JP2005197204A - Transparent solar cell module and its manufacturing method - Google Patents

Transparent solar cell module and its manufacturing method Download PDF

Info

Publication number
JP2005197204A
JP2005197204A JP2004195725A JP2004195725A JP2005197204A JP 2005197204 A JP2005197204 A JP 2005197204A JP 2004195725 A JP2004195725 A JP 2004195725A JP 2004195725 A JP2004195725 A JP 2004195725A JP 2005197204 A JP2005197204 A JP 2005197204A
Authority
JP
Japan
Prior art keywords
film
electrode plate
solar cell
cell module
nanocrystalline oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004195725A
Other languages
Japanese (ja)
Other versions
JP4376707B2 (en
Inventor
Nan Kyu Park
パク、ナン、キュ
Man Gu Kan
カン、マン、グ
Kuan Son Ryuu
リュウ、クァン、ソン
Sun Ho Chan
チャン、スン、ホ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JP2005197204A publication Critical patent/JP2005197204A/en
Application granted granted Critical
Publication of JP4376707B2 publication Critical patent/JP4376707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent solar cell module easily and simply connected in series or parallel. <P>SOLUTION: In the transparent solar cell module and its manufacturing method, nano crystal oxide film of which pigment is adsorbed and nano particle platina metal thin film are alternately coated on a conductive film pattern of a transparent substrate to produce a lower electrode plate and an upper electrode plate, respectively. After joining the lower electrode plate to the upper electrode plate and injecting electrolyte between the nano crystal oxide film of which pigment is adsorbed and the nano particle platina metal thin film, the transparent solar cell module is produced by coupling the negative electrode to the positive electrode with conductive material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、太陽電池モジュール及びその製造方法に関し、より詳細には色素増感太陽電池基板の透明太陽電池モジュール及びその製造方法に関する。   The present invention relates to a solar cell module and a manufacturing method thereof, and more particularly to a transparent solar cell module of a dye-sensitized solar cell substrate and a manufacturing method thereof.

色素増感太陽電池は、1991年スイスのグレッチェル(Gratzel)などによって発表された光電気化学太陽電池であって、値段が安くて10%程度のエネルギー変換効率を持つために、既存のシリコン太陽電池にとって代わる次世代太陽電池として脚光を浴びている。   Dye-sensitized solar cells are photoelectrochemical solar cells announced by Gretzel, Switzerland in 1991, etc., which are cheap and have an energy conversion efficiency of about 10%. It is in the limelight as a next-generation solar cell to replace it.

色素増感太陽電池は色素分子が吸着され、ナノ結晶酸化物フィルムがコーティングされた透明の導電性電極、ナノ粒子金属プラチナフィルムがコーティングされた電極、及びヨード系酸化-還元電解質で構成される。   The dye-sensitized solar cell includes a transparent conductive electrode on which dye molecules are adsorbed and coated with a nanocrystalline oxide film, an electrode coated with a nanoparticulate metal platinum film, and an iodine-based oxidation-reduction electrolyte.

上記のように構成された色素増感太陽電池は、10ないし20nm大きさのナノ粒子酸化物を用いるために、透明なフィルムを製造できる特徴を持っている。色素増感太陽電池の出力を高めるためには、いくつかの単位セルを直列または並列で接続しなければならないが、単位セルが直列または並列で接続して、モジュールを構成する。今までモジュールは、内部で直列または並列で接続する方法を使用しているが、製造方法が容易でない。   The dye-sensitized solar cell configured as described above has a feature that a transparent film can be produced because a nanoparticle oxide having a size of 10 to 20 nm is used. In order to increase the output of the dye-sensitized solar cell, several unit cells must be connected in series or in parallel, but unit cells are connected in series or in parallel to constitute a module. Until now, the module has used the method of connecting in series or in parallel, but the manufacturing method is not easy.

ナノ結晶酸化物電極と光感応性色素を用いた色素増感太陽電池が知られている(特許文献1)。   A dye-sensitized solar cell using a nanocrystalline oxide electrode and a photosensitive dye is known (Patent Document 1).

ナノ粒子酸化物太陽電池等を導線で接続することなく直列または並列で結合した太陽電池モジュールが知られている(特許文献2)。   A solar cell module in which nano-particle oxide solar cells or the like are connected in series or in parallel without being connected by a conductive wire is known (Patent Document 2).

多結晶金属酸化物半導体層を含む光感応性色素電池が、記載されている(特許文献3)。   A photosensitive dye battery including a polycrystalline metal oxide semiconductor layer has been described (Patent Document 3).

ガラス板または透明ポリマーシート上に蒸着された光伝達導電層を含む光ボルタ (Photovoltaic)電池が、記載されている(特許文献4)。   A photovoltaic battery comprising a light-transmitting conductive layer deposited on a glass plate or transparent polymer sheet has been described (Patent Document 4).

入射光が拡散することなく、可視領域の波長を持つ光の吸収が生じない光感応性色素電池が、記載されている(特許文献5)。   There has been described a photosensitive dye battery in which incident light does not diffuse and absorption of light having a wavelength in the visible region does not occur (Patent Document 5).

cis-X2Bis(2、2'-bipyridyl-4、4'-dicarboxylate)ruthenium(II)電荷転送感光剤による光電変換に対して記載されている(非特許文献1)。 cis-X 2 Bis ( 2, 2′-bipyridyl-4, 4′-dicarboxylate) is described for photoelectric conversion with a ruthenium (II) charge transfer photosensitizer (Non-patent Document 1).

ナノ結晶光ボルタ電池のために多重の厚いフィルム構造を用いたレポートがあった(非特許文献2)。   There was a report using multiple thick film structures for nanocrystalline optical voltaic cells (Non-Patent Document 2).

低電力消耗色素増感太陽電池のレポートがあった(非特許文献3)。   There was a report of a low power consumption dye-sensitized solar cell (Non-patent Document 3).

色素増感ナノ結晶チタニウム酸化物とカーボンパウダーを基板とする光ボルタ モジュールが、記載されている(非特許文献4)。   An optical volta module using a dye-sensitized nanocrystalline titanium oxide and carbon powder as a substrate has been described (Non-patent Document 4).

米国特許第5、084、365号U.S. Pat.No. 5,084,365

韓国特許第10-0384893号Korean Patent No. 10-0384893

米国特許第4、927、721号U.S. Pat.No. 4,927,721

米国特許第5、350、644号U.S. Pat.No. 5,350,644

米国特許第5、441、827号U.S. Pat.No. 5,441,827

M. K. Nazeeruddin et al., "Conversion of Light to Electricity by cis-X2Bis(2, 2'-bipyridyl-4, 4'-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers(X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes", J. Am. Chem. Soc. 1993, 115, pp6382-6390MK Nazeeruddin et al., "Conversion of Light to Electricity by cis-X2Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Charge-Transfer Sensitizers (X = Cl-, Br-, I- , CN-, and SCN-) on Nanocrystalline TiO2 Electrodes ", J. Am. Chem. Soc. 1993, 115, pp6382-6390

S.Burnside et al., "Deposition and Characterization of screen-printed porous multi-layer thick film structures from semiconducting and conducting nanomaterials for use in photovoltaic devices", Journal of Materials Science:Materials in Electronics 11, 2000, pp355-362S. Burnside et al., "Deposition and Characterization of screen-printed porous multi-layer thick film structures from semiconducting and conducting nanomaterials for use in photovoltaic devices", Journal of Materials Science: Materials in Electronics 11, 2000, pp355-362

Henrik Pettersson et al., "Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods", Solar Energy Materials & Solar Cells 70, 2001, pp203-212Henrik Pettersson et al., "Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods", Solar Energy Materials & Solar Cells 70, 2001, pp203-212

Andreas Kay et al., "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder"、Solar Energy Materials & Solar Cells 44, 1996, pp99-117Andreas Kay et al., "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder", Solar Energy Materials & Solar Cells 44, 1996, pp99-117

したがって、本発明は、透明基板に多数の導電性フィルムパターンをコーティングした後、導電性フィルムパターンに色素が吸着されたナノ結晶酸化物フィルムとナノ粒子プラチナ金属薄膜フィルムを交互にコーティングして下部及び上部電極板を各々形成することによって、前記の短所を解消できる透明太陽電池モジュール及びその製造方法を提供することにその目的がある。   Accordingly, in the present invention, after coating a plurality of conductive film patterns on a transparent substrate, a nanocrystalline oxide film and a nanoparticulate platinum metal thin film in which a dye is adsorbed on the conductive film pattern are alternately coated to form a lower portion and It is an object of the present invention to provide a transparent solar cell module and a method for manufacturing the same that can eliminate the above disadvantages by forming each upper electrode plate.

前記目的を達成するための本発明に係る透明太陽電池モジュールは、導電性基板にナノ粒子金属フィルムと色素が吸着されたナノ結晶酸化物フィルムが交互にコーティングされてなる第1電極板と、導電性基板に色素が吸着されたナノ結晶酸化物フィルムとナノ粒子金属フィルムが交互にコーティングされてなる第2電極板と、前記第1及び第2電極板の接合により互いに対向する前記色素が吸着されたナノ結晶酸化物フィルムとナノ粒子金属フィルムとの間に各々注入された電解液と、前記対向する色素が吸着されたナノ結晶酸化物フィルムとナノ粒子金属フィルムからなる単位セルの陰極と陽極を直列接続する配線を含むことを特徴とする。   In order to achieve the above object, the transparent solar cell module according to the present invention includes a first electrode plate in which a nanoparticle metal film and a nanocrystalline oxide film on which a dye is adsorbed are alternately coated on a conductive substrate; A second electrode plate formed by alternately coating a nanocrystalline oxide film and a nanoparticle metal film on which a dye is adsorbed on a conductive substrate, and the dye facing each other is adsorbed by joining the first and second electrode plates. An electrolyte injected between the nanocrystalline oxide film and the nanoparticulate metal film, a cathode and an anode of a unit cell comprising the nanocrystalline oxide film and the nanoparticulate metal film adsorbing the opposing dyes It includes wirings connected in series.

前記目的を達成するための本発明に係る透明太陽電池モジュールの製造方法は、透明基板にコーティングされた多数の導電性フィルムパターンにナノ結晶酸化物フィルム及びナノ粒子金属フィルムを交互にコーティングして第1電極板を製造するステップと、前記第1電極板を熱処理した後、前記ナノ結晶酸化物フィルムに色素を吸着させるステップと、透明基板にコーティングされた多数の導電性フィルムパターンにナノ粒子金属フィルム及びナノ結晶酸化物フィルムを交互にコーティングして第2電極板を製造するステップと、前記第2電極板を熱処理した後、前記ナノ結晶酸化物フィルムに色素を吸着させるステップと、前記第2電極板の前記ナノ結晶酸化物フィルムとナノ粒子金属フィルム周囲の前記導電性フィルムパターンに接着剤をコーティングするステップと、前記第2電極板上に前記第1電極板を整列させて接合するステップと、前記第2電極板と第1電極板の接合により互いに対向する前記ナノ結晶酸化物フィルムとナノ粒子金属フィルムとの間に電解液を注入するステップと、前記対向するナノ結晶酸化物フィルムとナノ粒子金属フィルムとからなる単位セルの陰極と陽極を配線で接続するステップとを含むことを特徴とする。   In order to achieve the above object, a method for manufacturing a transparent solar cell module according to the present invention comprises alternately coating a nanocrystalline oxide film and a nanoparticulate metal film on a plurality of conductive film patterns coated on a transparent substrate. A step of manufacturing an electrode plate; a step of heat-treating the first electrode plate; and a step of adsorbing a dye to the nanocrystalline oxide film; and a plurality of conductive film patterns coated on a transparent substrate. And a step of manufacturing a second electrode plate by alternately coating the nanocrystalline oxide film, a step of heat-treating the second electrode plate and then adsorbing a dye to the nanocrystalline oxide film, and the second electrode Adhesive to the conductive film pattern around the nanocrystalline oxide film and nanoparticle metal film of the plate Coating, aligning and bonding the first electrode plate on the second electrode plate, and joining the second electrode plate and the first electrode plate to face each other with the nanocrystalline oxide film and the nano A step of injecting an electrolyte between the particle metal film and a step of connecting a cathode and an anode of the unit cell composed of the opposed nanocrystalline oxide film and the nanoparticle metal film by wiring. To do.

前記導電性基板は、ガラスまたはプラスチック基板であり、前記導電性フィルムは、SnO2:FまたはITOであることを特徴とする。 The conductive substrate is a glass or plastic substrate, and the conductive film is SnO 2 : F or ITO.

前記ナノ粒子金属は、プラチナであり、前記ナノ結晶酸化物は、10ないし15nmの粒子の大きさを持つチタニウム酸化物(TiO2)であることを特徴とする。 The nanoparticle metal may be platinum, and the nanocrystalline oxide may be titanium oxide (TiO 2 ) having a particle size of 10 to 15 nm.

前記色素は、10ないし24時間の間に吸着させ、この際、前記ナノ粒子金属フィルムの表面に保護膜をコーティングして前記色素が吸着出来ないようにすることを特徴とする。   The dye is adsorbed for 10 to 24 hours, and at this time, the surface of the nanoparticle metal film is coated with a protective film so that the dye cannot be adsorbed.

本発明は、単位セルを容易で、且つ簡単に直列または並列に接続できる透明色素増感太陽電池モジュールの製造方法を提供する。透明基板の導電性フィルムパターンに色素が吸着されたナノ結晶酸化物フィルムとナノ粒子プラチナ金属薄膜フィルムを交互にコーティングして下部及び上部電極板を各々製造する。前記下部及び上部電極板を接合し、色素が吸着されたナノ結晶酸化物フィルムとナノ粒子プラチナ金属薄膜フィルムとの間に電解質を注入した後、陰極と陽極を導電性物質(ペースト状、テープ状、ワイヤー状)で接続して透明太陽電池モジュールを製造する。   The present invention provides a method for producing a transparent dye-sensitized solar cell module in which unit cells can be easily and simply connected in series or in parallel. The lower electrode plate and the upper electrode plate are manufactured by alternately coating the nanocrystalline oxide film and the nanoparticle platinum metal thin film in which the dye is adsorbed on the conductive film pattern of the transparent substrate. After joining the lower and upper electrode plates and injecting an electrolyte between the nanocrystalline oxide film adsorbed with the dye and the nanoparticulate platinum metal thin film, the cathode and anode are made of a conductive material (paste-like, tape-like). , Wire-like) to produce a transparent solar cell module.

以下、添付の図面を参照して本発明の好適な実施例を詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1aないし図1dは、本発明に係る透明太陽電池モジュールの上部電極板製造過程を説明するための平面図である。   FIGS. 1a to 1d are plan views for explaining a process of manufacturing an upper electrode plate of a transparent solar cell module according to the present invention.

図1aを参照すれば、透明基板(10)上に導電性フィルム(11)をコーティングする。前記導電性フィルム(11)に一定の間隔でエッチング線を形成し、エッチング線に沿って導電性フィルム(11)を除去すれば、同じ幅の独立された導電性フィルムパターン(11)が残る。前記透明基板(10)は、ガラスまたはプラスチック基板を使用することができ、前記導電性フィルム(11)は、SnO2:F、ITOなどの導電性物質がコーティングされたフィルムを使用することができる。 Referring to FIG. 1a, a conductive film (11) is coated on a transparent substrate (10). If etching lines are formed on the conductive film (11) at regular intervals, and the conductive film (11) is removed along the etching lines, an independent conductive film pattern (11) having the same width remains. The transparent substrate (10) may be a glass or plastic substrate, and the conductive film (11) may be a film coated with a conductive material such as SnO 2 : F or ITO. .

図1bを参照すれば、前記導電性フィルムパターン(11)にナノ結晶酸化物フィルム(13)をコーティングする。この際、前記ナノ結晶酸化物フィルム(13)は、例えば、奇数番目の導電性フィルムパターン(11)にだけコーティングする。前記ナノ結晶酸化物(13)は、粒子の大きさが10ないし15nm程度であるチタニウム酸化物(TiO2)を用いる。 Referring to FIG. 1b, the conductive film pattern (11) is coated with a nanocrystalline oxide film (13). At this time, the nanocrystalline oxide film (13) is coated only on the odd-numbered conductive film pattern (11), for example. As the nanocrystalline oxide (13), titanium oxide (TiO 2 ) having a particle size of about 10 to 15 nm is used.

図1cを参照すれば、前記ナノ結晶酸化物フィルム(13)間の露出された前記導電性フィルムパターン(11)にナノ粒子金属フィルム(14)をコーティングする。この際、前記ナノ粒子金属フィルム(14)は、例えば、偶数番目の導電性フィルムパターン(11)にのみコーティングする。前記ナノ粒子金属(14)は、プラチナ(Pt)を用いる。   Referring to FIG. 1c, the conductive metal film pattern (11) exposed between the nanocrystalline oxide films (13) is coated with a nanoparticle metal film (14). At this time, the nanoparticle metal film (14) is coated only on the even-numbered conductive film pattern (11), for example. The nanoparticle metal (14) is platinum (Pt).

図1dを参照すれば、上記のように導電性フィルムパターン(11)にナノ結晶酸化物フィルム(13)とナノ粒子金属フィルム(14)が交互にコーティングされた上部電極板を450℃の温度で1時間程度熱処理し、前記ナノ結晶酸化物フィルム(13)に色素(15)を吸着させる。前記色素吸着は、10ないし24時間の間に実施し、この際、前記ナノ粒子金属フィルム(14)の表面には疏水性物質(真空、グリースなど)で保護膜をコーティングして色素が吸着出来ないようにする。   Referring to FIG.1d, the upper electrode plate having the conductive film pattern (11) and the nanocrystalline oxide film (13) and the nanoparticle metal film (14) alternately coated as described above is formed at a temperature of 450 ° C. Heat treatment is performed for about 1 hour to adsorb the dye (15) to the nanocrystalline oxide film (13). The dye adsorption is performed for 10 to 24 hours. At this time, the surface of the nanoparticle metal film (14) is coated with a protective film with a hydrophobic substance (vacuum, grease, etc.) to adsorb the dye. Do not.

前記ナノ結晶酸化物フィルム(13)とナノ粒子金属フィルム(14)をコーティングする時、前記導電性フィルムパターン(11)の一部、例えば、上部面に電極接続のための空間部(A部分)が形成されるように前記ナノ結晶酸化物フィルム(13)とナノ粒子金属フィルム(14)を導電性フィルムパターン(11)の下部面に整列させてコーティングする。   When coating the nanocrystalline oxide film (13) and the nanoparticulate metal film (14), a part of the conductive film pattern (11), for example, a space part (A part) for electrode connection on the upper surface The nanocrystalline oxide film (13) and the nanoparticulate metal film (14) are aligned and coated on the lower surface of the conductive film pattern (11) so as to be formed.

図2aないし図2dは、本発明に係る太陽電池モジュールの下部電極板製造過程を説明するための平面図である。   2a to 2d are plan views for explaining a process of manufacturing a lower electrode plate of the solar cell module according to the present invention.

図2aを参照すれば、透明基板(20)上に導電性フィルム(21)をコーティングする。前記導電性フィルム(21)に一定の間隔でエッチング線を形成し、エッチング線に沿って導電性フィルム(21)を除去すれば、同じ幅の独立された導電性フィルムパターン(21)が残る。前記透明基板(20)は、ガラスまたはプラスチック基板を使用することができ、前記導電性フィルム(21)は、SnO2:F、ITOなどの導電性物質がコーティングされたフィルムを使用することができる。前記透明基板(20)の大きさと前記導電性フィルムパターン(21)の幅と間隔は、前記上部電極板と同一にする。 Referring to FIG. 2a, a conductive film (21) is coated on a transparent substrate (20). If etching lines are formed on the conductive film (21) at regular intervals, and the conductive film (21) is removed along the etching lines, an independent conductive film pattern (21) having the same width remains. The transparent substrate (20) may be a glass or plastic substrate, and the conductive film (21) may be a film coated with a conductive material such as SnO 2 : F or ITO. . The size of the transparent substrate (20) and the width and interval of the conductive film pattern (21) are the same as those of the upper electrode plate.

図2bを参照すれば、前記導電性フィルムパターン(21)にナノ結晶酸化物フィルム(23)をコーティングする。この際、前記ナノ結晶酸化物フィルム(23)は、例えば、偶数番目の前記導電性フィルムパターン(21)にだけコーティングし、前記上部電極板にコーティングされた前記ナノ結晶酸化物フィルム(13)と重畳しないようにする。前記ナノ結晶酸化物(23)は粒子の大きさが10ないし15nm程度であるチタニウム酸化物(TiO2)を用いる。 Referring to FIG. 2b, the conductive film pattern (21) is coated with a nanocrystalline oxide film (23). At this time, for example, the nanocrystalline oxide film (23) is coated only on the even-numbered conductive film pattern (21), and the nanocrystalline oxide film (13) coated on the upper electrode plate, Avoid overlapping. As the nanocrystalline oxide (23), titanium oxide (TiO 2 ) having a particle size of about 10 to 15 nm is used.

図2cを参照すれば、前記ナノ結晶酸化物フィルム(23)間の露出された前記導電性フィルムパターン(21)にナノ粒子金属フィルム(24)をコーティングする。この際、前記ナノ粒子金属フィルム(24)は、例えば、奇数番目の導電性フィルムパターン(21)にだけコーティングして前記上部電極板にコーティングされた前記ナノ粒子金属フィルム(14)と重畳しないようにする。前記ナノ粒子金属(24)は、プラチナ(Pt)を用いる。   Referring to FIG. 2c, the conductive film pattern (21) exposed between the nanocrystalline oxide films (23) is coated with a nanoparticle metal film (24). At this time, for example, the nanoparticle metal film (24) is coated only on the odd-numbered conductive film pattern (21) and does not overlap the nanoparticle metal film (14) coated on the upper electrode plate. To. Platinum (Pt) is used for the nanoparticle metal (24).

図2dを参照すれば、上記のように導電性フィルムパターン(21)にナノ結晶酸化物フィルム(23)とナノ粒子金属フィルム(24)が交互にコーティングされた下部電極板を450℃の温度で1時間程度熱処理し、前記ナノ結晶酸化物フィルム(23)に色素(25)を吸着させる。前記色素吸着は、10ないし24時間の間に実施し、この際、前記ナノ粒子金属フィルム(24)の表面には疏水性物質(真空、グリース など)で保護膜をコーティングして色素が吸着出来ないようにする。   Referring to FIG.2d, the lower electrode plate having the conductive film pattern (21) coated with the nanocrystalline oxide film (23) and the nanoparticle metal film (24) as described above is coated at a temperature of 450 ° C. Heat treatment is performed for about 1 hour to adsorb the dye (25) to the nanocrystalline oxide film (23). The dye adsorption is performed for 10 to 24 hours. At this time, the surface of the nanoparticle metal film (24) is coated with a protective film with a hydrophobic substance (vacuum, grease, etc.) to adsorb the dye. Do not.

前記ナノ結晶酸化物フィルム(23)とナノ粒子金属フィルム(24)をコーティングする時、前記導電性フィルムパターン(21)の一部、例えば、下部面に電極接続のための空間部(B部分)が形成されるように前記ナノ結晶酸化物フィルム(23)とナノ粒子金属フィルム(24)を下部面に整列させてコーティングする。すなわち、前記上部電極板と下部電極板には互いに非対称に電極連結のための空間部(A及びB)が形成されなければならない。   When coating the nanocrystalline oxide film (23) and the nanoparticulate metal film (24), a part of the conductive film pattern (21), for example, a space part (B part) for electrode connection on the lower surface The nanocrystalline oxide film (23) and the nanoparticle metal film (24) are aligned and coated on the lower surface so as to be formed. That is, the upper electrode plate and the lower electrode plate must be formed with spaces (A and B) for connecting electrodes asymmetrically with each other.

図3aないし図3eは、上記のように製作された上部電極板と下部電極板を結合して透明太陽電池モジュールを完成する過程を説明するための平面図である。   FIGS. 3a to 3e are plan views for explaining a process of completing the transparent solar cell module by combining the upper electrode plate and the lower electrode plate manufactured as described above.

図3aを参照すれば、図2dのように製造された下部電極板の前記ナノ結晶酸化物フィルム(23)とナノ粒子金属フィルム(24)の周囲の前記導電性フィルムパターン(21)に接着剤(31)をコーティングする。前記接着剤(31)は、熱融着高分子フィルムまたはペーストを使用する。   Referring to FIG. 3a, an adhesive is applied to the conductive film pattern (21) around the nanocrystalline oxide film (23) and the nanoparticle metal film (24) of the lower electrode plate manufactured as shown in FIG. Coat (31). The adhesive (31) uses a heat-sealing polymer film or paste.

図3bを参照すれば、上記のように接着剤(31)がコーティングされた下部電極板上に図1dのように製造された上部電極板を整列させて接合する。前記下部電極板と上部電極板の接合により互いに対向するナノ結晶酸化物フィルムとナノ粒子金属フィルムとからなるいくつかの単位セル(32)等が形成される。   Referring to FIG. 3b, the upper electrode plate manufactured as shown in FIG. 1d is aligned and bonded on the lower electrode plate coated with the adhesive 31 as described above. By joining the lower electrode plate and the upper electrode plate, several unit cells (32) composed of a nanocrystalline oxide film and a nanoparticle metal film facing each other are formed.

図3cを参照すれば、前記下部電極板と上部電極板との間に電解液を注入する。前記単位セル(32)のナノ結晶酸化物フィルムとナノ粒子金属フィルムとの間に電解液(33)を注入する。   Referring to FIG. 3c, an electrolyte is injected between the lower electrode plate and the upper electrode plate. An electrolyte solution (33) is injected between the nanocrystalline oxide film and the nanoparticle metal film of the unit cell (32).

図3dを参照すれば、前記単位セル(32)の陰極と陽極を金属(Ag、Pt、炭素、Au、Vu、半田づけ用鉛等)ペースト、テープまたはワイヤーなどのような導電性材質の配線(34)で直列接続する。   Referring to FIG. 3d, the unit cell (32) cathode and anode are made of conductive material such as metal (Ag, Pt, carbon, Au, Vu, lead for soldering) paste, tape or wire. Connect in series at (34).

図4は、図3dのように製造された透明太陽電池モジュールの断面を示す。   FIG. 4 shows a cross section of the transparent solar cell module manufactured as shown in FIG. 3d.

色素が表面に吸着されたナノ結晶酸化物フィルム(13)とナノ粒子金属フィルム(14)が透明基板(10)の導電性フィルムパターン(11)に交互にコーティングされた上部電極板と、色素が表面に吸着されたナノ結晶酸化物フィルム(23)とナノ粒子金属フィルム(24)が透明基板(20)の導電性フィルムパターン(21)に交互にコーティングされた下部電極板が互いに接合される。前記下部電極板と上部電極板とは、前記ナノ粒子金属フィルム(14、24)と色素が吸着されたナノ結晶酸化物フィルム(13、23)の周囲にコーティングされた接着剤(31)により接合される。   An upper electrode plate in which a nanocrystalline oxide film (13) and a nanoparticulate metal film (14) having a dye adsorbed on the surface are alternately coated on a conductive film pattern (11) of a transparent substrate (10), and a dye The lower electrode plates in which the nanocrystalline oxide film (23) and the nanoparticle metal film (24) adsorbed on the surface are alternately coated on the conductive film pattern (21) of the transparent substrate (20) are bonded to each other. The lower electrode plate and the upper electrode plate are joined by an adhesive (31) coated around the nanoparticle metal film (14, 24) and the nanocrystalline oxide film (13, 23) on which the dye is adsorbed. Is done.

前記下部電極板と上部電極板の接合により互いに対向する前記色素が吸着されたナノ結晶酸化物フィルム(13、23)とナノ粒子金属フィルム(14、24)との間の前記接着剤(31)により囲まれた空間には、電解液(33)が各々注入される。前記対向する色素が吸着されたナノ結晶酸化物フィルム(13、23)とナノ粒子金属フィルム(14、24)とからなる単位セル(32)等の陰極と陽極は、導電性材質の配線(34)で直列接続される。   The adhesive (31) between the nanocrystalline oxide film (13, 23) and the nanoparticle metal film (14, 24) in which the dyes facing each other are bonded by bonding of the lower electrode plate and the upper electrode plate Each of the electrolytic solutions (33) is injected into the space surrounded by. The cathode and the anode of the unit cell (32) composed of the nanocrystalline oxide film (13, 23) and the nanoparticle metal film (14, 24) on which the opposing dyes are adsorbed are electrically conductive wiring (34 ) Are connected in series.

上述した通り、本発明は、透明基板の導電性フィルムパターンに色素が吸着されたナノ結晶酸化物フィルムとナノ粒子プラチナ金属薄膜フィルムを交互にコーティングして下部及び上部電極板を各々製造する。前記下部電極板と上部電極板を接合した後、互いに対向する色素が吸着されたナノ結晶酸化物フィルムとナノ粒子プラチナ金属薄膜フィルムとの間に電解質を注入して単位セルを構成させる。前記複数の単位セルの陰極と陽極を導電性物質で接続して透明太陽電池モジュールを製造する。したがって、本発明によれば、直列または並列接続が容易で、且つ簡単な透明太陽電池モジュールを製造できる。   As described above, in the present invention, the lower electrode plate and the upper electrode plate are manufactured by alternately coating the nanocrystalline oxide film and the nanoparticle platinum metal thin film in which the dye is adsorbed on the conductive film pattern of the transparent substrate. After the lower electrode plate and the upper electrode plate are joined, an electrolyte is injected between the nanocrystalline oxide film on which the dyes facing each other are adsorbed and the nanoparticulate platinum metal thin film to form a unit cell. A transparent solar cell module is manufactured by connecting the cathodes and anodes of the plurality of unit cells with a conductive material. Therefore, according to the present invention, a simple transparent solar cell module that can be easily connected in series or in parallel can be manufactured.

本発明に係る透明太陽電池モジュールの上部電極板製造過程を説明するための平面図である。It is a top view for demonstrating the upper electrode board manufacturing process of the transparent solar cell module which concerns on this invention. 本発明に係る透明太陽電池モジュールの上部電極板製造過程を説明するための平面図である。It is a top view for demonstrating the upper electrode board manufacturing process of the transparent solar cell module which concerns on this invention. 本発明に係る透明太陽電池モジュールの上部電極板製造過程を説明するための平面図である。It is a top view for demonstrating the upper electrode board manufacturing process of the transparent solar cell module which concerns on this invention. 本発明に係る透明太陽電池モジュールの上部電極板製造過程を説明するための平面図である。It is a top view for demonstrating the upper electrode board manufacturing process of the transparent solar cell module which concerns on this invention. 本発明に係る透明太陽電池モジュールの下部電極板製造過程を説明するための平面図である。It is a top view for demonstrating the lower electrode board manufacturing process of the transparent solar cell module which concerns on this invention. 本発明に係る透明太陽電池モジュールの下部電極板製造過程を説明するための平面図である。It is a top view for demonstrating the lower electrode board manufacturing process of the transparent solar cell module which concerns on this invention. 本発明に係る透明太陽電池モジュールの下部電極板製造過程を説明するための平面図である。It is a top view for demonstrating the lower electrode board manufacturing process of the transparent solar cell module which concerns on this invention. 本発明に係る透明太陽電池モジュールの下部電極板製造過程を説明するための平面図である。It is a top view for demonstrating the lower electrode board manufacturing process of the transparent solar cell module which concerns on this invention. 図1dのように製造された上部電極板と、図2dのように製造された下部電極板を接合して透明太陽電池モジュールを完成する過程を説明するための平面図である。2D is a plan view for explaining a process of completing a transparent solar cell module by joining an upper electrode plate manufactured as shown in FIG. 1d and a lower electrode plate manufactured as shown in FIG. 2d. 図1dのように製造された上部電極板と、図2dのように製造された下部電極板を接合して透明太陽電池モジュールを完成する過程を説明するための平面図である。2D is a plan view for explaining a process of completing a transparent solar cell module by joining an upper electrode plate manufactured as shown in FIG. 1d and a lower electrode plate manufactured as shown in FIG. 2d. 図1dのように製造された上部電極板と、図2dのように製造された下部電極板を接合して透明太陽電池モジュールを完成する過程を説明するための平面図である。2D is a plan view for explaining a process of completing a transparent solar cell module by joining an upper electrode plate manufactured as shown in FIG. 1d and a lower electrode plate manufactured as shown in FIG. 2d. 図1dのように製造された上部電極板と、図2dのように製造された下部電極板を接合して透明太陽電池モジュールを完成する過程を説明するための平面図である。2D is a plan view for explaining a process of completing a transparent solar cell module by joining an upper electrode plate manufactured as shown in FIG. 1d and a lower electrode plate manufactured as shown in FIG. 2d. 本発明に係る透明太陽電池モジュールを説明するための断面図である。It is sectional drawing for demonstrating the transparent solar cell module which concerns on this invention.

符号の説明Explanation of symbols

10、20 透明基板
11、21 導電性フィルム
13、23 ナノ結晶酸化物フィルム
14、24 ナノ粒子金属フィルム
15、25 色素
31 接着剤
32 単位セル
33 電解液
34 配線
10, 20 Transparent substrate 11, 21 Conductive film 13, 23 Nanocrystalline oxide film 14, 24 Nanoparticle metal film 15, 25 Dye 31 Adhesive 32 Unit cell 33 Electrolyte 34 Wiring

Claims (12)

導電性基板にナノ粒子金属フィルムと色素が吸着されたナノ結晶酸化物フィルムが交互にコーティングされてなる第1電極板と、
導電性基板に色素が吸着されたナノ結晶酸化物フィルムとナノ粒子金属フィルムが交互にコーティングされてなる第2電極板と、
前記第1及び第2電極板の接合により互いに対向する前記色素が吸着されたナノ結晶酸化物フィルムとナノ粒子金属フィルムとの間に各々注入された電解液と、
前記対向する色素が吸着されたナノ結晶酸化物フィルムとナノ粒子金属フィルムからなる単位セルの陰極と陽極を直列接続する配線とを含むことを特徴とする、透明太陽電池モジュール。
A first electrode plate in which a nanocrystalline metal film and a nanocrystalline oxide film in which a dye is adsorbed are alternately coated on a conductive substrate;
A second electrode plate formed by alternately coating a nanocrystalline oxide film having a dye adsorbed on a conductive substrate and a nanoparticle metal film;
An electrolyte solution each injected between a nanocrystalline oxide film and a nanoparticle metal film in which the dyes facing each other by bonding of the first and second electrode plates are adsorbed;
A transparent solar cell module comprising: a nanocrystalline oxide film on which the opposing pigment is adsorbed; and a wiring connecting a cathode and an anode of a unit cell made of a nanoparticle metal film in series.
前記第1電極板または第2電極板の前記ナノ粒子金属フィルムと前記色素が吸着されたナノ結晶酸化物フィルムの周囲にコーティングされた接着剤をさらに含むことを特徴とする、請求項1記載の透明太陽電池モジュール。   The adhesive of claim 1, further comprising an adhesive coated around the nanoparticle metal film of the first electrode plate or the second electrode plate and the nanocrystalline oxide film on which the dye is adsorbed. Transparent solar cell module. 前記接着剤は、熱融着高分子フィルムまたはペーストであることを特徴とする、請求項2記載の透明太陽電池モジュール。   The transparent solar cell module according to claim 2, wherein the adhesive is a heat fusion polymer film or a paste. 前記導電性基板は、ガラスまたはプラスチックからなる透明基板に導電性フィルムがコーティングされたことを特徴とする、請求項1記載の透明太陽電池モジュール。   The transparent solar cell module according to claim 1, wherein the conductive substrate is a transparent substrate made of glass or plastic and coated with a conductive film. 前記ナノ粒子金属は、プラチナであり、前記ナノ結晶酸化物は、10ないし15nmの粒子の大きさを持つチタニウム酸化物(TiO2)であることを特徴とする、 請求項1記載の透明太陽電池モジュール。 The transparent solar cell according to claim 1, wherein the nanoparticle metal is platinum, and the nanocrystalline oxide is titanium oxide (TiO 2 ) having a particle size of 10 to 15 nm. module. 前記配線は、前記導電性基板に形成されたことを特徴とする、 請求項1記載の透明太陽電池モジュール。   The transparent solar cell module according to claim 1, wherein the wiring is formed on the conductive substrate. 透明基板にコーティングされた多数の導電性フィルムパターンにナノ結晶酸化物フィルム及びナノ粒子金属フィルムを交互にコーティングして第1電極板を製造するステップと、
前記第1電極板を熱処理した後、前記ナノ結晶酸化物フィルムに色素を吸着させるステップと、
透明基板にコーティングされた多数の導電性フィルムパターンにナノ粒子金属フィルム及びナノ結晶酸化物フィルムを交互にコーティングして第2電極板を製造するステップと、
前記第2電極板を熱処理した後、前記ナノ結晶酸化物フィルムに色素を吸着させるステップと、
前記第2電極板の前記ナノ結晶酸化物フィルムとナノ粒子金属フィルム周囲の前記導電性フィルムパターンに接着剤をコーティングするステップと、
前記第2電極板上に前記第1電極板を整列させて接合するステップと、
前記第2電極板と第1電極板の接合により互いに対向する前記ナノ結晶酸化物フィルムとナノ粒子金属フィルムとの間に電解液を注入するステップと、
前記対向するナノ結晶酸化物フィルムとナノ粒子金属フィルムからなる単位セルの陰極と陽極を配線で接続するステップとを含むことを特徴とする、透明太陽電池モジュールの製造方法。
Coating a plurality of conductive film patterns coated on a transparent substrate alternately with a nanocrystalline oxide film and a nanoparticle metal film to produce a first electrode plate;
After heat-treating the first electrode plate, adsorbing a dye to the nanocrystalline oxide film;
Coating a plurality of conductive film patterns coated on a transparent substrate with a nanoparticle metal film and a nanocrystalline oxide film alternately to produce a second electrode plate;
After heat-treating the second electrode plate, adsorbing a dye to the nanocrystalline oxide film;
Coating the conductive film pattern around the nanocrystalline oxide film and nanoparticle metal film of the second electrode plate with an adhesive;
Aligning and bonding the first electrode plate on the second electrode plate;
Injecting an electrolyte between the nanocrystalline oxide film and the nanoparticulate metal film facing each other by joining the second electrode plate and the first electrode plate;
A method for producing a transparent solar cell module, comprising: connecting a cathode and an anode of a unit cell composed of the opposed nanocrystalline oxide film and the nanoparticle metal film by wiring.
前記導電性基板はガラスまたはプラスチック基板であり、前記導電性フィルムはSnO2:FまたはITOであることを特徴とする、請求項7記載の透明太陽電池モジュールの製造方法。 The method for manufacturing a transparent solar cell module according to claim 7, wherein the conductive substrate is a glass or plastic substrate, and the conductive film is SnO 2 : F or ITO. 前記ナノ粒子金属はプラチナであり、前記ナノ結晶酸化物は10ないし15nmの粒子の大きさを持つチタニウム酸化物(TiO2)であることを特徴とする、請求項7記載の透明太陽電池モジュールの製造方法。 The transparent solar cell module according to claim 7, wherein the nanoparticle metal is platinum, and the nanocrystalline oxide is titanium oxide (TiO 2 ) having a particle size of 10 to 15 nm. Production method. 前記色素は、10ないし24時間の間に吸着させ、この際、前記ナノ粒子金属フィルムの表面に保護膜をコーティングして前記色素が吸着されないようにすることを特徴とする、請求項7記載の透明太陽電池モジュールの製造方法。   8. The dye according to claim 7, wherein the dye is adsorbed for 10 to 24 hours, and at this time, the surface of the nanoparticle metal film is coated with a protective film so that the dye is not adsorbed. A method for producing a transparent solar cell module. 前記接着剤は、熱融着高分子フィルムまたはペーストであることを特徴とする、請求項7記載の透明太陽電池モジュールの製造方法。   The method for manufacturing a transparent solar cell module according to claim 7, wherein the adhesive is a heat-sealing polymer film or a paste. 前記配線は、導電性の金属ペースト、テープまたはワイヤーであることを特徴とする、請求項7記載の透明太陽電池モジュールの製造方法。   The method of manufacturing a transparent solar cell module according to claim 7, wherein the wiring is a conductive metal paste, tape, or wire.
JP2004195725A 2003-12-26 2004-07-01 Transparent solar cell module and manufacturing method thereof Expired - Fee Related JP4376707B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030097266A KR100548030B1 (en) 2003-12-26 2003-12-26 Transparent solar module and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005197204A true JP2005197204A (en) 2005-07-21
JP4376707B2 JP4376707B2 (en) 2009-12-02

Family

ID=34824984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195725A Expired - Fee Related JP4376707B2 (en) 2003-12-26 2004-07-01 Transparent solar cell module and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4376707B2 (en)
KR (1) KR100548030B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244954A (en) * 2005-03-07 2006-09-14 Fujimori Kogyo Co Ltd Wiring connection structure of dye-sensitized solar battery cell and dye-sensitized solar cell module
JP2007103215A (en) * 2005-10-06 2007-04-19 Enplas Corp Dye-sensitized solar cell, its counter electrode, and method of manufacturing counter electrode
WO2010135178A2 (en) * 2009-05-20 2010-11-25 Nanogram Corporation Metal patterning for electrically conductive structures based on alloy formation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143721A2 (en) * 2007-02-12 2008-11-27 Solasta, Inc. Photovoltaic cell with reduced hot-carrier cooling
US20090253227A1 (en) * 2008-04-08 2009-10-08 Defries Anthony Engineered or structured coatings for light manipulation in solar cells and other materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244954A (en) * 2005-03-07 2006-09-14 Fujimori Kogyo Co Ltd Wiring connection structure of dye-sensitized solar battery cell and dye-sensitized solar cell module
JP2007103215A (en) * 2005-10-06 2007-04-19 Enplas Corp Dye-sensitized solar cell, its counter electrode, and method of manufacturing counter electrode
WO2010135178A2 (en) * 2009-05-20 2010-11-25 Nanogram Corporation Metal patterning for electrically conductive structures based on alloy formation
WO2010135178A3 (en) * 2009-05-20 2011-02-03 Nanogram Corporation Metal patterning for electrically conductive structures based on alloy formation

Also Published As

Publication number Publication date
KR20050066064A (en) 2005-06-30
KR100548030B1 (en) 2006-02-02
JP4376707B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
KR100567331B1 (en) Lego-type module of dye-sensitized solar cells
JP5300735B2 (en) Dye-sensitized solar cell module
EP2287961B1 (en) Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
JP2001357897A (en) Photoelectric conversion module
CN102754273A (en) Dye-sensitized solar cell and method for manufacturing the same
JP2008251517A (en) Dye-sensitized solar cell module and method of manufacturing photo-electrode used in it
Vesce et al. Fabrication of spacer and catalytic layers in monolithic dye-sensitized solar cells
JP2012124163A (en) Solar cell module
JP4294244B2 (en) Nanoparticle oxide solar cell, method for producing the same, solar cell module and transparent battery window
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
JP5134867B2 (en) Photoelectric conversion element
JP4376707B2 (en) Transparent solar cell module and manufacturing method thereof
KR101190002B1 (en) Semiconductor electrode for dye-sensitized solar cell, preparation method thereof and dye-sensitized solar cell using the same
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
JP5160045B2 (en) Photoelectric conversion element
JP5344282B2 (en) Dye-sensitized solar cell
JP2010015830A (en) Photoelectric conversion element
JP2013125633A (en) Solar battery module
EP2359406B1 (en) Photovoltaic devices
JP2007157490A (en) Photoelectric conversion element and photoelectric conversion element module
JP2008041258A (en) Substrate for action electrode, and photoelectric conversion element
Jiang et al. Fabrication of enhanced electron transport layer by laser scanning technology for dye-sensitized solar cells
JP2006339601A (en) Solar cell module
KR101068440B1 (en) Manufacturing method of high efficiency electrode having plastic substrate and dye sensitized solar cells using the same
JP2011187183A (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Ref document number: 4376707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees