JP3550996B2 - Method for producing austenitic stainless steel sheet with excellent surface properties - Google Patents

Method for producing austenitic stainless steel sheet with excellent surface properties Download PDF

Info

Publication number
JP3550996B2
JP3550996B2 JP00134698A JP134698A JP3550996B2 JP 3550996 B2 JP3550996 B2 JP 3550996B2 JP 00134698 A JP00134698 A JP 00134698A JP 134698 A JP134698 A JP 134698A JP 3550996 B2 JP3550996 B2 JP 3550996B2
Authority
JP
Japan
Prior art keywords
hot
rolled
hydrofluoric acid
pickling
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00134698A
Other languages
Japanese (ja)
Other versions
JPH11200077A (en
Inventor
工 宇城
國夫 福田
光幸 藤沢
雅昭 河野
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP00134698A priority Critical patent/JP3550996B2/en
Publication of JPH11200077A publication Critical patent/JPH11200077A/en
Application granted granted Critical
Publication of JP3550996B2 publication Critical patent/JP3550996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オーステナイト系ステンレス鋼板の製造方法に係り、とくに鋼板表面性状の改善に関する。
【0002】
【従来の技術】
ステンレス冷延鋼板は、スラブを熱間圧延して熱延板としたのち、再結晶のための熱延板焼鈍と、熱延板焼鈍により生成したスケールを除去するための酸洗(以下、HAPともいう)を経て、冷間圧延され、さらに仕上焼鈍と、酸洗(以下、CAPともいう)を施されて製造されるのが一般的である。
【0003】
最終製品である冷延後、焼鈍酸洗された鋼板(以下、冷延焼鈍酸洗板ともいう)の光沢や表面性状は、主として冷間圧延条件やCAP条件に影響される。しかし、HAP後に冷間圧延により平滑化できないような表面欠陥が残留する場合があり、最終製品の光沢や表面性状を劣化させる。とくに、オーステナイト系ステンレス鋼では、HAP時の表面除去量が2〜3μm と少ないため、熱延後焼鈍された鋼板(以下、熱延焼鈍板ともいう)に生じた欠陥が残留しやすい。
【0004】
特公平3−60920 号公報には、オーステナイト系ステンレス鋼熱延板の脱スケール方法を改善し、肌荒のない表面光沢のすぐれたオーステナイト系ステンレス鋼冷延板を製造する方法が開示されている。
特公平3−60920 号公報に記載された技術は、オーステナイト系ステンレス鋼の熱延板を、機械的予備脱スケールしたのち、硝弗酸水溶液1l 当たり、硝酸100 〜400gと弗酸75〜400gを含む硝弗酸水溶液を用いて脱スケールして、溝状腐食がなく且つエッチピットのない全面腐食状態となし、ついで冷間圧延、光輝焼鈍を行うオーステナイト系ステンレス鋼板の製造方法である。この方法は、高濃度の硝弗酸水溶液中で酸洗を行い、表面溶削量を多くしてHAP後の鋼板表面を平滑化することに特徴がある。
【0005】
【発明が解決しようとする課題】
オーステナイト系ステンレス鋼板で問題となる表面欠陥の1つに雲状の模様がある。この雲状模様は、基本的にはHAP後の鋼板表面に、粒界浸食や粒内ピットのでき方に違いのある領域が生じることに起因している。このような違いは浸食深さや浸食幅の程度の差によるが、極端な場合には、粒界浸食や粒内ピットの殆どない領域が生じることもある。
【0006】
このようにHAP後の鋼板表面に、表面性状が不均一な領域が数cmから数mにわたり雲状に存在すると、冷間圧延によって均一化(平滑化)するのが困難となり、CAP後も雲状模様として残り、最終製品の表面性状を劣化させる。
本発明者らは、特公平3−60920 号公報に記載された技術を適用して、HAP後の鋼板表面を全て粒界浸食や粒内ピットのない平滑な表面とすることにより、上記した雲状模様の解消を実験室的に試みたが、 60sec以上の長時間酸洗を行うと効果のある場合もあったが、HAPにおいて効率的処理を行うための酸洗時間である 30sec程度の比較的短時間の酸洗では、熱延板ごとに効果がばらつき、雲状模様の発生を防止し、均一な鋼板表面を安定して得ることはできなかった。
【0007】
そこで、本発明は、上記した冷延焼鈍酸洗板の雲状模様の発生を防止した、表面性状に優れたオーステナイト系ステンレス冷延鋼板を高効率で製造する方法を提案することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、HAP時に、鋼板表面に発生する浸食ムラの原因について鋭意検討した結果、浸食ムラはHAP前の鋼板表面に付着しているスケールが影響していることを新規に知見した。
