JP2005197671A - Aluminum material for electrolytic capacitor electrode and manufacturing method thereof, and electrolytic capacitor - Google Patents

Aluminum material for electrolytic capacitor electrode and manufacturing method thereof, and electrolytic capacitor Download PDF

Info

Publication number
JP2005197671A
JP2005197671A JP2004355798A JP2004355798A JP2005197671A JP 2005197671 A JP2005197671 A JP 2005197671A JP 2004355798 A JP2004355798 A JP 2004355798A JP 2004355798 A JP2004355798 A JP 2004355798A JP 2005197671 A JP2005197671 A JP 2005197671A
Authority
JP
Japan
Prior art keywords
aluminum material
electrolytic capacitor
cleaning
capacitor electrodes
tensile strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004355798A
Other languages
Japanese (ja)
Other versions
JP4763273B2 (en
Inventor
Satoshi Hozumi
敏 穂積
Masashi Sakaguchi
雅司 坂口
Hideki Nishimori
秀樹 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004355798A priority Critical patent/JP4763273B2/en
Publication of JP2005197671A publication Critical patent/JP2005197671A/en
Application granted granted Critical
Publication of JP4763273B2 publication Critical patent/JP4763273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an aluminum material for electrolytic capacitor electrodes having a high cubic azimuth occupation rate and excellent etching characteristics achieved by cleaning the surface thereof through cleaning process and capable of realizing a high electrostatic capacity, and provide the aluminum material manufactured by this method, and the electrolytic capacitor using the aluminum material. <P>SOLUTION: In this manufacturing method of the aluminum material for the electrolytic capacitor, an aluminum ingot is subjected to hot rolling and cold rolling, and then subjected to intermediate annealing. After the intermediate annealing, tensile strain is given to it without carrying out cold rolling before final annealing is started, and then the final annealing is carried out. The surface of the aluminum material is subjected to at least one or more times of cleaning after the hot rolling and before the start of the final annealing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、電解コンデンサ電極用アルミニウム材の製造方法及びこの方法で製造されたアルミニウム材、ならびにアルミニウム材を用いた電解コンデンサに関する。   The present invention relates to a method for producing an aluminum material for an electrolytic capacitor electrode, an aluminum material produced by this method, and an electrolytic capacitor using the aluminum material.

なお、この明細書において、「アルミニウム」の語はアルミニウム及びその合金の両者を含む意味で用い、またアルミニウム材には少なくともアルミニウム箔、アルミニウム板及びこれらの成形体が含まれる。   In this specification, the term “aluminum” is used to include both aluminum and its alloys, and the aluminum material includes at least an aluminum foil, an aluminum plate, and a molded body thereof.

従来,電解コンデンサ電極用アルミニウム材、例えば中高圧用電解コンデンサ陽極材は、アルミニウム純度99.8%以上の鋳塊に、熱間圧延、第一次冷間圧延、中間焼鈍、第二次冷間圧延、最終焼鈍の順に各処理を施して製造されている。そして、この中高圧用電解コンデンサ陽極材に電解エッチングを施しトンネルピットを形成し、その後化成処理を施して陽極材としている。従って、高い静電容量を有する陽極材を得るためには、アルミニウム材のエッチング特性が良好でなければならず、様々な観点からエッチング特性の向上が試みられている。   Conventionally, aluminum materials for electrolytic capacitor electrodes, for example, electrolytic capacitor anode materials for medium and high pressures, are ingots with an aluminum purity of 99.8% or more, hot rolled, primary cold rolled, intermediate annealing, secondary cold It is manufactured by performing each treatment in the order of rolling and final annealing. The medium-high voltage electrolytic capacitor anode material is subjected to electrolytic etching to form tunnel pits, and then subjected to chemical conversion treatment to form an anode material. Therefore, in order to obtain an anode material having a high capacitance, the etching characteristics of the aluminum material must be good, and attempts have been made to improve the etching characteristics from various viewpoints.

アルミニウム材における電解エッチング特性に影響を及ぼす材料要因のうち、最も大きな要因の一つとしてまず結晶粒組織が挙げられ、例えば電解エッチングによりトンネルピットを形成させる中高圧用陽極材においては、立方体方位を持つ結晶粒が多いほど、即ち立方体方位占有率が高いほど、効果的にアルミニウム材の表面積を拡大でき、高い静電容量が得られることが周知である。そして、立方体方位占有率の高いアルミニウム材を得る方法として、例えば次の方法が提案されている(特許文献1,2参照)。   Among the material factors affecting the electrolytic etching characteristics of aluminum materials, one of the biggest factors is the crystal grain structure. For example, in medium- and high-pressure anode materials that form tunnel pits by electrolytic etching, the cube orientation is It is well known that the more crystal grains that are present, that is, the higher the cube orientation occupancy, the more effectively the surface area of the aluminum material can be expanded and a higher capacitance can be obtained. For example, the following methods have been proposed as a method for obtaining an aluminum material having a high cube orientation occupation ratio (see Patent Documents 1 and 2).

特許文献1においては、1000%以上の高冷間圧延硬化率による第一次冷間圧延後に180〜350℃で中間焼鈍し、次いで圧下率5〜35%で仕上げの第二次冷間圧延を施し、その後最終焼鈍して立方体方位占有率の高いアルミニウム材を得る方法が開示されている。   In Patent Document 1, intermediate cold annealing is performed at 180 to 350 ° C. after the first cold rolling at a high cold rolling hardening rate of 1000% or more, and then the second cold rolling is finished at a rolling reduction of 5 to 35%. A method is disclosed in which an aluminum material having a high cube orientation occupancy is obtained by performing the subsequent annealing.

また、特許文献2においては、90%以上の高圧下率による第一次冷間圧延後に中間焼鈍し、次いで圧下率10〜40%の第二次冷間圧延を施し、この第二次冷間圧延開始時から最終焼鈍開始時に至るまでの過程において、引張歪を0.2〜5.0%に調整することにより、立方体方位占有率の高いアルミニウム材を得る方法が開示されている。   In Patent Document 2, intermediate annealing is performed after primary cold rolling at a high pressure reduction rate of 90% or more, and then secondary cold rolling at a reduction rate of 10 to 40% is performed. In the process from the start of rolling to the start of final annealing, a method of obtaining an aluminum material having a high cube orientation occupancy by adjusting the tensile strain to 0.2 to 5.0% is disclosed.

これらの方法は、中間焼鈍後に低い圧下率で仕上げの第二次冷間圧延を行うことによって結晶方位を制御し、立方体方位占有率を高めるものである。   These methods are intended to increase the cubic orientation occupancy by controlling the crystal orientation by performing secondary cold rolling for finishing at a low reduction rate after intermediate annealing.

一方、アルミニウム材の酸化膜の厚さや均一性、及び表面に付着あるいは埋め込まれたアルミ酸化物やコンタミなど、いわゆるアルミニウム材表面近傍の性質や状態も、電解エッチング特性に影響を及ぼす大きな要因の一つであることが知られている。そして、電解エッチング特性に優れたアルミニウム材を得る方法として、例えば次の方法が提案されている(特許文献3参照)。   On the other hand, the thickness and uniformity of the oxide film of the aluminum material and the properties and conditions near the surface of the aluminum material, such as aluminum oxide and contamination adhered or embedded on the surface, are also major factors affecting the electrolytic etching characteristics. It is known that For example, the following method has been proposed as a method for obtaining an aluminum material having excellent electrolytic etching characteristics (see Patent Document 3).

特許文献3においては、熱間圧延、冷間圧延を実施した後、さらに最終仕上げ圧延を含む箔圧延を実施してアルミニウム箔を製造するに際し、熱間圧延後最終仕上げ圧延前に、アルミニウム箔地に対して少なくとも1回の表面層除去洗浄を実施する方法が開示されている。これによると、エッチングピットの均一発生を阻害しているのは圧延工程においてアルミニウム箔表面に形成される疵状の凹部や表面に埋め込まれたAl酸化物、カーボン等埋込物であり、よって熱間圧延後最終仕上げ圧延前にアルミニウム箔地に対して少なくとも1回の表面除去洗浄を実施することにより凹凸部や埋込物をできるだけ少なくした方がエッチングピットを均一に発生させることができ、高静電容量を得ることができるとされている。
特公昭54−11242号公報 特開平6−145923号公報 特開平5−200405号公報
In Patent Document 3, after carrying out hot rolling and cold rolling, and further carrying out foil rolling including final finish rolling to produce an aluminum foil, after hot rolling and before final finish rolling, an aluminum foil base is used. A method of performing at least one surface layer removal cleaning is disclosed. According to this, the uniform generation of etching pits is hindered by the ridge-like recesses formed on the surface of the aluminum foil in the rolling process and the embedded Al oxide, carbon, etc. on the surface. Etching pits can be generated more uniformly by reducing surface roughness and embedding as much as possible by performing at least one surface removal cleaning on the aluminum foil before the final finish rolling after the intermediate rolling. Capacitance can be obtained.
Japanese Patent Publication No.54-11242 JP-A-6-145923 JP-A-5-200405

しかしながら、上述した特許文献に記載された方法では、最終焼鈍の前に最終仕上げ圧延を行うため、熱間圧延終了後最終仕上げ圧延前にアルミニウム材の表面層除去洗浄を実施したとしても、最終仕上げ圧延時の圧延油、磨耗粉、Al酸化物、カーボン等の付着及び埋め込まれなどの表層の不均一性がエッチングピット形成の不均一要因となるため、エッチングピット形成の均一性向上、ひいては静電容量の増大に限界があった。また、最終仕上げ圧延後で最終焼鈍を施す前に洗浄処理を施したとしても、最終仕上げ圧延時に起こる前記表層の不均一性が解消されることなくエッチングピット形成の不均一要因となるため、エッチングピット形成の均一性向上、ひいては静電容量の増大に限界があった。   However, in the method described in the above-mentioned patent document, since the final finish rolling is performed before the final annealing, even if the surface layer removal cleaning of the aluminum material is performed after the hot finish and before the final finish rolling, the final finish is performed. Non-uniformity of the surface layer such as adhesion and embedding of rolling oil, wear powder, Al oxide, carbon, etc. during rolling becomes a non-uniform factor in the formation of etching pits. There was a limit to the increase in capacity. In addition, even if the cleaning process is performed after the final finish rolling and before the final annealing, the non-uniformity of the surface layer that occurs at the time of the final finish rolling is not eliminated, and etching pit formation becomes a non-uniform factor. There was a limit to the improvement in the uniformity of pit formation and the increase in capacitance.

この発明は、このような実情に鑑みてなされたものであって、高い立方体方位占有率を有し、かつ洗浄処理により表面を清浄化することで、エッチング性に優れ高い静電容量を得ることのできる電解コンデンサ電極用アルミニウム材の製造方法、及びこの方法で製造されたアルミニウム材、ならびにアルミニウム材を用いた電解コンデンサの提供を目的とする。   The present invention has been made in view of such circumstances, and has a high cubic orientation occupancy ratio, and by cleaning the surface by a cleaning treatment, it has excellent etching properties and obtains a high capacitance. An object of the present invention is to provide an aluminum material for an electrolytic capacitor electrode that can be manufactured, an aluminum material manufactured by this method, and an electrolytic capacitor using the aluminum material.

