JP2006191525A - Antenna, radio-controlled watch using the same, keyless entry system, and rfid system - Google Patents

Antenna, radio-controlled watch using the same, keyless entry system, and rfid system Download PDF

Info

Publication number
JP2006191525A
JP2006191525A JP2005189735A JP2005189735A JP2006191525A JP 2006191525 A JP2006191525 A JP 2006191525A JP 2005189735 A JP2005189735 A JP 2005189735A JP 2005189735 A JP2005189735 A JP 2005189735A JP 2006191525 A JP2006191525 A JP 2006191525A
Authority
JP
Japan
Prior art keywords
magnetic
path member
antenna
magnetic path
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005189735A
Other languages
Japanese (ja)
Inventor
Hirokazu Araki
博和 荒木
Masahiro Mita
正裕 三田
Chiharu Mitsumata
千春 三俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005189735A priority Critical patent/JP2006191525A/en
Publication of JP2006191525A publication Critical patent/JP2006191525A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna capable of demonstrating high characteristics even in a casing in which directions of electromagnetic waves incident from the outside of the casing are limited. <P>SOLUTION: In a magnetic sensor type antenna disposed inside the metallic casing to receive a magnetic field component of the electromagnetic wave, the antenna comprises a main magnetic path member in which a coil is wound around the core made of a magnetic body, a first sub-magnetic path member having a relative permeability equal to or smaller than the magnetic core, and a second sub-magnetic path member which connects both ends of the main magnetic path member and the first sub-magnetic path member without an air gap and has a relative permeability smaller than that of the first sub-magnetic path member and equal to or smaller than 100. The antenna can be used as the antenna of a radio-controlled watch having the metallic casing, movement, a non-metallic cover, a back cover made of metal and an antenna or as the magnetic antenna of a keyless entry system of an automobile and a house, an RFID system for exchanging information by a radio signal, or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、時刻情報を含む電磁波の中で磁界成分を受信して時刻を合わせる、電波時計、あるいは電磁波で所有者の接近を検知して自動車や住居のキーを開閉せしめるスマートキーレスエントリーシステム等(以下、キーレスエントリーシステムと言う)、あるいは電磁波に載せられた変調信号によって情報を授受するRFIDタグシステム等(以下、RFIDシステムと言う)に用いて好適な磁気センサ型の電磁波受信用アンテナに関するものである。   The present invention relates to a timepiece that receives a magnetic field component in an electromagnetic wave including time information and adjusts the time, a radio timepiece, or a smart keyless entry system that detects the approach of an owner by electromagnetic waves and opens and closes a car or a house key ( Hereinafter, it is referred to as a keyless entry system), or a magnetic sensor type electromagnetic wave receiving antenna suitable for use in an RFID tag system or the like (hereinafter referred to as an RFID system) that transmits and receives information by a modulation signal placed on an electromagnetic wave. is there.

ここでは電波時計用のアンテナを例に背景技術の説明を行う。
電波時計は、所定周波数の搬送波によって送られる時刻情報を受信し、その時刻情報を基に自身の時刻を修正する時計を指し、現在置時計、掛け時計、腕時計等さまざまな形態で実用化されている。
電波時計等に用いられている電波は40kHz〜200kHz以下と、長波帯を使用しており、その電波の一波長は数kmという長さになる。この電波を、電界として効率よく受信するには数百mを越す長さのアンテナ長が必要となり、小型化が必要な腕時計、キーレスエントリーシステム、RFIDシステム等に使用することは事実上困難であり、磁心を用いて磁界成分を受信することが必要である。
具体的には上記搬送波は、日本においては40kHz及び60kHzの2種類の電波を使用している。海外においても主に100kHz以下の周波数を用いて時刻情報を提供しているため、これらの周波数の電波を受信するには電磁波の磁界成分を効率良く収束させるために磁性体を磁心とし、これにコイルを巻き回した磁気センサ型のアンテナが主に使用されている。
Here, the background art will be described using an antenna for a radio timepiece as an example.
A radio clock is a clock that receives time information transmitted by a carrier wave of a predetermined frequency and corrects its own time based on the time information, and is currently put into practical use in various forms such as a table clock, a wall clock, and a wrist watch.
A radio wave used in a radio clock or the like uses a long wave band of 40 kHz to 200 kHz or less, and one wavelength of the radio wave has a length of several kilometers. In order to efficiently receive this radio wave as an electric field, an antenna length exceeding several hundred meters is required, and it is practically difficult to use it for wristwatches, keyless entry systems, RFID systems, etc. that require miniaturization. It is necessary to receive a magnetic field component using a magnetic core.
Specifically, the carrier wave uses two types of radio waves of 40 kHz and 60 kHz in Japan. Even overseas, time information is mainly provided using frequencies below 100 kHz, so in order to receive radio waves of these frequencies, a magnetic material is used as a magnetic core to efficiently converge the magnetic field component of the electromagnetic wave. A magnetic sensor type antenna in which a coil is wound is mainly used.

従来、電波時計用のアンテナとして、例えば特許文献1には、アモルファス金属積層体からなる磁心にコイルを巻回した主に腕時計に使用する小型アンテナが開示されている。
特許文献2には、フェライトからなる磁心にコイルを巻回してなる小型アンテナが開示されている。
また、特許文献3には、金属ケースとアンテナとの間に導電性を有するシール部材を設けたアンテナが開示されている。
さらに、特許文献4には、磁芯にコイルが巻回された主磁路と、磁芯にコイルが巻回されていない副磁路とを有し、磁芯に沿った閉ループ磁路の一部にエアギャップを設け、共振時には内部で発生した磁束が外部に漏れ難いようになしたアンテナが開示されている。
Conventionally, as an antenna for a radio-controlled timepiece, for example, Patent Document 1 discloses a small antenna mainly used for a wristwatch in which a coil is wound around a magnetic core made of an amorphous metal laminate.
Patent Document 2 discloses a small antenna formed by winding a coil around a magnetic core made of ferrite.
Patent Document 3 discloses an antenna in which a conductive sealing member is provided between a metal case and the antenna.
Further, Patent Document 4 includes a main magnetic path in which a coil is wound around a magnetic core and a sub magnetic path in which a coil is not wound around the magnetic core, and is a closed loop magnetic path along the magnetic core. An antenna is disclosed in which an air gap is provided in a portion so that magnetic flux generated inside during resonance does not easily leak to the outside.

特開2003−110341号公報JP 2003-110341 A 特開平8−271659号公報JP-A-8-271659 特開2002−168978号公報JP 2002-168978 A 特許第3512782号公報Japanese Patent No. 3512782

腕時計は、主に筐体(ケース)、ムーブメント(駆動部モジュール)とその周辺部品(文字盤、モータ、電池等)、非金属(ガラス)蓋および金属裏蓋とにより構成される。この中にアンテナを内蔵する場合、従来は筐体の外側に設けることが多かった。しかしながら、最近では小型軽量化の趨勢から筐体内部にアンテナを設けることが求められるようになってきており、図9に示すようにアンテナはムーブメント22と裏蓋24及び主として電池、時計針を動かすモータ等の周辺部品26との間の隙間に配置される。尚、図9の正面図のアンテナは構造を示すため実線で示しているが、実際は筐体25とムーブメント22、周辺部品26及び裏蓋24によって閉じられた空間に収められている。
上記した特許文献1、2のアンテナは、それぞれ磁心として比透磁率の高いアモルファス箔体やフェライトを用いて電磁波の磁界成分を収束させ、この収束させた磁束を磁心の外側に巻き回したコイルによって時間的に磁束が変化する成分を電圧として検知するアンテナである。従って、この点では筐体としては電磁波の磁界成分を阻害しない樹脂材とすることが望ましい。しかし、その反面一部を樹脂製にすると設計、デザイン面での制約がある。一般に腕時計は意匠性がセールスポイントとなり、例えば金属製の筐体が高級感や審美性の面で好まれる。そこで中高級時計や自動車に代表される機器類には筐体が金属ケースで作られることが多くなっている。この場合、従来のアンテナ構造、また配置によっては金属ケース等が電磁波に対するシールドとして働き、受信感度が大幅に低下すると言う問題があった。そこで、特許文献3では、アンテナを金属ケースの外部でかつシールド部材を介して配置することによりQ値の維持を図っている。しかし、大型化とデザインの制約は免れ得ないものであった。
A wristwatch is mainly composed of a housing (case), a movement (driving unit module) and its peripheral components (a dial, a motor, a battery, etc.), a non-metallic (glass) lid, and a metal back lid. In the case of incorporating an antenna in this, conventionally, it is often provided outside the casing. However, recently, it has been required to provide an antenna inside the housing due to the trend of miniaturization and weight reduction. As shown in FIG. 9, the antenna moves the movement 22, the back cover 24, mainly the battery and the clock hands. It arrange | positions in the clearance gap between peripheral components 26, such as a motor. The antenna shown in the front view of FIG. 9 is indicated by a solid line to show the structure, but is actually housed in a space closed by the casing 25, the movement 22, the peripheral component 26, and the back cover 24.
The antennas of Patent Documents 1 and 2 described above are formed by a coil in which the magnetic field component of electromagnetic waves is converged using an amorphous foil or ferrite having a high relative permeability as a magnetic core, and the converged magnetic flux is wound around the outside of the magnetic core. It is an antenna that detects a component whose magnetic flux changes with time as a voltage. Therefore, in this respect, it is desirable that the casing is made of a resin material that does not inhibit the magnetic field component of electromagnetic waves. However, if a part of it is made of resin, there are restrictions in terms of design and design. In general, a watch has a design point as a selling point. For example, a metal casing is preferred in terms of luxury and aesthetics. In view of this, cases such as mid-to-high-end watches and automobiles are often made with a metal case. In this case, depending on the conventional antenna structure and arrangement, a metal case or the like functions as a shield against electromagnetic waves, and there is a problem that reception sensitivity is greatly reduced. Therefore, in Patent Document 3, the Q value is maintained by arranging the antenna outside the metal case and through a shield member. However, enlargement and design restrictions were inevitable.

また、アンテナとしては外部から入ってきた電磁波による磁束が磁心に通った結果としてコイルに電圧が誘起される。図7の等価回路図に示すように、この電圧はコイル8と並列に接続されたコンデンサCにより所望の周波数に共振するようになっており、共振させることによりコイル8にはQ倍の電圧が発生し、コイル8にはその共振電流が流れる。この共振電流によってコイル8の周囲には磁界が発生し、磁束は主として磁心の両端から出入りする。ここで、アンテナの周囲に金属が接近していると、この共振電流によって発生した磁束が金属を貫く結果となり渦電流を発生させる。即ち、アンテナの近くに電気抵抗の小さな金属類があると、共振時の磁界エネルギーは渦電流損として失われ、アンテナコイルの損失となって現われ、結果、Q値が低下し実効的にアンテナ感度の低下を招くものである。この点で、特許文献4に開示されたアンテナによれば、共振時に外部に向かう磁束の流れをエアギャップを設けた副磁路側に選択的に誘導することになり、磁束を外部に漏れ難くし、よって渦電流損によるQ値の低下を抑えることが出来るとしたものである。しかしながら、この構造のアンテナで重要なことは安定した特性を得る為にはエアギャップを精度良く均一に保つ必要があると言うことである。実際には数100μm以下のギャップ幅を全断面に渡って一様に保つことが必要であるし、最適条件を見出すにはミクロンオーダでの調節を必要とする等、製造面や品質安定面での問題がある。   In addition, as an antenna, a voltage is induced in the coil as a result of magnetic flux due to electromagnetic waves entering from the outside passing through the magnetic core. As shown in the equivalent circuit diagram of FIG. 7, this voltage resonates at a desired frequency by a capacitor C connected in parallel with the coil 8, and a Q-fold voltage is applied to the coil 8 by resonating. The resonance current flows through the coil 8. Due to this resonance current, a magnetic field is generated around the coil 8, and the magnetic flux mainly enters and exits from both ends of the magnetic core. Here, when a metal approaches the antenna, the magnetic flux generated by the resonance current penetrates the metal and generates an eddy current. That is, if there is a metal with low electrical resistance near the antenna, the magnetic field energy at the time of resonance is lost as eddy current loss and appears as loss of the antenna coil. As a result, the Q value is lowered and the antenna sensitivity is effectively reduced. This leads to a decrease in. In this regard, according to the antenna disclosed in Patent Document 4, the flow of magnetic flux toward the outside at the time of resonance is selectively guided to the sub magnetic path side provided with the air gap, so that the magnetic flux is hardly leaked to the outside. Therefore, it is said that the decrease in the Q value due to the eddy current loss can be suppressed. However, what is important in the antenna of this structure is that it is necessary to keep the air gap accurate and uniform in order to obtain stable characteristics. Actually, it is necessary to keep a gap width of several hundreds of μm or less uniform over the entire cross section, and in order to find the optimum condition, adjustment in the micron order is required. There is a problem.

同様な問題点は磁気センサ型のアンテナを金属筐体の中に、或いは金属部品に近接して収容するキーレスエントリーシステム、またはRFIDシステムでも同様に存在する。キーレスエントリーシステムとは、例えば、乗用車等の車両の鍵を遠隔操作可能としたもので、特定の電磁波により開閉動作するアンテナを備えた送受信ユニットからなり、当該ユニットであるキーを持つ所有者の遠近により開閉遠隔操作が非接触で出来るものである。また、RFID(Radio Frequency Identification)システムは、タグに記憶された情報を特定の電磁波によって作動するアンテナにより情報を授受するもので、例えば、バス等の行先情報等が入力されたRFIDタグをバスに取り付け、時刻表情報が入力されたRFIDタグを乗り場の表示板等に埋設しておくと、利用者は非接触で各種の交通情報が認識できると言うものである。これらのシステムにおいても、筐体並びにアンテナの小型化と共にアンテナの高感度化が要求されている。   Similar problems exist in keyless entry systems or RFID systems that house magnetic sensor antennas in metal enclosures or in close proximity to metal parts. A keyless entry system is, for example, a remote control of a vehicle key such as a passenger car, which consists of a transmission / reception unit equipped with an antenna that opens and closes by a specific electromagnetic wave. The remote operation can be done without contact. In addition, an RFID (Radio Frequency Identification) system transfers information stored in a tag by an antenna that operates by a specific electromagnetic wave. For example, an RFID tag to which destination information such as a bus is input is used as a bus. If the RFID tag to which the timetable information is attached and embedded is embedded in the display board of the platform, the user can recognize various traffic information without contact. In these systems, it is required to increase the sensitivity of the antenna as well as to reduce the size of the housing and the antenna.

以上のことより本発明は、金属製の筐体内に磁気センサ型のアンテナを配置したものであって、設置面積を大きくせず渦電流損の問題を解消して高感度な出力を得ることができる小型で感度調整の容易なアンテナを提供することを目的とする。特に限られた小スペース内で高いアンテナ特性を発揮できるもので、電波時計、特に電波腕時計やキーレスエントリーシステム、RFIDシステムに適したアンテナ及びこれを用いた前記システムを提供する。   From the above, the present invention has a magnetic sensor type antenna arranged in a metal casing, and can solve the problem of eddy current loss without increasing the installation area and obtain a highly sensitive output. An object of the present invention is to provide a small antenna that can be easily adjusted in sensitivity. In particular, the present invention provides a radio timepiece, particularly a radio timepiece, a keyless entry system, an antenna suitable for an RFID system, and the system using the same, which can exhibit high antenna characteristics in a limited small space.

本発明は、外部からの電磁波の磁界成分を受信する磁気センサ型のアンテナにおいて、磁性体からなる磁心にコイルを巻回した主磁路部材と、当該主磁路部材の両端をエアギャップなしで接続し閉磁路を構成する比透磁率が2以上かつ主磁路部材より小さい副磁路部材とからなるアンテナである。これにより、外から内へ入る磁界の磁束は主磁路部材の両端を通過し共振を促し、他方、共振時に発生する内から外へ向かう磁束は、エアギャップがない分、閉磁路側に流れ易く閉磁路を回帰する。このときの流れ易さは副磁路部材の比透磁率や断面積、主磁路との対向面積によって調整されるが、これはエアギャップを調整するよりも面倒でなく、極めて作業性に優れている。   The present invention relates to a magnetic sensor type antenna that receives a magnetic field component of an electromagnetic wave from the outside, and a main magnetic path member in which a coil is wound around a magnetic core made of a magnetic material, and both ends of the main magnetic path member without an air gap. The antenna is composed of a sub magnetic path member having a relative magnetic permeability of 2 or more and smaller than the main magnetic path member that is connected to form a closed magnetic path. As a result, the magnetic flux entering the inside from the outside passes through both ends of the main magnetic path member and promotes resonance. On the other hand, the magnetic flux generated from the inside toward the outside tends to flow toward the closed magnetic circuit because there is no air gap. Return to the closed magnetic circuit. The ease of flow at this time is adjusted by the relative permeability, cross-sectional area of the secondary magnetic path member, and the area facing the main magnetic path, but this is less troublesome than adjusting the air gap and is extremely excellent in workability. ing.

また、本発明は、外部からの電磁波の磁界成分を受信する磁気センサ型のアンテナにおいて、磁性体からなる磁心にコイルを巻回した主磁路部材と、前記磁心と同等あるいはそれよりも小さい比透磁率を有する第1の副磁路部材と、前記主磁路部材の両端と前記第1の副磁路部材との間をエアギャップなしで接続し閉磁路を構成する、前記第1の副磁路部材よりも比透磁率の小さい第2の副磁路部材とからなるアンテナである。これにより、上記アンテナと同様、外から内へ入る磁界の磁束は主磁路部材の両端を通過し、内から外に向かう磁束はエアギャップがない分、閉磁路側に流れ易いが、ここでは第1の副磁路部材の比透磁率が比較的高く設定されているので、より低比透磁率である第2の副磁路部材を介していても磁束を通し易く、ほとんどが閉磁路を回帰する。よって、渦電流損が少なく、磁心に入射した磁束のコイルに対する通過量が実効的に増加し高感度なアンテナとなる。   Further, the present invention provides a magnetic sensor type antenna that receives a magnetic field component of an electromagnetic wave from the outside, and a main magnetic path member in which a coil is wound around a magnetic core made of a magnetic material, and a ratio that is equal to or smaller than the magnetic core. A first sub magnetic path member having a magnetic permeability, and both ends of the main magnetic path member and the first sub magnetic path member are connected without an air gap to form a closed magnetic path. The antenna includes a second sub magnetic path member having a relative permeability smaller than that of the magnetic path member. As a result, the magnetic flux entering the outside from the inside passes through both ends of the main magnetic path member, and the magnetic flux going from the inside to the outside easily flows to the closed magnetic path side because there is no air gap. Since the relative magnetic permeability of the secondary magnetic path member 1 is set to be relatively high, the magnetic flux can easily pass through the second secondary magnetic path member having a lower relative permeability, and most of them return to the closed magnetic path. To do. Therefore, there is little eddy current loss, and the amount of magnetic flux that has entered the magnetic core is effectively increased through the coil, resulting in a highly sensitive antenna.

ここで、前記した副磁路部材は、軟磁性フェライト粉末あるいは軟磁性金属粉末又は軟磁性金属フレークと、樹脂又はゴムとを混合してなる柔軟性複合材であることが望ましい。即ち、外部から入射する磁束は主磁路部材で受けるが、内部から放射する磁束は外部に漏れ難い構成とした、本発明の閉磁路のバランスを第2の副磁路部材で調整することが出来る。副磁路部材または第2の副磁路部材は主磁路部材の比透磁率より小なるものであるが、100以上であると主磁路に磁束を集中して受け入れ難くなる。100〜5が好ましく、更に好ましくは60〜10である。そこで柔軟性を有する複合材の場合、軟磁性の粉末と樹脂材等の混合比を調節することで適切な比透磁率を調整できるし、また厚みも容易に調節できるので好ましい。また柔軟性を有するのでエアギャップを容易に埋めることができ加工度も高いので扱いやすい。但し、柔軟性は必須ではない。   Here, the sub magnetic path member is preferably a flexible composite material obtained by mixing soft magnetic ferrite powder, soft magnetic metal powder, or soft magnetic metal flakes, and resin or rubber. That is, the magnetic flux incident from the outside is received by the main magnetic path member, but the magnetic flux radiated from the inside is hardly leaked to the outside, and the balance of the closed magnetic path of the present invention can be adjusted by the second sub magnetic path member. I can do it. The sub magnetic path member or the second sub magnetic path member is smaller than the relative magnetic permeability of the main magnetic path member, but if it is 100 or more, it is difficult to receive the magnetic flux concentrated in the main magnetic path. 100-5 are preferable, More preferably, it is 60-10. Therefore, a composite material having flexibility is preferable because an appropriate relative magnetic permeability can be adjusted by adjusting the mixing ratio of the soft magnetic powder and the resin material, and the thickness can be easily adjusted. In addition, since it has flexibility, the air gap can be easily filled and the degree of processing is high, so it is easy to handle. However, flexibility is not essential.

本発明のアンテナにおいて、前記主磁路部材の磁心を軟磁性フェライトあるいは軟磁性金属薄板を積層した積層体から構成し、前記第1の副磁路部材についても軟磁性金属薄板を積層した積層体あるいは軟磁性フェライトから構成することができる。このとき、金属薄板の積層体主磁路と第1の副磁路との積層方向は同じ方向となすことが好ましい。これにより、積層した場合に発生する渦電流に対し個々の薄板からの渦電流が低下し、損失を抑制し、よりアンテナ特性を向上させることができる。上記磁心を構成する軟磁性材料は、珪素鋼、パーマロイ、アモルファス金属、ナノ結晶金属、フェライト等5000〜100000程度の高比透磁率材料が望ましく、第1の副磁路部材は主磁路部材のそれよりも小さい300〜5000程度が好ましい。   In the antenna of the present invention, the magnetic core of the main magnetic path member is composed of a laminate in which soft magnetic ferrite or soft magnetic metal thin plates are laminated, and the first sub magnetic path member is also laminated in which soft magnetic metal thin plates are laminated. Alternatively, it can be composed of soft magnetic ferrite. At this time, it is preferable that the lamination direction of the laminated main magnetic path of the metal thin plate and the first sub magnetic path be the same direction. Thereby, the eddy current from each thin plate is reduced with respect to the eddy current generated when the layers are stacked, the loss can be suppressed, and the antenna characteristics can be further improved. The soft magnetic material constituting the magnetic core is preferably a high relative permeability material of about 5000 to 100,000 such as silicon steel, permalloy, amorphous metal, nanocrystalline metal, and ferrite, and the first sub magnetic path member is the main magnetic path member. About 300-5000 smaller than that is preferable.

本発明のアンテナにおいて、アンテナ磁心の周囲が金属部材により囲まれているとき、磁心の端部を非金属部、例えば電波腕時計ではガラス製蓋の方向に曲げることは好ましい。曲げる角度は垂直であったり、斜めであったり、その筐体内の状況によって任意の角度を設定できる。磁界成分を収束させる磁心の端部を磁束流入方向に向くように曲げることにより、その先端部が筐体内部に入射する多くの磁束を収束させて高感度なアンテナとなる。また、この形状は磁心に巻かれたコイルに誘起した電圧と並列に接続されたコンデンサによる共振電流による磁束が主として磁心の両端から出入りする性質上その出入りする磁束が金属ケースを貫く量を減少させることとなり、結果として金属ケースに発生させる渦電流を減少させ電気的なQ値を高く保つことができ、アンテナとしての高感度化に繋がる。   In the antenna of the present invention, when the periphery of the antenna core is surrounded by a metal member, it is preferable to bend the end of the magnetic core in the direction of a non-metal part, for example, a glass lid in a radio wave wristwatch. The bending angle is vertical or oblique, and an arbitrary angle can be set depending on the situation inside the casing. By bending the end portion of the magnetic core for converging the magnetic field component so as to be directed in the magnetic flux inflow direction, the tip portion converges a large amount of magnetic flux incident on the inside of the housing, thereby forming a highly sensitive antenna. In addition, this shape reduces the amount of magnetic flux penetrating through the metal case due to the property that magnetic flux due to resonance current from the capacitor connected in parallel with the voltage induced in the coil wound around the magnetic core mainly enters and exits from both ends of the magnetic core. As a result, the eddy current generated in the metal case can be reduced and the electrical Q value can be kept high, leading to high sensitivity as an antenna.

また、本発明は、金属製筐体、ムーブメント(周辺部品含む)、非金属製蓋、金属製裏蓋を有する腕時計に磁気センサ型のアンテナを内蔵した電波時計において、前記磁気センサ型のアンテナは、上記した何れかのアンテナを用いて前記主磁路部材が前記金属筐体の内部側に、第1、第2の副磁路を含む副磁路部材が金属筐体の周縁部側に配置した電波時計である。一般に筐体の内部側にはスペース上の制約が多く、必ずしも副磁路側を配置できるものではない。そもそも感度調整をする副磁路側が時計内部に向いていると調整作業性に問題がある。この点で、副磁路部材を柔軟性のある複合材で形成し、さらに周縁側に沿って設ければスペースを有効活用できるし、副磁路の厚みや面積の調整が容易で組立て性に優れている。これによりむしろ渦電流による悪影響を相殺しそれ以上の効果を期待できる。しかしながら、主磁路部材が金属筐体の周縁部側に、前記副磁路部材が金属筐体の内部側に配置することを妨げるものではない。この場合は外から内へ入る磁界は金属筐体に近い主磁路の磁心に収束し易く、他方副磁路は金属筐体から遠いので内から外へ漏れる磁界は筐体方向には向かい難く渦電流が発生し難い効果を期待できる。よって、個々の情況や求める効果によってこれらの構成を選択することが望ましいと言える。
以上により、本発明のアンテナは、時刻情報を含む電波を受信して時刻を合わせる小型の電波腕時計に用いることに適している。また、乗用車や住居等の鍵の開閉を遠隔操作するキーレスエントリーシステムに用いることに適している。さらに、情報を記憶したタグを用いて情報を授受するRFIDシステムに用いることに適している。
The present invention also relates to a radio-controlled timepiece in which a magnetic sensor type antenna is incorporated in a wristwatch having a metal casing, a movement (including peripheral parts), a non-metallic lid, and a metallic back lid. The main magnetic path member is disposed on the inner side of the metal casing using any one of the antennas described above, and the sub magnetic path member including the first and second sub magnetic paths is disposed on the peripheral edge side of the metal casing. Radio wave watch. Generally, there are many space restrictions on the inner side of the housing, and the sub magnetic path side cannot always be arranged. In the first place, if the sub magnetic path side for sensitivity adjustment faces the inside of the watch, there is a problem in adjustment workability. In this regard, if the secondary magnetic path member is formed of a flexible composite material and is provided along the peripheral edge side, the space can be effectively utilized, and the thickness and area of the secondary magnetic path can be easily adjusted and the assembly is facilitated. Are better. In this way, the adverse effect caused by the eddy current can be offset and a further effect can be expected. However, this does not prevent the main magnetic path member from being disposed on the peripheral edge side of the metal casing and the sub magnetic path member from being disposed on the inner side of the metal casing. In this case, the magnetic field entering from the outside easily converges to the core of the main magnetic path close to the metal casing, while the sub magnetic path is far from the metal casing, so that the magnetic field leaking from the inside to the outside is not easily directed toward the casing. It can be expected that eddy currents hardly occur. Therefore, it can be said that it is desirable to select these configurations according to individual circumstances and desired effects.
As described above, the antenna of the present invention is suitable for use in a small radio wristwatch that receives a radio wave including time information and adjusts the time. Further, it is suitable for use in a keyless entry system that remotely controls the opening and closing of a key of a passenger car or a residence. Furthermore, the present invention is suitable for use in an RFID system that transmits and receives information using a tag storing information.

本発明のアンテナによれば、外部より入射した磁束は主磁路部材により受けとめ、共振時の放射磁束については主磁路から副磁路部材側に磁束を導き、磁気回路内を効率よく帰還することができる。その結果、高い出力電圧が得られ、Q値を高いまま保持できる。また、このときエアギャップのない副磁路部材により、特に比透磁率の低い柔軟性複合材を用いることにより磁束の帰還具合を調節し、高いQ値と感度を得ることができる。
以上により、電波時計内の設置面積は同じでありながら金属部を避けて配置したのと同等の感度及びQ値が得られる。また共振電流による磁束の流出を抑えて実効的な感度を高く得られる。そして作業性、組立て性が良好である。以上の相乗効果により、設置面積は小さいが、配置自由度は高くデザイン的な制約も比較的小さい高感度のアンテナとなる。
また、この様なアンテナは、小型高性能の電波時計、電波腕時計、キーレスエントリーシステム、RFIDシステム等で好適に使用できる。
According to the antenna of the present invention, the magnetic flux incident from the outside is received by the main magnetic path member, and the radiated magnetic flux at the time of resonance is guided from the main magnetic path to the sub magnetic path member to efficiently return the magnetic circuit. be able to. As a result, a high output voltage can be obtained and the Q value can be kept high. Further, at this time, by using a flexible composite material having a low relative permeability by using a secondary magnetic path member having no air gap, it is possible to adjust the feedback of magnetic flux and obtain a high Q value and sensitivity.
As described above, the sensitivity and the Q value equivalent to the case where the metal watch is disposed away from the metal part are obtained while the installation area in the radio timepiece is the same. In addition, the effective sensitivity can be increased by suppressing the outflow of magnetic flux due to the resonance current. And workability and assemblability are good. Due to the above synergistic effect, a highly sensitive antenna with a small installation area but a high degree of freedom in arrangement and relatively small design constraints.
Such an antenna can be suitably used in a small high-performance radio timepiece, radio wave wristwatch, keyless entry system, RFID system, or the like.

以下、本発明のアンテナの実施態様を図面と共に説明する。
図1は第1の実施例を示すアンテナの正面図(a)と側面図(b)であり、ボビン等のケースは省略した説明用の概略図である(以下の実施例も同様)。アンテナの磁心1aは、アモルファス合金、Fe-Cu-Nb-Si-B系等のナノ結晶磁性合金、Fe-Si系磁性合金等の軟磁性金属箔帯(板厚20μm以下)を図示のようなバーベル状に打ち抜いたもので、この薄板6aを30枚〜40枚を絶縁体を介して積層し一体化している。この磁心の中央部に800〜1400ターン程度のコイル2aを巻回して主磁路部材4aとしている。コイル2aの両端からは、それぞれ磁心1aの端部が突出する。突出した磁心1aの両端の下端面5a,5aには、エアギャップを設けることなく比透磁率が100以下の副磁路部材3aを接続して閉磁路を構成している。この副磁路部材により共振時の磁束の回帰ルートを作るのであるが、この回帰量はアンテナの置かれた筐体金属の材質、形状、寸法によって最適値が異なるため、部材の比透磁率、断面積、主磁路との接触面積等を適宜増減させて最適値を決定する。これについては下述する。
Hereinafter, embodiments of the antenna of the present invention will be described with reference to the drawings.
FIG. 1 is a front view (a) and a side view (b) of an antenna showing a first embodiment, and is a schematic diagram for explanation with a case such as a bobbin omitted (the same applies to the following embodiments). As shown in the figure, the magnetic core 1a of the antenna is made of an amorphous alloy, a nanocrystalline magnetic alloy such as Fe—Cu—Nb—Si—B, or a soft magnetic metal foil strip (plate thickness of 20 μm or less) such as an Fe—Si based magnetic alloy. It is punched in a barbell shape, and 30 to 40 thin plates 6a are laminated and integrated through an insulator. A main magnetic path member 4a is formed by winding a coil 2a of about 800 to 1400 turns around the center of the magnetic core. From both ends of the coil 2a, end portions of the magnetic core 1a protrude. A secondary magnetic path member 3a having a relative permeability of 100 or less is connected to the lower end surfaces 5a, 5a at both ends of the projecting magnetic core 1a without providing an air gap to form a closed magnetic circuit. This secondary magnetic path member makes a return route of magnetic flux at resonance, but the optimal value varies depending on the material, shape and dimensions of the housing metal where the antenna is placed, so the relative permeability of the member, The optimum value is determined by appropriately increasing or decreasing the cross-sectional area, the contact area with the main magnetic path, and the like. This is described below.

図2は第2の実施例を示すアンテナの正面図(a)と側面図(b)の概略図である。このアンテナは、上記磁心1aと同様に軟磁性金属薄板の積層体からなる磁心1bと、これに同様に巻回したコイル2bとから主磁路部材4bを構成し、さらに磁心1bと同等あるいはそれ以下の比透磁率を有する第1の副磁路部材7bと前記主磁路部材の両端下端面5bと第1の副磁路部材7bとの間をエアギャップが生じないように比透磁率が100以下の第2の副磁路部材3bを介在させて接続し閉磁路を構成している。第1の副磁路部材7bは、軟磁性フェライト又はアモルファス合金、Fe-Cu-Nb-Si-B系等のナノ結晶磁性合金、Fe-Si系磁性合金等の軟磁性金属箔帯(板厚20μm以下)を積層したものでも良く、磁心1bと同様の積層体あるいはバルク材で良い。但し、その比透磁率としては磁心1bと同等あるいはそれ以下のものを用いる。例えば、磁心1bの比透磁率が100000〜80000であるとき、第1の副磁路部材7bのそれは100000〜300程度とする。その上で両者の間にさらに比透磁率の小さな第2の副磁路部材3bを介在させる。この比透磁率は100以下とし、さらに直交する断面積や主磁路との接触面積等を調節して共振時の磁束の回帰ルートを調整するのである。また、本例では主磁路部材4bと第1の副磁路部材7bの積層方向が同じになるようになし、つまり薄板同士が交差しなようにして共振時の磁束の流れによる渦電流を生じ難くしている。   FIG. 2 is a schematic diagram of a front view (a) and a side view (b) of an antenna showing a second embodiment. This antenna is composed of a magnetic core 1b made of a laminate of soft magnetic thin metal plates like the magnetic core 1a and a coil 2b wound in the same manner, and further comprises a main magnetic path member 4b, which is equivalent to or equivalent to the magnetic core 1b. The relative permeability is such that an air gap does not occur between the first sub magnetic path member 7b having the following relative magnetic permeability, the lower end surfaces 5b of the main magnetic path member, and the first sub magnetic path member 7b. A second sub magnetic path member 3b of 100 or less is connected to form a closed magnetic path. The first sub magnetic path member 7b is made of soft magnetic ferrite or amorphous alloy, nanocrystalline magnetic alloy such as Fe-Cu-Nb-Si-B, or soft magnetic metal foil strip such as Fe-Si based magnetic alloy (plate thickness). 20 μm or less) may be laminated, or a laminate or a bulk material similar to the magnetic core 1 b may be used. However, the relative permeability is equal to or less than that of the magnetic core 1b. For example, when the relative permeability of the magnetic core 1b is 100000 to 80000, that of the first sub magnetic path member 7b is about 100000 to 300. In addition, a second secondary magnetic path member 3b having a smaller relative permeability is interposed between the two. The relative permeability is set to 100 or less, and the return route of the magnetic flux at the time of resonance is adjusted by adjusting the cross-sectional area orthogonal to each other and the contact area with the main magnetic path. Also, in this example, the main magnetic path member 4b and the first sub magnetic path member 7b are made to have the same stacking direction, that is, the eddy currents caused by the flow of magnetic flux at resonance are set so that the thin plates do not cross each other. It is difficult to occur.

図3は第3の実施例を示すアンテナの正面図(a)と側面図(b)の概略図である。このアンテナは、磁心1cとコイル2cからなる主磁路部材4cは上記した実施例と同じ構成である。ここでは、第1の副磁路部材7cは磁心1cと同等あるいはそれ以下の比透磁率を有する薄板8cを複数枚積層した積層体から構成している。このことは上記第2の実施例と同様である。そして第1の副磁路部材7cと主磁路部材4cの下端面5cとの間にはエアギャップが生じないように第2の副磁路部材3cを接続し、この第2の副磁路部材3cの他面に第1の副磁路部材7cを接続し閉磁路を構成している。また、本例では主磁路部材4cと第1の副磁路部材7cの積層方向が交差しており第2の実施例よりも渦電流を生じ易い構成ではあるが、主磁路部材4cと第1の副磁路部材7cの軸線をずらすことにより磁束の流れが出きるだけ平行に流れるように導き渦電流の抑制を図っている。そして、共振時の磁束の回帰ルートを調整は上記実施例と同様に行うことができる。
尚、主磁路部材の磁心、第1の副磁路部材は金属薄板の他に、フェライト、アモルファス、ナノ結晶材料等の棒状、板状、線状のいずれの形態でも可能である。
FIG. 3 is a schematic diagram of an antenna front view (a) and a side view (b) showing a third embodiment. In this antenna, a main magnetic path member 4c including a magnetic core 1c and a coil 2c has the same configuration as that of the above-described embodiment. Here, the first sub magnetic path member 7c is constituted by a laminated body in which a plurality of thin plates 8c having a relative permeability equal to or lower than that of the magnetic core 1c are laminated. This is the same as in the second embodiment. Then, a second sub magnetic path member 3c is connected between the first sub magnetic path member 7c and the lower end surface 5c of the main magnetic path member 4c so as not to generate an air gap. A first sub magnetic path member 7c is connected to the other surface of the member 3c to constitute a closed magnetic path. Further, in this example, the main magnetic path member 4c and the first sub magnetic path member 7c cross each other and the eddy current is generated more easily than in the second embodiment. By shifting the axis of the first auxiliary magnetic path member 7c, the magnetic flux flows in parallel as much as possible so as to suppress the eddy current. And the return route of the magnetic flux at the time of resonance can be adjusted similarly to the said Example.
The magnetic core of the main magnetic path member and the first sub magnetic path member may be in the form of a rod, plate, or wire of ferrite, amorphous, nanocrystalline material, etc. in addition to the metal thin plate.

実施例で用いる副磁路部材あるいは第2の副磁路部材は、可撓性のある高分子材料(樹脂材あるいはゴム材)に金属磁性体粉(フェライト粉、アモルファス合金粉ほか)を分散して電磁波吸収機能を持たせた柔軟性複合材を用いることができる。例えば、可撓性高分子材料に導電性を有する繊維状の材料を分散した電磁波反射層と、その表裏両面に可撓性高分子材料に金属磁性体扁平形状粉を分散した第1の電磁波吸収層と、可撓性高分子材料に金属磁性体粒形状粉を分散した第2の電磁波吸収層とを順次積層し熱圧着したものがある。前記電磁波反射層に分散させる導電性を有する材料としては、例えばカーボン繊維や金属繊維であって、これを可撓性高分子材料中に分散させてシート状に成形する。また、電磁波吸収層に用いる金属磁性体粉としては、Fe-Cu-Nb-Si-B系等のナノ結晶磁性合金から水アトマイズ法により製造した粒形状粉をアトライタにて摩砕することにより製造した平均粒径が0.1〜50μmで平均厚さが3μmの扁平形状粉であって、これを可撓性高分子材料中に分散させてシート状に成形して電磁波吸収層としたものがある。一方、金属磁性体扁平形状粉としてカルボニル鉄合金、アモルファス合金、Fe-Si系合金、モリブデンパーマロイ、スーパーマロイ等の扁平形状粉を用いてこれを可撓性高分子材料中に分散させてシート状に成形して電磁波吸収層とすることができる。また、前記可撓性高分子材料としては、有機物で柔軟性があり、比重が1.5以下であり、好ましくは耐候性を有する樹脂で、例えばクロロプレンゴム、ブチルゴム、ウレタンゴム、シリコーン樹脂、塩化ビニル樹脂、フェノール樹脂等が挙げられる。また、例えば上記した第1の電磁波吸収層と第2の電磁波吸収層をそれぞれ単独で用いるような単層構造も望ましく、従来から使用される低比透磁率の柔軟性複合材を用いることが出来る。結局、本発明においては、比透磁率さえ満足すれば複合材の構造は限定するものではない。   The sub magnetic path member or the second sub magnetic path member used in the embodiment is obtained by dispersing metal magnetic powder (ferrite powder, amorphous alloy powder, etc.) in a flexible polymer material (resin material or rubber material). Thus, a flexible composite material having an electromagnetic wave absorbing function can be used. For example, an electromagnetic wave reflection layer in which a conductive fibrous material is dispersed in a flexible polymer material, and a first electromagnetic wave absorption in which a metal magnetic material flat shape powder is dispersed in a flexible polymer material on both front and back surfaces There are layers in which a layer and a second electromagnetic wave absorbing layer in which a metal magnetic particle-shaped powder is dispersed in a flexible polymer material are sequentially laminated and thermocompression bonded. The conductive material dispersed in the electromagnetic wave reflection layer is, for example, carbon fiber or metal fiber, which is dispersed in a flexible polymer material and formed into a sheet shape. In addition, the metal magnetic powder used in the electromagnetic wave absorption layer is manufactured by grinding with an attritor the granular shape powder produced from nanocrystalline magnetic alloy such as Fe-Cu-Nb-Si-B system by water atomization method. There is a flat powder having an average particle diameter of 0.1 to 50 μm and an average thickness of 3 μm, which is dispersed in a flexible polymer material and formed into a sheet shape to form an electromagnetic wave absorbing layer. On the other hand, flat metal powder such as carbonyl iron alloy, amorphous alloy, Fe-Si alloy, molybdenum permalloy, supermalloy, etc. is used as a metal magnetic flat powder and dispersed in a flexible polymer material to form a sheet. To form an electromagnetic wave absorbing layer. In addition, the flexible polymer material is an organic material that is flexible and has a specific gravity of 1.5 or less, preferably a weather-resistant resin such as chloroprene rubber, butyl rubber, urethane rubber, silicone resin, vinyl chloride resin. And phenol resin. In addition, for example, a single layer structure in which the first electromagnetic wave absorbing layer and the second electromagnetic wave absorbing layer described above are used independently is also desirable, and a conventionally used flexible composite material having a low relative permeability can be used. . After all, in the present invention, the structure of the composite material is not limited as long as the relative permeability is satisfied.

このような柔軟性複合材を用いることによって、その複合材を用いた部分はそれ自身でギャップを有している磁気特性となり、磁気的にはあたかもエアギャップを有しているように見なせる。これによって調整が面倒なエアギャップを設けることなく磁束を閉磁路内に帰還させることができる。また、エアギャップを設ける必要がないので微妙な精度を必要とせず製造がし易く、安定した性能を維持できる点で有利である。また、磁心とコイルは、従来から樹脂製ケース内に収容することが行われるが、これを副磁路部材をも収容するような樹脂ケースとなし、この空洞部分に溶融状態の上記柔軟性複合材の原料を射出成型されたコイルボビンの一部に流し込んで副磁路部材を一体成形することもできる。また、樹脂ケース内に上記で示したような第1の副磁路部材を収容した後、主磁路部材とこの第1の副磁路部材との間に形成される隙間に柔軟性複合材の原料を流し込んで第2の副磁路部材を一体成形して製造することができる。このような手段を用いればさらに安価で生産性に優れている。   By using such a flexible composite material, the part using the composite material has magnetic characteristics having a gap by itself, and it can be regarded magnetically as if it has an air gap. As a result, the magnetic flux can be returned to the closed magnetic path without providing an air gap that is troublesome to adjust. Moreover, since it is not necessary to provide an air gap, it is advantageous in that it is easy to manufacture without requiring subtle accuracy and can maintain stable performance. In addition, the magnetic core and the coil are conventionally housed in a resin case. However, the magnetic core and the coil are made into a resin case that also accommodates the secondary magnetic path member. It is also possible to integrally mold the sub magnetic path member by pouring the raw material of the material into a part of the injection-molded coil bobbin. Further, after the first sub magnetic path member as described above is accommodated in the resin case, the flexible composite material is formed in the gap formed between the main magnetic path member and the first sub magnetic path member. The second sub magnetic path member can be integrally formed by pouring the raw material. If such a means is used, it is further inexpensive and excellent in productivity.

本発明のアンテナの作用について以下に説明する。まず、電波の角周波数をωとし、アンテナとコンデンサで構成される共振回路の抵抗分をR、コイル部の自己インダクタンスをLとするとき、Q値はωL/Rで定義される。ここで述べるRはコイルの直流抵抗と交流抵抗の総和である。特に金属ケースに入れたアンテナの交流抵抗は増大する。その理由は磁束を集めた磁心が巻き回したコイルと外部に付加したコンデンサで共振してQ倍の共振電圧となり、この共振電流によってコイル両端には高い電圧が発生し、その電圧によってアンテナ自身の両端近くから磁束が発生するからである。その共振現象による磁束が金属を貫くときに発生するのが渦電流損失である。この渦電流損失を低減することが重要となるが、ここで低比透磁率の部材あるいは低比透磁率部材と副磁路部材による閉磁路を設けることにより、磁心に流入した磁束はコイルを通過し磁心の他端から流出するだけでなくその一部は副磁路部材あるいは第1と第2の副磁路部材による閉磁路に還流して再び外部から流入する磁束と合流してコイル内部を通過し、より多くの電圧を発生させる作用をなす。また、共振電流によって発生する磁束が副磁路部材あるいは第1と第2の副磁路部材による閉磁路を介して還流することにより、アンテナ両端から外部に出る磁束総量を少なくすることができ、近接する金属筐体を貫通する磁束が少なくなり渦電流損が低減し、等価的に交流抵抗の増大が抑えられる。よって、上述の抵抗分Rの増加が最小限に抑えられ、Q値の高いアンテナを得ることが出来る。   The operation of the antenna of the present invention will be described below. First, Q is defined as ωL / R, where ω is the angular frequency of the radio wave, R is the resistance of the resonance circuit composed of the antenna and the capacitor, and L is the self-inductance of the coil section. R described here is the sum of the DC resistance and AC resistance of the coil. In particular, the AC resistance of an antenna placed in a metal case increases. The reason for this is that resonance occurs between a coil around which a magnetic core that collects magnetic flux is wound and a capacitor added outside, resulting in a Q-fold resonance voltage. A high voltage is generated at both ends of the coil due to this resonance current. This is because magnetic flux is generated near both ends. It is eddy current loss that occurs when the magnetic flux due to the resonance phenomenon penetrates the metal. It is important to reduce this eddy current loss. Here, by providing a closed magnetic path with a low relative permeability member or a low relative permeability member and a secondary magnetic path member, the magnetic flux flowing into the magnetic core passes through the coil. In addition to flowing out from the other end of the magnetic core, a part of the magnetic core is returned to the closed magnetic path by the sub magnetic path member or the first and second sub magnetic path members, and again merges with the magnetic flux flowing in from the outside, and the inside of the coil is Passes through and generates more voltage. In addition, the magnetic flux generated by the resonance current recirculates through the sub magnetic path member or the closed magnetic path by the first and second sub magnetic path members, thereby reducing the total amount of magnetic flux that is output from both ends of the antenna. The magnetic flux penetrating through the adjacent metal casing is reduced, eddy current loss is reduced, and an increase in AC resistance is equivalently suppressed. Therefore, the increase in the resistance component R described above can be minimized, and an antenna having a high Q value can be obtained.

これらのアンテナを内蔵した電波腕時計の正面図および側面図を図4に示す。正面図のアンテナの図示は配置などが分かりやすいようにあえて実線で示している。電波腕時計20は金属製(例えばステンレス製)の筐体ケース21と、ムーブメント22と周辺部品26、ガラス製の蓋23と、金属製(例えばステンレス製)の裏蓋24とからなり、アンテナをムーブメント22(周辺部品26含む)と裏蓋24との間であって横方向に寝かせて配置している。ここでアンテナは磁心の端部101を底面から立ち上がるようにガラス蓋23の方向に曲げて配置している。これによって、磁束の出入り口となる磁心端部101は電磁波の入射方向に向いた構造となっている。時計は駆動機能を集約したムーブメントが大部分の容積を占有し、また人間に対する表示面(文字盤)も必須である。このためアンテナは裏蓋近くに配置することを余儀なくされる。この場合アンテナは周囲を金属部品により囲まれることになるが、この実施例によれば、アンテナの共振電流による磁束が最も多く流出する磁心端部101を磁気シールドされた筐体底部周辺の金属から離すように非金属部(ガラス製の蓋等)に向けて曲げて立設している。これにより、外部からの磁束の流入量が多く、筐体底部金属から遠いガラス面近くの磁束をより多く捕らえ、かつ筐体底部の金属接近の影響を最小限にできる。また、磁心端部の先端部102はさらに別の方向とすることでさらに電磁波を入射しやすい形状としている。
尚、上記電波腕時計において、立ち上がった磁心の端部を時計文字盤のデザインの一部として表面に現われるようにしても良い。例えば、磁心端部が文字盤を貫き、表示面に現われるようにして、これをひとつのデザインとして利用することである。このとき磁心端部は表示部まで出ているのでより高感度となる。逆に、端部は垂直に立設している必要もない。周囲の状況によって磁束を受け止めやすい方向や角度を有していれば良い。
また、アンテナの配置は、図5のように、主磁路部材4側が筐体内の内部(中央)側に向かい、副磁路部材7側が筐体21の周縁部側に沿った配置とすることで、アンテナ特性をさらに高めることができる。これは外部より入射した交流磁束がコイル両端に交流電圧として発生し、この交流電圧と並列に接続されたコンデンサがコイルと共に電気的に共振する。この電気的な共振は再びコイルに共振電流として流れ込み、コイルの両端に共振磁束を発生させる。その共振磁束が最も接近している金属である筐体側に漏れるのを副磁路部材が最小に抑えるためである。また、この様な配置は、比較的自由度があり感度調整や組立て性に優れた配置である。
FIG. 4 shows a front view and a side view of a radio wave wristwatch incorporating these antennas. In the front view, the antenna is shown by a solid line for easy understanding of the arrangement. The radio-controlled wristwatch 20 includes a housing case 21 made of metal (for example, stainless steel), a movement 22 and peripheral components 26, a glass lid 23, and a metal (for example, stainless steel) back cover 24, and moves the antenna. 22 (including the peripheral component 26) and the back cover 24, and laid in the lateral direction. Here, the antenna is arranged by bending the end portion 101 of the magnetic core in the direction of the glass lid 23 so as to rise from the bottom surface. As a result, the magnetic core end portion 101 serving as the entrance and exit of the magnetic flux has a structure facing the incident direction of the electromagnetic wave. A watch is a movement that consolidates driving functions and occupies most of the volume, and a display surface (clockface) for humans is also essential. For this reason, the antenna must be arranged near the back cover. In this case, although the antenna is surrounded by metal parts, according to this embodiment, the magnetic core end portion 101 from which the magnetic flux due to the resonance current of the antenna flows out most is removed from the metal around the bottom portion of the magnetically shielded casing. It is erected by bending toward the non-metal part (glass lid, etc.) so as to be separated. Thereby, the amount of magnetic flux flowing from the outside is large, more magnetic flux near the glass surface far from the housing bottom metal can be captured, and the influence of the metal approaching of the housing bottom can be minimized. In addition, the tip end portion 102 at the end of the magnetic core is formed in a different direction so that the electromagnetic wave can easily enter.
In the radio-controlled wristwatch, the end of the magnetic core that stands up may appear on the surface as part of the design of the clock face. For example, the end of the magnetic core penetrates the dial and appears on the display surface, which is used as a design. At this time, the end of the magnetic core protrudes to the display portion, so that the sensitivity becomes higher. On the contrary, the end portion does not need to be erected vertically. It is only necessary to have a direction and an angle at which the magnetic flux can be easily received depending on the surrounding conditions.
In addition, as shown in FIG. 5, the antenna is arranged such that the main magnetic path member 4 side faces the inside (center) side in the housing and the sub magnetic path member 7 side runs along the peripheral edge side of the housing 21. Thus, the antenna characteristics can be further improved. This is because an AC magnetic flux incident from the outside is generated as an AC voltage at both ends of the coil, and a capacitor connected in parallel with the AC voltage electrically resonates with the coil. This electrical resonance flows again into the coil as a resonance current, and a resonance magnetic flux is generated at both ends of the coil. This is because the secondary magnetic path member minimizes the resonance magnetic flux from leaking to the housing side, which is the closest metal. Further, such an arrangement is an arrangement having a relatively high degree of freedom and excellent sensitivity adjustment and assemblability.

以下、実施例の試験結果について説明する。ここでは図6に示す電波腕時計に模した試験装置と図7に示す等価回路に沿って本発明のアンテナの出力電圧等を測定した。
図7において、Lがアンテナの主磁路部材4と巻線8で構成されるコイルである。Rがコイルの直流抵抗と交流抵抗の総和である。このコイルに磁束の時間変化による電圧Vが検出される。ここでアンテナと並列にコンデンサCが接続され、このコンデンサCと先に述べたコイルLが電気的に共振し、コンデンサの両端にはQ倍の電圧が発生し、アンテナとして動作する。試験は図6に示す電波腕時計に模した厚さ1mmの金属製(ステンレスSUS403)の筐体70の中に条件を変えた評価アンテナを配置し、上記等価回路による電圧Vを測定した。
Hereinafter, the test results of the examples will be described. Here, the output voltage and the like of the antenna of the present invention were measured along the test apparatus imitating the radio wave wristwatch shown in FIG. 6 and the equivalent circuit shown in FIG.
In FIG. 7, L is a coil composed of the main magnetic path member 4 and the winding 8 of the antenna. R is the sum of the DC resistance and AC resistance of the coil. A voltage V due to the time variation of the magnetic flux is detected in this coil. Here, a capacitor C is connected in parallel with the antenna, the capacitor C and the coil L described above electrically resonate, and a Q-fold voltage is generated at both ends of the capacitor to operate as an antenna. In the test, an evaluation antenna with different conditions was placed in a 1 mm-thick metal (stainless steel SUS403) housing 70 imitating the radio wave watch shown in FIG. 6, and the voltage V by the equivalent circuit was measured.

(実施例1)
実施例1は、第1の副磁路部材と第2の副磁路部材は図2に示すアンテナ構造のもので、磁心としてMn-Zn系フェライト(日立金属製フェライトMT80D)、断面部が1.5mm角、長さ16mmを使用し、巻線8はフェライトコアの表面を絶縁した線径0.07mmのエナメル被膜銅線1200ターンを、長さ12mmの範囲で巻き付けた。次に、第1の副磁路部材は、板厚0.5mm、幅1.5mm、比透磁率500のフェライト板を用い、第2の副磁路部材は、比透磁率約50の柔軟性複合材を密着して介在させたもので、磁心との接触断面積を一定とし、柔軟性複合材の厚さtを変化させたときのQ値及び感度(出力電圧)を測定した。尚、巻線コイルの形状は特に限定するものではないが、製造上は円形が望ましい。
このアンテナを図6に示す金属ケース70の中に設置し、外部より電磁波の磁界成分に相当する交流磁界の実効値として周波数40kHz、磁界強度14pTの磁界を印加して出力電圧を測定した。結果を表1に示す。
Example 1
In Example 1, the first sub magnetic path member and the second sub magnetic path member have the antenna structure shown in FIG. 2, and the magnetic core has Mn—Zn ferrite (Hitachi Metals ferrite MT80D) and the cross section is 1 .5 mm square and 16 mm length were used, and winding 8 was formed by winding 1200 turns of enamel-coated copper wire having a wire diameter of 0.07 mm, which insulated the surface of the ferrite core, in a range of 12 mm in length. Next, the first sub magnetic path member uses a ferrite plate having a plate thickness of 0.5 mm, a width of 1.5 mm, and a relative permeability of 500, and the second sub magnetic path member is a flexible having a relative permeability of about 50. The composite material was closely attached, and the Q value and sensitivity (output voltage) were measured when the cross-sectional area of contact with the magnetic core was constant and the thickness t of the flexible composite material was changed. The shape of the winding coil is not particularly limited, but a circular shape is desirable for manufacturing.
This antenna was installed in a metal case 70 shown in FIG. 6, and an output voltage was measured by applying a magnetic field having a frequency of 40 kHz and a magnetic field strength of 14 pT as an effective value of an alternating magnetic field corresponding to the magnetic field component of the electromagnetic wave from the outside. The results are shown in Table 1.

Figure 2006191525
Figure 2006191525

(実施例2)
実施例2は、副磁路部材は図1に示すアンテナ構造のもので、磁心としてMn-Zn系フェライト(日立金属製フェライトMT80D)、断面部が1.5mm角、長さ16mmを使用し、巻線8はフェライトコアの表面を絶縁した線径0.07mmのエナメル被膜銅線1200ターンを、長さ12mmの範囲で巻き付けた。副磁路部材は、板厚0.5mm、幅1.5mm、比透磁率50の柔軟性複合材を用いて主磁路部材(磁心)に密着して接続したものである。このとき、柔軟性複合材の厚さtを変化させたときのQ値及び感度(出力電圧)を測定した。
このアンテナを図6に示す金属ケース70の中に設置し、外部より電磁波の磁界成分に相当する交流磁界の実効値として周波数40kHz、磁界強度14pTの磁界を印加して出力電圧を測定した。結果を表2に示す。
(Example 2)
In Example 2, the sub magnetic path member has the antenna structure shown in FIG. 1 and uses Mn—Zn ferrite (Hitachi Metals Ferrite MT80D) as a magnetic core, a cross section of 1.5 mm square, and a length of 16 mm. The winding 8 was formed by winding 1200 turns of enamel-coated copper wire having a wire diameter of 0.07 mm, which insulated the surface of the ferrite core, in a range of 12 mm in length. The sub magnetic path member is formed by using a flexible composite material having a plate thickness of 0.5 mm, a width of 1.5 mm, and a relative magnetic permeability of 50, in close contact with the main magnetic path member (magnetic core). At this time, the Q value and sensitivity (output voltage) when the thickness t of the flexible composite material was changed were measured.
This antenna was installed in a metal case 70 shown in FIG. 6, and an output voltage was measured by applying a magnetic field having a frequency of 40 kHz and a magnetic field strength of 14 pT as an effective value of an alternating magnetic field corresponding to the magnetic field component of the electromagnetic wave from the outside. The results are shown in Table 2.

Figure 2006191525
Figure 2006191525

以上の通り実施例1、2より副磁路部材を設けることによりQ値及び感度が向上することが確認された。柔軟性複合材の厚みを変化させることによりQ値及び感度が変化する。これにより副磁路部材の効果を引き出す最適値を調整することができる。例えば、本例ではQ値及び感度が共に高い値を示すのは実施例1の場合、t=0.5〜1.0mmであり、実施例2の場合、t=1.0〜2.0mmである。主磁路部材や第1の副磁路部材を積層体で構成した場合や材質を変更した場合であっても、第2の副磁路部材の厚みを変えることにより高いQ値及び感度を容易に出すことが出来る。尚、厚み調節、即ち断面積の調節に代えて接触面積を変えることによっても同様の調節が可能である。これらのことは、エアギャップを設けて調節する場合がミクロンオーダでギャップ調節が必要になることから比べると格段の効果である。   As described above, it was confirmed that the Q value and the sensitivity were improved by providing the sub magnetic path member from Examples 1 and 2. The Q value and sensitivity change by changing the thickness of the flexible composite material. Thereby, the optimal value which draws out the effect of a submagnetic path member can be adjusted. For example, in this example, the Q value and the sensitivity are both high in the case of Example 1 in the case of t = 0.5 to 1.0 mm, and in the case of Example 2, t = 1.0 to 2.0 mm. It is. Even when the main magnetic path member and the first sub magnetic path member are formed of a laminate or when the material is changed, a high Q value and sensitivity can be easily achieved by changing the thickness of the second sub magnetic path member. Can be put out. The same adjustment is possible by changing the contact area instead of adjusting the thickness, that is, adjusting the cross-sectional area. These are remarkable effects compared with the case where adjustment is performed by providing an air gap because gap adjustment is required on the order of microns.

(その他の実施例)
本発明のアンテナを内蔵したRFIDタグの一種であるキーレスエントリーシステム用のキー本体の正面図を図8に示す。キー本体80は樹脂製の筐体ケース74と、キーの開閉ボタン73と、受発信のための回路基板71と、受信アンテナ90から主に構成されている。図8ではキー本体80内部の構成部品の配置を分かりやすくするために筐体ケースの上半分を取り外した状態で示している。受信アンテナ90の近傍には金属配線や金属を使用した電子部品72を積載した回路基板71が配置される。また、金属製エマージェンシーキー75をキー本体内部に収容する。したがって、キーレスエントリーシステム用のキー本体においては、受信アンテナ90の近傍には金属製部品が多く配置されるため受信アンテナ90の受信環境は、収容する筐体ケース74が樹脂製であっても金属製筐体ケースに収容されたときの受信環境に近いと言える。送受信器やタグを用いるキーレスエントリーシステムやRFIDシステムにおいては、電波時計と同様にアンテナを筐体内の金属で囲まれた狭いスペースに収容することが求められるので、本発明のアンテナが有効であり、その効果も上記実施例と同様に得ることができる。また、図示するように筐体ケースの内面形状に合わせるように、両端の外周が略円弧形状に形成され、キー本体内のスペースを有効活用するために、内部側に端部が向いている。副磁路部材は、キー本体内のスペースを有効活用するために周縁部側に沿って設けている。
(Other examples)
FIG. 8 shows a front view of a key body for a keyless entry system, which is a kind of RFID tag incorporating the antenna of the present invention. The key body 80 mainly comprises a resin casing 74, a key opening / closing button 73, a circuit board 71 for receiving and transmitting, and a receiving antenna 90. FIG. 8 shows the state in which the upper half of the housing case is removed for easy understanding of the arrangement of the components inside the key body 80. In the vicinity of the receiving antenna 90, a circuit board 71 on which an electronic component 72 using metal wiring or metal is mounted is disposed. Further, the metal emergency key 75 is housed inside the key body. Therefore, in the key body for the keyless entry system, many metal parts are arranged in the vicinity of the receiving antenna 90, so that the receiving environment of the receiving antenna 90 is metal even if the housing case 74 to be accommodated is made of resin. It can be said that it is close to the reception environment when accommodated in the case made of a product. In keyless entry systems and RFID systems that use transceivers and tags, the antenna of the present invention is effective because the antenna is required to be housed in a narrow space surrounded by metal in the housing in the same manner as a radio timepiece. The effect can also be obtained in the same manner as in the above embodiment. Further, as shown in the drawing, the outer periphery of both ends is formed in a substantially arc shape so as to match the inner surface shape of the housing case, and the end portion faces the inner side in order to effectively use the space in the key body. The sub magnetic path member is provided along the peripheral edge side in order to effectively use the space in the key body.

本発明のアンテナは、電波時計に用いられる電波受信用アンテナや自動車、住宅等のキーレスエントリーシステム、RFIDタグシステムに用いることができる。特に形状の自由度が大きいので電波腕時計に適している。   The antenna of the present invention can be used for radio wave receiving antennas used in radio timepieces, keyless entry systems such as automobiles and houses, and RFID tag systems. In particular, it is suitable for radio wristwatches because of its great freedom of shape.

本発明の第1の実施例を示すアンテナの概略構造図である。1 is a schematic structural diagram of an antenna showing a first embodiment of the present invention. 本発明の第2の実施例を示すアンテナの概略構造図である。FIG. 5 is a schematic structural diagram of an antenna showing a second embodiment of the present invention. 本発明の第3の実施例を示すアンテナの概略構造図である。FIG. 5 is a schematic structural diagram of an antenna showing a third embodiment of the present invention. 本発明のアンテナを腕時計内に配置した例を示す正面図と側面図である。It is the front view and side view which show the example which has arrange | positioned the antenna of this invention in a wristwatch. 他のアンテナを腕時計内に配置した例を示す正面図である。It is a front view which shows the example which has arrange | positioned another antenna in a wristwatch. 本発明の実施例を試験した装置の模式図である。1 is a schematic diagram of an apparatus in which an embodiment of the present invention was tested. 本発明のアンテナの等価回路を示す図である。It is a figure which shows the equivalent circuit of the antenna of this invention. 本発明のアンテナをキーレスエントリーシステム用のキー本体に適用した例を示す図である。It is a figure which shows the example which applied the antenna of this invention to the key main body for keyless entry systems. 従来のアンテナを内蔵する電波腕時計を示す正面図と側面図である。It is the front view and side view which show the radio wristwatch which incorporates the conventional antenna.

符号の説明Explanation of symbols

1a〜1d:磁心
2a〜2c:巻き線
3a:副磁路部材
3b〜3d:第2の副磁路部材
4a〜4d:主磁路部材
6a〜6c:積層磁心
7b〜7d:第1の副磁路部材
8:コイル、巻線
21:金属製筐体
22:ムーブメント
23:ガラス製蓋
24:裏蓋
25:樹脂製筐体
26:周辺部品
70:金属製筐体
72:電子部品
80:キー本体
90:受信アンテナ
1a to 1d: Magnetic cores 2a to 2c: Winding 3a: Sub magnetic path members 3b to 3d: Second sub magnetic path members 4a to 4d: Main magnetic path members 6a to 6c: Laminated magnetic cores 7b to 7d: First sub Magnetic path member 8: Coil, winding 21: Metal casing 22: Movement 23: Glass lid 24: Back lid 25: Resin casing 26: Peripheral component 70: Metal casing 72: Electronic component 80: Key Body 90: receiving antenna

Claims (9)

外部からの電磁波の磁界成分を受信する磁気センサ型のアンテナにおいて、磁性体からなる磁心にコイルを巻回した主磁路部材と、当該主磁路部材の両端をエアギャップなしで接続し閉磁路を構成する比透磁率が2以上かつ主磁路部材より小さい副磁路部材とからなることを特徴とするアンテナ。 In a magnetic sensor type antenna that receives a magnetic field component of an electromagnetic wave from the outside, a closed magnetic circuit is formed by connecting a main magnetic path member in which a coil is wound around a magnetic core made of a magnetic material and both ends of the main magnetic path member without an air gap. And an auxiliary magnetic path member having a relative magnetic permeability of 2 or more and smaller than the main magnetic path member. 外部からの電磁波の磁界成分を受信する磁気センサ型のアンテナにおいて、磁性体からなる磁心にコイルを巻回した主磁路部材と、前記磁心と同等あるいはそれよりも小さい比透磁率を有する第1の副磁路部材と、前記主磁路部材の両端と前記第1の副磁路部材との間をエアギャップなしで接続し閉磁路を構成する、前記第1の副磁路部材よりも比透磁率の小さい第2の副磁路部材とからなることを特徴とするアンテナ。 In a magnetic sensor type antenna that receives a magnetic field component of an electromagnetic wave from the outside, a main magnetic path member in which a coil is wound around a magnetic core made of a magnetic material, and a first magnetic permeability that is equal to or smaller than that of the magnetic core. The sub magnetic path member, and both ends of the main magnetic path member and the first sub magnetic path member are connected without an air gap to form a closed magnetic path. An antenna comprising a second sub magnetic path member having a low magnetic permeability. 前記副磁路部材は、軟磁性フェライト粉末あるいは軟磁性金属粉末又は軟磁性金属フレークと、樹脂又はゴムとを混合してなる柔軟性複合材であることを特徴とする請求項1又は2記載のアンテナ。 The said secondary magnetic path member is a soft composite material formed by mixing soft magnetic ferrite powder, soft magnetic metal powder, or soft magnetic metal flakes, and resin or rubber. antenna. 前記主磁路部材の磁心は、軟磁性フェライトあるいは軟磁性金属薄板を積層した積層体からなり、前記第1の副磁路部材は、軟磁性金属薄板を積層した積層体あるいは軟磁性フェライトであることを特徴とする請求項2又は3記載のアンテナ。 The magnetic core of the main magnetic path member is composed of a laminate in which soft magnetic ferrite or soft magnetic metal thin plates are laminated, and the first sub magnetic path member is a laminate in which soft magnetic metal thin plates are laminated or soft magnetic ferrite. The antenna according to claim 2 or 3, wherein 前記主磁路部材の少なくとも周囲が金属部材で囲まれているとき、前記主磁路部材を構成する磁心の少なくとも一部の端部を非金属の方向に曲げたことを特徴とする請求項1〜4の何れかに記載のアンテナ。 2. At least a part of an end portion of a magnetic core constituting the main magnetic path member is bent in a non-metallic direction when at least the periphery of the main magnetic path member is surrounded by a metal member. The antenna in any one of -4. 金属製筐体、ムーブメント(周辺部品含む)、非金属製蓋、金属製裏蓋を有する腕時計に磁気センサ型のアンテナを内蔵した電波時計において、前記磁気センサ型のアンテナは、請求項1〜5の何れかに記載のアンテナを用いたことを特徴とする電波時計。 In a radio timepiece in which a magnetic sensor type antenna is incorporated in a wristwatch having a metal casing, a movement (including peripheral parts), a non-metallic lid, and a metallic back lid, the magnetic sensor type antenna is defined in claims 1 to 5. A radio-controlled timepiece using the antenna according to any one of the above. 請求項6の電波時計において、前記アンテナが主磁路部材が前記金属筐体の内部側に、副磁路部材が金属筐体の周縁部側に配置されていることを特徴とする電波時計。 7. The radio timepiece according to claim 6, wherein the antenna has a main magnetic path member disposed on an inner side of the metal casing and a sub magnetic path member disposed on a peripheral edge side of the metal casing. 請求項1〜5の何れかに記載の磁気センサ型のアンテナを当該アンテナを内蔵する送受信器の何れかに用いたことを特徴とするキーレスエントリーシステム。 A keyless entry system, wherein the magnetic sensor type antenna according to any one of claims 1 to 5 is used in any one of a transmitter and a receiver having the antenna built therein. 請求項1〜5の何れかに記載の磁気センサ型のアンテナをRFIDタグに内蔵して用いたことを特徴とするRFIDシステム。
An RFID system comprising the magnetic sensor antenna according to claim 1 incorporated in an RFID tag.
JP2005189735A 2004-06-29 2005-06-29 Antenna, radio-controlled watch using the same, keyless entry system, and rfid system Pending JP2006191525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189735A JP2006191525A (en) 2004-06-29 2005-06-29 Antenna, radio-controlled watch using the same, keyless entry system, and rfid system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004191351 2004-06-29
JP2004353702 2004-12-07
JP2005189735A JP2006191525A (en) 2004-06-29 2005-06-29 Antenna, radio-controlled watch using the same, keyless entry system, and rfid system

Publications (1)

Publication Number Publication Date
JP2006191525A true JP2006191525A (en) 2006-07-20

Family

ID=36798199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189735A Pending JP2006191525A (en) 2004-06-29 2005-06-29 Antenna, radio-controlled watch using the same, keyless entry system, and rfid system

Country Status (1)

Country Link
JP (1) JP2006191525A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019958A (en) * 2005-07-08 2007-01-25 Nec Tokin Corp Coil antenna instrument for wave ceptor clock
WO2008018179A1 (en) * 2006-08-11 2008-02-14 Mitsui Chemicals, Inc. Antenna core and antenna
JP2012513861A (en) * 2008-12-30 2012-06-21 ドースン インダストリアル カンパニー リミテッド Electronic passport case to prevent information leakage and improve recognition rate
JP2013110547A (en) * 2011-11-21 2013-06-06 Casio Comput Co Ltd Antenna structure, radio wave receiver and manufacturing method for antenna structure
JPWO2012132818A1 (en) * 2011-03-31 2014-07-28 ソニー株式会社 Detection device, power transmission device, power reception device, power supply system, and detection method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019958A (en) * 2005-07-08 2007-01-25 Nec Tokin Corp Coil antenna instrument for wave ceptor clock
WO2008018179A1 (en) * 2006-08-11 2008-02-14 Mitsui Chemicals, Inc. Antenna core and antenna
JPWO2008018179A1 (en) * 2006-08-11 2009-12-24 三井化学株式会社 Antenna core and antenna
US8035569B2 (en) 2006-08-11 2011-10-11 Mitsui Chemicals, Inc. Antenna core and antenna
JP2012513861A (en) * 2008-12-30 2012-06-21 ドースン インダストリアル カンパニー リミテッド Electronic passport case to prevent information leakage and improve recognition rate
US10250080B2 (en) 2011-03-13 2019-04-02 Sony Corporation Detector, power transmitter, power receiver, power feed system, and detection method
JPWO2012132818A1 (en) * 2011-03-31 2014-07-28 ソニー株式会社 Detection device, power transmission device, power reception device, power supply system, and detection method
US10003221B2 (en) 2011-03-31 2018-06-19 Sony Corporation Detector, power transmitter, power receiver, power feed system, and detection method
JP2013110547A (en) * 2011-11-21 2013-06-06 Casio Comput Co Ltd Antenna structure, radio wave receiver and manufacturing method for antenna structure

Similar Documents

Publication Publication Date Title
JP2007013862A (en) Antenna, radio clock using the same, keyless entry system, and rfid system
US7511679B2 (en) Antenna, and radio timepiece using the same, keyless entry system, and RFID system
US8847839B2 (en) Resonance-type, receiving antenna and receiving apparatus
CN101599576B (en) Antenna device and radio wave-using apparatus
JP2006050265A (en) Magnetic core member for antenna module, antenna module and personal digital assistant provided therewith
JP4592001B2 (en) Antenna, radio clock using the same, keyless entry system, RFID system
JP4304672B2 (en) Radio clock antenna and radio clock using the same
EP2453523B1 (en) Transmission / reception antenna and transmission / reception device using same
JP6143485B2 (en) Electronic device and antenna device
JP2006191525A (en) Antenna, radio-controlled watch using the same, keyless entry system, and rfid system
KR101040221B1 (en) A internal antenna in mobile phone case and a method of arranging internal antenna pattern in mobile phone case
JP4826706B2 (en) Antenna, radio clock using the same, keyless entry system, RFID system
WO2011010440A1 (en) Antenna device
JP4905844B2 (en) Antenna, radio clock using the same, keyless entry system, RFID system
JP4692875B2 (en) Antenna, radio clock using the antenna, and RFID system
JP2013017108A (en) Antenna structure for portable telephone
JP2005233900A (en) Antenna for wrist watch, and antenna unit for wrist watch
JP5163941B2 (en) Receiving antenna and receiving apparatus using the same
JP5712695B2 (en) Electronic clock with built-in antenna
JP2012154768A (en) Electronic timepiece
JP2011139195A (en) Antenna device and radio receiving apparatus equipped with the antenna device
JP2011069764A (en) Electronic timepiece with built-in antenna
JP2010203791A (en) Electronic timepiece with built-in antenna
JP2011089863A (en) Electronic timepiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A131 Notification of reasons for refusal

Effective date: 20091211

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100305