熱間圧延終了後のコイル巻取温度(以下、CTともいう)が高いと、コイルに巻き取られた状態でもさらに酸化が進行し、鋼板表面のスケール厚が厚くなる。このため、次工程の熱延板焼鈍において内部酸化が進行しやすくなり、粒界酸化部および粒内ピット状酸化部で脱Cr層が深く生成される。上記したような表面状態の熱延焼鈍板を酸洗すると、酸洗時間が長く溶解量が十分な場合には、脱Cr層は完全に溶解し、粒界浸食や粒内ピットはあるものの、鋼板各位置での場所による浸食程度の不均一は小さく全体として色調不均一な模様として認識されない。しかし、酸洗時間が短く溶解量が不十分の場合には、脱Cr層が完全には溶解されず、浸食深さに不均一を生じ模様として認識される。
【0009】
一方、熱間圧延終了後のCTが低いと、コイルに巻き取られた状態での酸化の進行は少ないため、形成される鋼板表面のスケール厚さは比較的薄い。しかし、仕上げ熱間圧延後、CTを下げるために鋼板の冷却を行うことから、鋼板各位置でスケール厚が部分的に不均一となりやすい。
とくに、鋼板の先後端部はスケールが不均一であり、このような熱延鋼板を焼鈍すると、粒界酸化や粒内のピット状酸化が殆どない領域が生じる。粒界酸化や粒内ピット状酸化が存在する領域は、高CTの場合ほどではないが、脱Cr層が生成しており、一方、粒界酸化や粒内ピット状酸化がない領域は脱Cr層は殆ど生成していない。
【0010】
上記したような表面状態の熱延焼鈍板を酸洗すると、酸洗後の鋼板表面は粒内ピット、粒界浸食のある部分と、殆どない部分に分かれ、浸食ムラとなり模様となる。
本発明者らは、上記した知見に基づきさらに熱延焼鈍板の酸洗方法について検討した。その結果、雲状模様を防止するためには、熱延鋼板のCT条件により酸洗条件を調整すればよいことに思い至った。
【0011】
すなわち、巻取温度CTにより酸洗前の熱延鋼板の表面状態が相違するため、酸洗液を高弗酸濃度とした硝弗酸水溶液とし、CTが高い場合には、厚い脱Cr層を急速に溶解できる酸洗条件に、一方CTが低い場合には、脱Cr層の溶解速度と母材部分の溶解速度をできるだけ等しくする酸洗条件に、熱延鋼板のCTに応じ、弗酸濃度と硝酸濃度の比、αを調整する。
【0012】
この考えの基礎になった実験結果を図2および図3に示す。なお、図2および図3の実験結果は、弗酸:100g/lの硝弗酸水溶液(液温:60℃)中で40sec 浸漬した後の結果である。
図2は、脱Cr層の組成に相当する13%Cr−8.5Ni鋼の酸洗による溶解量と、αの関係を示す。αが1.25〜2.5 の範囲で高い溶解量が得られている。
【0013】
図3は、母材部分に相当する18%Cr−8.5%Ni鋼の酸洗による溶解量と、αの関係を示す。αが 2.5〜6.5 の範囲で高い溶解量が得られている。αがこの範囲であれば、母材部分と脱Cr層との溶解量の違いは3倍程度となる。一方、αが 1.5倍程度ではこの違いは10倍にもなる。
このように、αを変えることにより、酸洗条件を脱Cr層を急速に溶解できる条件と、脱Cr層と母材部の溶解速度をできるだけ近づける条件とに容易に変えられると言う知見を得た。
【0014】
本発明は、上記した知見をもとに構成されたものである。
すなわち、本発明は、オーステナイト系ステンレス鋼素材を、熱間圧延により熱延板とし、該熱延板をコイルに巻取ったのち、さらに該熱延板を焼鈍し、ついで酸洗による脱スケール処理を施したのち、最終板厚まで冷間圧延し、その後焼鈍、酸洗を行うオーステナイト系ステンレス鋼板の製造方法において、前記熱延板の巻取り温度CT(℃)を 500〜900 ℃の温度範囲とし、さらに前記脱スケール処理で用いる酸洗液を、弗酸を 100〜300g/lの範囲で含む硝弗酸水溶液とし、該硝弗酸水溶液中の弗酸濃度(g/l )と硝酸濃度(g/l )との比、αを、1.25以上 6.5以下の範囲内で、かつ前記巻取温度CTに応じ、次(1)式と次(2)式
CT≦−75×α+1100 ……(1)
CT≧−100 ×α+950 ……(2)
(ここに、CT:熱延板の巻取温度(℃)、α:硝弗酸水溶液中の弗酸濃度(g/l )と硝酸濃度(g/l )との比(=弗酸濃度/硝酸濃度))を満足する範囲内として、脱スケール処理を行うことを特徴とする表面性状に優れたオーステナイト系ステンレス鋼板の製造方法であり、前記酸洗による脱スケール処理の前に、予備脱スケールを行うのが好ましい。
【0015】
なお、上記した、αとCTとの関係はCTとの関係を示す添付図面図1中のA(1.25, 900 )、B(1.25, 825 )、C(4.5, 500)、D(6.5, 500)、E(6.5, 612.5)、F(2.67, 900 )の各点直線で結んだ範囲内である。
【0016】
【発明の実施の形態】
まず、本発明における限定理由について説明する。
本発明では、熱延板の巻取温度CTを500 〜900 ℃の温度範囲に限定する。
CTが900 ℃を超えると、コイルに巻き取った後も酸化が進行しスケール厚さが厚くなり、スケール除去のため、長時間の酸洗を必要とし、生産性が低下する。一方、CTが500 ℃未満では、鋼板の変形抵抗が高くなり、コイル巻取りが困難となる。このようなことから、熱延板のCTを500 〜900 ℃に限定した。
【0017】
コイルに巻き取られた熱延板は、ついで熱延板焼鈍を施されたのち、機械的手段や化学的手段により予備脱スケールを施されるのが好ましい。
機械的手段による予備脱スケールは、ショットブラストを用いて行うのが好ましいが、ロールベンディング、軽圧下圧延等の機械的手段を用いてもよい。
化学的手段による予備脱スケールは、硝酸あるいは硫酸による酸洗、あるいはそれらの酸を用いた電解処理としてもよい。
【0018】
熱延焼鈍板は、ついで酸洗による脱スケール処理を施される。
脱スケール処理で用いる酸洗液は弗酸を 100〜300g/lの範囲で含む硝弗酸水溶液とし、硝弗酸水溶液中の弗酸濃度(g/l )と硝酸濃度(g/l )との比、αを、1.25以上 6.5以下の範囲内で、かつ巻取温度CTに応じ、次(1)式と次(2)式
CT≦−75×α+1100 ……(1)
CT≧−100 ×α+950 ……(2)
(ここに、CT:熱延板の巻取温度(℃)、α:硝弗酸水溶液中の弗酸濃度(g/l )と硝酸濃度(g/l )との比(=弗酸濃度/硝酸濃度))を満足する範囲内とする。
【0019】
αが、1.25未満では、硝酸(HNO)の不動態化効果により溶解速度が低下する。一方、αが6.5 を超えると、カソード反応を担う硝酸(HNO)の量が不足し溶解速度が低下する。このため、αは1.25〜6.5 の範囲に限定した。
さらに、本発明では、巻取温度CTに応じ、αを調整する。
CTが高い場合には、αは1.25〜6.5 の範囲内で小さくし、CTが低い場合には、αは1.25〜6.5 の範囲内で大きくする。αが小さい場合には、脱Cr層が急速に溶解され、一方、αが大きい場合には、脱Cr層の溶解速度が低下し母材部の溶解速度が上がるため、両者の溶解速度は近くなる。上記したように、CTに応じ、αを調整することにより、熱延焼鈍板の浸食ムラが抑制され、冷延焼鈍酸洗板の雲状模様が抑制できる。
【0020】
上記した考えに基づき、本発明では、具体的にαを、1.25〜6.5 の範囲内で、かつ巻取温度CTに応じ、次(1)式と次(2)式
CT≦−75×α+1100 ……(1)
CT≧−100 ×α+950 ……(2)
(ここに、CT:熱延板の巻取温度(℃)、α:硝弗酸水溶液中の弗酸濃度(g/l )と硝酸濃度(g/l )との比(=弗酸濃度/硝酸濃度))を満足する範囲内に調整する。
【0021】
本発明の範囲を、CTとαの関係で図示し、図1に示す。
図1に示すA(1.25, 900 )、B(1.25, 825 )、C(4.5, 500)、D(6.5,500)、E(6.5, 612.5)、F(2.67, 900 )の各点を直線で結んだ範囲内が本発明の範囲内である。( )内は、(α,CT)を示す。
この範囲内のCTとαの関係を満足する条件で熱延焼鈍板を酸洗すれば、表面が均一に溶解され、浸食ムラがなく、冷延焼鈍酸洗板表面の雲状模様の発生が抑制される。一方、この範囲のCTとαの関係から外れる条件で熱延焼鈍板を酸洗した場合には、不均一に溶解され、浸食ムラが生じ、冷延焼鈍酸洗板に雲状模様が発生する。
【0022】
なお、酸洗温度は、30〜80℃とするのが好ましい。酸洗速度と酸液の蒸発との兼ね合いで、55〜65℃がより好ましい。
本発明が目的とする高効率の製造を行うには、酸洗時間を 45sec以内とする必要がある。この時間を超えると処理速度が遅くなり、生産性が低下するためである。
【0023】
雲状模様の発生におよぼす硝弗酸水溶液中の弗酸濃度と酸洗時間との関係を図4に示す。硝弗酸水溶液中の弗酸濃度が100 g/l 未満では、雲状模様の発生を抑制するための酸洗時間が 45secを超えて長くなりすぎ、一方、弗酸濃度が300g/lを超えると、効果が飽和し弗酸添加量に見合う効果が期待できないため、経済的に不利となる。このようなことから、硝弗酸水溶液中の弗酸濃度は、100 〜300g/lの範囲とする。
【0024】
なお、本発明におけるオーステナイト系ステンレス鋼は、SUS 304 、SUS 304L、SUS 316 、SUS 316L等が含まれるものとする。
本発明における熱間圧延、冷間圧延、冷延板焼鈍、冷延板酸洗等は通常公知の条件で行えばよく、とくに限定されない。
【0025】
【実施例】
SUS 304 鋼素材を熱間圧延により、4mm厚の熱延板とし、表1に示す巻取温度CTでコイルに巻き取った。ついで、これら熱延板をHAPラインで焼鈍温度:1150℃で焼鈍し、ついでショットブラスト処理により予備脱スケールを行ったのち、あるいは予備脱スケールなしで表1に示す弗酸濃度(g/l) と、弗酸濃度(g/l) と硝酸濃度(g/l) の比、αの硝弗酸水溶液中で、熱延焼鈍板の酸洗を実施した。その後、これらの熱延焼鈍酸洗板を冷間圧延により1mmの冷延板とし、ついで、1100℃で焼鈍し、中性塩電解酸洗、硝弗酸水溶液酸洗を行い、目視で雲状模様の有無を判定した。なお、冷延焼鈍板の中性塩電解酸洗条件は、電解液濃度NaSO:200g/l、液温:80℃、電解条件:75C/dmとした。また、冷延焼鈍板の硝弗酸水溶液酸洗条件は、HF:25g/l、HNO:50g/lとし、液温:55 ℃、30sec 浸漬とした。
【0026】
雲状模様の判定結果を表1に示す。
【0027】
【表1】

Figure 0003550996
【0028】
本発明例(鋼板No.1〜No.8、No.14 )には、雲状模様の発生はなく、良好な表面性状を有する冷延板である。これに対し、本発明の範囲を外れる比較例(鋼板No.9〜No.13 )では、雲状模様の発生が見られた。
【0029】
【発明の効果】
本発明によれば、オーステナイト系ステンレス鋼の冷延焼鈍酸洗板に発生する雲状模様を安定してかつ短時間の酸洗で防止することが可能となり、表面性状に優れたオーステナイト系ステンレス冷延鋼板が安価に提供できるという産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】雲状模様の発生におよぼす熱延板の巻取温度CTと、弗酸濃度と硝酸濃度の比、αとの関係を示すグラフである。
【図2】溶解量とαの関係を示すグラフである。
【図3】溶解量とαの関係を示すグラフである。
【図4】雲状模様の発生におよぼす酸洗時間と弗酸濃度の関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an austenitic stainless steel sheet, and more particularly to improving the surface properties of a steel sheet.
[0002]
[Prior art]
A cold rolled stainless steel sheet is obtained by hot rolling a slab into a hot rolled sheet, annealing the hot rolled sheet for recrystallization, and pickling (hereinafter, HAP) for removing scale generated by the hot rolled sheet annealing. ), Cold rolling, finish annealing, and pickling (hereinafter, also referred to as CAP).
[0003]
The gloss and surface properties of a steel sheet that has been cold-rolled as an end product and that has been annealed and pickled (hereinafter, also referred to as a cold-rolled annealed pickled sheet) are mainly affected by cold rolling conditions and CAP conditions. However, surface defects that cannot be smoothed by cold rolling after HAP may remain, which deteriorates gloss and surface properties of the final product. Particularly, in austenitic stainless steel, since the surface removal amount during HAP is as small as 2 to 3 μm, defects generated in a steel sheet annealed after hot rolling (hereinafter, also referred to as a hot-rolled annealed sheet) tend to remain.
[0004]
Japanese Patent Publication No. 3-60920 discloses a method of improving the descaling method of a hot-rolled austenitic stainless steel sheet to produce a cold-rolled austenitic stainless steel sheet having excellent surface gloss without rough surface. .
In the technique described in Japanese Patent Publication No. 3-60920, a hot rolled sheet of austenitic stainless steel is subjected to mechanical preliminary descaling, and then 100 to 400 g of nitric acid and 75 to 400 g of hydrofluoric acid per liter of nitric hydrofluoric acid aqueous solution. This is a method for producing an austenitic stainless steel sheet which is descaled using an aqueous nitric hydrofluoric acid solution to form a general corrosion state without groove corrosion and without etch pits, followed by cold rolling and bright annealing. This method is characterized in that pickling is performed in a high-concentration nitric hydrofluoric acid aqueous solution to increase the amount of surface abrasion to smooth the steel sheet surface after HAP.
[0005]
[Problems to be solved by the invention]
One of the problematic surface defects of an austenitic stainless steel sheet is a cloud-like pattern. This cloud-like pattern is basically attributable to the occurrence of regions having a difference in grain boundary erosion and the formation of intragranular pits on the steel sheet surface after HAP. Such a difference depends on the difference of the erosion depth and the erosion width. In an extreme case, a region having almost no grain boundary erosion or intragranular pits may occur.
[0006]
If a region having uneven surface properties is present in the form of a cloud over several centimeters to several meters on the surface of the steel sheet after HAP, it is difficult to uniformize (smooth) by cold rolling, and even after CAP. It remains as a pattern and deteriorates the surface properties of the final product.
The present inventors have applied the technique described in Japanese Patent Publication No. 3-60920 to make the surface of the steel sheet after HAP a smooth surface free of intergranular erosion and intragranular pits. Although we tried to eliminate the pattern in a laboratory, there was a case where it was effective to perform pickling for 60 seconds or more for a long time, but a comparison of about 30 seconds, which is the pickling time for efficient treatment in HAP. In pickling for a short period of time, the effect varies for each hot-rolled sheet, preventing the formation of a cloud pattern and failing to stably obtain a uniform steel sheet surface.
[0007]
Therefore, an object of the present invention is to provide a method for producing an austenitic stainless steel cold-rolled steel sheet having excellent surface properties with high efficiency, which prevents the above-described cold-rolled annealed pickled plate from forming a cloud pattern. .
[0008]
[Means for Solving the Problems]
The present inventors have earnestly studied the cause of erosion unevenness occurring on the steel sheet surface during HAP, and as a result, have newly found that the erosion unevenness is affected by the scale attached to the steel sheet surface before HAP.
If the coil winding temperature (hereinafter, also referred to as CT) after the completion of hot rolling is high, oxidation proceeds further even in a state where the coil is wound, and the scale thickness of the steel sheet surface increases. For this reason, internal oxidation easily proceeds in the next step of hot-rolled sheet annealing, and a Cr-free layer is deeply formed in the grain boundary oxidized portion and the intragranular pit-shaped oxidized portion. When pickling the hot-rolled annealed sheet in the surface state as described above, if the pickling time is long and the amount of dissolution is sufficient, the Cr removal layer is completely dissolved, and although there are grain boundary erosion and intragranular pits, The nonuniformity of the degree of erosion depending on the location at each position of the steel plate is small and is not recognized as a pattern with nonuniform color tone as a whole. However, if the pickling time is short and the amount of dissolution is insufficient, the Cr-free layer is not completely dissolved, and the erosion depth becomes non-uniform and is recognized as a pattern.
[0009]
On the other hand, when CT after hot rolling is low, oxidation progresses little in the state of being wound up by the coil, and thus the scale thickness of the formed steel sheet surface is relatively small. However, after finishing hot rolling, since the steel sheet is cooled to lower the CT, the scale thickness tends to be partially nonuniform at each position of the steel sheet.
In particular, the scale at the front and rear end portions of the steel sheet is not uniform, and when such a hot-rolled steel sheet is annealed, a region where almost no grain boundary oxidation or intra-grain pit-like oxidation occurs is generated. The region where grain boundary oxidation or intragranular pit-like oxidation is present is not as high as in the case of high CT, but a Cr-free layer is formed, while the region without grain boundary oxidation or intragranular pit-like oxidation is a Cr-free region. Almost no layers are formed.
[0010]
When the hot-rolled annealed sheet having the above-mentioned surface state is pickled, the surface of the steel sheet after pickling is divided into a portion having intragranular pits and grain boundary erosion and a portion having almost no erosion, resulting in uneven erosion and a pattern.
The present inventors further studied a method of pickling a hot-rolled annealed sheet based on the above findings. As a result, they came to the conclusion that the pickling conditions should be adjusted according to the CT conditions of the hot-rolled steel sheet in order to prevent the cloud pattern.
[0011]
In other words, since the surface state of the hot-rolled steel sheet before pickling differs depending on the winding temperature CT, the pickling solution is a nitric hydrofluoric acid aqueous solution with a high hydrofluoric acid concentration. Under the pickling conditions that allow rapid dissolution, on the other hand, when the CT is low, the concentration of hydrofluoric acid is adjusted according to the CT of the hot-rolled steel sheet, under the pickling conditions that make the dissolution rate of the dechromized layer and the dissolution rate of the base metal part as equal as possible. And the concentration of nitric acid and α are adjusted.
[0012]
The experimental results that are the basis of this idea are shown in FIGS. The experimental results in FIGS. 2 and 3 are the results after immersion in an aqueous nitric hydrofluoric acid solution of 100 g / l hydrofluoric acid (liquid temperature: 60 ° C.) for 40 sec.
FIG. 2 shows the relationship between the amount of 13% Cr-8.5Ni steel dissolved by pickling and α corresponding to the composition of the Cr-free layer. When α is in the range of 1.25 to 2.5, a high dissolution amount is obtained.
[0013]
FIG. 3 shows the relationship between α and the amount of 18% Cr-8.5% Ni steel corresponding to the base metal dissolved by pickling. When α is in the range of 2.5 to 6.5, a high dissolution amount is obtained. If α is within this range, the difference in the amount of dissolution between the base material portion and the Cr-free layer is about three times. On the other hand, when α is about 1.5 times, this difference becomes 10 times.
Thus, it has been found that by changing α, the pickling conditions can be easily changed to conditions under which the de-Cr layer can be rapidly dissolved, and conditions under which the dissolution rate of the de-Cr layer and the base material can be made as close as possible. Was.
[0014]
The present invention has been made based on the above findings.
That is, the present invention provides a hot-rolled sheet of austenitic stainless steel material by hot rolling, winding the hot-rolled sheet around a coil, further annealing the hot-rolled sheet, and then descaling by pickling. And then cold-rolled to the final thickness, followed by annealing and pickling, in a method for producing an austenitic stainless steel sheet, wherein the hot-rolled sheet has a winding temperature CT (° C.) of 500 to 900 ° C. Further, the pickling solution used in the descaling treatment is a nitric hydrofluoric acid aqueous solution containing 100 to 300 g / l of hydrofluoric acid, and the hydrofluoric acid concentration (g / l) and the nitric acid concentration in the nitric hydrofluoric acid aqueous solution (G / l), α within the range of 1.25 or more and 6.5 or less, and according to the winding temperature CT, the following equations (1) and (2): CT ≦ −75 × α + 1100 (1)
CT ≧ −100 × α + 950 (2)
(Here, CT: winding temperature of hot-rolled sheet (° C.), α: ratio of hydrofluoric acid concentration (g / l) and nitric acid concentration (g / l) in nitric acid aqueous solution (= hydrofluoric acid concentration / (Nitric acid concentration)) is a method for producing an austenitic stainless steel sheet having excellent surface properties, characterized in that descaling is carried out within a range satisfying the following conditions. Is preferably performed.
[0015]
The above-mentioned relationship between α and CT indicates the relationship between CT and CT (A, 1.25, 900), B (1.25, 825), and C (4.5, 500) in FIG. , D (6.5, 500), E (6.5, 612.5), and F (2.67, 900).
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reasons for limitation in the present invention will be described.
In the present invention, the winding temperature CT of the hot rolled sheet is limited to a temperature range of 500 to 900 ° C.
If the CT exceeds 900 ° C., oxidation proceeds even after being wound on a coil, and the thickness of the scale becomes thicker, so that long-time pickling is required for scale removal, and the productivity is reduced. On the other hand, when the CT is lower than 500 ° C., the deformation resistance of the steel sheet becomes high, and it becomes difficult to wind the coil. For these reasons, the CT of the hot rolled sheet was limited to 500 to 900 ° C.
[0017]
The hot rolled sheet wound around the coil is preferably subjected to hot rolled sheet annealing, and then subjected to preliminary descaling by mechanical means or chemical means.
Pre-descaling by mechanical means is preferably performed by using shot blasting, but mechanical means such as roll bending and light rolling may be used.
The preliminary descaling by chemical means may be pickling with nitric acid or sulfuric acid, or electrolytic treatment using these acids.
[0018]
The hot rolled annealed plate is then subjected to descaling by pickling.
The pickling liquid used in the descaling treatment is a nitric hydrofluoric acid aqueous solution containing hydrofluoric acid in the range of 100 to 300 g / l, and the hydrofluoric acid concentration (g / l) and the nitric acid concentration (g / l) in the nitric hydrofluoric acid aqueous solution are determined. Is within the range of 1.25 or more and 6.5 or less, and according to the winding temperature CT, the following equations (1) and (2): CT ≦ −75 × α + 1100 (1)
CT ≧ −100 × α + 950 (2)
(Here, CT: winding temperature of hot-rolled sheet (° C.), α: ratio of hydrofluoric acid concentration (g / l) and nitric acid concentration (g / l) in nitric acid aqueous solution (= hydrofluoric acid concentration / Nitric acid concentration)).
[0019]
If α is less than 1.25, the dissolution rate decreases due to the passivating effect of nitric acid (HNO 3 ). On the other hand, when α exceeds 6.5, the amount of nitric acid (HNO 3 ) responsible for the cathode reaction becomes insufficient, and the dissolution rate decreases. For this reason, α was limited to the range of 1.25 to 6.5.
Further, in the present invention, α is adjusted according to the winding temperature CT.
When CT is high, α is reduced in the range of 1.25 to 6.5, and when CT is low, α is increased in the range of 1.25 to 6.5. When α is small, the de-Cr layer is rapidly dissolved, while when α is large, the dissolution rate of the de-Cr layer is reduced and the dissolution rate of the base material is increased. Become. As described above, by adjusting α in accordance with CT, erosion unevenness of the hot-rolled annealed plate is suppressed, and the cloud-like pattern of the cold-rolled annealed pickled plate can be suppressed.
[0020]
Based on the above-mentioned idea, in the present invention, α is specifically in the range of 1.25 to 6.5, and according to the winding temperature CT, the following formulas (1) and (2) CT ≦ − 75 × α + 1100 (1)
CT ≧ −100 × α + 950 (2)
(Here, CT: winding temperature of hot-rolled sheet (° C.), α: ratio of hydrofluoric acid concentration (g / l) and nitric acid concentration (g / l) in nitric acid aqueous solution (= hydrofluoric acid concentration / (Nitric acid concentration)) is adjusted to satisfy the range.
[0021]
The range of the present invention is illustrated by the relationship between CT and α, and is shown in FIG.
A (1.25, 900), B (1.25, 825), C (4.5, 500), D (6.5, 500), E (6.5, 612.5) shown in FIG. , F (2.67, 900) are within the range of the present invention within the range connecting the points with straight lines. () Indicates (α, CT).
If the hot-rolled annealed plate is pickled under conditions that satisfy the relationship between CT and α in this range, the surface is uniformly dissolved, there is no erosion unevenness, and cloud-like patterns on the surface of the cold-rolled annealed pickled plate occur. Be suppressed. On the other hand, when the hot-rolled annealed plate is pickled under conditions outside of the relationship between CT and α in this range, the hot-rolled annealed plate is unevenly dissolved, erosion unevenness occurs, and a cloud-like pattern is generated on the cold-rolled annealed pickled plate. .
[0022]
Note that the pickling temperature is preferably 30 to 80 ° C. The temperature is more preferably 55 to 65 ° C. in consideration of the pickling speed and the evaporation of the acid solution.
In order to carry out the high-efficiency production aimed at by the present invention, the pickling time must be within 45 seconds. If the time is exceeded, the processing speed is reduced, and the productivity is reduced.
[0023]
FIG. 4 shows the relationship between the concentration of hydrofluoric acid in the aqueous nitric hydrofluoric acid solution and the pickling time, which affects the occurrence of the cloud pattern. If the concentration of hydrofluoric acid in the aqueous nitric hydrofluoric acid solution is less than 100 g / l, the pickling time for suppressing the formation of a cloud pattern becomes too long, exceeding 45 sec, while the concentration of hydrofluoric acid exceeds 300 g / l. In this case, the effect is saturated and an effect commensurate with the amount of added hydrofluoric acid cannot be expected, which is economically disadvantageous. For this reason, the concentration of hydrofluoric acid in the aqueous nitric hydrofluoric acid solution is set in the range of 100 to 300 g / l.
[0024]
The austenitic stainless steel according to the present invention includes SUS 304, SUS 304L, SUS 316, SUS 316L, and the like.
In the present invention, hot rolling, cold rolling, cold rolled sheet annealing, cold rolled sheet pickling, and the like may be performed under generally known conditions, and are not particularly limited.
[0025]
【Example】
The SUS 304 steel material was hot-rolled into a hot-rolled sheet having a thickness of 4 mm, and was wound around a coil at a winding temperature CT shown in Table 1. Next, these hot-rolled sheets were annealed at an annealing temperature of 1150 ° C. in a HAP line, and then subjected to preliminary descaling by shot blasting, or without the preliminary descaling, the hydrofluoric acid concentration (g / l) shown in Table 1. The hot-rolled annealed plate was pickled in an aqueous nitric hydrofluoric acid solution having a ratio of hydrofluoric acid concentration (g / l) and nitric acid concentration (g / l) of α. Thereafter, these hot-rolled annealed pickled sheets were cold-rolled into 1 mm cold-rolled sheets, then annealed at 1100 ° C., subjected to neutral salt electrolytic pickling, and aqueous nitric hydrofluoric acid pickling, and visually observed as a cloud. The presence or absence of a pattern was determined. The neutral salt electrolytic pickling conditions of the cold rolled annealed plate were as follows: electrolytic solution concentration Na 2 SO 4 : 200 g / l, liquid temperature: 80 ° C., electrolytic condition: 75 C / dm 2 . The pickling conditions of the aqueous solution of nitric hydrofluoric acid of the cold-rolled annealed sheet were HF: 25 g / l, HNO 3 : 50 g / l, and the liquid temperature: 55 ° C., immersion for 30 sec.
[0026]
Table 1 shows the results of the determination of the cloud pattern.
[0027]
[Table 1]
Figure 0003550996
[0028]
The examples of the present invention (steel sheets No. 1 to No. 8 and No. 14) are cold rolled sheets having no cloudy pattern and excellent surface properties. On the other hand, in comparative examples (steel sheets No. 9 to No. 13) out of the range of the present invention, generation of a cloud pattern was observed.
[0029]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to prevent the cloud-like pattern which generate | occur | produces in the cold-rolled annealing pickling plate of austenitic stainless steel stably and in a short time pickling, and to obtain the austenitic stainless steel cold-rolled steel excellent in surface property. This has a remarkable industrial effect in that rolled steel sheets can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the winding temperature CT of a hot-rolled sheet and the ratio of the concentration of hydrofluoric acid to the concentration of nitric acid and α, which affect the formation of a cloud pattern.
FIG. 2 is a graph showing the relationship between the amount of dissolution and α.
FIG. 3 is a graph showing the relationship between the amount of dissolution and α.
FIG. 4 is a graph showing the relationship between the pickling time and the concentration of hydrofluoric acid on the occurrence of a cloud pattern.