前記目的を達成するために、本発明の電解コンデンサ電極用アルミニウム材の製造方法は、下記(1)〜(19)に記載された構成を有する。
(1)アルミニウム鋳塊に熱間圧延及び冷間圧延を行い、次いで中間焼鈍を施し、中間焼鈍後で最終焼鈍を開始するまでの間に、冷間圧延を施すことなく引張歪を付与し、その後最終焼鈍を施す電解コンデンサ電極用アルミニウム材の製造方法であって、前記熱間圧延後で最終焼鈍を開始するまでの間にアルミニウム材表面の洗浄を少なくとも1回以上施すことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(2)1〜15%の引張歪を付与する前項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(3)3〜12%の引張歪を付与する前項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(4)アルミニウム材の厚みTが、得られる電解コンデンサ電極用アルミニウム材の厚さtに対して、1≦T/t≦20を満足するときに前記洗浄処理を施す前項1〜3のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(5)アルミニウム材の厚みTが、得られる電解コンデンサ電極用アルミニウム材の厚さtに対して、1≦T/t≦10を満足するときに前記洗浄処理を施す前項4に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(6)冷間圧延後で中間焼鈍を開始するまでの間に洗浄を施す前項1〜5のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(7)中間焼鈍後で最終焼鈍を開始するまでの間に洗浄を施す前項1〜6のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(8)中間焼鈍後で引張歪付与前に洗浄を施す前項7に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(9)引張歪付与後で最終焼鈍前に洗浄を施す前項7または8に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(10)洗浄に用いる洗浄液がアルカリ性水溶液である前項1〜9のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(11)洗浄に用いる洗浄液が酸性水溶液である前項1〜9のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(12)洗浄が、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われる前項1〜9のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(13)洗浄によるアルミニウム材の片面の除去厚さをd、洗浄前のアルミニウム材の厚さをTとしたとき,洗浄による片面の厚さ減少率d/T×100(%)が、0.002≦(d/T×100)≦0.25を満足する前項1〜12のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(14)引張歪付与と洗浄処理を連続的に行う前項1〜13のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(15)中間焼鈍と引張歪付与を連続的に行う前項1〜14のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(16)引張歪付与と最終焼鈍を連続的に行う前項1〜15のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(17)引張歪付与とスリットを連続的に行う前項1〜16のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(18)前記アルミニウム材は陽極材である前項1〜17のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(19)前記アルミニウム材は中高圧用陽極材である前項1〜18のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
In order to achieve the above object, the method for producing an aluminum material for electrolytic capacitor electrodes of the present invention has a configuration described in the following (1) to (19).
(1) Hot rolling and cold rolling are performed on an aluminum ingot, then intermediate annealing is performed, and after the intermediate annealing, until final annealing is started, tensile strain is applied without performing cold rolling, A method for producing an aluminum material for an electrolytic capacitor electrode that is subsequently subjected to final annealing, wherein the aluminum material surface is cleaned at least once after the hot rolling and before the final annealing is started. Manufacturing method of aluminum material for capacitor electrode.
(2) The manufacturing method of the aluminum material for electrolytic capacitor electrodes of the preceding clause 1 which provides 1-15% of tensile strain.
(3) The method for producing an aluminum material for electrolytic capacitor electrodes as described in (2) above, wherein a tensile strain of 3 to 12% is applied.
(4) Any of the preceding items 1 to 3, wherein the cleaning treatment is performed when the thickness T of the aluminum material satisfies 1 ≦ T / t ≦ 20 with respect to the thickness t of the aluminum material for electrolytic capacitor electrodes to be obtained. The manufacturing method of the aluminum material for electrolytic capacitor electrodes of item 1.
(5) The electrolytic capacitor according to item 4 above, wherein the cleaning treatment is performed when the thickness T of the aluminum material satisfies 1 ≦ T / t ≦ 10 with respect to the thickness t of the aluminum material for electrolytic capacitor electrodes to be obtained. Manufacturing method of aluminum material for electrodes.
(6) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 5, wherein washing is performed after cold rolling and before intermediate annealing is started.
(7) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 6, wherein cleaning is performed after intermediate annealing and before final annealing is started.
(8) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 7, wherein washing is performed after intermediate annealing and before applying tensile strain.
(9) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 7 or 8, wherein washing is performed after applying tensile strain and before final annealing.
(10) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 9 above, wherein the cleaning liquid used for cleaning is an alkaline aqueous solution.
(11) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 9, wherein the cleaning liquid used for cleaning is an acidic aqueous solution.
(12) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 9, wherein the washing is performed by sequential execution of washing with an alkaline aqueous solution and washing with an acidic aqueous solution.
(13) The thickness reduction rate d / T × 100 (%) of one side by cleaning is 0, where d is the removal thickness of one side of the aluminum material by cleaning and T is the thickness of the aluminum material before cleaning. 13. The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of 1 to 12 above, wherein 002 ≦ (d / T × 100) ≦ 0.25 is satisfied.
(14) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 13, wherein the tensile strain is applied and the cleaning treatment is continuously performed.
(15) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 14, wherein the intermediate annealing and the application of tensile strain are continuously performed.
(16) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of items 1 to 15, wherein the tensile strain is applied and the final annealing is continuously performed.
(17) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 16 above, wherein the tensile strain is applied and the slit is continuously performed.
(18) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 17, wherein the aluminum material is an anode material.
(19) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 18, wherein the aluminum material is an anode material for medium to high pressure.

本発明の電解コンデンサ電極用アルミニウム材は、下記(20)に記載された構成を有する。
(20)前項1〜19のいずれか1項に記載の方法で製造された電解コンデンサ電極用アルミニウム材。
The aluminum material for electrolytic capacitor electrodes of the present invention has a configuration described in the following (20).
(20) An aluminum material for electrolytic capacitor electrodes manufactured by the method according to any one of items 1 to 19.

本発明の電解コンデンサ用電極材の製造方法は、下記(21)または(22)に記載された構成を有する。
(21)前項20に記載のアルミニウム材に、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。
(22)エッチングの少なくとも一部が直流電解エッチングである前項21に記載の電解コンデンサ用電極材の製造方法。
The manufacturing method of the electrode material for electrolytic capacitors of this invention has the structure described in following (21) or (22).
(21) A method for producing an electrode material for electrolytic capacitors, wherein the aluminum material according to item 20 is etched.
(22) The method for producing an electrode material for electrolytic capacitors as described in 21 above, wherein at least a part of the etching is direct current electrolytic etching.

本発明のアルミニウム電解コンデンサ用陽極材は、下記(23)に記載された構成を有する。
(23)前項21または前項22に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。
The anode material for an aluminum electrolytic capacitor of the present invention has a configuration described in the following (23).
(23) An anode material for an aluminum electrolytic capacitor produced by the production method according to item 21 or 22 above.

本発明の電解コンデンサは、下記(24)に記載された構成を有する。
(24)電極材として前項21または前項22に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。
The electrolytic capacitor of the present invention has a configuration described in (24) below.
(24) An aluminum electrolytic capacitor characterized in that an aluminum electrode material produced by the production method described in the above item 21 or 22 is used as an electrode material.

前項(1)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention described in the preceding item (1), it is possible to obtain an aluminum material for an electrolytic capacitor electrode that has a high cube orientation occupancy and is excellent in etching property and provides a high capacitance.

前項(2)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材を確実に得ることができる。   According to the invention described in the preceding item (2), it is possible to reliably obtain an aluminum material for electrolytic capacitor electrodes that has a high cube orientation occupancy and is excellent in etching property and provides a high capacitance.

前項(3)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材をさらに確実に得ることができる。   According to the invention described in the preceding item (3), it is possible to more reliably obtain an aluminum material for electrolytic capacitor electrodes that has a high cube orientation occupancy and is excellent in etching property and provides a high capacitance.

前項(4)に記載された発明によれば、さらにエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention described in the preceding item (4), it is possible to obtain an aluminum material for electrolytic capacitor electrodes that is further excellent in etching property and provides a high capacitance.

前項(5)に記載された発明によれば、さらに一層エッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention described in the preceding item (5), it is possible to obtain an aluminum material for an electrolytic capacitor electrode that is further excellent in etching property and obtains a high capacitance.

前項(6)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention described in the preceding item (6), it is possible to obtain an aluminum material for an electrolytic capacitor electrode that has a high cube orientation occupancy and is excellent in etching property and provides a high capacitance.

前項(7)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention described in the preceding item (7), an aluminum material for electrolytic capacitor electrodes can be obtained which has a high cube orientation occupancy and is excellent in etching property and can provide a high capacitance.

前項(8)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention described in the preceding item (8), it is possible to obtain an aluminum material for an electrolytic capacitor electrode that has a high cube orientation occupancy and is excellent in etching property and provides a high capacitance.

前項(9)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention described in the preceding item (9), it is possible to obtain an aluminum material for an electrolytic capacitor electrode that has a high cube orientation occupancy and is excellent in etching property and provides a high capacitance.

前項(10)に記載された発明によれば、洗浄に用いる洗浄液がアルカリ性水溶液であるから、アルミニウム材表面層を洗浄により確実に除去することができる。   According to the invention described in item (10) above, since the cleaning liquid used for cleaning is an alkaline aqueous solution, the aluminum material surface layer can be reliably removed by cleaning.

前項(11)に記載された発明によれば、洗浄に用いる洗浄液が酸性水溶液であるから、アルミニウム材表面層を洗浄により確実に除去することができる。   According to the invention described in the preceding item (11), since the cleaning liquid used for cleaning is an acidic aqueous solution, the aluminum material surface layer can be reliably removed by cleaning.

前項(12)に記載された発明によれば、洗浄は、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われるから、アルミニウム材表面層をさらに確実に除去することができる。   According to the invention described in the preceding item (12), the cleaning is performed by the sequential execution of the cleaning with the alkaline aqueous solution and the cleaning with the acidic aqueous solution, so that the surface layer of the aluminum material can be more reliably removed.

前項(13)に記載された発明によれば、洗浄によるアルミニウム材の片面の厚さ減少率d/T×100(%)が、0.002≦(d/T×100)≦0.25を満足するから、静電容量の増大効果を確実に得ることができる。   According to the invention described in the preceding item (13), the thickness reduction rate d / T × 100 (%) of one surface of the aluminum material by cleaning satisfies 0.002 ≦ (d / T × 100) ≦ 0.25. Since it is satisfied, the effect of increasing the capacitance can be obtained with certainty.

前項(14)に記載された発明によれば、引張歪付与と洗浄処理を連続的に行うから効率がよい。   According to the invention described in the preceding item (14), the tensile strain imparting and the cleaning treatment are continuously performed, so that the efficiency is high.

前項(15)に記載された発明によれば、中間焼鈍と引張歪付与を連続的に行うから効率がよい。   According to the invention described in the preceding item (15), since the intermediate annealing and the application of the tensile strain are continuously performed, the efficiency is high.

前項(16)に記載された発明によれば、引張歪付与と最終焼鈍を連続的に行うから効率がよい。   According to the invention described in the preceding item (16), the tensile strain is imparted and the final annealing is continuously performed, so that the efficiency is high.

前項(17)に記載された発明によれば、引張歪付与とスリットを連続的に行うから効率がよい。   According to the invention described in the preceding item (17), since the tensile strain is applied and the slit is continuously performed, the efficiency is high.

前項(18)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用陽極材を得ることができる。   According to the invention described in the above item (18), it is possible to obtain an anode material for an electrolytic capacitor electrode that has a high cube orientation occupation ratio and is excellent in etching property and provides a high capacitance.

前項(19)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる中高圧用の陽極材を得ることができる。   According to the invention described in the preceding item (19), it is possible to obtain a medium-high pressure anode material having a high cube orientation occupancy and excellent in etching property and high capacitance.

前項(20)に記載された発明によれば、高い立方体方位占有率を有し、かつエッチング性に優れ高い静電容量が得られる電解コンデンサ電極用アルミニウム材となし得る。   According to the invention described in the preceding item (20), it can be formed as an aluminum material for electrolytic capacitor electrodes that has a high cube orientation occupation ratio and is excellent in etching property and provides a high capacitance.

前項(21)に記載の発明によれば、エッチングにより大きな静電容量を有する電解コンデンサ用電極材を製造することができる。   According to the invention described in item (21) above, an electrode material for an electrolytic capacitor having a large capacitance can be produced by etching.

前項(22)に記載の発明によれば、エッチングの少なくとも一部を直流エッチングで行うことにより、深くて太い多数のトンネル状ピットを生成することができ、ひいては大きな静電容量を有する電解コンデンサ用電極材を製造することができる。   According to the invention described in the preceding item (22), it is possible to generate a large number of deep and thick tunnel-like pits by performing at least a part of etching by direct current etching, and thus for an electrolytic capacitor having a large capacitance. An electrode material can be manufactured.

前項(23)に係る発明によれば、高静電容量のアルミニウム電解コンデンサ用陽極材となし得る。   According to the invention which concerns on previous term (23), it can be set as the anode material for aluminum electrolytic capacitors with a high electrostatic capacity.

前項(24)に係る発明によれば、高静電容量のアルミニウム電解コンデンサとなし得る。   According to the invention of the previous item (24), an aluminum electrolytic capacitor having a high capacitance can be obtained.

この発明に係る電解コンデンサ電極用アルミニウム材の製造方法においては、中間焼鈍後の材料表面に圧延油、磨耗粉、カーボン等の付着及び埋め込まれが生じないように、最終仕上げ圧延をすることなく引張歪を付与した後最終焼鈍をし、かつ熱間圧延後で最終焼鈍を開始するまでの間にアルミニウム材表面の洗浄を少なくとも1回以上施す。このような工程により、高い立方体方位占有率を有し、かつエッチングピット発生の均一性に優れ、ひいては高い静電容量を有する電解コンデンサ電極用アルミニウム材が得られる。
[引張歪付与]
前記引張歪は僅かでも加えれば立方体方位占有率を向上させることができるが、高い立方体方位占有率を得るためには1%以上が好ましい。一方、過度に引張歪を付与すると引張過程でアルミニウム材が破断する恐れがあるため、15%以下が好ましい。特に好ましい引張歪は3〜12%であり、さらに5%を超え10%以下が好ましい。そして、引張歪を加えられたアルミニウム材は、最終焼鈍を施すことによって立方体方位を持つ結晶粒が成長し、最終的に高い立方体方位占有率を得ることができる。
In the method for manufacturing an aluminum material for electrolytic capacitor electrodes according to the present invention, the material surface after the intermediate annealing is not subjected to final finish rolling so as not to cause adhesion and embedding of rolling oil, wear powder, carbon, etc. After the strain is applied, final annealing is performed, and the surface of the aluminum material is cleaned at least once after the hot rolling and before the final annealing is started. By such a process, an aluminum material for electrolytic capacitor electrodes having a high cube orientation occupancy, excellent etching pit generation uniformity, and thus high capacitance can be obtained.
[Applying tensile strain]
Although the cubic strain occupancy can be improved by adding a small amount of the tensile strain, it is preferably 1% or more in order to obtain a high cube occupancy. On the other hand, if an excessive tensile strain is applied, the aluminum material may be broken during the tensile process, so 15% or less is preferable. Particularly preferred tensile strain is 3 to 12%, more preferably more than 5% and not more than 10%. The aluminum material to which tensile strain is applied is subjected to final annealing, so that crystal grains having a cubic orientation grow, and finally a high cubic orientation occupation ratio can be obtained.

引張歪の付与は、アルミニウム材に対して1方向例えば長さ方向のみに引張力を作用させ引張歪を付与する一軸引張によっても良いし、異なる2方向例えば長さ方向と幅方向に引張力を付与する二軸引張によっても良い。また、アルミニウム材を曲げ変形させて引張歪を生じさせても良い。   The tensile strain may be applied by uniaxial tension that applies a tensile force to the aluminum material only in one direction, for example, the length direction, to apply the tensile strain, or the tensile force is applied in two different directions, for example, the length direction and the width direction. Biaxial tension may be applied. Further, the aluminum material may be bent and deformed to generate tensile strain.

引張歪を付与する方法は、特に限定されることはない。例えば巻き出しコイルに巻かれたアルミニウム材を、巻き出しコイルにブレーキをかけながら巻き取りコイルに巻き取ることにより、巻き出しコイルから巻き取りコイルに移動する途中のアルミニウム材に引張力を加え引張歪を付与する方法を挙げ得る。   The method for imparting tensile strain is not particularly limited. For example, an aluminum material wound around a winding coil is wound around the winding coil while applying a brake to the winding coil, so that a tensile force is applied to the aluminum material that is moving from the winding coil to the winding coil. The method of providing can be mentioned.

特に効率的な引張歪付与方法としては、アルミニウム材の搬送方向に配置されるブライドルロールユニットを2ユニット以上有し、隣接するブライドルロールユニット間に張力域を形成する引張歪付与装置を用いる方法を推奨できる。図1に引張歪付与装置の一例を模式的に示す。引張歪付与装置(1)は、アルミニウム材(S)の搬送方向に沿って上流側に配置される上流側ブライドルロールユニット(10)と下流側に配置される下流側ブライドルロールユニット(11)の2つのブライドルロールユニットを有し、上流側ブライドルロールユニットにおける周速よりも下流側ブライドルロールユニットにおける周速が大きくなるように設定され、この周速差によりブライドルロールユニット(10)(11)間に形成された張力域(Q)においてアルミニウム材(S)に連続的に塑性伸びを発生させ、これにより引張歪を付与するものとなされている。なお、前記上流側及び下流側ブライドルロールユニット(10)(11)は、それぞれ4つのブライドルロール(12)(12)(12)(12)、(13)(13)(13)(13)によって構成されているが、ロール数やロールのレイアウトは本実施形態に限定されず任意に設定することができる。   As a particularly efficient method for imparting tensile strain, a method using a tensile strain imparting device that has two or more bridle roll units arranged in the conveying direction of an aluminum material and forms a tension region between adjacent bridle roll units is used. Can be recommended. FIG. 1 schematically shows an example of a tensile strain applying device. The tensile strain applying device (1) includes an upstream bridle roll unit (10) disposed on the upstream side along the conveying direction of the aluminum material (S) and a downstream bridle roll unit (11) disposed on the downstream side. It has two bridle roll units, and is set so that the peripheral speed in the downstream bridle roll unit is larger than the peripheral speed in the upstream bridle roll unit, and the difference between the peripheral speeds causes the bridle roll units (10) and (11) to In the tension region (Q) formed in the aluminum material (S), plastic elongation is continuously generated, thereby imparting tensile strain. The upstream and downstream bridle roll units (10) and (11) are respectively provided by four bridle rolls (12) (12) (12) (12), (13) (13) (13) (13). Although configured, the number of rolls and the layout of the rolls are not limited to the present embodiment, and can be arbitrarily set.

また、引張歪付与回数は1回である必要はなく、複数回付与することもできる。特に大きな引張歪を付与する場合は、複数回の引張歪付与を行うことが好ましい。その理由は、搬送する材料の巻き状態や表面状態によってはコイルの巻き締まりによりアルミニウム材どうしの接触面で擦れが生じたり、ブライドルロールとの接触面でスリップが生じて疵が発生する可能性が高くなり、また張力付与域で材料に皺が発生し易くなることがあるためである。なお、皺の発生は、張力域において材料を拘束する押さえロールなどを用いて材料のフリースパンを小さくすることにより抑制することが可能である。   Moreover, the number of times of tensile strain application need not be one, and can be applied multiple times. In particular, when applying a large tensile strain, it is preferable to apply a plurality of tensile strains. The reason for this is that depending on the winding condition and surface condition of the material to be conveyed, there is a possibility that rubbing will occur on the contact surface between the aluminum materials due to tightening of the coil, or slippage may occur on the contact surface with the bridle roll. This is because the material becomes higher and wrinkles are likely to occur in the material in the tension application region. The generation of wrinkles can be suppressed by reducing the free span of the material by using a pressing roll that restrains the material in the tension region.

上述した1つの張力域(Q)を有する引張歪付与装置(1)を用いて複数回の引張歪付与を行う場合、複数回のパスを実施すれば良い。また、1回のパスで複数回の引張歪付与を行うこともできる。例えば、図2に示す引張歪付与装置(2)は3つのブライドルロールユニット(20)(21)(22)を有し、隣接する2組のブライドルロールユニット(20)(21)、(21)(22)によって2つの張力域(Q1)(Q2)が形成されている。そして、アルミニウム材(S)の搬送経路に前記引張歪付与装置(2)を設置することによって、1回のパスで2回の引張歪付与を行うことができる。このように、ブライドルロールユニットを増設して2箇所以上で付与するようにすれば、1回のパスで複数回の引張歪付与を行うことができる。さらに、1パスにつき複数箇所で引張歪付与するパスを複数回実施することもできる。なお、前記引張歪付与装置(2)のように1つのブライドルロールユニット(21)を2つの張力域(Q1)(Q2)の形成に兼用し、これらの張力域(Q1)(Q2)を連続的に設ける他、ブライドルロールユニットを兼用させることなく2つの張力域を分離して設けても良い。   When applying a plurality of tensile strains using the tensile strain applying device (1) having one tension region (Q) described above, a plurality of passes may be performed. Further, a plurality of tensile strains can be applied in one pass. For example, the tensile strain applying device (2) shown in FIG. 2 has three bridle roll units (20), (21), (22), and two adjacent bridle roll units (20), (21), (21). Two tension regions (Q1) and (Q2) are formed by (22). Then, by installing the tensile strain applying device (2) in the transport path of the aluminum material (S), it is possible to apply the tensile strain twice in one pass. In this way, if the bridle roll unit is added and applied at two or more locations, it is possible to apply tensile strain multiple times in one pass. Furthermore, it is possible to perform a plurality of passes for applying tensile strain at a plurality of locations per pass. As in the tensile strain applying device (2), one bridle roll unit (21) is also used to form two tension regions (Q1) (Q2), and these tension regions (Q1) (Q2) are continuously used. Alternatively, the two tension regions may be provided separately without using the bridle roll unit.

さらに、前記引張歪付与装置(1)(2)は、従来よりテンションレベリング装置として使用されているものを用いることができる。即ち、ストリップに降伏点以下の張力と曲げによる応力増加とによりストリップ断面の一部分に塑性変形を与え、ストリップに残留伸びを与え平坦度等の形状不良を矯正する矯正装置を用いて、ブライドルロール周速条件を適宜調整することによって所要の引張歪を付与することができる。従って、テンションレベリング装置において平坦度の矯正と同時に、所要の引張歪を付与することができる。   Further, the tensile strain applying devices (1) and (2) may be those conventionally used as a tension leveling device. That is, by using a straightening device that applies a plastic deformation to a part of the cross section of the strip due to the tension below the yield point and an increase in the stress due to bending, and a residual elongation to the strip to correct shape defects such as flatness, The required tensile strain can be applied by appropriately adjusting the speed condition. Therefore, a required tensile strain can be applied simultaneously with correction of flatness in the tension leveling device.

また、上述した引張歪付与工程へのアルミニウム材の供給ならびに引張歪付与後の搬出方法については特に限定されることはない。図3、4に例示した工程では、巻出し機(30)の後にルーパー(31)を設け、所定速度でアルミニウム材(S)を搬送しながら(R1)においてコイル継ぎを行い、複数のコイルを連続的に引張歪付与装置(32)に供給している。そして、巻取り機(33)の前にルーパー(34)を設け、引張歪付与後のアルミニウム材(S)を所定速度で搬送しながら(R2)においてアルミニウム材(S)を切断し、コイルを分割し搬出している。なお図3、4において、(35)は次に巻出し機(30)に装填するための待機コイル、(36)は巻取って分割したコイル、(37)は後述する焼鈍炉である。このような連続処理により、巻出し機(30)および巻取り機(33)でのコイル交換段取りによる時間のロスをなくすことができる。   Moreover, the supply method of the aluminum material to the above-described tensile strain application step and the unloading method after applying the tensile strain are not particularly limited. 3 and 4, a looper (31) is provided after the unwinding machine (30), and while joining the aluminum material (S) at a predetermined speed, coil joining is performed in (R1), and a plurality of coils are formed. Continuously supplied to the tensile strain applying device (32). Then, a looper (34) is provided in front of the winder (33), and the aluminum material (S) after applying tensile strain is conveyed at a predetermined speed, and the aluminum material (S) is cut in (R2), and the coil is removed. Divided and carried out. 3 and 4, (35) is a standby coil to be loaded into the unwinder (30) next, (36) is a coil that is wound and divided, and (37) is an annealing furnace described later. By such continuous processing, time loss due to coil exchange setup in the unwinder (30) and the winder (33) can be eliminated.

引張歪付与工程は、必ずしも1工程である必要はなく、また1度に加えなければならないものではない。従って引張歪を加える工程は多工程に及んでも、または多数回に及んでも何ら問題はなく、通常一般に200〜300℃にて行われる中間焼鈍の後で通常一般に450℃以上にて行われる最終焼鈍の開始前の間に引張歪を加えれば良い。また、引張歪を付与する工程の前後に、洗浄やアルミニウム材の幅を分割したり調整するために通常最終焼鈍の前や後に行われるスリットなどの工程が入っても良い。また,中間焼鈍工程、洗浄工程、スリット工程、最終焼鈍工程のうち少なくとも1つ以上の工程と引張歪を付与する工程が、連続的に一つの装置内で行われても良いし、同時に行われても良い。   The tensile strain imparting step does not necessarily have to be one step, and does not have to be added at a time. Therefore, there is no problem even if the step of applying the tensile strain is multi-step or multiple times, and is generally performed at 450 ° C. or higher after the intermediate annealing generally performed at 200 to 300 ° C. A tensile strain may be applied before the start of final annealing. In addition, before and after the step of imparting tensile strain, a step such as a slit that is usually performed before or after final annealing to divide or adjust the width of the aluminum material may be included. In addition, at least one of the intermediate annealing process, the cleaning process, the slit process, and the final annealing process and the process of imparting tensile strain may be performed continuously in one apparatus or simultaneously. May be.

中間焼鈍の方法は,特に限定されることはない.例えば,コイル状にしたアルミニウム材をバッチ焼鈍する方法や,巻き出しコイルから巻き出して巻き取りコイルに巻き取る際に,搬送されているアルミニウム材を巻き出しコイルと巻き取りコイルとの間にて連続的に焼鈍する方法を挙げうる.
また、中間焼鈍と引張歪付与とを連続的に行うこともできる。例えば図3に示すように、巻出し機(30)から順次搬送されるアルミニウム材(S)を焼鈍炉(37)に供給して中間焼鈍を施し、続いて引張歪付与装置(32)に供給して引張歪付与を行う。
The method of intermediate annealing is not particularly limited. For example, when batch-annealing coiled aluminum material, or when unwinding from the unwinding coil and winding it on the winding coil, the aluminum material being conveyed is placed between the unwinding coil and the winding coil. A continuous annealing method can be mentioned.
Further, intermediate annealing and imparting tensile strain can be continuously performed. For example, as shown in FIG. 3, the aluminum material (S) sequentially conveyed from the unwinding machine (30) is supplied to the annealing furnace (37), subjected to intermediate annealing, and then supplied to the tensile strain applying device (32). To give tensile strain.

また、引張歪付与と最終焼鈍とを連続的に行うこともできる。例えば図4に示すように、焼鈍炉(37)を引張歪付与装置(32)の後段に配置すれば、巻出し機(30)から順次搬送されるアルミニウム材(S)を引張歪付与装置(32)に供給して引張歪を付与し、続いて焼鈍炉(37)に供給して最終焼鈍を施すことができる。   Further, it is possible to continuously perform tensile strain application and final annealing. For example, as shown in FIG. 4, if the annealing furnace (37) is arranged at the rear stage of the tensile strain applying device (32), the aluminum material (S) sequentially conveyed from the unwinder (30) is transferred to the tensile strain applying device ( 32) to give tensile strain, and then to the annealing furnace (37) for final annealing.

さらに、引張歪付与装置の前後に焼鈍炉を配置して中間焼鈍、引張歪付与、最終焼鈍を連続的に行うこともできる。   Furthermore, an annealing furnace may be disposed before and after the tensile strain imparting device to perform intermediate annealing, imparting tensile strain, and final annealing continuously.

このように、中間焼鈍、引張歪付与、最終焼鈍を連続的に行うことによって効率よくアルミニウム材を製造することができる。   Thus, an aluminum material can be manufactured efficiently by continuously performing intermediate annealing, imparting tensile strain, and final annealing.

なお,引張歪の付与と共に、あるいは引張歪の付与の前または後において、圧下率が5%以下の圧縮変形を与えることは許容される。この圧縮変形は、例えば、巻出しコイルから巻取りコイルへと搬送されるアルミニウム材を一対のピンチローラで挟み付けて行われる.
なお、上述した一連の製造工程において、引張歪付与方法としてブライドルロールユニットによる引張歪付与装置を用いる方法を例示して説明したが、引張歪の付与回数、パス回数、中間焼鈍との連続処理、最終焼鈍との連続処理、引張歪付与工程へのアルミニウム材の供給方法ならびに引張歪付与後の搬出方法に関する説明は、前記引張歪付与装置を用いた場合に限定するものではなく、他の引張歪付与方法についても適用される。
[洗浄処理]
アルミニウム材表面の洗浄処理は、熱間圧延後で最終焼鈍を開始するまでの間に1回以上施すこと以外特に限定されない。しかし冷間圧延による圧延油、磨耗粉、酸化物、カーボン等の付着及び埋め込まれを少なくし、表面の洗浄処理の効果を生かすために、最終焼鈍工程に近いタイミングで実施するのが良い。具体的には、アルミニウム材の厚みTが、得られる電解コンデンサ電極用アルミニウム材の厚さtに対して、1≦T/t≦20を満足するときに前記洗浄処理を施すことが好ましく、さらに1≦T/t≦10を満足するときに前記洗浄処理を施すことが好ましく、さらに1≦T/t≦6を満足するときに前記洗浄処理を施すことが好ましく、さらに1≦T/t≦3を満足するときに前記洗浄処理を施すことが好ましい。そしてさらに、冷間圧延後で中間焼鈍を開始するまでの間に洗浄を施すことが好ましく、さらに中間焼鈍後で最終焼鈍を開始するまでの間に洗浄を施すことが好ましい。中間焼鈍後で最終焼鈍を開始するまでの間に洗浄を施す場合、引張歪付与後で最終焼鈍前に洗浄を施すことが好ましく、さらに中間焼鈍後で引張歪付与前に洗浄を施すことが好ましい。また、中間焼鈍後で最終焼鈍前における引張歪付与前と引張歪付与後の両方で洗浄を施しても良い。
In addition, it is permissible to give a compressive deformation with a rolling reduction of 5% or less together with the application of the tensile strain or before or after the application of the tensile strain. This compression deformation is performed, for example, by sandwiching an aluminum material conveyed from the winding coil to the winding coil with a pair of pinch rollers.
In addition, in the series of manufacturing steps described above, the method using a tensile strain imparting device using a bridle roll unit as an example of the tensile strain imparting method has been described as an example. The explanation regarding the continuous treatment with final annealing, the supply method of the aluminum material to the tensile strain applying step, and the unloading method after applying the tensile strain is not limited to the case of using the tensile strain applying device, but other tensile strains. This also applies to the grant method.
[Cleaning treatment]
The cleaning treatment of the aluminum material surface is not particularly limited except that it is performed at least once after the hot rolling and before the final annealing is started. However, in order to reduce the adhesion and embedding of rolling oil, wear powder, oxide, carbon, etc. by cold rolling, and to make use of the effect of the surface cleaning treatment, it is preferable to carry out at a timing close to the final annealing step. Specifically, the cleaning treatment is preferably performed when the thickness T of the aluminum material satisfies 1 ≦ T / t ≦ 20 with respect to the thickness t of the aluminum material for electrolytic capacitor electrodes to be obtained. The cleaning treatment is preferably performed when 1 ≦ T / t ≦ 10 is satisfied, the cleaning processing is preferably performed when 1 ≦ T / t ≦ 6 is satisfied, and further 1 ≦ T / t ≦ It is preferable to perform the cleaning treatment when 3 is satisfied. Further, it is preferable to perform cleaning after cold rolling and before starting the intermediate annealing, and it is preferable to perform cleaning after the intermediate annealing and before starting the final annealing. When cleaning is performed after intermediate annealing and before final annealing is started, it is preferable to perform cleaning after applying tensile strain and before final annealing, and it is preferable to perform cleaning after applying intermediate strain and before applying tensile strain. . Moreover, you may perform washing | cleaning both after the intermediate strain annealing and before the final annealing and before the tensile strain application.

洗浄処理に使用する洗浄液、洗浄の具体的な方法は特に限定されるものではない。例えば、有機溶剤、または界面活性剤が添加された水などを用いてアルミニウム材表面を化学的に溶解することなく脱脂及び表面に付着した汚染物質を除去する方法や、アルカリ性水溶液または酸性水溶液によりアルミニウム材表面を化学的に溶解する方法を挙げうるが、洗浄液としてはアルカリ性水溶液または酸性水溶液を用いることが好ましい。   The cleaning liquid used for the cleaning process and the specific method of cleaning are not particularly limited. For example, a method of degreasing and removing contaminants adhering to the surface of the aluminum material without chemically dissolving the surface of the aluminum material using water to which an organic solvent or a surfactant is added, or an alkaline aqueous solution or an acidic aqueous solution Although a method of chemically dissolving the material surface can be mentioned, it is preferable to use an alkaline aqueous solution or an acidic aqueous solution as the cleaning liquid.

有機溶剤の種類としては、アルコール、トルエンやキシレン等の芳香族炭化水素、ヘキサン、アセトン、ケトン、エーテル、エステル、石油製品等を例示でき、特に限定されることなく、また複数の有機溶剤を混合して洗浄液として用いることができる。   Examples of the organic solvent include alcohol, aromatic hydrocarbons such as toluene and xylene, hexane, acetone, ketone, ether, ester, petroleum products, etc., and are not particularly limited. And can be used as a cleaning solution.

界面活性剤の種類としては、アニオン界面活性剤、カチオン界面活性剤、非イオン界面活性剤が挙げられ、少なくとも1種類以上を含む水溶液を洗浄液として用いることができる。   Examples of the surfactant include an anionic surfactant, a cationic surfactant, and a nonionic surfactant, and an aqueous solution containing at least one or more types can be used as a cleaning liquid.

アルカリの種類は特に限定されないが、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、リン酸ナトリウム、炭酸ナトリウム、珪酸ナトリウムを好適なものとして例示でき、少なくとも1種類以上を含む水溶液を洗浄液として用いることができる。   Although the kind of alkali is not particularly limited, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium phosphate, sodium carbonate, sodium silicate can be exemplified as a suitable one, and an aqueous solution containing at least one kind is used as a cleaning liquid. Can do.

酸の種類は特に限定されないが、塩酸、硫酸、硝酸、リン酸を好適なものとして例示でき、少なくとも1種類以上を含む水溶液を洗浄液として用いることができる。   Although the kind of acid is not specifically limited, hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid can be illustrated as a suitable thing, The aqueous solution containing at least 1 or more types can be used as a washing | cleaning liquid.

また洗浄処理時のアルミニウム材と洗浄液との接触方法は特に限定されるものでなく、アルミニウム材を洗浄液に浸漬する方法、ノズルなどによりアルミニウム材に洗浄液を噴射する方法、あるいはこれらを併用した方法などが挙げられる。また前記方法によりアルミニウム材を洗浄液と接触させながら、ブラシ、スポンジ、羽布等によりアルミニウム材表面の付着物を機械的に除去しても良い。また、洗浄はアルミニウム材の両面に施しても良いし、片面のみでも良い。   In addition, the method of contacting the aluminum material with the cleaning liquid during the cleaning process is not particularly limited, such as a method of immersing the aluminum material in the cleaning liquid, a method of spraying the cleaning liquid onto the aluminum material with a nozzle, or a method using these in combination. Is mentioned. In addition, deposits on the surface of the aluminum material may be mechanically removed with a brush, sponge, feather cloth or the like while the aluminum material is brought into contact with the cleaning liquid by the above method. Further, the cleaning may be performed on both sides of the aluminum material or only one side.

洗浄処理工程は、必ずしも1工程である必要はなく、多工程に及んでも良い。また1つの工程において1回の洗浄処理しかできないことはなく、複数回の洗浄処理を施しても良い。この場合、有機溶剤あるいは界面活性剤を添加した水溶液により洗浄処理した後にアルカリ性水溶液により洗浄処理する方法、有機溶剤あるいは界面活性剤を添加した水溶液により洗浄処理した後に酸性水溶液により洗浄処理する方法等を例示できる。またアルカリ性水溶液による洗浄と酸性水溶液による洗浄を順次的に実施しても良い。また前記洗浄液による洗浄処理の後に、水洗や乾燥を適宜行って良い。   The cleaning process is not necessarily a single process, and may include multiple processes. Further, there is no possibility that only one cleaning process can be performed in one process, and a plurality of cleaning processes may be performed. In this case, a method of washing with an aqueous solution containing an organic solvent or a surfactant and then washing with an alkaline aqueous solution, a method of washing with an aqueous solution added with an organic solvent or a surfactant and a method of washing with an acidic aqueous solution, etc. It can be illustrated. Further, cleaning with an alkaline aqueous solution and cleaning with an acidic aqueous solution may be sequentially performed. In addition, after washing with the washing solution, washing with water and drying may be appropriately performed.

前記のいずれの洗浄処理によっても静電容量を向上させることはできるが、さらに高い静電容量を得るためにはアルミニウム材の表面層を除去したほうが好ましく、アルミニウム材の片面当たりの除去厚さをd、洗浄前のアルミニウム材の厚さをTとしたとき、洗浄処理による片面当たりの厚さ減少率d/T×100(%)が、0.002%以上が好ましい。一方、洗浄処理により過度に表面層を除去しても静電容量の向上効果は飽和するため、前記洗浄処理による厚さ減少率d/T×100(%)は0.25%以下であることが好ましく、さらに0.1%以下であることが好ましい。   Capacitance can be improved by any of the above-described cleaning treatments, but in order to obtain a higher capacitance, it is preferable to remove the surface layer of the aluminum material, and the removal thickness per one side of the aluminum material is reduced. d, When the thickness of the aluminum material before cleaning is T, the thickness reduction rate per one side d / T × 100 (%) by the cleaning process is preferably 0.002% or more. On the other hand, even if the surface layer is excessively removed by the cleaning process, the improvement effect of the capacitance is saturated, and therefore the thickness reduction rate d / T × 100 (%) by the cleaning process is 0.25% or less. Is preferable, and further 0.1% or less is preferable.

洗浄処理を施す工程は、独立した1つの工程で行っても良いし、他工程と連続して行っても良い。例えば、図1で示した引張歪付与装置(1)の上流側または下流側のいずれか一方に、または上流側と下流側の両方に洗浄処理装置を設置することにより、洗浄処理と引張歪付与を連続的に行うことができる。また、図3に示した焼鈍炉(37)の上流側、焼鈍炉(37)と引張歪付与装置(32)の間、引張歪付与装置(32)の下流側のいずれか一箇所に、または複数個所に洗浄処理装置を設置することにより、洗浄処理と引張歪付与と焼鈍を連続的に行うことができる。   The process of performing the cleaning process may be performed in one independent process or may be performed continuously with the other processes. For example, by installing a cleaning treatment device on either the upstream side or the downstream side of the tensile strain applying device (1) shown in FIG. Can be performed continuously. Also, at any one location on the upstream side of the annealing furnace (37) shown in FIG. 3, between the annealing furnace (37) and the tensile strain applying device (32), or on the downstream side of the tensile strain applying device (32), or By installing a cleaning processing apparatus at a plurality of locations, cleaning processing, imparting tensile strain, and annealing can be performed continuously.

このように、中間焼鈍、洗浄処理、引張歪付与、最終焼鈍を連続的に行うことによって効率よくアルミニウム材を製造することができる。   Thus, an aluminum material can be manufactured efficiently by continuously performing intermediate annealing, cleaning treatment, imparting tensile strain, and final annealing.

この発明において,引張歪付与工程及び熱間圧延後で最終焼鈍を開始するまでの間にアルミニウム材表面の洗浄を少なくとも1回以上施すこと以外の製造条件は何ら限定されず,熱間圧延,冷間圧延,中間焼鈍,最終焼鈍の各工程は周知条件に基づいて行えば良い.
また鋳塊を熱間圧延する前に鋳塊表面を除去する面削工程を行っても良い。さらに、熱間圧延の前に常法に従い均質化処理を行っても良い。
In this invention, the manufacturing conditions are not limited except that the surface of the aluminum material is washed at least once before the final annealing is started after the tensile straining step and the hot rolling. Each process of hot rolling, intermediate annealing, and final annealing may be performed based on well-known conditions.
Moreover, you may perform the chamfering process which removes an ingot surface before hot-rolling an ingot. Furthermore, you may perform a homogenization process according to a conventional method before hot rolling.

アルミニウム鋳塊は、その組成を限定するものではなく、電解コンデンサ電極材料として使用されているものを適宜使用することができる。具体的には、不純物量を規制して過溶解によるエッチング特性の低下を防ぐために、アルミニウム純度が99.8%以上であることが好ましく、特に99.9%以上が好ましい。また、エッチング特性や強度を向上させるために、種々の微量元素が添加されているアルミニウム材も好適に用いることができる。   The aluminum ingot is not limited in its composition, and any aluminum ingot used as an electrolytic capacitor electrode material can be used as appropriate. Specifically, the aluminum purity is preferably 99.8% or more, and particularly preferably 99.9% or more, in order to regulate the amount of impurities and prevent deterioration of etching characteristics due to over-dissolution. Moreover, in order to improve an etching characteristic and intensity | strength, the aluminum material to which various trace elements are added can also be used suitably.

また、本発明の方法で製造されるアルミニウム材の厚さは限定されない。箔と称される200μm以下のものも、それ以上の厚いものも本発明に含まれる。   Moreover, the thickness of the aluminum material manufactured by the method of the present invention is not limited. Those having a thickness of 200 μm or less, referred to as foil, and those having a thickness larger than that are included in the present invention.

本発明によって製造されたアルミニウム材は、その後拡面率向上のためのエッチングが施される。アルミニウム材は最終仕上げ圧延を行うことなく引張歪を付与しその後最終焼鈍することによって、高い立方体方位占有率を有し、かつ熱間圧延後から最終焼鈍を開始するまでの間にアルミニウム材表面の洗浄を少なくとも1回以上施すことにより、エッチングによって均一にピットが形成され、良好な表面積の拡大が得られる。   The aluminum material manufactured according to the present invention is then subjected to etching for improving the surface expansion ratio. Aluminum material has a high cubic orientation occupancy by applying tensile strain without final finish rolling and then final annealing, and the surface of the aluminum material between hot rolling and the start of final annealing. By performing the cleaning at least once, pits are uniformly formed by etching, and a good surface area expansion can be obtained.

本発明によって製造されたアルミニウム材は、陰極材としても陽極材としても用いることができるが、特にエッチング後の化成処理によって耐電圧性皮膜を形成させても大きい実効面積を有する点で陽極材に適している。さらに、陽極材のうちでも、中圧用および高圧用電解コンデンサ電極材に適している。また、この電極材を用いた電解コンデンサは大きな静電容量を実現できる.   The aluminum material produced according to the present invention can be used as a cathode material or an anode material. However, the aluminum material can be used as an anode material in that it has a large effective area even when a voltage-resistant film is formed by a chemical conversion treatment after etching. Are suitable. Furthermore, among anode materials, it is suitable for medium and high pressure electrolytic capacitor electrode materials. Also, the electrolytic capacitor using this electrode material can realize a large capacitance.

[製造例1]
アルミニウム材の製造に際し、表1に示す組成のアルミニウム鋳塊を得た。
[Production Example 1]
When producing the aluminum material, an aluminum ingot having the composition shown in Table 1 was obtained.

Figure 2005197671
Figure 2005197671

ここで、アルミニウムの濃度は、100質量%からSi、Fe、Cu、Pbの合計濃度を引いた値とした。   Here, the concentration of aluminum was a value obtained by subtracting the total concentration of Si, Fe, Cu, and Pb from 100% by mass.

まず、鋳塊を610℃×10時間の条件で均質化処理し、次いで熱間圧延及び冷間圧延を施した後、試験材を切り出し、窒素雰囲気中にて250℃で10h保持の中間焼鈍を施した。そして、一軸引張により試験材の長手方向に表2で示す引張歪を付与した後、アルゴン雰囲気中にて550℃で12時間保持の最終焼鈍を施し、表2に示す厚さtの電解コンデンサ電極用アルミニウム材をそれぞれ得た。   First, the ingot is homogenized under conditions of 610 ° C. × 10 hours, then subjected to hot rolling and cold rolling, and then the test material is cut out and subjected to intermediate annealing that is maintained at 250 ° C. for 10 hours in a nitrogen atmosphere. gave. Then, after applying the tensile strain shown in Table 2 in the longitudinal direction of the test material by uniaxial tension, final annealing was performed by holding at 550 ° C. for 12 hours in an argon atmosphere, and an electrolytic capacitor electrode having a thickness t shown in Table 2 Each aluminum material was obtained.

実施例では、冷間圧延後、最終焼鈍を施す前に表2に示す厚さTにおいて洗浄処理を行った。実施例1〜5では、冷間圧延後、中間焼鈍を施す前にアルミニウム材を、50℃の0.2質量%オルトケイ酸ナトリウム水溶液に浸漬することにより、アルミニウム材の両面に洗浄処理を施した。この洗浄により、アルミニウム材の両面は、ほぼ同じ厚さで除去された。なお、アルミニウム材表面の片面当たりの除去厚さdは、次の式により求めた。   In the examples, after the cold rolling, a cleaning treatment was performed at a thickness T shown in Table 2 before final annealing. In Examples 1 to 5, after cold rolling and before intermediate annealing, the aluminum material was immersed in a 0.2 mass% sodium orthosilicate aqueous solution at 50 ° C., so that both surfaces of the aluminum material were washed. . By this cleaning, both surfaces of the aluminum material were removed with substantially the same thickness. In addition, the removal thickness d per one side of the aluminum material surface was calculated | required by the following formula.

除去厚さd(μm)=W(g/cm2)×104/2.7(g/cm3
ただし、W(g/cm2)は洗浄によるアルミニウム材の単位表面積当たりの質量減
2.7g/cm3はアルミニウム材の密度
尚、洗浄後は、25℃の純水により水洗した後、90℃の大気雰囲気中の乾燥炉内において乾燥させた。実施例6では、冷間圧延後、中間焼鈍を施す前に、アルミニウム材を25℃のアセトンにより洗浄処理した後、90℃の大気雰囲気中の乾燥炉内にて乾燥させた。実施例7では、中間焼鈍後、引張歪付与前にアルミニウム材を25℃のアセトンにより洗浄処理した後、90℃の大気雰囲気中の乾燥炉内にて乾燥させた。実施例8では、引張歪付与後、最終焼鈍を施す前にアルミニウム材を25℃のアセトンにより洗浄処理した後、90℃の大気雰囲気中の乾燥炉内にて乾燥させた。これらの作業を終えた後、前記最終焼鈍を施した。
Removal thickness d (μm) = W (g / cm 2 ) × 10 4 /2.7 (g / cm 3 )
However, W (g / cm 2 ) is the mass reduction per unit surface area of the aluminum material by washing.
2.7 g / cm 3 is the density of the aluminum material. After cleaning, the substrate was washed with pure water at 25 ° C. and then dried in a drying furnace in an air atmosphere at 90 ° C. In Example 6, after cold rolling and before intermediate annealing, the aluminum material was washed with acetone at 25 ° C. and then dried in a drying furnace in an air atmosphere at 90 ° C. In Example 7, after intermediate annealing, the aluminum material was washed with 25 ° C. acetone before applying the tensile strain, and then dried in a drying furnace in a 90 ° C. air atmosphere. In Example 8, after applying the tensile strain, the aluminum material was washed with acetone at 25 ° C. before the final annealing, and then dried in a drying furnace in an air atmosphere at 90 ° C. After finishing these operations, the final annealing was performed.

表2に、T/tの値、片面の除去厚さd及び片面当たりの厚さ減少率d/T×100(%)を示す。なお、実施例6〜8では洗浄によりアルミニウム表面を化学的に溶解しないので、dは0(ゼロ)とした。   Table 2 shows the value of T / t, the removal thickness d on one side, and the thickness reduction rate per side d / T × 100 (%). In Examples 6 to 8, d was set to 0 (zero) because the aluminum surface was not chemically dissolved by washing.

比較例では、熱間圧延後から最終焼鈍を施すまでに洗浄処理を施さなかった。比較例1では中間焼鈍後に引張歪を付与しなかった。比較例2では、0.8%の引張歪を付与した。   In the comparative example, no washing treatment was performed after the hot rolling until the final annealing was performed. In Comparative Example 1, no tensile strain was applied after the intermediate annealing. In Comparative Example 2, a tensile strain of 0.8% was applied.

得られた電解コンデンサ電極用アルミニウム材について、立方体方位占有率と静電容量を測定した。立方体方位占有率は、得られたアルミニウム材を塩酸:硝酸:弗酸=50:47:3の容積比を有する溶液中に浸漬し結晶粒を現出させ、画像解析装置にて表面の立方体方位占有率を測定した。静電容量は以下の方法により測定した。   About the obtained aluminum material for electrolytic capacitor electrodes, the cube orientation occupation rate and the electrostatic capacity were measured. The cubic orientation occupancy is determined by immersing the obtained aluminum material in a solution having a volume ratio of hydrochloric acid: nitric acid: hydrofluoric acid = 50: 47: 3 to reveal crystal grains, and the surface cubic orientation is obtained by an image analyzer. Occupancy was measured. The capacitance was measured by the following method.

まず、1mol/lの塩酸と3.5mol/lの硫酸を含む液温80℃の水溶液に浸漬した後、電流密度:0.2A/cm2で電解エッチング処理を施した。電解エッチング処理後のアルミニウム材をさらに前記組成の塩酸−硫酸混合液に90℃にて600秒間浸漬し、前記電解エッチング処理により形成されたエッチングピット径を太くするエッチング処理を施した。エッチング処理されたアルミニウム材を、化成電圧270VにてEIAJ規格に従い化成処理を施し、静電容量を測定した。 First, after being immersed in an aqueous solution containing 1 mol / l hydrochloric acid and 3.5 mol / l sulfuric acid at a liquid temperature of 80 ° C., an electrolytic etching treatment was performed at a current density of 0.2 A / cm 2 . The aluminum material after the electrolytic etching treatment was further immersed in a hydrochloric acid-sulfuric acid mixture having the above composition at 90 ° C. for 600 seconds, and an etching treatment was performed to increase the diameter of the etching pit formed by the electrolytic etching treatment. The etched aluminum material was subjected to chemical conversion treatment at a chemical conversion voltage of 270 V in accordance with EIAJ standards, and the capacitance was measured.

測定の結果、それぞれのアルミニウム材の静電容量は、比較例1の静電容量を100としたときの相対容量値で表した。表2に立方体方位占有率、静電容量を測定した結果を示す。   As a result of the measurement, the capacitance of each aluminum material was expressed as a relative capacitance value when the capacitance of Comparative Example 1 was 100. Table 2 shows the results of measuring cube orientation occupancy and capacitance.

表2の結果が示すように、中間焼鈍後で最終焼鈍を開始するまでの間に引張歪を付与し、かつ熱間圧延後で最終焼鈍を開始するまでの間にアルミニウム材表面の洗浄を施すことにより、静電容量を増大させることができた。これに対し、引張歪を付与せず洗浄処理もしなかった比較例1では、立方体方位占有率、静電容量とも低かった。また、0.8%の引張歪を付与したが洗浄処理をしなかった比較例2は、立方体方位占有率は同等の引張歪を付与した実施例1とほぼ同等であったが、静電容量は実施例1よりも低かった。   As shown in the results of Table 2, tensile strain is applied after the intermediate annealing and before the final annealing is started, and the aluminum material surface is cleaned after the hot rolling and before the final annealing is started. As a result, the capacitance could be increased. On the other hand, in Comparative Example 1 in which no tensile strain was applied and no cleaning treatment was performed, both the cube orientation occupation ratio and the electrostatic capacity were low. Further, Comparative Example 2 in which 0.8% tensile strain was applied but no washing treatment was performed was substantially the same as Example 1 in which the cubic orientation occupancy was applied with the same tensile strain. Was lower than Example 1.

Figure 2005197671
Figure 2005197671

[製造例2]
アルミニウム材の製造に際し、表3に示す組成のアルミニウム鋳塊を得た。
[Production Example 2]
In producing the aluminum material, an aluminum ingot having the composition shown in Table 3 was obtained.

Figure 2005197671
Figure 2005197671

ここで、アルミニウムの濃度は、100質量%からSi、Fe、Cu、Pbの合計濃度を引いた値とした。   Here, the concentration of aluminum was a value obtained by subtracting the total concentration of Si, Fe, Cu, and Pb from 100% by mass.

まず、鋳塊を610℃×10時間の条件で均質化処理し、次いで熱間圧延を施した。これに冷間圧延を繰り返し施した後、窒素雰囲気中にて250℃で10h保持の中間焼鈍を施した。   First, the ingot was homogenized under conditions of 610 ° C. × 10 hours, and then hot rolled. This was cold-rolled repeatedly and then subjected to intermediate annealing at 250 ° C. for 10 hours in a nitrogen atmosphere.

そして、実施例においては、一軸引張により試験材の長手方向に引張歪を付与した後、アルゴン雰囲気中にて550℃で12時間保持の最終焼鈍を施し、厚さtが115μmの電解コンデンサ電極用アルミニウム材を得た。比較例においては、中間焼鈍後の試験材に圧下率20%の最終仕上げ冷間圧延を施し、実施例と同様の最終焼鈍を施し、厚さtが115μmの電解コンデンサ電極用アルミニウム材を得た。   And in an Example, after giving the tensile strain to the longitudinal direction of a test material by uniaxial tension, the final annealing hold | maintained at 550 degreeC for 12 hours in argon atmosphere, and the thickness t is 115 micrometers for electrolytic capacitor electrode An aluminum material was obtained. In the comparative example, the final annealed cold rolling with a reduction ratio of 20% was applied to the test material after the intermediate annealing, and the final annealing similar to the example was performed to obtain an aluminum material for an electrolytic capacitor electrode having a thickness t of 115 μm. .

実施例11〜14、20及び比較例11〜14、20においては、冷間圧延途中で表4に示す厚さTに達したところで、アセトンに浸漬して脱脂した後、50℃の0.5質量%水酸化ナトリウム水溶液に浸漬することにより、アルミニウム材の両面に洗浄処理を施した。この洗浄により、アルミニウム材の両面は、ほぼ同じ厚さで除去された。洗浄後、25℃の純水に浸漬し水洗した後、25℃の30質量%硝酸水溶液に浸漬し、その後再度25℃の純水に浸漬し水洗した後、90℃の大気雰囲気中の乾燥炉内で乾燥させた。   In Examples 11 to 14 and 20 and Comparative Examples 11 to 14 and 20, when the thickness T shown in Table 4 was reached during cold rolling, the sample was immersed in acetone and degreased, and then 0.5 ° C. at 50 ° C. By immersing in a mass% sodium hydroxide aqueous solution, both surfaces of the aluminum material were washed. By this cleaning, both surfaces of the aluminum material were removed with substantially the same thickness. After washing, dipping in pure water at 25 ° C. and washing with water, then dipping in a 30% by weight nitric acid aqueous solution at 25 ° C., then dipping again in pure water at 25 ° C. and washing with water, followed by a drying oven in a 90 ° C. air atmosphere Dried in.

実施例15及び比較例15においては、冷間圧延途中で表4に示す厚さTに達したところで、50℃の0.2質量%オルト珪酸ナトリウム水溶液に浸漬することにより、アルミニウム材の両面に洗浄処理を施した。この洗浄により、アルミニウム材の両面は、ほぼ同じ厚さで除去された。洗浄後、25℃の純水に浸漬し水洗した後、90℃の大気雰囲気中の乾燥炉内で乾燥させた。   In Example 15 and Comparative Example 15, when the thickness T shown in Table 4 was reached in the course of cold rolling, it was immersed in a 0.2 mass% sodium orthosilicate aqueous solution at 50 ° C. to both surfaces of the aluminum material. A cleaning treatment was performed. By this cleaning, both surfaces of the aluminum material were removed with substantially the same thickness. After washing, it was immersed in pure water at 25 ° C., washed with water, and then dried in a drying furnace in an air atmosphere at 90 ° C.

実施例16〜18及び比較例16〜18においては、冷間圧延後で中間焼鈍を施す前に、50℃の0.2質量%オルト珪酸ナトリウム水溶液に浸漬することにより、アルミニウム材の両面に洗浄処理を施した。この洗浄により、アルミニウム材の両面は、ほぼ同じ厚さで除去された。洗浄後、25℃の純水に浸漬し水洗した後、90℃の大気雰囲気中の乾燥炉内で乾燥させた。   In Examples 16 to 18 and Comparative Examples 16 to 18, both surfaces of the aluminum material were cleaned by immersing in a 0.2 mass% sodium orthosilicate aqueous solution at 50 ° C. before performing the intermediate annealing after the cold rolling. Treated. By this cleaning, both surfaces of the aluminum material were removed with substantially the same thickness. After washing, it was immersed in pure water at 25 ° C., washed with water, and then dried in a drying furnace in an air atmosphere at 90 ° C.

実施例19、20及び比較例19、20においては、最終焼鈍を施す前に、50℃の0.1質量%オルト珪酸ナトリウム水溶液にて洗浄処理を施した。洗浄後、25℃の純水に浸漬し水洗した後、90℃の大気雰囲気中の乾燥炉内で乾燥させた。   In Examples 19 and 20 and Comparative Examples 19 and 20, a cleaning treatment was performed with a 0.1 mass% sodium orthosilicate aqueous solution at 50 ° C. before the final annealing. After washing, it was immersed in pure water at 25 ° C., washed with water, and then dried in a drying furnace in an air atmosphere at 90 ° C.

それぞれの実施例及び比較例において、洗浄によるアルミニウム材表面の除去量は、洗浄液への浸漬時間を適宜調整することにより制御した。   In each of the examples and comparative examples, the removal amount of the aluminum material surface by cleaning was controlled by appropriately adjusting the immersion time in the cleaning liquid.

なお、アルミニウム材表面の片面当たりの除去厚さdは、次の式により求めた。   In addition, the removal thickness d per one side of the aluminum material surface was calculated | required by the following formula.

除去厚さd(μm)=W(g/cm2)×104/2.7(g/cm3
ただし、W(g/cm2)は洗浄によるアルミニウム材の単位表面積当たりの質量減
2.7g/cm3はアルミニウム材の密度
表4に、各試料のT/tの値、片面の除去厚さd及び片面当たりの厚さ減少率d/T×100(%)を示す。
Removal thickness d (μm) = W (g / cm 2 ) × 10 4 /2.7 (g / cm 3 )
However, W (g / cm 2 ) is the mass reduction per unit surface area of the aluminum material by washing.
2.7 g / cm 3 is the density of the aluminum material Table 4 shows the value of T / t, the removal thickness d on one side, and the thickness reduction rate per side d / T × 100 (%) for each sample.

得られた電解コンデンサ電極用アルミニウム材について、立方体方位占有率と静電容量を測定した。立方体方位占有率は、得られたアルミニウム材を塩酸:硝酸:弗酸=50:47:3の容積比を有する溶液中に浸漬し結晶粒を現出させ、画像解析装置にて表面の立方体方位占有率を測定した。表4に立方体方位占有率を測定した結果を示す。次に静電容量は以下の方法により測定した。   About the obtained aluminum material for electrolytic capacitor electrodes, the cube orientation occupation rate and the electrostatic capacity were measured. The cubic orientation occupancy is determined by immersing the obtained aluminum material in a solution having a volume ratio of hydrochloric acid: nitric acid: hydrofluoric acid = 50: 47: 3 to reveal crystal grains, and the surface cubic orientation is obtained by an image analyzer. Occupancy was measured. Table 4 shows the results of measuring the cube orientation occupation ratio. Next, the capacitance was measured by the following method.

まず、1mol/lの塩酸と3.5mol/lの硫酸を含む液温80℃の水溶液に浸漬した後、電流密度:0.2A/cm2で電解エッチング処理を施した。電解エッチング処理後のアルミニウム材をさらに前記組成の塩酸−硫酸混合液に90℃にて600秒間浸漬し、前記電解エッチング処理により形成されたエッチングピット径を太くするエッチング処理を施した。エッチング処理されたアルミニウム材を、化成電圧270VにてEIAJ規格に従い化成処理を施し、静電容量を測定した。ここで、既述のとおり、表4に示した実施例と比較例の同番号は洗浄処理のタイミングと洗浄条件が同等であり、従って、測定の結果得られたそれぞれのアルミニウム材の静電容量は、それぞれの実施例と同番号の比較例の静電容量を100としたときの相対容量値で表した。表4に静電容量を測定した結果を示す。 First, after being immersed in an aqueous solution containing 1 mol / l hydrochloric acid and 3.5 mol / l sulfuric acid at a liquid temperature of 80 ° C., an electrolytic etching treatment was performed at a current density of 0.2 A / cm 2 . The aluminum material after the electrolytic etching treatment was further immersed in a hydrochloric acid-sulfuric acid mixture having the above composition at 90 ° C. for 600 seconds, and an etching treatment was performed to increase the diameter of the etching pit formed by the electrolytic etching treatment. The etched aluminum material was subjected to chemical conversion treatment at a chemical conversion voltage of 270 V in accordance with EIAJ standards, and the capacitance was measured. Here, as described above, the same numbers in the examples and comparative examples shown in Table 4 indicate that the timing of the cleaning process and the cleaning conditions are the same, and accordingly, the capacitance of each aluminum material obtained as a result of the measurement. Represents the relative capacitance value when the capacitance of the comparative example having the same number as each example is 100. Table 4 shows the results of measuring the capacitance.

Figure 2005197671
Figure 2005197671

表4の結果が示すように、中間焼鈍後で最終焼鈍を開始するまでの間に引張歪を付与し、かつ熱間圧延後で最終焼鈍を開始するまでの間にアルミニウム材表面の洗浄を施す方法により、比較例で示した熱間圧延後で最終焼鈍を開始するまでの間にアルミニウム材の洗浄を施すが中間焼鈍後に最終仕上げ冷間圧延を施す方法よりも高い静電容量を得ることができた。
[製造例3]
アルミニウム材の製造に際し、表5に示す組成のアルミニウム鋳塊を得た。
As shown in Table 4, the tensile strain is applied after the intermediate annealing and before the final annealing is started, and the aluminum material surface is cleaned after the hot rolling and before the final annealing is started. According to the method, the aluminum material is cleaned after the hot rolling shown in the comparative example and before the final annealing is started, but it is possible to obtain a higher capacitance than the method of performing the final finish cold rolling after the intermediate annealing. did it.
[Production Example 3]
When producing the aluminum material, an aluminum ingot having the composition shown in Table 5 was obtained.

Figure 2005197671
Figure 2005197671

ここで、アルミニウムの濃度は、100質量%からSi、Fe、Cu、Pbの合計濃度を引いた値とした。   Here, the concentration of aluminum was a value obtained by subtracting the total concentration of Si, Fe, Cu, and Pb from 100% by mass.

まず、鋳塊に熱間圧延及び冷間圧延を施した後、250℃で10時間保持の中間焼鈍を施した。   First, after hot rolling and cold rolling were performed on the ingot, intermediate annealing was performed by holding at 250 ° C. for 10 hours.

そして、実施例においては、一軸引張により試験材の長手方向に6%の引張歪を付与した後、アルゴン雰囲気中にて550℃で12時間保持の最終焼鈍を施し、厚さtが115μmの電解コンデンサ電極用アルミニウム材を得た。比較例においては、中間焼鈍後に圧下率20%の最終仕上げ圧延を施した後、実施例と同様の最終焼鈍を施し、厚さtが115μmの電解コンデンサ電極用アルミニウム材を得た。   In the examples, after applying a tensile strain of 6% in the longitudinal direction of the test material by uniaxial tension, final annealing was performed by holding at 550 ° C. for 12 hours in an argon atmosphere, and the thickness t was 115 μm. An aluminum material for a capacitor electrode was obtained. In the comparative example, after the intermediate annealing, the final finish rolling with a reduction rate of 20% was performed, and then the final annealing similar to the example was performed to obtain an aluminum material for electrolytic capacitor electrodes having a thickness t of 115 μm.

表7及び表8に中間焼鈍より後に実施する工程、表6に表7及び表8中の洗浄工程の条件を示す。なお、洗浄によるアルミニウム材表面の除去量は、洗浄液への浸漬時間により制御し、アルカリ水溶液による洗浄の後に酸水溶液による洗浄を実施する場合には、アルカリ洗浄液への浸漬時間を調整することにより除去量を制御した。   Tables 7 and 8 show the steps performed after the intermediate annealing, and Table 6 shows the conditions of the cleaning steps in Tables 7 and 8. In addition, the removal amount of the aluminum material surface by cleaning is controlled by the immersion time in the cleaning solution, and when cleaning with an acid aqueous solution is performed after cleaning with an alkaline aqueous solution, it is removed by adjusting the immersion time in the alkaline cleaning solution. The amount was controlled.

なお、アルミニウム材表面の片面当たりの除去厚さdは、次の式により求めた。   In addition, the removal thickness d per one side of the aluminum material surface was calculated | required by the following formula.

除去厚さd(μm)=W(g/cm2)×104/2.7(g/cm3
ただし、W(g/cm2)は洗浄によるアルミニウム材の単位表面積当たりの質量減
2.7g/cm3はアルミニウム材の密度
実施例31〜43においては、表7に示すとおり、中間焼鈍後で引張歪を付与する前に表6に示す洗浄条件でアルミニウム材の両面に洗浄処理を施した。この洗浄によりアルミニウム材の両面は、ほぼ同じ厚さで除去された。
Removal thickness d (μm) = W (g / cm 2 ) × 10 4 /2.7 (g / cm 3 )
However, W (g / cm 2 ) is the mass reduction per unit surface area of the aluminum material by washing.
2.7 g / cm 3 is the density of the aluminum material In Examples 31 to 43, as shown in Table 7, before applying the tensile strain after the intermediate annealing, the both surfaces of the aluminum material were cleaned under the cleaning conditions shown in Table 6. gave. By this cleaning, both surfaces of the aluminum material were removed with substantially the same thickness.

実施例44〜56においては、表8に示すとおり、引張歪付与後で最終焼鈍前に表6に示す洗浄条件でアルミニウム材の両面に洗浄処理を施した。この洗浄によりアルミニウム材の両面は、ほぼ同じ厚さで除去された。   In Examples 44 to 56, as shown in Table 8, both surfaces of the aluminum material were subjected to a cleaning treatment under the cleaning conditions shown in Table 6 after applying the tensile strain and before the final annealing. By this cleaning, both surfaces of the aluminum material were removed with substantially the same thickness.

比較例31においては、表8に示すとおり、中間焼鈍後に引張歪を付与することなく圧下率20%の最終仕上げ圧延を施した後、表6に示す洗浄条件でアルミニウム材の両面に洗浄処理を施した。この洗浄によりアルミニウム材の両面は、ほぼ同じ厚さで除去された。   In Comparative Example 31, as shown in Table 8, after final finishing rolling with a rolling reduction of 20% without applying tensile strain after intermediate annealing, both surfaces of the aluminum material were cleaned under the cleaning conditions shown in Table 6. gave. By this cleaning, both surfaces of the aluminum material were removed with substantially the same thickness.

表7及び表8に、洗浄によるアルミニウム材の片面の除去厚さd、洗浄時のアルミニウム材の厚さT、T/t、d/T×100(%)の値を示す。   Tables 7 and 8 show values of the removal thickness d on one side of the aluminum material by cleaning, and the thicknesses T, T / t, and d / T × 100 (%) of the aluminum material at the time of cleaning.

得られた電解コンデンサ電極用アルミニウム材について、立方体方位占有率と静電容量を測定した。立方体方位占有率は、得られたアルミニウム材を塩酸:硝酸:弗酸=50:47:3の容積比を有する溶液中に浸漬し結晶粒を現出させ、画像解析装置にて表面の立方体方位占有率を測定した。静電容量は以下の方法により測定した。   About the obtained aluminum material for electrolytic capacitor electrodes, the cube orientation occupation rate and the electrostatic capacity were measured. The cubic orientation occupancy is determined by immersing the obtained aluminum material in a solution having a volume ratio of hydrochloric acid: nitric acid: hydrofluoric acid = 50: 47: 3 to reveal crystal grains, and the surface cubic orientation is obtained by an image analyzer. Occupancy was measured. The capacitance was measured by the following method.

まず、1mol/lの塩酸と3.5mol/lの硫酸を含む液温80℃の水溶液に浸漬した後、電流密度:0.2A/cm2で電解エッチング処理を施した。電解エッチング処理後のアルミニウム材をさらに前記組成の塩酸−硫酸混合液に90℃にて600秒間浸漬し、前記電解エッチング処理により形成されたエッチングピット径を太くするエッチング処理を施した。エッチング処理されたアルミニウム材を、化成電圧270VにてEIAJ規格に従い化成処理を施し、静電容量を測定した。測定の結果、それぞれのアルミニウム材の静電容量は、比較例31の静電容量を100としたときの相対容量値で表した。 First, after being immersed in an aqueous solution containing 1 mol / l hydrochloric acid and 3.5 mol / l sulfuric acid at a liquid temperature of 80 ° C., an electrolytic etching treatment was performed at a current density of 0.2 A / cm 2 . The aluminum material after the electrolytic etching treatment was further immersed in a hydrochloric acid-sulfuric acid mixture having the above composition at 90 ° C. for 600 seconds, and an etching treatment was performed to increase the diameter of the etching pit formed by the electrolytic etching treatment. The etched aluminum material was subjected to chemical conversion treatment at a chemical conversion voltage of 270 V in accordance with EIAJ standards, and the capacitance was measured. As a result of the measurement, the capacitance of each aluminum material was expressed as a relative capacitance value when the capacitance of Comparative Example 31 was 100.

表7及び表8に立方体方位占有率、静電容量を測定した結果を示す。   Tables 7 and 8 show the results of measuring cube orientation occupation ratio and capacitance.

Figure 2005197671
Figure 2005197671

Figure 2005197671
Figure 2005197671

Figure 2005197671
Figure 2005197671

表7及び表8の結果が示すように、中間焼鈍後で最終焼鈍を開始するまでの間に引張歪を付与し、かつ熱間圧延後で最終焼鈍を開始するまでの間にアルミニウム材表面の洗浄を施す方法により、比較例で示した熱間圧延後で最終焼鈍を開始するまでの間にアルミニウム材の洗浄を施すが中間焼鈍後に最終仕上げ冷間圧延を施す方法よりも高い静電容量を得ることができた。   As shown in the results of Table 7 and Table 8, the tensile strain is applied after the intermediate annealing until the final annealing is started, and after the hot rolling, the final annealing is started. By the method of cleaning, the aluminum material is cleaned after the hot rolling shown in the comparative example and before the final annealing is started, but the capacitance is higher than the method of performing the final finish cold rolling after the intermediate annealing. I was able to get it.

本発明の電解コンデンサ電極用アルミニウム材の製造方法に用いる引張歪付与装置の一例を模式的に示す図である。It is a figure which shows typically an example of the tension | tensile_strength provision apparatus used for the manufacturing method of the aluminum material for electrolytic capacitor electrodes of this invention. 引張歪付与装置の他の例を模式的に示す図である。It is a figure which shows typically the other example of a tensile strain provision apparatus. 電解コンデンサ電極用アルミニウム材の製造工程の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing process of the aluminum material for electrolytic capacitor electrodes. 電解コンデンサ電極用アルミニウム材の製造工程の他の例を模式的に示す図である。It is a figure which shows typically the other example of the manufacturing process of the aluminum material for electrolytic capacitor electrodes.

符号の説明Explanation of symbols

1、2、32 引張歪付与装置
10、11、20、21、22 ブライドルロールユニット
12、13 ブライドルロール
37 焼鈍炉
S アルミニウム材
Q、Q1、Q2 張力域
1, 2, 32 Tensile strain imparting device 10, 11, 20, 21, 22 Bridle roll unit 12, 13 Bridle roll 37 Annealing furnace S Aluminum materials Q, Q1, Q2 Tension range

Claims (24)

アルミニウム鋳塊に熱間圧延及び冷間圧延を行い、次いで中間焼鈍を施し、中間焼鈍後で最終焼鈍を開始するまでの間に、冷間圧延を施すことなく引張歪を付与し、その後最終焼鈍を施す電解コンデンサ電極用アルミニウム材の製造方法であって、前記熱間圧延後で最終焼鈍を開始するまでの間にアルミニウム材表面の洗浄を少なくとも1回以上施すことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。   The aluminum ingot is hot-rolled and cold-rolled, then subjected to intermediate annealing, and after the intermediate annealing until final annealing is started, tensile strain is applied without cold rolling, and then final annealing. A method for producing an aluminum material for electrolytic capacitor electrodes, wherein the surface of the aluminum material is cleaned at least once before the final annealing is started after the hot rolling. Manufacturing method of aluminum material. 1〜15%の引張歪を付与する請求項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The manufacturing method of the aluminum material for electrolytic capacitor electrodes of Claim 1 which provides 1-15% of tensile strain. 3〜12%の引張歪を付与する請求項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The manufacturing method of the aluminum material for electrolytic capacitor electrodes of Claim 2 which provides 3-12% of tensile strain. アルミニウム材の厚みTが、得られる電解コンデンサ電極用アルミニウム材の厚さtに対して、1≦T/t≦20を満足するときに前記洗浄処理を施す請求項1〜3のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The cleaning process is performed when the thickness T of the aluminum material satisfies 1 ≦ T / t ≦ 20 with respect to the thickness t of the aluminum material for an electrolytic capacitor electrode to be obtained. The manufacturing method of the aluminum material for electrolytic capacitor electrodes as described in any one of. アルミニウム材の厚みTが、得られる電解コンデンサ電極用アルミニウム材の厚さtに対して、1≦T/t≦10を満足するときに前記洗浄処理を施す請求項4に記載の電解コンデンサ電極用アルミニウム材の製造方法。   5. The electrolytic capacitor electrode according to claim 4, wherein the cleaning treatment is performed when the thickness T of the aluminum material satisfies 1 ≦ T / t ≦ 10 with respect to the thickness t of the aluminum material for electrolytic capacitor electrode to be obtained. Manufacturing method of aluminum material. 冷間圧延後で中間焼鈍を開始するまでの間に洗浄を施す請求項1〜5のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of Claims 1-5 which performs washing | cleaning after cold rolling until it starts intermediate annealing. 中間焼鈍後で最終焼鈍を開始するまでの間に洗浄を施す請求項1〜6のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 6, wherein the cleaning is performed after the intermediate annealing and before the final annealing is started. 中間焼鈍後で引張歪付与前に洗浄を施す請求項7に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 7, wherein cleaning is performed after intermediate annealing and before applying tensile strain. 引張歪付与後で最終焼鈍前に洗浄を施す請求項7または8に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 7 or 8, wherein washing is performed after applying tensile strain and before final annealing. 洗浄に用いる洗浄液がアルカリ性水溶液である請求項1〜9のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 9, wherein the cleaning liquid used for cleaning is an alkaline aqueous solution. 洗浄に用いる洗浄液が酸性水溶液である請求項1〜9のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 9, wherein the cleaning liquid used for cleaning is an acidic aqueous solution. 洗浄が、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われる請求項1〜9のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 9, wherein the cleaning is performed by sequential execution of cleaning with an alkaline aqueous solution and cleaning with an acidic aqueous solution. 洗浄によるアルミニウム材の片面の除去厚さをd、洗浄前のアルミニウム材の厚さをTとしたとき,洗浄による片面の厚さ減少率d/T×100(%)が、0.002≦(d/T×100)≦0.25を満足する請求項1〜12のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   Assuming that the removal thickness of one surface of the aluminum material by cleaning is d and the thickness of the aluminum material before cleaning is T, the thickness reduction rate d / T × 100 (%) of the one surface by cleaning is 0.002 ≦ ( d / T * 100) <= 0.25 The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of Claims 1-12 satisfy | filling. 引張歪付与と洗浄処理を連続的に行う請求項1〜13のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of Claims 1-13 which performs a tensile strain provision and a washing process continuously. 中間焼鈍と引張歪付与を連続的に行う請求項1〜14のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 14, wherein the intermediate annealing and the application of tensile strain are continuously performed. 引張歪付与と最終焼鈍を連続的に行う請求項1〜15のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of Claims 1-15 which performs a tensile strain provision and final annealing continuously. 引張歪付与とスリットを連続的に行う請求項1〜16のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of Claims 1-16 which performs a tensile strain provision and a slit continuously. 前記アルミニウム材は陽極材である請求項1〜17のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The said aluminum material is an anode material, The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of Claims 1-17. 前記アルミニウム材は中高圧用陽極材である請求項1〜18のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 18, wherein the aluminum material is an anode material for medium to high pressure. 請求項1〜19のいずれか1項に記載の方法で製造された電解コンデンサ電極用アルミニウム材。   The aluminum material for electrolytic capacitor electrodes manufactured by the method of any one of Claims 1-19. 請求項20に記載のアルミニウム材に、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。   The manufacturing method of the electrode material for electrolytic capacitors characterized by implementing the etching to the aluminum material of Claim 20. エッチングの少なくとも一部が直流電解エッチングである請求項21に記載の電解コンデンサ用電極材の製造方法。   The method for producing an electrode material for an electrolytic capacitor according to claim 21, wherein at least a part of the etching is direct current electrolytic etching. 請求項21または請求項22に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。   An anode material for an aluminum electrolytic capacitor produced by the production method according to claim 21 or 22. 電極材として請求項21または請求項22に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。   An aluminum electrolytic capacitor characterized in that an aluminum electrode material produced by the production method according to claim 21 or claim 22 is used as the electrode material.
JP2004355798A 2003-12-10 2004-12-08 Method for manufacturing electrode material for electrolytic capacitor Expired - Fee Related JP4763273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355798A JP4763273B2 (en) 2003-12-10 2004-12-08 Method for manufacturing electrode material for electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003412314 2003-12-10
JP2003412314 2003-12-10
JP2004355798A JP4763273B2 (en) 2003-12-10 2004-12-08 Method for manufacturing electrode material for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005197671A true JP2005197671A (en) 2005-07-21
JP4763273B2 JP4763273B2 (en) 2011-08-31

Family

ID=34828994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355798A Expired - Fee Related JP4763273B2 (en) 2003-12-10 2004-12-08 Method for manufacturing electrode material for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4763273B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247023A (en) * 2006-03-17 2007-09-27 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2012255213A (en) * 2012-07-25 2012-12-27 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
CN103556185A (en) * 2013-11-20 2014-02-05 沈阳工业大学 Electrolytic aluminum anode bar cleaning device
JP2014168086A (en) * 2014-04-17 2014-09-11 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2016130371A (en) * 2016-03-22 2016-07-21 昭和電工株式会社 Method for manufacturing electrode material for electrolytic capacitor, and method for manufacturing aluminum electrolytic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464479A (en) * 2013-09-05 2013-12-25 江苏中基复合材料有限公司 Aluminium foil rolling technology

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200405A (en) * 1992-01-27 1993-08-10 Showa Alum Corp Production of aluminum foil for electrolytic capacitor
JPH06145923A (en) * 1992-10-30 1994-05-27 Nippon Foil Mfg Co Ltd Manufacture of aluminum foil for electrolytic condenser anode
JPH0726355A (en) * 1993-07-08 1995-01-27 Nippon Foil Mfg Co Ltd Production of aluminum alloy foil for electrode of electrolytic capacitor
JPH0931579A (en) * 1995-07-17 1997-02-04 Nippon Foil Mfg Co Ltd Aluminum foil for high pressure electrode of electrolytic capacitor
JP2001073105A (en) * 1999-09-06 2001-03-21 Nippon Foil Mfg Co Ltd Manufacture of aluminum foil for electrolytic capacitor anode
JP2001210561A (en) * 2000-01-24 2001-08-03 Mitsubishi Alum Co Ltd Aluminium foil for electrolytic capacitor and production method for alminium foil
JP2002069600A (en) * 2000-09-04 2002-03-08 Nippon Foil Mfg Co Ltd Method for manufacturing aluminum foil for electrolytic capacitor electrode having homogeneous etching characteristic
JP2003119555A (en) * 2001-05-24 2003-04-23 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor electrode and manufacturing method therefor
WO2004003248A1 (en) * 2002-06-28 2004-01-08 Showa Denko K.K. Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and electrolytic capacitor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200405A (en) * 1992-01-27 1993-08-10 Showa Alum Corp Production of aluminum foil for electrolytic capacitor
JPH06145923A (en) * 1992-10-30 1994-05-27 Nippon Foil Mfg Co Ltd Manufacture of aluminum foil for electrolytic condenser anode
JPH0726355A (en) * 1993-07-08 1995-01-27 Nippon Foil Mfg Co Ltd Production of aluminum alloy foil for electrode of electrolytic capacitor
JPH0931579A (en) * 1995-07-17 1997-02-04 Nippon Foil Mfg Co Ltd Aluminum foil for high pressure electrode of electrolytic capacitor
JP2001073105A (en) * 1999-09-06 2001-03-21 Nippon Foil Mfg Co Ltd Manufacture of aluminum foil for electrolytic capacitor anode
JP2001210561A (en) * 2000-01-24 2001-08-03 Mitsubishi Alum Co Ltd Aluminium foil for electrolytic capacitor and production method for alminium foil
JP2002069600A (en) * 2000-09-04 2002-03-08 Nippon Foil Mfg Co Ltd Method for manufacturing aluminum foil for electrolytic capacitor electrode having homogeneous etching characteristic
JP2003119555A (en) * 2001-05-24 2003-04-23 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor electrode and manufacturing method therefor
WO2004003248A1 (en) * 2002-06-28 2004-01-08 Showa Denko K.K. Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and electrolytic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247023A (en) * 2006-03-17 2007-09-27 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2012255213A (en) * 2012-07-25 2012-12-27 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
CN103556185A (en) * 2013-11-20 2014-02-05 沈阳工业大学 Electrolytic aluminum anode bar cleaning device
CN103556185B (en) * 2013-11-20 2016-05-04 沈阳工业大学 Electrolytic aluminium anode rod cleaning plant
JP2014168086A (en) * 2014-04-17 2014-09-11 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2016130371A (en) * 2016-03-22 2016-07-21 昭和電工株式会社 Method for manufacturing electrode material for electrolytic capacitor, and method for manufacturing aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP4763273B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4332117B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP5026778B2 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof, manufacturing method of electrode material for electrolytic capacitor, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4763273B2 (en) Method for manufacturing electrode material for electrolytic capacitor
JP6629992B2 (en) Method of manufacturing litho strip by shortening high-rate cold rolling pass.
WO2013073002A1 (en) Substrate for superconducting wire rod, method for manufacturing substrate for superconducting wire rod, and superconducting wire rod
KR100935797B1 (en) Sticking defect reduction method of cold rolling
JP4372675B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
WO2006098445A1 (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, process for producing electrolytic capacitor electrode material, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2001286927A (en) Method of manufacturing hot-rolled steel plate
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2000144352A (en) Production of aluminum foil for electrode of electrolytic capacitor
WO2011142449A1 (en) Substrate for superconductive wire material, method of manufacturing substrate for superconductive wire material, and superconductive wire material
JP4690182B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
KR100978458B1 (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
KR100887543B1 (en) Winding tension control method in electrolytic cleaning process, for reducing slip mark of cold rolled steel manufacturing process
JP2578462B2 (en) Heat treatment method for metal or alloy
JP2006161094A (en) Method for manufacturing high-grade non-oriented electromagnetic steel sheet
SU1747513A1 (en) Method of producing electrical steel band
JPH10152763A (en) Production of aluminum foil coil for electrolytic capacitor
JP3899479B2 (en) Aluminum foil for electrolytic capacitor electrode
JP3550996B2 (en) Method for producing austenitic stainless steel sheet with excellent surface properties
WO2017018028A1 (en) Method for manufacturing aluminum material for electrolytic capacitor electrodes, method for manufacturing electrode material for aluminum electrolytic capacitors, and method for manufacturing aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4763273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees