここで、アンテナの周囲に金属が接近していると、この共振電流によって発生した磁束が金属を貫く結果となり渦電流を発生させる。即ち、アンテナの近くに電気抵抗の小さな金属類があると、共振時の磁界エネルギーは渦電流損として失われ、アンテナコイルの損失となって現われ、結果、Q値が低下し実効的にアンテナ感度の低下を招くものである。そこで、特許文献3では、アンテナを金属ケースの外部でかつシールド部材を介して配置することによりQ値の維持を図っている。しかし、大型化とデザインの制約は免れ得ないものであった。この点で、特許文献4に開示されたアンテナによれば、共振時に外部に向かう磁束の流れをエアギャップが設けられた副磁路部材側に選択的に誘導することになり、磁束を外部に漏れ難くし、よって渦電流損によるQ値の低下を抑えることが出来るとしたものである。   In addition, as an antenna, a voltage is induced in the coil as a result of magnetic flux due to electromagnetic waves entering from the outside passing through the magnetic core. As shown in the equivalent circuit diagram of FIG. 9, this voltage resonates at a desired frequency by a capacitor C connected in parallel with the coil 8, and a Q-fold voltage is applied to the coil 8 by resonating. The resonance current flows through the coil 8. Due to this resonance current, a magnetic field is generated around the coil 8, and the magnetic flux mainly enters and exits from both ends of the magnetic core. Here, when a metal approaches the antenna, the magnetic flux generated by the resonance current penetrates the metal and generates an eddy current. That is, if there is a metal with low electrical resistance near the antenna, the magnetic field energy at the time of resonance is lost as eddy current loss and appears as loss of the antenna coil. As a result, the Q value is lowered and the antenna sensitivity is effectively reduced. This leads to a decrease in. Therefore, in Patent Document 3, the Q value is maintained by arranging the antenna outside the metal case and through a shield member. However, enlargement and design restrictions were inevitable. In this regard, according to the antenna disclosed in Patent Document 4, the magnetic flux flowing toward the outside at the time of resonance is selectively guided to the sub magnetic path member side provided with the air gap, and the magnetic flux is directed to the outside. It is said that it is difficult to leak, and thus the reduction of the Q value due to eddy current loss can be suppressed.

同様な問題点は磁気センサ型のアンテナを金属製筐体の中に、或いは金属部品に近接して収容するキーレスエントリーシステム、またはRFIDシステムでも同様に存在する。キーレスエントリーシステムとは、例えば、乗用車等の車両の鍵を遠隔操作可能としたもので、特定の電磁波により開閉動作するアンテナを備えた送受信ユニットからなり、当該ユニットであるキーを持つ所有者の遠近により開閉遠隔操作が非接触で出来るものである。また、RFID(Radio Frequency Identification)システムは、タグに記憶された情報を特定の電磁波によって作動するアンテナにより情報を授受するもので、例えば、バス等の行先情報等が入力されたRFIDタグをバスに取り付け、時刻表情報が入力されたRFIDタグを乗り場の表示板等に埋設しておくと、利用者は非接触で各種の交通情報が認識できると言うものである。これらのシステムにおいても、筐体並びにアンテナの小型化と共にアンテナの高感度化が要求されている。   A similar problem exists in a keyless entry system or an RFID system in which a magnetic sensor type antenna is accommodated in a metal casing or close to a metal part. A keyless entry system is, for example, a remote control of a vehicle key such as a passenger car, which consists of a transmission / reception unit equipped with an antenna that opens and closes by a specific electromagnetic wave. The remote operation can be done without contact. In addition, an RFID (Radio Frequency Identification) system transfers information stored in a tag by an antenna that operates by a specific electromagnetic wave. For example, an RFID tag to which destination information such as a bus is input is used as a bus. If the RFID tag to which the timetable information is attached and embedded is embedded in the display board of the hall, the user can recognize various traffic information without contact. In these systems, it is required to increase the sensitivity of the antenna as well as to reduce the size of the housing and the antenna.

本願発明者らはこれらの問題を考慮し、設置面積・容積を大きくせず渦電流損の問題を解消して高感度な出力を得ることができる小型で感度調整の容易なアンテナを提供することを目的として、電磁波の磁界成分を前記主磁路部材で受信する磁気センサ型のアンテナとして、この主磁路部材と、その他に比透磁率が主磁路部材よりも小さい材質で作られた副磁路部材を設けたいくつかの構成のアンテナの出願を別途行っている。   In consideration of these problems, the inventors of the present application provide a small and easily adjustable antenna capable of solving the problem of eddy current loss without increasing the installation area and volume and obtaining a highly sensitive output. For this purpose, as a magnetic sensor type antenna that receives the magnetic field component of the electromagnetic wave by the main magnetic path member, the main magnetic path member and other sub-magnets made of a material having a relative permeability smaller than that of the main magnetic path member are used. Applications for antennas with several configurations provided with magnetic path members have been filed separately.

しかし、実際に製造してみると、小型部品であるアンテナにおいて、主磁路部材の他にも副磁路部材を設けることは思いのほか困難であり、両者の位置決めや、主磁路部材のもろい磁心を破壊させずに組み付けるには、さらに検討の余地があった。以上のことより本発明は、設置面積・容積を大きくせず渦電流損の問題を解消して高感度な出力を得ることができる小型で感度調整の容易なアンテナを提供するための、主磁路部材と副磁路部材からなるアンテナであって、両者の組立性、およびアンテナ特性を考慮した構造を持つアンテナを提供することを目的とする。特に限られた小スペース内で高いアンテナ特性を発揮できるもので、電波時計、特に電波腕時計やキーレスエントリーシステム、RFIDシステムに適したアンテナ及びこれを用いた前記システムを提供する。   However, when actually manufactured, it is unexpectedly difficult to provide a sub magnetic path member in addition to the main magnetic path member in an antenna which is a small component. The positioning of the two magnetic core members and the fragile magnetic core of the main magnetic path member are difficult. There was room for further study to assemble without destroying. In view of the above, the present invention provides a main magnet for providing a small and easy-to-adjust sensitivity antenna which can solve the problem of eddy current loss without increasing the installation area and volume and can obtain a highly sensitive output. It is an object of the present invention to provide an antenna comprising a path member and a sub magnetic path member, and having a structure that takes into consideration both assembling property and antenna characteristics. In particular, the present invention provides a radio timepiece, particularly a radio timepiece, a keyless entry system, an antenna suitable for an RFID system, and the system using the same, which can exhibit high antenna characteristics in a limited small space.

本発明のアンテナは、磁性体からなる磁心にコイルを巻回した主磁路部材を有し、電磁波の磁界成分を前記主磁路部材で受信する磁気センサ型のアンテナにおいて、前記主磁路部材と、副磁路部材として比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質で形成されたケースとを具備することを特徴とするものである。前記主磁路部材よりも小さい比透磁率の材質を副磁路部材として使用することで上記の目的を解決可能である。ケースの比透磁率が2〜1000、さらには3〜500、さらには5〜100程度とすることが好ましい。   The antenna of the present invention has a main magnetic path member in which a coil is wound around a magnetic core made of a magnetic material, and the main magnetic path member is an antenna of a magnetic sensor type that receives a magnetic field component of electromagnetic waves by the main magnetic path member. And a case made of a material having a relative permeability of 2 or more and smaller than that of the main magnetic path member as a secondary magnetic path member. By using a material having a relative permeability smaller than that of the main magnetic path member as the sub magnetic path member, the above object can be solved. It is preferable that the case has a relative magnetic permeability of about 2 to 1000, more preferably about 3 to 500, and more preferably about 5 to 100.

また、本発明はこのケースをインジェクション成形することを特徴とする。つまり本発明は、磁性体からなる磁心にコイルを巻回した主磁路部材を有し、電磁波の磁界成分を前記主磁路部材で受信する磁気センサ型のアンテナにおいて、前記主磁路部材と、前記主磁路部材の外周部の少なくとも一部に比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質でインジェクション成形されたケースとを具備することを特徴とするものである。
このようにケース自体を副磁路部材として使用することで、主磁路部材と副磁路部材の組立が容易になり、かつ部品工数を減少でき、さらに別途ケースを用意することなく筐体内に設置することができる。
Further, the present invention is characterized in that the case is injection molded. That is, the present invention includes a main magnetic path member in which a coil is wound around a magnetic core made of a magnetic material, and a magnetic sensor type antenna that receives a magnetic field component of electromagnetic waves by the main magnetic path member. A case in which at least a part of the outer peripheral portion of the main magnetic path member is injection molded with a material having a relative magnetic permeability of 2 or more and smaller than the main magnetic path member. is there.
By using the case itself as a sub magnetic path member in this way, the assembly of the main magnetic path member and the sub magnetic path member can be facilitated, the number of parts can be reduced, and further, the case can be accommodated without preparing a separate case. Can be installed.

上記磁心を構成する軟磁性材料は、珪素鋼、パーマロイ、アモルファス金属、ナノ結晶金属、フェライト等100超〜300000程度の高比透磁率材料が望ましい。このましくは500〜100000程度の高比透磁率材料である。また、ケースの比透磁率は空気中よりも高く主磁路部材のそれよりも小さいことが必要である。このように副磁路として低比透磁率材のケースを用いることで、入射した磁束の一部がこの低比透磁率のケースを介し主たる磁気回路内を帰還して回ることにより磁心に入射した磁束のコイルに対する通過量が実効的に増加し高感度なアンテナとなる。また、この副磁路の役割をなすケースは、従来のように主磁路部材に組み付けるものではなく、単にケースとして内部に主磁路部材を入れればよいため、施工性に富み、また、脆い磁心を保護する役目も果たす。ケースは、主磁路部材を位置決めして収納可能な形状を持つことが組立性を向上するために好ましい。磁心は薄帯を単体又は積層した積層体であってもよいし、板状のフェライトであってもよい。   The soft magnetic material constituting the magnetic core is preferably a high relative magnetic permeability material of over 100 to about 300,000, such as silicon steel, permalloy, amorphous metal, nanocrystalline metal, and ferrite. This is preferably a high relative permeability material of about 500 to 100,000. In addition, the case needs to have a relative permeability higher than that of air and smaller than that of the main magnetic path member. By using the case of the low relative permeability material as the secondary magnetic path in this way, a part of the incident magnetic flux enters the magnetic core by returning around the main magnetic circuit through the case of the low relative permeability. The amount of magnetic flux passing through the coil is effectively increased, resulting in a highly sensitive antenna. In addition, the case that plays the role of the secondary magnetic path is not assembled to the main magnetic path member as in the prior art, and it is sufficient to put the main magnetic path member inside as a case. It also serves to protect the magnetic core. The case preferably has a shape capable of positioning and storing the main magnetic path member in order to improve assemblability. The magnetic core may be a single body or a laminated body of thin ribbons, or may be a plate-like ferrite.

ここで、電波の角周波数をωとし、アンテナとコンデンサで構成される共振回路の抵抗分をR、コイル部の自己インダクタンスをLとするとき、Q値はωL/Rで定義される。ここで述べるRはコイルの直流抵抗と交流抵抗の総和である。特に金属ケースに入れたアンテナの交流抵抗は増大する。その理由は磁束を集めた磁心が巻き回したコイルと外部に付加したコンデンサで共振してQ倍の共振電圧となり、この共振電流によってコイル両端には高い電圧が発生し、その電圧によってアンテナ自身の両端近くから磁束が発生するからである。その共振現象による磁束が金属を貫くときに発生する渦電流損失である。ここで低比透磁率のケースを設けることにより、磁心に流入した磁束はコイルを通過し磁心の他端から流出するだけでなくその一部は低比透磁率のケースに還流して再び外部から流入する磁束と合流してコイル内部を通過し、より多くの電圧を発生させる作用をなす。また、共振電流によって発生する磁束が低比透磁率のケースを介して還流することにより、アンテナ両端から外部に出る磁束総量を少なくすることができ、近接する金属ケース類を貫通する磁束が少なくなり等価的に交流抵抗の増大が抑えられる。よって、上述の抵抗分Rの増加が最小限に抑えられ、結果Q値が高まり渦電流等による損失が少なくなる。   Here, Q is defined as ωL / R, where ω is the angular frequency of the radio wave, R is the resistance of the resonance circuit composed of the antenna and the capacitor, and L is the self-inductance of the coil section. R described here is the sum of the DC resistance and AC resistance of the coil. In particular, the AC resistance of an antenna placed in a metal case increases. The reason for this is that resonance occurs between a coil around which a magnetic core that collects magnetic flux is wound and a capacitor added outside, resulting in a Q-fold resonance voltage. A high voltage is generated at both ends of the coil due to this resonance current. This is because magnetic flux is generated near both ends. This is eddy current loss that occurs when magnetic flux due to the resonance phenomenon penetrates the metal. Here, by providing a case with low relative permeability, the magnetic flux flowing into the magnetic core not only flows through the coil and flows out from the other end of the magnetic core, but also part of it returns to the case with low relative permeability and again from the outside. It merges with the inflowing magnetic flux and passes through the inside of the coil to generate more voltage. In addition, since the magnetic flux generated by the resonance current flows back through the case with low relative permeability, the total amount of magnetic flux that exits from both ends of the antenna can be reduced, and the magnetic flux penetrating through adjacent metal cases is reduced. Equivalent increase in AC resistance can be suppressed. Therefore, the increase in the resistance component R described above is minimized, and as a result, the Q value is increased and the loss due to eddy currents is reduced.

このケースは、図3(c)に示すように、主磁路部材の胴部を収納し端部がケース外に露出するように形成してもよい。このようなケース形状とすることで外部の磁束を取り入れやすく、かつ金属製筐体内などに設置しても、アンテナ特性を向上することができる。
また、別のアンテナの構成として、ケースは、図3(b)に示すように、主磁路部材の胴部を収納する比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質で形成された軟磁性ケース部と、主磁路部材の端部を収納し前記軟磁性ケース部より比透磁率が小さい材質で形成されたケース端部とからなるように形成しても良い。ケース端部は非磁性材でもよい。このように主磁路部材の端部を覆うケース端部の比透磁率を下げることで、上記のアンテナと同様に電磁波の磁界成分がケースに遮断されること無く主磁路部材に通り、アンテナ特性を損なうことが無い。
また、さらに別のアンテナの構成として、ケースは、図4(f)に示すように、主磁路部材の一端部から他端部までを連続的に覆う比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質で形成された軟磁性材ケース部と、主磁路部材の一端部から他端部までを連続的に覆う非磁性材からなる非磁性材ケース部とからなるようにしてもよい。ケースの一部を非磁性材とすることで、上記のアンテナと同様に電磁波の磁界成分がケースに遮断されること無く主磁路部材に通り、アンテナ特性を損なうことが無い。非磁性とすることが好ましいが、軟磁性ケース部よりも低い比透磁率材でも適用は可能である。
As shown in FIG. 3C, the case may be formed so that the trunk portion of the main magnetic path member is accommodated and the end portion is exposed outside the case. By adopting such a case shape, it is easy to take in external magnetic flux, and the antenna characteristics can be improved even if it is installed in a metal casing.
As another antenna configuration, as shown in FIG. 3 (b), the case has a relative permeability of 2 or more for housing the trunk of the main magnetic path member and a relative permeability smaller than that of the main magnetic path member. A soft magnetic case portion made of a material and an end portion of the main magnetic path member that accommodates the end portion of the main magnetic path member and has a lower relative permeability than the soft magnetic case portion may be formed. . The case end may be made of a nonmagnetic material. In this way, by reducing the relative permeability of the end of the case covering the end of the main magnetic path member, the magnetic field component of the electromagnetic wave passes through the main magnetic path member without being blocked by the case as in the case of the above antenna, and the antenna There is no loss of properties.
As another antenna configuration, as shown in FIG. 4 (f), the case has a relative magnetic permeability of 2 or more and continuously covers the main magnetic path member from one end to the other end. A soft magnetic material case portion made of a material having a relative permeability smaller than that of the path member, and a nonmagnetic material case portion made of a nonmagnetic material that continuously covers from one end portion to the other end portion of the main magnetic path member. You may do it. By using a part of the case as a non-magnetic material, the magnetic field component of the electromagnetic wave passes through the main magnetic path member without being blocked by the case as in the case of the antenna, and the antenna characteristics are not impaired. Although non-magnetic is preferable, application is possible even with a material having a relative permeability lower than that of the soft magnetic case portion.

主磁路部材の磁心を薄帯を単体又は積層した積層体とすることで渦電流の発生を抑制するアンテナとすることができる。主磁路部材の磁心を軟磁性フェライトあるいは軟磁性金属薄帯を積層した積層体から構成する場合、主磁路部材とケースの間を流れる磁束は実質的に金属薄帯の積層断面を通るようにする事が好ましい。つまり、ケースは薄膜磁性金属が積層された前記主磁路部材の金属製薄帯の平面方向ではなく、積層断面側に隣接するよう設置されるものである。これにより、積層した場合に発生する渦電流に対し個々の薄帯からの渦電流が低下し、損失を抑制し、よりアンテナ特性を向上させることができる。
例えば、図7のように主磁路部材の積層された金属製薄帯4の板面を通過する方向に磁束が流れると、金属製薄帯4内部に大きな渦電流9が生じ、損失が大きくなり、Q値が減少する。渦電流9が生じると、金属製筐体内部に設置することで落ちたアンテナ特性がさらに低下することになりアンテナ効率が下がる結果となる。これに対して図6のように金属製薄帯4の端部積層断面から磁束8が通るようにケースを設置することで磁心内部で発生する渦電流を最小にすることが可能となり、損失の少ないアンテナとすることができる。
An antenna that suppresses the generation of eddy currents can be achieved by using a magnetic core of the main magnetic path member as a single body or a laminated body of thin ribbons. When the magnetic core of the main magnetic path member is composed of a laminate in which soft magnetic ferrite or soft magnetic metal ribbon is laminated, the magnetic flux flowing between the main magnetic path member and the case substantially passes through the laminated section of the metal ribbon. Is preferable. That is, the case is installed so as to be adjacent to the laminated cross section, not in the plane direction of the metal ribbon of the main magnetic path member on which the thin film magnetic metal is laminated. As a result, eddy currents from individual ribbons are reduced with respect to eddy currents generated in the case of stacking, the loss can be suppressed, and the antenna characteristics can be further improved.
For example, when a magnetic flux flows in the direction passing through the plate surface of the metal ribbon 4 on which the main magnetic path members are laminated as shown in FIG. 7, a large eddy current 9 is generated inside the metal ribbon 4 and the loss is large. And Q value decreases. When the eddy current 9 is generated, the antenna characteristics that have been lowered due to the installation inside the metal casing are further deteriorated, resulting in a decrease in antenna efficiency. On the other hand, as shown in FIG. 6, it is possible to minimize the eddy current generated inside the magnetic core by installing the case so that the magnetic flux 8 passes from the end laminated section of the metal ribbon 4 and the loss can be reduced. The number of antennas can be reduced.

ケースは、軟磁性フェライト粉末あるいは軟磁性金属粉末又は軟磁性金属フレークと、樹脂又はゴムなどの可塑性高分子材料とからなる複合材である。外部から入射する磁束は主磁路部材で受けるが、内部から放射する磁束は、本発明の閉磁路のバランスを副磁路であるケースで調整し、外部に漏れ難い構成とすることが出来る。ケースは主磁路部材の比透磁率より小なるものであるが、比透磁率が大きすぎると主磁路部材に磁束を集中して受け入れ難くなる。また、小さすぎても副磁路としての効果が低くなる。ケースの比透磁率は2〜1000、さらには3〜500、さらには5〜100、さらには10〜60であることが好ましい。そこで柔軟性を有する複合材の場合、軟磁性の粉末と樹脂材等の混合比を調節することで適切な比透磁率を調整できるし、また厚みも容易に調節できるので好ましい。また柔軟性を有するのでエアギャップを容易に埋めることができ加工度も高いので扱いやすい。但し、柔軟性は必須ではない。   The case is a composite material composed of soft magnetic ferrite powder, soft magnetic metal powder, or soft magnetic metal flake and a plastic polymer material such as resin or rubber. The magnetic flux incident from the outside is received by the main magnetic path member, but the magnetic flux radiated from the inside can be adjusted so that the balance of the closed magnetic path of the present invention is adjusted by the case of the secondary magnetic path so that it is difficult to leak to the outside. The case is smaller than the relative permeability of the main magnetic path member, but if the relative permeability is too large, it is difficult to receive the magnetic flux concentrated on the main magnetic path member. Moreover, even if it is too small, the effect as a secondary magnetic path will become low. The case preferably has a relative magnetic permeability of 2 to 1000, more preferably 3 to 500, even more preferably 5 to 100, and even more preferably 10 to 60. Therefore, a composite material having flexibility is preferable because an appropriate relative magnetic permeability can be adjusted by adjusting the mixing ratio of the soft magnetic powder and the resin material, and the thickness can be easily adjusted. In addition, since it has flexibility, the air gap can be easily filled and the degree of processing is high, so it is easy to handle. However, flexibility is not essential.

また、本発明はこのケースを、型枠に軟磁性材料粉末を含む硬化可能なスラリーを入れ、主磁路部材を浸漬した後に硬化させて形成した、比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質で形成されたケースとしたものでもよい。硬化させるスラリーとして、例えば、軟磁性材料粉末と熱硬化性樹脂、有機溶剤などを含む、熱硬化型や揮発硬化型のスラリーなどが適用できる。このスラリーを容器状の型枠内に流し込み、このスラリー中に主磁路部材を浸漬し、硬化させる。一般的にポッティングと呼ばれる技術を使用することで容易に本発明の副磁路となるケースが設けられたアンテナを得ることができる。   Further, according to the present invention, the case is formed by putting a curable slurry containing soft magnetic material powder in a mold and immersing the main magnetic path member and then curing the case. A case formed of a material having a relative permeability smaller than that of the member may be used. As the slurry to be cured, for example, a thermosetting or volatile curing type slurry containing a soft magnetic material powder, a thermosetting resin, an organic solvent, or the like can be applied. The slurry is poured into a container-shaped mold, and the main magnetic path member is immersed in the slurry and cured. By using a technique generally called potting, an antenna provided with a case serving as a secondary magnetic path of the present invention can be easily obtained.

軟磁性金属フレークには、フェライト粉、アモルファス合金粉などが使用できる。Fe-Cu-Nb-Si-B系等のナノ結晶磁性合金から水アトマイズ法により製造した粒形状粉をアトライタにて摩砕することにより製造した平均粒径が0.1〜50μmで平均厚さが3μmの扁平形状粉などや、金属磁性体扁平形状粉としてカルボニル鉄合金、アモルファス合金、Fe-Si系合金、モリブデンパーマロイ、スーパーマロイ等の扁平形状粉を用いることがでいる。これらを可撓性高分子材料中に分散させて射出成形によりケース形状とするか、磁心の周囲にインジェクション成形し、副磁路部材とする。
可撓性高分子材料としては、有機物で柔軟性があり、比重が1.5以下であり、好ましくは耐候性を有する樹脂で、例えばクロロプレンゴム、ブチルゴム、ウレタンゴム、シリコーン樹脂、塩化ビニル樹脂、フェノール樹脂等が挙げられる。
For soft magnetic metal flakes, ferrite powder, amorphous alloy powder or the like can be used. An average particle size of 0.1-50μm and an average thickness of 3μm produced by grinding a granular powder produced from a nanocrystalline magnetic alloy such as Fe-Cu-Nb-Si-B by water atomization with an attritor Flat shape powders such as carbonyl iron alloy, amorphous alloy, Fe-Si alloy, molybdenum permalloy, supermalloy, etc. can be used as the flat shape powders of metal. These are dispersed in a flexible polymer material and formed into a case shape by injection molding, or injection molded around the magnetic core to form a secondary magnetic path member.
The flexible polymer material is an organic material that is flexible and has a specific gravity of 1.5 or less, preferably a weather resistant resin, such as chloroprene rubber, butyl rubber, urethane rubber, silicone resin, vinyl chloride resin, phenol resin. Etc.

このような複合材を用いることによって、調整が面倒なエアギャップを設けることなく磁束を閉磁路内に帰還させることができる。また、エアギャップを設ける必要がないので微妙な精度を必要とせずに製造がし易く、安定した性能を維持できる点で有利である。またオープン型のケースを使用する場合は、ケース内に主磁路部材を収容した後、蓋の替わりに非磁性の樹脂を流し込んで一体にしてもよい。   By using such a composite material, the magnetic flux can be fed back into the closed magnetic circuit without providing an air gap that is troublesome to adjust. In addition, since it is not necessary to provide an air gap, it is advantageous in that it is easy to manufacture without requiring fine accuracy and can maintain stable performance. When an open type case is used, after the main magnetic path member is accommodated in the case, a non-magnetic resin may be poured into the case instead of the lid.

本発明のアンテナにおいて、筐体が金属製筐体、もしくは筐体内部に金属製部材が備えられているとき、前記金属製筐体もしくは金属製部材(回路基板上の金属製のプリント配線なども含む)の設置位置に対して、前記磁心の端部を遠ざかる方向に曲げることが好ましい。例えば電波腕時計ではガラス製蓋の方向に曲げることが好ましい。曲げる角度は垂直であったり、斜めであったり、その筐体内の状況によって任意の角度を設定できる。磁界成分を収束させる磁心の端部を磁束流入方向に向くように曲げることにより、その先端部が筐体内部に入射する多くの磁束を収束させて高感度なアンテナとなる。また、この形状は磁心に巻かれたコイルに誘起した電圧と並列に接続されたコンデンサによる共振電流による磁束が主として磁心の両端から出入りする性質上、その出入りする磁束が金属製筐体を貫く量を減少させることとなり、結果として金属製筐体に発生させる渦電流を減少させ電気的なQ値を高く保つことができ、アンテナとしての高感度化に繋がる。磁心端部の先端部をさらに異なる方向に曲げてもよい。これにより、入射してくる磁束をより広く四方から捕らえることができ、更に高感度なアンテナが得られる。   In the antenna of the present invention, when the casing is a metal casing or a metal member is provided inside the casing, the metal casing or the metal member (such as a metal printed wiring on a circuit board) It is preferable that the end of the magnetic core be bent away from the installation position. For example, in a radio-controlled wristwatch, it is preferable to bend in the direction of the glass lid. The bending angle is vertical or oblique, and an arbitrary angle can be set depending on the situation inside the casing. By bending the end portion of the magnetic core for converging the magnetic field component so as to be directed in the magnetic flux inflow direction, the tip portion converges a large amount of magnetic flux incident on the inside of the housing, and a highly sensitive antenna is obtained. In addition, this shape is based on the property that the magnetic flux generated by the resonance current from the capacitor connected in parallel with the voltage induced in the coil wound around the magnetic core mainly enters and exits from both ends of the magnetic core. As a result, the eddy current generated in the metal casing can be reduced and the electrical Q value can be kept high, leading to higher sensitivity as an antenna. The tip of the magnetic core end may be further bent in a different direction. As a result, the incident magnetic flux can be captured more widely from four directions, and an antenna with higher sensitivity can be obtained.

また、本発明は、金属製筐体、ムーブメント(周辺部品含む)、非金属製蓋、金属製裏蓋を有する腕時計に磁気センサ型のアンテナを内蔵した電波時計において、前記磁気センサ型のアンテナは、上記した何れかのアンテナを用いて前記主磁路部材が前記金属製筐体の内部側に、副磁路部材が金属製筐体の周縁部側に配置した電波時計である。通常、金属製筐体から副磁路部材を遠ざける方が渦電流の発生頻度を減らすことができる。しかし、一般に筐体の内部側にはスペース上の制約が多く、必ずしも副磁路部材を配置できるものではない。この点で、副磁路部材をケースとして複合材で形成し、さらに周縁側に沿って設ければスペースを有効活用できるし、ケースの厚みや面積の調整が容易で組立て性に優れている。これにより渦電流による悪影響を相殺しそれ以上の効果を期待できる。しかしながら、主磁路部材が金属製筐体の周縁部側に、ケースが金属製筐体の内部側に配置することを妨げるものではない。この場合は外から内へ入る磁界は金属製筐体に近い主磁路部材の磁心に収束し易く、他方ケースは金属製筐体から遠いので内から外へ漏れる磁界は筐体方向には向かい難く渦電流が発生し難い効果を期待できる。よって、個々の情況や求める効果によってこれらの構成を選択することが望ましいと言える。
以上により、本発明のアンテナは、時刻情報を含む電波を受信して時刻を合わせる小型の電波腕時計に用いることに適している。また、乗用車や住居等の鍵の開閉を遠隔操作するキーレスエントリーシステムに用いることに適している。さらに、情報を記憶したタグを用いて情報を授受するRFIDシステムに用いることに適している。
The present invention also relates to a radio-controlled timepiece in which a magnetic sensor-type antenna is incorporated in a wristwatch having a metal casing, a movement (including peripheral parts), a non-metal lid, and a metal back lid. A radio timepiece using any one of the antennas described above, wherein the main magnetic path member is disposed on the inner side of the metal casing and the sub magnetic path member is disposed on the peripheral edge side of the metal casing. Usually, the frequency of occurrence of eddy currents can be reduced by moving the sub magnetic path member away from the metal casing. However, in general, there are many space restrictions on the inner side of the housing, and the sub magnetic path member cannot always be arranged. In this respect, if the secondary magnetic path member is formed of a composite material as a case and is provided along the peripheral side, the space can be effectively used, and the thickness and area of the case can be easily adjusted and the assembly is excellent. As a result, adverse effects due to eddy currents can be offset, and further effects can be expected. However, this does not prevent the main magnetic path member from being disposed on the peripheral edge side of the metal casing and the case from being disposed on the inner side of the metal casing. In this case, the magnetic field entering from the outside easily converges to the magnetic core of the main magnetic path member close to the metal casing, while the case is far from the metal casing, so that the magnetic field leaking from the inside faces toward the casing. It is difficult to generate an eddy current, and the effect can be expected. Therefore, it can be said that it is desirable to select these configurations according to individual circumstances and desired effects.
As described above, the antenna of the present invention is suitable for use in a small radio wristwatch that receives a radio wave including time information and adjusts the time. Further, it is suitable for use in a keyless entry system that remotely controls the opening and closing of a key of a passenger car or a residence. Furthermore, the present invention is suitable for use in an RFID system that transmits and receives information using a tag storing information.

本発明のアンテナによれば、外部より入射した磁束は主磁路部材により受けとめ、共振時の放射磁束については主磁路部材から副磁路となるケースに磁束を導き、磁気回路内を効率よく帰還することができる。その結果、高い出力電圧が得られ、Q値を高いまま保持できる。また、エアギャップのない副磁路部材、特に比透磁率の低い複合材を用いることにより磁束の帰還具合を調節し、高いQ値と感度を得ることができる。また、ケースと主磁路部材をエアギャップを介さずに磁気的に直接連結することでフリンジング磁束が少なく渦電流がさらに小さくすることができる。また、副磁路部材をケースとすることで、脆い磁心であってもケースにより外部からの衝撃から守られ、安全性が高い。さらには、ケースを主磁路部材が嵌着可能なように形成することで位置調整が不要な組立性が容易な形状となり、作業性に優れた構造となる。
また、主磁路部材の端部に磁束が導かれるよう、磁気的に磁束を遮断しない形状のケースを用いることにより、さらに損失の少ないアンテナを得ることができる。
また、積層された金属製薄帯によって構成された主磁路部材を用い、主磁路部材とケースの間を流れる磁束を実質的に主磁路部材の金属製薄帯の端部を通るようにする事で、主磁路部材の帯面で発生する渦電流損失を少なくすることができ、損失の少ないアンテナを得ることができる。
According to the antenna of the present invention, the magnetic flux incident from the outside is received by the main magnetic path member, and the radiated magnetic flux at the time of resonance is guided from the main magnetic path member to the case serving as the secondary magnetic path so that the inside of the magnetic circuit can be efficiently performed. I can return. As a result, a high output voltage can be obtained and the Q value can be kept high. Further, by using a sub magnetic path member having no air gap, particularly a composite material having a low relative permeability, the feedback of magnetic flux can be adjusted, and a high Q value and sensitivity can be obtained. Further, by directly connecting the case and the main magnetic path member magnetically without an air gap, the fringing magnetic flux is small and the eddy current can be further reduced. Further, by using the sub magnetic path member as a case, even a fragile magnetic core can be protected from an external impact by the case, and the safety is high. Furthermore, by forming the case so that the main magnetic path member can be fitted, it is easy to assemble without requiring position adjustment, and the structure is excellent in workability.
In addition, an antenna with even less loss can be obtained by using a case that does not magnetically block the magnetic flux so that the magnetic flux is guided to the end of the main magnetic path member.
Further, the main magnetic path member constituted by the laminated metal strips is used so that the magnetic flux flowing between the main magnetic path member and the case substantially passes through the end of the metal strip of the main magnetic path member. By doing so, the eddy current loss which generate | occur | produces in the strip | belt surface of a main magnetic path member can be decreased, and an antenna with little loss can be obtained.

また、金属製筐体もしくは金属製部材(回路基板上の金属製のプリント配線なども含む)の設置位置に対して、前記磁心の端部を遠ざかる方向に曲げることで、その先端部が筐体内部に入射する多くの磁束を収束させて高感度なアンテナとなる。また、この形状は磁心に巻かれたコイルに誘起した電圧と並列に接続されたコンデンサによる共振電流による磁束が主として磁心の両端から出入りする性質上、その出入りする磁束が金属製筐体を貫く量を減少させることとなり、結果として金属製筐体に発生させる渦電流を減少させ電気的なQ値を高く保つことができ、アンテナとしての高感度化に繋がる。磁心端部の先端部をさらに異なる方向に曲げれば、入射してくる磁束をより広く四方から捕らえることができ、更に高感度なアンテナが得られる。
以上により、電波時計内の設置面積は同じでありながら金属部を避けて配置したのと同等の感度及びQ値が得られる。また共振電流による磁束の流出を抑えて実効的な感度を高く得られる。そして作業性、組立て性が良好である。以上の相乗効果により、設置面積は小さいが、配置自由度は高くデザイン的な制約も比較的小さい高感度のアンテナとなる。
この様なアンテナは、小型高性能の電波時計、電波腕時計、キーレスエントリーシステム、RFIDシステム等で好適に使用できる。
Also, by bending the end of the magnetic core away from the installation position of the metal casing or metal member (including metal printed wiring on the circuit board, etc.), the tip of the casing is the casing. A high sensitivity antenna is obtained by converging many magnetic fluxes incident on the inside. In addition, this shape is based on the property that the magnetic flux generated by the resonance current from the capacitor connected in parallel with the voltage induced in the coil wound around the magnetic core mainly enters and exits from both ends of the magnetic core. As a result, the eddy current generated in the metal casing can be reduced and the electrical Q value can be kept high, leading to higher sensitivity as an antenna. If the tip of the magnetic core end is further bent in a different direction, the incident magnetic flux can be captured more widely from four directions, and an antenna with higher sensitivity can be obtained.
As described above, the sensitivity and the Q value equivalent to the case where the metal watch is disposed away from the metal part are obtained while the installation area in the radio timepiece is the same. In addition, the effective sensitivity can be increased by suppressing the outflow of magnetic flux due to the resonance current. And workability and assemblability are good. Due to the above synergistic effect, a highly sensitive antenna with a small installation area but a high degree of freedom in arrangement and relatively small design constraints.
Such an antenna can be suitably used in a small high-performance radio timepiece, radio wristwatch, keyless entry system, RFID system, and the like.

以下、本発明の実施例を図面と共に説明する。
図1に、主磁路部材の一実施例を示す。図1(a)の主磁路部材10aは、棒状のフェライトからなる磁心14aにコイル8を巻回して形成したもので、この主磁路部材の周囲にケース(図示せず)が設けられる。図1(b)の主磁路部材10bは、棒状のフェライト材の両端が垂直に立ち上がって曲がる端部11bを有したものである。中央部にコイル8を巻回して形成した主たる磁気回路を有し、コイル8を巻回して形成したもので、これにより主たる磁気回路を構成する。図1(c)の主磁路部材10cは、主磁路部材10bとほぼ同様のものであるが、磁心となるフェライトを四角形状としたものである。四角の場合、金属ケース等の筐体に設置するときに配置しやすく組立て性において望ましい。図1(d)の主磁路部材10dは、アモルファス等の金属箔(板厚20μm以下)の帯体から図のような端部11dを曲げたコの字形に一体に打ち抜いた薄帯を得て、この薄帯を複数枚積層し、中央部にコイル8を巻回したものである。図1(e)の主磁路部材10eは、同じくアモルファス金属箔から打ち抜いた薄帯を積層したものである。この例は積層方向が異なるもので、薄帯の端部11eは長方形状に打ち抜いた薄帯の両端を別途折り曲げて形成している。また、積層型や図1(h)に示す複数の細線を束ねた細線型では、各薄帯の間あるいは個々の細線に絶縁膜を被膜し絶縁層を介して積層あるいは束ねることが望ましい。図1(f)の主磁路部材10fは、凹部16fを有するフェライトからなる板状の磁心14fにコイル8を巻回して主たる磁気回路を形成したものである。図1(g)の主磁路部材10gは、アモルファス金属箔から打ち抜いた薄帯を積層したものである。薄帯の端部11gは長方形状に打ち抜いた薄帯の両端を斜め上方向に折り曲げて形成している。図1(h)の主磁路部材10hは、複数の細線を束ねたものを磁心14hとし、両端部を曲げ、中央部にコイルを設けたものである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of the main magnetic path member. The main magnetic path member 10a of FIG. 1A is formed by winding a coil 8 around a magnetic core 14a made of rod-shaped ferrite, and a case (not shown) is provided around the main magnetic path member. The main magnetic path member 10b in FIG. 1 (b) has end portions 11b where both ends of a rod-like ferrite material rise vertically and bend. It has a main magnetic circuit formed by winding the coil 8 at the center, and is formed by winding the coil 8, thereby constituting the main magnetic circuit. The main magnetic path member 10c in FIG. 1 (c) is substantially the same as the main magnetic path member 10b, but has a quadrilateral ferrite core. In the case of a square, it is desirable in terms of ease of assembly when it is installed in a casing such as a metal case. The main magnetic path member 10d shown in FIG. 1 (d) is a ribbon obtained by integrally punching from a band of amorphous metal foil (thickness of 20 μm or less) into a U-shape with a bent end 11d as shown in the figure. A plurality of the ribbons are laminated and the coil 8 is wound around the center. The main magnetic path member 10e shown in FIG. 1 (e) is formed by laminating ribbons punched from an amorphous metal foil. In this example, the lamination directions are different, and the end portion 11e of the ribbon is formed by separately bending both ends of the ribbon punched out into a rectangular shape. In addition, in the laminated type and the thin line type in which a plurality of fine wires are bundled as shown in FIG. 1 (h), it is desirable that an insulating film is coated between the thin ribbons or individual fine wires and laminated or bundled through the insulating layer. A main magnetic path member 10f in FIG. 1 (f) is obtained by winding a coil 8 around a plate-like magnetic core 14f made of ferrite having a recess 16f to form a main magnetic circuit. The main magnetic path member 10g in FIG. 1 (g) is a laminate of thin ribbons punched from amorphous metal foil. The end portion 11g of the ribbon is formed by bending both ends of the ribbon striped into a rectangular shape obliquely upward. The main magnetic path member 10h shown in FIG. 1 (h) is obtained by bundling a plurality of thin wires into a magnetic core 14h, bending both ends, and providing a coil at the center.

図2に、本発明による主磁路部材の他の実施例を示す。図2(a)の主磁路部材30aは、棒状のフェライト材の両端が垂直に立ち上がって曲がる端部31aを有し、さらにその先端部32aが磁心34aと並行な方向に曲がって形成したものである。そして中央部にコイル8を巻回し、その周囲に副磁路部材となるケース(図示せず)が設けられる。図2(b)の主磁路部材30bは、図1(d)の主磁路部材10dと同様に金属箔の帯体から図のような端部31bと32bを一体に打ち抜いた薄帯を複数枚積層したもので、その中央部にコイル8を巻回したものである。図2(c)の主磁路部材30cは、同じく図1(e)と同様のものであるが、端部31cをさらに曲げた先端部32cを形成したものである。図2(d)の主磁路部材30dは、図2(c)の端部を斜め上方向に曲げたものである。また、先端部が2方向に分かれて曲がるものでもよいし、積層型の磁心の先端部が扇型となるよう広がりを持った形状にしても良い。   FIG. 2 shows another embodiment of the main magnetic path member according to the present invention. The main magnetic path member 30a shown in FIG. 2 (a) has a rod-shaped ferrite material that has both ends 31a that rise vertically and bend, and the tip 32a is bent in a direction parallel to the magnetic core 34a. It is. A coil 8 is wound around the center, and a case (not shown) serving as a secondary magnetic path member is provided around the coil 8. The main magnetic path member 30b in FIG. 2 (b) is a thin strip obtained by integrally punching the end portions 31b and 32b as shown in the figure from a strip of metal foil in the same manner as the main magnetic path member 10d in FIG. 1 (d). A plurality of layers are laminated, and a coil 8 is wound around the center thereof. The main magnetic path member 30c in FIG. 2 (c) is the same as that in FIG. 1 (e), but has a tip portion 32c formed by further bending the end portion 31c. The main magnetic path member 30d in FIG. 2 (d) is obtained by bending the end portion in FIG. 2 (c) obliquely upward. Further, the tip portion may be bent in two directions, or may be shaped so that the tip portion of the laminated magnetic core becomes a fan shape.

以上の実施例によれば、入射した磁束はコイルを巻いた磁心の主たる磁気回路を通過するだけでなく、一部がこのギャップ付副磁路部材を介して帰還し主たる磁気回路内を回ることになり、流入した磁束を主たる磁気回路と別の閉磁路で効率よく回し、結果的に高い出力電圧が得られる。   According to the above embodiment, the incident magnetic flux not only passes through the main magnetic circuit of the magnetic core wound with the coil, but also partly feeds back through the gap sub magnetic path member and circulates in the main magnetic circuit. Thus, the introduced magnetic flux is efficiently rotated by a closed magnetic circuit different from the main magnetic circuit, and as a result, a high output voltage is obtained.

以下、評価については、図8に示す電波腕時計に模した試験装置と図9に示す等価回路に沿ってアンテナの出力電圧等を測定し比較した。
図9において、Lがアンテナの磁心1と巻線8で構成されるコイルである。Rがコイルの直流抵抗と交流抵抗の総和である。このコイルに磁束の時間変化による電圧Vが検出される。ここでアンテナと並列にコンデンサCが接続され、このコンデンサCと先に述べたコイルLが電気的に共振し、コンデンサの両端にはQ倍の電圧が発生し、アンテナとして動作する。比較試験は図8に示す電波腕時計に模した厚さ1mmの金属製(ステンレスSUS403)の筐体70の中に評価アンテナを配置し、上記等価回路による電圧Vを測定した。
Hereinafter, for evaluation, the antenna output voltage and the like were measured and compared along the test device imitating the radio wave wristwatch shown in FIG. 8 and the equivalent circuit shown in FIG.
In FIG. 9, L is a coil composed of the antenna magnetic core 1 and the winding 8. R is the sum of the DC resistance and AC resistance of the coil. A voltage V due to the time variation of the magnetic flux is detected in this coil. Here, a capacitor C is connected in parallel with the antenna, the capacitor C and the coil L described above electrically resonate, and a Q-fold voltage is generated at both ends of the capacitor to operate as an antenna. In the comparative test, an evaluation antenna was placed in a 1 mm-thick metal (stainless steel SUS403) housing 70 imitating the radio wave wristwatch shown in FIG. 8, and the voltage V by the equivalent circuit was measured.

(実施例1)
実施例1として、図3(a)〜(d)に示すアンテナ1a〜1dを製造した。図3(a)〜(c)の磁心4はフェライトからなる長さ23mm、腹部幅2mm、端部幅2.5mmのバーベル状とした。図3(d)の磁心4は長さ30mm、幅2mmのアモルファス合金、Fe-Cu-Nb-Si-B系等のナノ結晶磁性合金、Fe-Si系磁性合金等の軟磁性金属箔帯(板厚20μm以下)を20〜30層積層させ、かつ図2(d)のように端部を斜め上に曲げ、さらに先端部を中央部に対して平行にしたものである。巻線8はこの磁心4の周囲に線径0.07mmのエナメル被膜銅線1200ターンを、長さ12mmの範囲で巻き付けた。これにより作成された主磁路部材を副磁路となるケース7a〜7d内に接するように装着した。ケースの材質は、Fe-Cu-Nb-Si-B系等のナノ結晶磁性合金からなる薄帯を粉砕した軟磁性金属フレークと樹脂を主とする複合材料を射出成形により成形したものである。ケース7aは一体的に箱状に成形したものである。ケース7bはケース7aから両端部を除去した形状である軟磁性ケース部と、軟磁性金属フレークを含まない樹脂成分からなる非磁性材ケース部を2色一体で射出成形したものである。ケース7cは主磁路部材の長さに併せ、かつ主磁路部材の端部が露出するように成形したものである。また、ケース7cは磁心4の腹部の凹凸に併せて、内側腹部が凸形状になり、主磁路部材が嵌着可能な形状となっている。ケース7dは薄帯を重ねた磁心4の端部がケースの端部に設けられた凹部に収まり、位置決めされるものである。また、このケース内に主磁路部材を納めた後、非磁性の樹脂を流し込み、主磁路部材をケース内に樹脂埋めしてもよい。
これらのケースを用いることで、後述の参考例で副磁路の効果を立証しているように、このケースが副磁路としての役割を果たし、入射した磁束の一部がこの低比透磁率のケースを介し主たる磁気回路内を帰還して回ることになり、主磁路部材単体で用いるよりも磁心に入射した磁束のコイルに対する通過量が実効的に増加し高感度なアンテナとなる。また、脆い磁心を保護するため、腕時計などの携帯品内部に組み込んでも破損がなく、安全性の高い製品を提供することができる。
さらに後述の参考例と比較して副磁路の取り付けが簡易であり、生産性が向上するとともに、各製造製品の特性のバラツキを極力抑えることができるため、生産上非常に利点が高い。また、ケース7bにように、非磁性ケース部と軟磁性ケース部を組合せれば、主磁路部材に入る外部からの磁束の流入を妨げることがなく、上記参考例と同等以上のアンテナ性能を維持することができる。また、ケース7cのように、主磁路端部が露出するように形成することで、同様に参考例と同等以上のアンテナ性能を維持することができ、かつコストが低減できる。また、ケース7cのように、主磁路部材を固定するための凹凸を設ければ組み付け性が非常に良くなり好ましい。
(Example 1)
As Example 1, antennas 1a to 1d shown in FIGS. The magnetic core 4 shown in FIGS. 3A to 3C has a barbell shape having a length of 23 mm made of ferrite, abdominal width of 2 mm, and an end width of 2.5 mm. The magnetic core 4 in FIG. 3D is a soft magnetic metal foil strip such as an amorphous alloy having a length of 30 mm and a width of 2 mm, a nanocrystalline magnetic alloy such as Fe-Cu-Nb-Si-B, or an Fe-Si magnetic alloy ( 20 to 30 layers) is laminated, and the end is bent obliquely upward as shown in FIG. 2D, and the tip is parallel to the center. The winding 8 was formed by winding 1200 turns of enamel-coated copper wire having a wire diameter of 0.07 mm around the magnetic core 4 in a range of 12 mm in length. The main magnetic path member thus created was mounted so as to be in contact with the cases 7a to 7d serving as sub magnetic paths. The material of the case is formed by injection molding of a composite material mainly composed of soft magnetic metal flakes obtained by pulverizing a ribbon made of a nanocrystalline magnetic alloy such as Fe—Cu—Nb—Si—B and a resin. The case 7a is integrally formed in a box shape. The case 7b is obtained by injection molding of a soft magnetic case part having a shape obtained by removing both ends from the case 7a and a nonmagnetic material case part made of a resin component not including soft magnetic metal flakes in two colors. The case 7c is formed so as to match the length of the main magnetic path member and to expose the end of the main magnetic path member. In addition, the case 7c has a convex shape on the inner abdomen along with the irregularities on the abdomen of the magnetic core 4, and a shape on which the main magnetic path member can be fitted. In the case 7d, the end of the magnetic core 4 with the thin ribbons is placed in a recess provided in the end of the case and positioned. Alternatively, after the main magnetic path member is placed in the case, a nonmagnetic resin may be poured to fill the main magnetic path member in the case.
By using these cases, this case serves as a secondary magnetic path, as demonstrated in the reference example described later, and a part of the incident magnetic flux has this low relative permeability. The main magnetic circuit is fed back through the case, and the amount of magnetic flux that has entered the magnetic core is effectively increased compared to the case where the main magnetic path member is used alone, resulting in a highly sensitive antenna. Further, in order to protect the brittle magnetic core, it is possible to provide a highly safe product that is not damaged even if it is incorporated in a portable article such as a wristwatch.
Furthermore, compared to a reference example described later, the attachment of the sub magnetic path is simple, the productivity is improved, and variations in the characteristics of each manufactured product can be suppressed as much as possible, which is very advantageous in production. Further, when the nonmagnetic case portion and the soft magnetic case portion are combined as in the case 7b, the flow of the magnetic flux from the outside entering the main magnetic path member is not hindered, and the antenna performance equal to or better than the above reference example is achieved. Can be maintained. Further, by forming the main magnetic path end portion to be exposed as in the case 7c, the antenna performance equivalent to or higher than that of the reference example can be maintained, and the cost can be reduced. Further, it is preferable to provide an unevenness for fixing the main magnetic path member as in the case 7c because the assemblability becomes very good.

(実施例2)
実施例2として、図4(e)〜(i)のアンテナ1e〜1iを製造した。主磁路部材は実施例1で使用したものと同様のものを使用した。この主磁路部材の周囲に、Fe-Cu-Nb-Si-B系等のナノ結晶磁性合金からなる薄帯を粉砕した軟磁性金属フレークと樹脂を混合した材料を用いて射出成形し、副磁路となるケースを形成した。
ケース7eは周囲全体を一体的に鋳包みしたものである。ケース7fは主磁路部材の長さに併せ、かつ主磁路部材の端部が露出するように成形したものである。ケース7gは主磁路部材の中心部から半分を上記の軟磁性金属フレークと樹脂からなる混合材料で射出成形して軟磁性ケース部とし、もう片方を軟磁性金属フレークを含まない樹脂成分からなる非磁性材ケース部とし、2色一体で射出成形したものである。ケース7hは主磁路部材の腹部にのみ軟磁性金属フレークと樹脂からなる混合材料を射出成形したものである。ケース7iは、7eと同じように主磁路部材の全体を鋳込みしたものであるが、主磁路部材は図2(d)に示す形状の磁心を持ちいたものである。
これら副磁路を射出成形により成形してケースとすることで、後述の参考例で副磁路の効果を立証しているように、このケースが副磁路としての役割を果たし、入射した磁束の一部がこの低比透磁率のケースを介し主たる磁気回路内を帰還して回ることになり、主磁路部材単体で用いるよりも磁心に入射した磁束のコイルに対する通過量が実効的に増加し高感度なアンテナとなる。また、脆い磁心を保護するため、腕時計などの携帯品内部に組み込んでも破損がなく、安全性の高い製品を提供することができる。
さらに、射出成形により、主磁路部材の周囲に隙間無く軟磁性部が成形されるため、副磁路であるケースと主磁路部材とが組み付け後も位置ずれすることが無く特性のばらつきがなくなり、かつ強度が非常に高くさらに破損の少ないアンテナとすることができる。また、射出成形で、軟磁性ケース部と非磁性ケースとを2色一体で同時に射出成形することも可能であり、図4(f)に示すようなケース形状とすることも可能で、設計の自由度が非常に高い。
(Example 2)
As Example 2, antennas 1e to 1i shown in FIGS. 4 (e) to (i) were manufactured. The main magnetic path member was the same as that used in Example 1. Around this main magnetic path member, injection molding was performed using a material mixed with soft magnetic metal flakes obtained by pulverizing a ribbon made of a nanocrystalline magnetic alloy such as Fe-Cu-Nb-Si-B and a resin, A case serving as a magnetic path was formed.
The case 7e is integrally cast around the entire periphery. The case 7f is formed so as to match the length of the main magnetic path member and to expose the end of the main magnetic path member. The case 7g is formed by injection molding half of the main magnetic path member from the center portion of the main magnetic path member with the above-described mixed material of soft magnetic metal flakes and resin to form a soft magnetic case portion, and the other is made of a resin component not containing soft magnetic metal flakes A non-magnetic material case is formed by injection molding in two colors. Case 7h is formed by injection molding a mixed material made of soft magnetic metal flakes and resin only on the abdomen of the main magnetic path member. The case 7i is formed by casting the entire main magnetic path member in the same manner as the case 7e, but the main magnetic path member has a magnetic core having the shape shown in FIG. 2 (d).
By forming these secondary magnetic paths by injection molding into cases, this case serves as the secondary magnetic path, and the incident magnetic flux, as demonstrated in the reference example described later. Part of the magnetic flux is fed back through the main magnetic circuit through the case of this low relative permeability, and the amount of magnetic flux that has entered the magnetic core is effectively increased compared to the case where the main magnetic path member is used alone. And it becomes a highly sensitive antenna. Further, in order to protect the brittle magnetic core, it is possible to provide a highly safe product that is not damaged even if it is incorporated in a portable article such as a wristwatch.
Furthermore, since the soft magnetic part is molded without gaps around the main magnetic path member by injection molding, the case of the sub magnetic path and the main magnetic path member are not misaligned after assembly, resulting in variations in characteristics. It is possible to provide an antenna that is eliminated and that has a very high strength and less damage. In addition, the soft magnetic case part and the non-magnetic case can be simultaneously injection molded in two colors by injection molding, and the case shape as shown in FIG. The degree of freedom is very high.

(実施例3)
実施例3として、図5に示すポッティングの技術を用いてアンテナを製造した。まず、Fe-Cu-Nb-Si-B系等のナノ結晶磁性合金からなる薄帯を粉砕した軟磁性金属フレークと樹脂を混合した材料7Lを器状の型枠内に所定量を流し込んだ。その後、この型枠のスラリー内に主磁路部材を浸漬させた。コイルの巻き線の端部を利用して吊り下げ、徐々に浸漬させて、所定の位置で主磁路部材を保持させた。磁心4は図3(a)〜(c)で用いたフェライトからなる長さ23mm、腹部幅2mm、端部幅2.5mmのバーベル状のものである。スラリーは硬化した時に比透磁率が5〜100になるように軟磁性金属フレークと樹脂の配合比を決定した。最終的なアンテナの形状は図3(a)と同様に、主磁路部材の周囲を一体的に副磁路となるケースで覆ったものである。
これら副磁路をポッティングにより成形してケースとすることで、前記と同様に副磁路によるアンテナ特性の向上効果を得ることができる。また、ケースの成形時、インジェクションよりも磁心に与える応力が少ないので、脆い材質を磁心としても破壊することなく製造することができる。
(Example 3)
As Example 3, an antenna was manufactured using the potting technique shown in FIG. First, a predetermined amount of 7 L of a material obtained by mixing a soft magnetic metal flake obtained by pulverizing a ribbon made of a nanocrystalline magnetic alloy such as a Fe—Cu—Nb—Si—B system and a resin was poured into a vessel-shaped mold. Then, the main magnetic path member was immersed in the slurry of this formwork. The main magnetic path member was held at a predetermined position by suspending using the coil winding end and gradually immersing it. The magnetic core 4 has a barbell shape having a length of 23 mm, an abdominal width of 2 mm, and an end width of 2.5 mm made of the ferrite used in FIGS. The blending ratio of the soft magnetic metal flakes and the resin was determined so that the slurry had a relative magnetic permeability of 5 to 100 when cured. As in the case of FIG. 3A, the final shape of the antenna is such that the periphery of the main magnetic path member is integrally covered with a case that becomes a sub magnetic path.
By forming these secondary magnetic paths by potting into a case, the effect of improving the antenna characteristics by the secondary magnetic path can be obtained as described above. Further, since the stress applied to the magnetic core is smaller than the injection during the molding of the case, a brittle material can be manufactured without breaking even as a magnetic core.

(参考例1,2)
副磁路の有無による効果をみるため、参考例1として、図12(c)のアンテナ3cを製造した。磁心としてMn-Zn系フェライト(日立金属製フェライトMT80D)、断面部が1.5mm角、長さ16mm、曲がり部高さ7.5mmを使用し、巻線8はフェライトコアの表面を絶縁した線径0.07mmのエナメル被膜銅線1200ターンを、長さ12mmの範囲で巻き付けた。次に、副磁路部材15cは板厚0.5mm、幅1.5mmの上記と同じフェライトを用いて、プラスチック(PET)製の介在部材を置いて両端共にギャップG=0.2mmのギャップ付副磁路部材を形成した。このアンテナの設置面積は幅1.5mm、長さ16mmと同じに収まっている。
比較例1として、直線の磁心(副磁路部材なし)に巻線を巻いたアンテナを用いた。参考例1の磁心と同じフェライトを用いて、幅1.5mm、長さ16mm、巻線ストッパとしての立ち上がりを含めて高さ2.5mmとし、巻線8も実施例1と同じ細線を同じ条件で巻回したものである。
また、参考例2として、図12(d)のアンテナ3dを製造した。磁心としてコバルト基アモルファス(日立金属製ACO−5SF)製の金属箔(板厚15μm)から幅1mm、長さ16mm、曲がり部の高さ7.5mmの薄帯に打ち抜き、この薄帯を30枚積層して、磁心としての厚み0.45mmの積層体とした。そして、巻線8は積層体コアの表面を絶縁した後に線径0.07mmのエナメル被膜銅線1200ターンを、長さ12mmの範囲で巻き付けた。ギャップ付副磁路部材は、上記と同じアモルファス金属箔を用いて幅1.5mmの部材15dを1枚用意し、これとプラスチック(PET)製の介在部材により、両端共にギャップG=0.2mmに形成した。
以上のアンテナを図8に示す金属ケース70の中に設置し、外部より電磁波の磁界成分に相当する交流磁界の実効値として周波数40kHz、磁界強度14pTの磁界を印加して出力電圧を測定した。結果を表1に示す。副磁路の有無によりアンテナ特性が格段に変わることが解った。
(Reference Examples 1 and 2)
In order to see the effect of the presence or absence of the secondary magnetic path, the antenna 3c of FIG. Mn-Zn ferrite (Hitachi Metals Ferrite MT80D), 1.5 mm square, 16 mm long, 7.5 mm bent part height is used as the magnetic core, and winding 8 is a wire that insulates the surface of the ferrite core 1200 turns of enamel-coated copper wire having a diameter of 0.07 mm was wound in a range of 12 mm in length. Next, the secondary magnetic path member 15c is made of the same ferrite as above with a plate thickness of 0.5 mm and a width of 1.5 mm, and an interposition member made of plastic (PET) is placed and both ends have a gap G = 0.2 mm. A sub magnetic path member was formed. The installation area of this antenna is the same as a width of 1.5 mm and a length of 16 mm.
As Comparative Example 1, an antenna in which a winding was wound around a linear magnetic core (without a secondary magnetic path member) was used. Using the same ferrite as the magnetic core of Reference Example 1, the width is 1.5 mm, the length is 16 mm, the height is 2.5 mm including the rise as a winding stopper, and the winding 8 has the same thin wire as in Example 1 under the same conditions. It is the one wound by.
Further, as Reference Example 2, an antenna 3d shown in FIG. As a magnetic core, a cobalt-based amorphous (Hitachi Metals ACO-5SF) metal foil (thickness 15 μm) is punched into a ribbon with a width of 1 mm, a length of 16 mm, and a bent portion height of 7.5 mm. Lamination was performed to obtain a laminate having a thickness of 0.45 mm as a magnetic core. Then, the winding 8 was wound with 1200 turns of enamel-coated copper wire having a wire diameter of 0.07 mm within a range of 12 mm after insulating the surface of the laminated core. For the sub magnetic path member with gap, a single member 15d having a width of 1.5 mm is prepared using the same amorphous metal foil as described above, and a gap G = 0.2 mm at both ends by an intermediate member made of plastic (PET). Formed.
The above antenna was installed in a metal case 70 shown in FIG. 8, and an output voltage was measured by applying a magnetic field having a frequency of 40 kHz and a magnetic field strength of 14 pT as an effective value of an alternating magnetic field corresponding to the magnetic field component of the electromagnetic wave from the outside. The results are shown in Table 1. It was found that the antenna characteristics changed dramatically depending on the presence or absence of the secondary magnetic path.

Figure 2005198255
Figure 2005198255

(参考例3,4)
次に、アンテナを金属ケースの中に収容しない状況で、主磁路部材と副磁路の間のギャップによるアンテナ特性の影響を比較検討した。
参考例3として、図12(g)のアンテナ10gを製造した。磁心14gとしては図11に示す従来例と同じ構造のものを用いて、これに板厚0.5mm、幅1.5mmの同じフェライト製部材15gを設置した。そして、中央のギャップGをプラスチック(PET)製の部材により調整し変化させた。
参考例4は図12(h)のアンテナ10hである。磁心14hとしては図11に示す従来例と同じ構造のものを用いて、これに板厚0.5mm、幅1.5mm、長さ16mmの同じフェライト製部材15hを設けた。そして、両側のギャップGをプラスチック(PET)製の部材により調整し変化させた。
また、比較例2として、図12(h)と同じアンテナ構造であるが、副磁路部材を磁性体ではなく、電気的な良導電体である銅板としたものを用いた。銅板は板厚0.25mm、幅10mm、長さ20mmを用いて、両側のギャップGをプラスチック(PET)製の部材により調整し変化させた。
従来例は、上記した図11のアンテナを用いた。
出力電圧の測定は外部より電磁波の磁界成分に相当する交流磁界の実効値として周波数40kHz、磁界強度14pTの磁界を印加して出力電圧を測定した。Q値の測定はインピーダンスメータを用い駆動電圧0.05Vでの値を求めた。結果を表2に示す。ギャップの有無により、アンテナ特性が格段に変化している、主磁路部材と副磁路部材を組み付ける際、少しでもずれるとアンテナ特性が安定的に得られなくなり、大量生産においてはこの組立性をいかに改善するかが重要な問題となることが解る。
(Reference Examples 3 and 4)
Next, the effect of antenna characteristics due to the gap between the main magnetic path member and the sub magnetic path was compared in a situation where the antenna was not housed in the metal case.
As Reference Example 3, an antenna 10g shown in FIG. A magnetic core 14g having the same structure as that of the conventional example shown in FIG. 11 was used, and the same ferrite member 15g having a plate thickness of 0.5 mm and a width of 1.5 mm was installed thereon. The central gap G was adjusted and changed with a plastic (PET) member.
Reference example 4 is the antenna 10h of FIG. A magnetic core 14h having the same structure as the conventional example shown in FIG. 11 was used, and the same ferrite member 15h having a plate thickness of 0.5 mm, a width of 1.5 mm, and a length of 16 mm was provided. The gap G on both sides was adjusted and changed with a plastic (PET) member.
Further, as Comparative Example 2, the same antenna structure as in FIG. 12H was used, but the sub magnetic path member was not a magnetic material but a copper plate that was an electrical good conductor. The copper plate had a thickness of 0.25 mm, a width of 10 mm, and a length of 20 mm, and the gap G on both sides was adjusted and changed with a plastic (PET) member.
In the conventional example, the antenna shown in FIG. 11 is used.
The output voltage was measured by applying a magnetic field having a frequency of 40 kHz and a magnetic field strength of 14 pT as an effective value of an alternating magnetic field corresponding to the magnetic field component of the electromagnetic wave from the outside. The Q value was measured using an impedance meter at a drive voltage of 0.05V. The results are shown in Table 2. When assembling the main magnetic path member and the sub magnetic path member, the antenna characteristics cannot be obtained stably when assembling the main magnetic path member and sub magnetic path member due to the presence or absence of a gap. It turns out how to improve becomes an important problem.

Figure 2005198255
Figure 2005198255

(実施例4)
次に、実施例1のアンテナを内蔵した電波腕時計の正面図および側面図を図10に示す。正面図のアンテナの図示は配置などが分かりやすいようにあえて実線で示している。電波腕時計は金属製(例えばステンレス製)の筐体ケース25と、ムーブメント22と周辺部品、ガラス製の蓋と、金属製(例えばステンレス製)の裏蓋24とからなり、アンテナ1をムーブメント22と裏蓋24との間に配置している。ケース1が図4(f)のような軟磁性ケース部と非磁性ケース部からなる場合、副磁路となる軟磁性ケース部は裏蓋などの金属製筐体に近い方に向けて設置される。非磁性ケース部はガラス蓋側である。また、アンテナ1では磁心の端部が図1(b),(c)に示すように曲がっている場合、先端部を底面から立ち上がるようにガラス蓋の方向に曲げて配置している。よって、磁心の中央部は裏蓋側に隣接しているものの磁束の出入り口となる磁心の端部11や先端部32は電磁波の入射方向に向いた構造となっている。この様な配置は、比較的自由度があり感度調整や組立て性に優れた配置である。
時計は駆動機能を集約したムーブメントが大部分の容積を占有し、また人間に対する表示面(文字盤)も必須である。このためアンテナは裏蓋近くに配置することを余儀なくされる。この場合アンテナは周囲を金属部品により囲まれることになるが、この実施例によれば、アンテナの共振電流による磁束が最も多く流出する磁心端部を磁気シールドされた筐体底部周辺の金属から離すように非金属部(ガラス製の蓋等)に向けて曲げて立設している。これにより、外部からの磁束の流入量が多く、筐体底部金属から遠いガラス面近くの磁束をより多く捕らえ、かつ筐体底部の金属接近の影響を最小限にできる。
尚、上記電波腕時計において、立ち上がった磁心の端部を時計文字盤のデザインの一部として表面に現われるようにしても良い。例えば、磁心端部が文字盤を貫き、表示面に現われるようにして、これをひとつのデザインとして利用することである。このとき磁心端部は表示部まで出ているのでより高感度となる。逆に、端部は垂直に立設している必要もない。周囲の状況によって磁束を受けとめやすい方向や角度を有していれば良い。
Example 4
Next, FIG. 10 shows a front view and a side view of the radio-controlled wristwatch incorporating the antenna of the first embodiment. In the front view, the antenna is shown by a solid line for easy understanding of the arrangement. The radio-controlled wristwatch includes a metal (for example, stainless steel) case 25, a movement 22, peripheral components, a glass lid, and a metal (for example, stainless steel) back cover 24. It arrange | positions between the back covers 24. When the case 1 is composed of a soft magnetic case portion and a nonmagnetic case portion as shown in FIG. 4 (f), the soft magnetic case portion serving as the secondary magnetic path is installed toward the side closer to the metal casing such as the back cover. The The nonmagnetic case part is on the glass lid side. Further, in the antenna 1, when the end of the magnetic core is bent as shown in FIGS. 1B and 1C, the tip is bent and arranged in the direction of the glass lid so as to rise from the bottom. Therefore, although the center part of the magnetic core is adjacent to the back cover side, the end part 11 and the front end part 32 of the magnetic core serving as the entrance and exit of the magnetic flux have a structure facing the incident direction of the electromagnetic wave. Such an arrangement has a relatively high degree of freedom and is excellent in sensitivity adjustment and assembly.
A watch is a movement that consolidates driving functions and occupies most of the volume, and a display surface (clockface) for humans is also essential. For this reason, the antenna must be arranged near the back cover. In this case, the antenna is surrounded by metal parts, but according to this embodiment, the end of the magnetic core where the magnetic flux due to the resonance current of the antenna flows out most is separated from the metal around the bottom part of the magnetically shielded casing. In this way, it is erected by bending toward the non-metal part (glass lid or the like). Thereby, the amount of magnetic flux flowing from the outside is large, more magnetic flux near the glass surface far from the housing bottom metal can be captured, and the influence of the metal approaching of the housing bottom can be minimized.
In the radio-controlled wristwatch, the end of the magnetic core that stands up may appear on the surface as part of the design of the clock face. For example, the end of the magnetic core penetrates the dial and appears on the display surface, which is used as a design. At this time, the end of the magnetic core protrudes to the display portion, so that the sensitivity becomes higher. On the contrary, the end portion does not need to be erected vertically. It is only necessary to have a direction and an angle at which magnetic flux can be easily received depending on the surrounding conditions.

送受信器やタグを用いるキーレスエントリーシステムやRFIDシステムにおいては、電波時計と同様にアンテナを筐体内の金属で囲まれた狭いスペースに収容することが求められるので、本発明のアンテナが有効であり、その効果も上記実施例と同様に得ることができる。   In keyless entry systems and RFID systems that use transceivers and tags, the antenna of the present invention is effective because the antenna is required to be housed in a narrow space surrounded by metal in the housing, similar to a radio clock. The effect can also be obtained in the same manner as in the above embodiment.

本発明のアンテナは、電波時計に用いられる電波受信用アンテナや自動車、住宅等のキーレスエントリーシステム、RFIDタグシステムに用いることができる。特に形状の自由度が大きいので電波腕時計に適している。   The antenna of the present invention can be used for radio wave receiving antennas used in radio timepieces, keyless entry systems such as automobiles and houses, and RFID tag systems. In particular, it is suitable for radio wristwatches because of its great freedom of shape.

本発明に用いる磁心の概略構造図である。It is a schematic structure figure of the magnetic core used for the present invention. 本発明に用いる別の磁心の概略構造図である。It is a schematic structure figure of another magnetic core used for the present invention. 本発明の実施例を示すアンテナの概略構造図である。1 is a schematic structural diagram of an antenna showing an embodiment of the present invention. 本発明の別の実施例を示すアンテナの概略構造図である。It is a schematic structural drawing of the antenna which shows another Example of this invention. 本発明の施工状態の一例を示す図である。It is a figure which shows an example of the construction state of this invention. 磁束と渦電流の関係を示す本発明の概略構造図である。It is a schematic structure figure of the present invention showing relation between magnetic flux and eddy current. 磁束と渦電流の関係を示す参考用の概略構造図である。It is a schematic structure diagram for reference showing the relationship between magnetic flux and eddy current. 本発明の実施例を試験した装置の模式図である。1 is a schematic diagram of an apparatus in which an embodiment of the present invention was tested. 本発明のアンテナの等価回路を示す図である。It is a figure which shows the equivalent circuit of the antenna of this invention. 実施例のアンテナを腕時計内に配置した例を示す正面図と側面図である。It is the front view and side view which show the example which has arrange | positioned the antenna of an Example in a wristwatch. 従来のアンテナの概略構造図である。It is a schematic structure figure of the conventional antenna. 副磁路の効果を検証するための参考用の副磁路部材を設けたアンテナである。This is an antenna provided with a reference secondary magnetic path member for verifying the effect of the secondary magnetic path.

符号の説明Explanation of symbols

1、3:アンテナ
4、14、34:磁心
7:(ケース)副磁路部材
8:コイル、巻線
9:渦電流
10,30,:磁心
22:ムーブメント
24:裏蓋
25:金属製筐体
26:周辺部品
1, 3: Antenna 4, 14, 34: Magnetic core 7: (Case) Sub magnetic path member 8: Coil, winding 9: Eddy current 10, 30, Magnetic core 22: Movement 24: Back cover 25: Metal casing 26: Peripheral parts

Claims (14)

磁性体からなる磁心にコイルを巻回した主磁路部材を有し、電磁波の磁界成分を前記主磁路部材で受信する磁気センサ型のアンテナにおいて、前記主磁路部材と、比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質で形成されたケースとを具備することを特徴とするアンテナ。 In a magnetic sensor type antenna having a main magnetic path member in which a coil is wound around a magnetic core made of a magnetic material and receiving a magnetic field component of an electromagnetic wave by the main magnetic path member, the main magnetic path member and a relative permeability are And a case made of a material having a relative magnetic permeability smaller than that of the main magnetic path member. 前記ケースは、前記主磁路部材の胴部を収納し端部がケース外に露出するように形成されたことを特徴とする請求項1に記載のアンテナ。 The antenna according to claim 1, wherein the case is formed so as to accommodate a body portion of the main magnetic path member and an end portion thereof is exposed outside the case. 前記ケースは、前記主磁路部材の胴部を収納する比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質で形成された軟磁性ケース部と、前記主磁路部材の端部を収納し前記軟磁性ケース部より比透磁率が小さい材質で形成されたケース端部とからなることを特徴とする請求項1に記載のアンテナ。 The case includes a soft magnetic case portion formed of a material having a relative permeability of 2 or more and a smaller relative permeability than the main magnetic path member for housing the body portion of the main magnetic path member, and the main magnetic path member. The antenna according to claim 1, comprising an end portion and a case end portion made of a material having a relative permeability smaller than that of the soft magnetic case portion. 前記ケースは、前記主磁路部材の一端部から他端部までを連続的に覆う比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質で形成された軟磁性ケース部と、前記主磁路部材の一端部から他端部までを連続的に覆う非磁性材からなる非磁性ケース部とからなることを特徴とする請求項1に記載のアンテナ。 The case includes a soft magnetic case portion formed of a material having a relative permeability of 2 or more and smaller than the main magnetic path member, which continuously covers from one end portion to the other end portion of the main magnetic path member. The antenna according to claim 1, comprising a nonmagnetic case portion made of a nonmagnetic material that continuously covers from one end portion to the other end portion of the main magnetic path member. 前記ケースは、前記主磁路部材を位置決めして収納可能な形状を持つことを特徴とする請求項1〜4のいずれかに記載のアンテナ。 The antenna according to claim 1, wherein the case has a shape capable of positioning and storing the main magnetic path member. 磁性体からなる磁心にコイルを巻回した主磁路部材を有し、電磁波の磁界成分を前記主磁路部材で受信する磁気センサ型のアンテナにおいて、前記主磁路部材と、前記主磁路部材の外周部の少なくとも一部に比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質でインジェクション成形されたケースとを具備することを特徴とするアンテナ。 A magnetic sensor type antenna having a main magnetic path member in which a coil is wound around a magnetic core made of a magnetic material and receiving a magnetic field component of an electromagnetic wave by the main magnetic path member, wherein the main magnetic path member and the main magnetic path An antenna comprising: a case formed by injection molding with a material having a relative permeability of 2 or more and smaller than that of the main magnetic path member on at least a part of an outer peripheral portion of the member. 前記ケースは、前記主磁路部材の胴部を収納し端部がケース外に露出するように形成されたことを特徴とする請求項6に記載のアンテナ。 The antenna according to claim 6, wherein the case is formed so as to accommodate a body portion of the main magnetic path member and an end portion is exposed outside the case. 前記ケースは、前記主磁路部材の胴部を収納する比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質で形成された軟磁性ケース部と、前記主磁路部材の端部を収納し前記軟磁性ケース部より比透磁率が小さい材質で形成されたケース端部とからなることを特徴とする請求項6に記載のアンテナ。 The case includes a soft magnetic case portion formed of a material having a relative permeability of 2 or more and a smaller relative permeability than the main magnetic path member for housing the body portion of the main magnetic path member, and the main magnetic path member. The antenna according to claim 6, comprising an end portion and a case end portion made of a material having a lower relative permeability than the soft magnetic case portion. 前記ケースは、前記主磁路部材の一端部から他端部までを連続的に覆う比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質で形成された軟磁性ケース部と、前記主磁路部材の一端部から他端部までを連続的に覆う非磁性材からなる非磁性ケース部とからなることを特徴とする請求項6に記載のアンテナ。 The case includes a soft magnetic case portion formed of a material having a relative permeability of 2 or more and smaller than the main magnetic path member, which continuously covers from one end portion to the other end portion of the main magnetic path member. The antenna according to claim 6, further comprising a nonmagnetic case portion made of a nonmagnetic material that continuously covers from one end portion to the other end portion of the main magnetic path member. 前記ケースは、軟磁性フェライト粉末あるいは軟磁性金属粉末又は軟磁性金属フレークと、樹脂又はゴムとを混合した複合材であることを特徴とする請求項1〜9のいずれかに記載のアンテナ。 The antenna according to claim 1, wherein the case is a composite material in which soft magnetic ferrite powder, soft magnetic metal powder, or soft magnetic metal flake is mixed with resin or rubber. 磁性体からなる磁心にコイルを巻回した主磁路部材を有し、電磁波の磁界成分を前記主磁路部材で受信する磁気センサ型のアンテナにおいて、前記主磁路部材と、型枠に軟磁性材料粉末を含む硬化可能なスラリーを入れ、主磁路部材を浸漬した後に硬化させて形成した、比透磁率が2以上かつ前記主磁路部材より小さい比透磁率の材質からなるケースとを具備することを特徴とするアンテナ。 In a magnetic sensor type antenna having a main magnetic path member in which a coil is wound around a magnetic core made of a magnetic material and receiving a magnetic field component of an electromagnetic wave by the main magnetic path member, the main magnetic path member and a mold are softened. A case made of a material having a relative magnetic permeability of 2 or more and smaller than that of the main magnetic path member, which is formed by putting a curable slurry containing magnetic material powder, immersing the main magnetic path member and then curing it. An antenna comprising the antenna. 金属製筐体、ムーブメント(周辺部品含む)、非金属製蓋、金属製裏蓋を有する腕時計に磁気センサ型のアンテナを内蔵した電波時計において、前記磁気センサ型のアンテナは、請求項1〜11の何れかに記載のアンテナを用い、前記ケースが金属製筐体の周縁部側に配置されていることを特徴とする電波時計。 In a radio-controlled timepiece in which a magnetic sensor type antenna is incorporated in a wristwatch having a metal casing, a movement (including peripheral parts), a non-metallic lid, and a metallic back lid, the magnetic sensor type antenna includes: A radio timepiece using the antenna according to any one of the above, wherein the case is disposed on a peripheral edge side of a metal casing. 請求項1〜11の何れかに記載のアンテナを当該アンテナを内蔵する送受信器の何れかに用いたことを特徴とするキーレスエントリーシステム。 A keyless entry system, wherein the antenna according to any one of claims 1 to 11 is used in any one of a transmitter / receiver incorporating the antenna. 請求項1〜11の何れかに記載のアンテナをRFIDタグに内蔵して用いたことを特徴とするRFIDシステム。
12. An RFID system using the antenna according to claim 1 incorporated in an RFID tag.
JP2004314101A 2003-12-11 2004-10-28 Antenna, radio clock using the same, keyless entry system, RFID system Active JP4592001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314101A JP4592001B2 (en) 2003-12-11 2004-10-28 Antenna, radio clock using the same, keyless entry system, RFID system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003413642 2003-12-11
JP2004314101A JP4592001B2 (en) 2003-12-11 2004-10-28 Antenna, radio clock using the same, keyless entry system, RFID system

Publications (2)

Publication Number Publication Date
JP2005198255A true JP2005198255A (en) 2005-07-21
JP4592001B2 JP4592001B2 (en) 2010-12-01

Family

ID=34829046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314101A Active JP4592001B2 (en) 2003-12-11 2004-10-28 Antenna, radio clock using the same, keyless entry system, RFID system

Country Status (1)

Country Link
JP (1) JP4592001B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115186A (en) * 2004-10-14 2006-04-27 Casio Comput Co Ltd Electronic apparatus
JP2007240401A (en) * 2006-03-10 2007-09-20 Casio Comput Co Ltd Radio-controlled watch, and antenna device
WO2007111217A1 (en) * 2006-03-24 2007-10-04 Citizen Holdings Co., Ltd. Antenna and radio receiver having the antenna
JP2008076165A (en) * 2006-09-20 2008-04-03 Casio Comput Co Ltd Antenna and radio-controlled timepiece
JP2008131115A (en) * 2006-11-17 2008-06-05 Tamura Seisakusho Co Ltd Antenna coil and communication apparatus
JP2009253104A (en) * 2008-04-08 2009-10-29 Hitachi Metals Ltd Laminated body, and antenna
WO2009139148A1 (en) 2008-05-13 2009-11-19 戸田工業株式会社 Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
JP2010273231A (en) * 2009-05-25 2010-12-02 Casio Computer Co Ltd Electronic apparatus
JP2012163390A (en) * 2011-02-04 2012-08-30 Citizen Holdings Co Ltd Antenna for electronic watch
JP2013098603A (en) * 2011-10-28 2013-05-20 Casio Comput Co Ltd Antenna structure, radio wave receiver, and manufacturing method of antenna structure
KR20170100303A (en) * 2016-02-25 2017-09-04 주식회사 아모텍 Antenna module
JP2017201880A (en) * 2009-02-13 2017-11-09 ウィトリシティ コーポレーション Wireless energy transmission in lossy environment
JP2021019280A (en) * 2019-07-19 2021-02-15 矢崎総業株式会社 Antenna module

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115186A (en) * 2004-10-14 2006-04-27 Casio Comput Co Ltd Electronic apparatus
JP2007240401A (en) * 2006-03-10 2007-09-20 Casio Comput Co Ltd Radio-controlled watch, and antenna device
WO2007111217A1 (en) * 2006-03-24 2007-10-04 Citizen Holdings Co., Ltd. Antenna and radio receiver having the antenna
JP2008076165A (en) * 2006-09-20 2008-04-03 Casio Comput Co Ltd Antenna and radio-controlled timepiece
JP2008131115A (en) * 2006-11-17 2008-06-05 Tamura Seisakusho Co Ltd Antenna coil and communication apparatus
JP2009253104A (en) * 2008-04-08 2009-10-29 Hitachi Metals Ltd Laminated body, and antenna
KR20110015415A (en) 2008-05-13 2011-02-15 도다 고교 가부시끼가이샤 Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
WO2009139148A1 (en) 2008-05-13 2009-11-19 戸田工業株式会社 Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
JP2017201880A (en) * 2009-02-13 2017-11-09 ウィトリシティ コーポレーション Wireless energy transmission in lossy environment
JP2010273231A (en) * 2009-05-25 2010-12-02 Casio Computer Co Ltd Electronic apparatus
JP2012163390A (en) * 2011-02-04 2012-08-30 Citizen Holdings Co Ltd Antenna for electronic watch
JP2013098603A (en) * 2011-10-28 2013-05-20 Casio Comput Co Ltd Antenna structure, radio wave receiver, and manufacturing method of antenna structure
KR20170100303A (en) * 2016-02-25 2017-09-04 주식회사 아모텍 Antenna module
KR102440688B1 (en) * 2016-02-25 2022-09-06 주식회사 아모텍 Antenna module
JP2021019280A (en) * 2019-07-19 2021-02-15 矢崎総業株式会社 Antenna module
JP7051761B2 (en) 2019-07-19 2022-04-11 矢崎総業株式会社 Antenna module

Also Published As

Publication number Publication date
JP4592001B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US7511679B2 (en) Antenna, and radio timepiece using the same, keyless entry system, and RFID system
JP2007013862A (en) Antenna, radio clock using the same, keyless entry system, and rfid system
JP4592001B2 (en) Antenna, radio clock using the same, keyless entry system, RFID system
JP3121577U (en) Eccentric magnetic coil system
US7295168B2 (en) Antenna coil
US20070069961A1 (en) Magnetic core member for antenna module, antenna module and portable information terminal equipped with antenna module
JP4304672B2 (en) Radio clock antenna and radio clock using the same
WO2014061704A1 (en) Electronic device and antenna device
JP2006191525A (en) Antenna, radio-controlled watch using the same, keyless entry system, and rfid system
WO2011010440A1 (en) Antenna device
JP4826706B2 (en) Antenna, radio clock using the same, keyless entry system, RFID system
JP2007124557A (en) Component with tagged antenna, and portable radio device with rfid function which is equipped with component
JP4905844B2 (en) Antenna, radio clock using the same, keyless entry system, RFID system
JP4692217B2 (en) Non-contact IC card reader device
JP4692875B2 (en) Antenna, radio clock using the antenna, and RFID system
JP2005164354A (en) Electronic apparatus
JP2005134223A (en) Wrist watch with built-in tag or reader/writer
JP4735536B2 (en) Electronics
JP5712695B2 (en) Electronic clock with built-in antenna
KR20180006072A (en) Wireless communication antenna and fabrication method thereof
JP5163941B2 (en) Receiving antenna and receiving apparatus using the same
JP2008193187A (en) Receiving coil antenna
JP2012154768A (en) Electronic timepiece
JP2008082989A (en) Equipment case
KR101813408B1 (en) Wireless communication antenna including magnetic substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080513

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350