Claims (2)

オーステナイト系ステンレス鋼素材を、熱間圧延により熱延板とし、該熱延板をコイルに巻取ったのち、さらに該熱延板を焼鈍し、その後酸洗による脱スケール処理を施したのち、最終板厚まで冷間圧延し、ついで焼鈍、酸洗を行うオーステナイト系ステンレス鋼板の製造方法において、前記熱延板の巻取り温度CT(℃)を 500〜900 ℃の温度範囲とし、さらに前記脱スケール処理で用いる酸洗液を、弗酸を 100〜300g/lの範囲で含む硝弗酸水溶液とし、該硝弗酸水溶液中の弗酸濃度(g/l )と硝酸濃度(g/l )との比、αを、1.25以上 6.5以下の範囲内で、かつ前記巻取温度CTに応じ、下記(1)式と下記(2)式を満足する範囲内として、脱スケール処理を行うことを特徴とする表面性状に優れたオーステナイト系ステンレス鋼板の製造方法。

CT≦−75×α+1100 ……(1)
CT≧−100 ×α+950 ……(2)
ここに、CT:熱延板の巻取温度(℃)
α:硝弗酸水溶液中の弗酸濃度(g/l )と硝酸濃度(g/l )との比(=弗酸濃度/硝酸濃度)
The austenitic stainless steel material was hot-rolled into a hot-rolled sheet, the hot-rolled sheet was wound around a coil, then the hot-rolled sheet was annealed, and then subjected to descaling by pickling, followed by final treatment. In a method for producing an austenitic stainless steel sheet, which is cold-rolled to a sheet thickness, and then annealed and pickled, the winding temperature CT (° C.) of the hot-rolled sheet is set to a temperature range of 500 to 900 ° C., and the descaling is further performed. The pickling solution used in the treatment is a nitric hydrofluoric acid aqueous solution containing hydrofluoric acid in the range of 100 to 300 g / l, and the hydrofluoric acid concentration (g / l) and the nitric acid concentration (g / l) in the nitric hydrofluoric acid aqueous solution are determined. Is set within the range of 1.25 to 6.5 and within the range satisfying the following formulas (1) and (2) according to the winding temperature CT, and the descaling process is performed. Aus with excellent surface properties characterized by performing Method of manufacturing a night stainless steel plate.
Notation CT ≦ −75 × α + 1100 (1)
CT ≧ −100 × α + 950 (2)
Here, CT: winding temperature of hot-rolled sheet (° C)
α: ratio of hydrofluoric acid concentration (g / l) and nitric acid concentration (g / l) in nitric acid aqueous solution (= hydrofluoric acid concentration / nitric acid concentration)
前記酸洗による脱スケール処理の前に、予備脱スケールを行うことを特徴とする請求項1に記載のオーステナイト系ステンレス鋼板の製造方法。The method for producing an austenitic stainless steel sheet according to claim 1, wherein preliminary descaling is performed before the descaling treatment by pickling.
JP00134698A 1998-01-07 1998-01-07 Method for producing austenitic stainless steel sheet with excellent surface properties Expired - Fee Related JP3550996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00134698A JP3550996B2 (en) 1998-01-07 1998-01-07 Method for producing austenitic stainless steel sheet with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00134698A JP3550996B2 (en) 1998-01-07 1998-01-07 Method for producing austenitic stainless steel sheet with excellent surface properties

Publications (2)

Publication Number Publication Date
JPH11200077A JPH11200077A (en) 1999-07-27
JP3550996B2 true JP3550996B2 (en) 2004-08-04

Family

ID=11498941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00134698A Expired - Fee Related JP3550996B2 (en) 1998-01-07 1998-01-07 Method for producing austenitic stainless steel sheet with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3550996B2 (en)

Also Published As

Publication number Publication date
JPH11200077A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
KR100395288B1 (en) Process for the continuous production of a rolled stainless steel sheet strip and continuous production line for carrying out the process
US5759307A (en) Method of producing a cold-rolled strip in one pass
US6149744A (en) Method of making austenitic stainless steel sheet
JP3550996B2 (en) Method for producing austenitic stainless steel sheet with excellent surface properties
JP2003286592A (en) Pickling process for stainless steel strip
JP3915235B2 (en) Method for producing austenitic stainless steel sheet without surface pattern
JP2842787B2 (en) Annealing and descaling of cold rolled stainless steel strip
JP3878024B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP4221984B2 (en) Martensitic stainless steel cold rolled-annealed-pickled steel strip with extremely good surface gloss
JPS61117291A (en) Manufacture of cr stainless steel plate
JP3598981B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP3370618B2 (en) Pickling method for stainless steel cold rolled steel strip
JPH0474899A (en) Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance
WO2005071125A1 (en) Austenitic stainless steel sheet excellent in surface color tone and method for production thereof
JP4218750B2 (en) Ferritic stainless hot rolled steel sheet with excellent surface properties and method for producing the same
JP3857817B2 (en) Manufacturing method of stainless steel strip with excellent pickling performance by twin roll type continuous casting machine
JP3059376B2 (en) Austenitic stainless steel sheet excellent in gloss and corrosion resistance and method for producing the same
JP4413787B2 (en) Austenitic stainless steel sheet with excellent surface color and method for producing the same
JP3457464B2 (en) Method for smooth pickling of hot-rolled austenitic stainless steel strip
JPH0665765A (en) High speed pickling treatment method of stainless steel strip
JP2001121205A (en) Scale removing method of steel
JPH1190523A (en) Manufacture of cold rolled austenitic stainless steel sheet
JP3949846B2 (en) Stainless steel descaling method
JP2001158982A (en) Pickling method for hot rolled and annealed stainless steel sheet
JP3042831B2 (en) Manufacturing method of thin steel sheet with excellent surface quality

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees