JP2005197019A - Conductive paste and laminated ceramic electronic component - Google Patents

Conductive paste and laminated ceramic electronic component Download PDF

Info

Publication number
JP2005197019A
JP2005197019A JP2004000076A JP2004000076A JP2005197019A JP 2005197019 A JP2005197019 A JP 2005197019A JP 2004000076 A JP2004000076 A JP 2004000076A JP 2004000076 A JP2004000076 A JP 2004000076A JP 2005197019 A JP2005197019 A JP 2005197019A
Authority
JP
Japan
Prior art keywords
conductive paste
phase method
synthesized
metal powder
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004000076A
Other languages
Japanese (ja)
Inventor
Shinya Okumura
真也 奥村
Mitsuhiro Yamazaki
三浩 山▲崎▼
Fuyuki Abe
冬希 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004000076A priority Critical patent/JP2005197019A/en
Publication of JP2005197019A publication Critical patent/JP2005197019A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste hardly generating fault of internal structure and short circuit on a laminated ceramic capacitor, coping with the reduction of the size of the laminated ceramic capacitor and the increase of the capacity thereof, and suitable for the formation of an internal conductive layer. <P>SOLUTION: The laminated ceramic electronic component is manufactured by using the conductive paste containing conductive metal powder with average size of 0.2 μm or less synthesized by a liquid phase method, and conductive metal powder with average size of 0.2 μm or less synthesized by a gas phase method with a volume ratio ranging 1:9 to 9:1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導電性ペースト、並びにこの導電性ペーストを用いて形成された積層セラミックコンデンサなどの積層セラミック電子部品に関するもので、特に、積層セラミック電子部品において薄層化および多層化を有利に図り得るようにするためのものである。   The present invention relates to a conductive paste and a multilayer ceramic electronic component such as a multilayer ceramic capacitor formed using the conductive paste, and in particular, the multilayer ceramic electronic component can be advantageously thinned and multilayered. It is for doing so.

従来の積層セラミック電子部品の製造方法について、積層セラミックコンデンサを例に説明する。   A conventional method for manufacturing a multilayer ceramic electronic component will be described by taking a multilayer ceramic capacitor as an example.

まず、誘電体セラミック原料粉末、有機バインダ、有機溶剤からなるセラミックグリーンシートを作製する。   First, a ceramic green sheet made of a dielectric ceramic raw material powder, an organic binder, and an organic solvent is prepared.

一方、導電性金属粉末、有機バインダ、有機溶剤からなる導電性ペーストを作製する。   On the other hand, a conductive paste made of a conductive metal powder, an organic binder, and an organic solvent is prepared.

次に、セラミックグリーンシート面に導電性ペーストを用いてスクリーン印刷などの方法により所望のパターンを有する内部導電体層が形成されたセラミックグリーンシートを得る。   Next, a ceramic green sheet in which an internal conductor layer having a desired pattern is formed on the ceramic green sheet surface by a method such as screen printing using a conductive paste is obtained.

次いで、この内部導電体層が形成されたセラミックグリーンシートを所定枚数積層し、加熱圧着して積層体グリーンブロックとした後、所定形状に切断、分離し積層体グリーンチップとする。   Next, a predetermined number of the ceramic green sheets on which the internal conductor layers are formed are laminated and heat-pressed to form a laminated green block, which is then cut and separated into a predetermined shape to obtain a laminated green chip.

その後、この積層体グリーンチップを、所定の焼成温度にて焼結させ、内部導電体層の露出している両端面に導電材料を塗布して外部電極を形成する。   Thereafter, the multilayer green chip is sintered at a predetermined firing temperature, and a conductive material is applied to both exposed end surfaces of the internal conductor layer to form external electrodes.

このようにして、積層セラミックコンデンサを得る。   In this way, a multilayer ceramic capacitor is obtained.

近年、電子機器が急速に普及しつつあり、これらの電子機器は技術革新が非常に目覚ましく、軽薄短小化および多機能化が要求されている。このような状況下で、数多く使用されている積層セラミックコンデンサにおいても、小型化、大容量化への要望が益々高まっている。   In recent years, electronic devices are rapidly spreading, and these electronic devices are remarkably technologically innovative, and are required to be light, thin, small, and multifunctional. Under such circumstances, there is an increasing demand for miniaturization and large capacity in the multilayer ceramic capacitors that are used in large numbers.

従って、積層セラミックコンデンサにおいては、その小型化かつ大容量化を目的として、セラミック層の薄層化および多層化が進んでいる。例えば、積層セラミックにおいて、そのセラミック層の厚みは1.5μm程度のものが実用化されようとしている。   Therefore, in the multilayer ceramic capacitor, the ceramic layer is becoming thinner and multilayered for the purpose of reducing the size and increasing the capacity. For example, in a multilayer ceramic, a ceramic layer having a thickness of about 1.5 μm is about to be put into practical use.

セラミック層の薄層化および多層化を図るためには、内部導電体層の薄層化も重要な課題となるが、このためには焼結挙動の異なるセラミック層と内部導電体層と収縮挙動をできるだけ近づけることが重要な課題となる。   In order to reduce the thickness and thickness of ceramic layers, it is also important to reduce the thickness of the internal conductor layer. To this end, ceramic layers with different sintering behavior and the internal conductor layer have different shrinkage behaviors. Is as important as possible.

これらの課題を解決するため、セラミック粉末を内部導電体層を形成するために用いられる導電性ペーストに添加し、それによって、内部導電体層の収縮挙動をセラミック層の収縮挙動に近づける方法として、例えば、特許文献1が知られている。
特開平6−290985号公報
In order to solve these problems, as a method of adding ceramic powder to the conductive paste used to form the inner conductor layer, thereby bringing the shrinkage behavior of the inner conductor layer closer to the shrinkage behavior of the ceramic layer, For example, Patent Document 1 is known.
JP-A-6-290985

しかしながら、積層セラミックコンデンサにおいて、その小型化かつ大容量化を目的として、セラミック層と内部導電体層の薄層化が進むにつれて、上記の方法では十分な効果が得られなくなっている。   However, in the multilayer ceramic capacitor, as the ceramic layer and the internal conductor layer are made thinner for the purpose of reducing the size and increasing the capacity, the above method cannot obtain a sufficient effect.

ところで、積層セラミックコンデンサに用いる内部導電体層を形成するために用いられる導電性ペーストに含まれる導電性金属粉末としては、液相法または気相法で合成された平均粒径0.4μmを超えるニッケル粉末が多く用いられている。   By the way, as the conductive metal powder contained in the conductive paste used for forming the internal conductor layer used in the multilayer ceramic capacitor, the average particle size synthesized by the liquid phase method or the gas phase method exceeds 0.4 μm. A lot of nickel powder is used.

ここで、液相法で合成されたニッケル粉末としては、例えば噴霧法やアルコキシド法などで合成されたニッケル粉末をあげることができる。また、気相法で合成されたニッケル粉末としては、例えば、CVD法などで合成されたニッケル粉末を例示することができる。   Here, examples of the nickel powder synthesized by the liquid phase method include nickel powder synthesized by a spray method, an alkoxide method, or the like. Examples of the nickel powder synthesized by the vapor phase method include nickel powder synthesized by the CVD method.

しかしながら、液相法で合成されたニッケル粉末は、結晶性が低い。そのため、液相法で合成されたニッケル粉末を含む導電性ペーストを用いて内部導電体層を形成すると、ニッケル粉末の焼結が進みやすいため、内部導電体層の焼結収縮開始温度が低温化し、その結果セラミック層との焼結収縮開始温度の差が大きくなり、クラックやデラミネーションなどの内部構造欠陥が生じやすい傾向にある。   However, nickel powder synthesized by the liquid phase method has low crystallinity. Therefore, if the internal conductor layer is formed using a conductive paste containing nickel powder synthesized by the liquid phase method, the sintering shrinkage start temperature of the internal conductor layer is lowered because the nickel powder is easily sintered. As a result, the difference in sintering shrinkage start temperature with the ceramic layer becomes large, and internal structural defects such as cracks and delamination tend to occur.

また、気相法で合成されたニッケル粉末は、粉末表面の反応活性が高く、粉どうしがくっつきやすい。すなわち、凝集しやすい。そのため、気相法で合成された粉末の平均粒径が、例えば、0.4μm以上のニッケル粉末を含む導電性ペーストを用いて、内部導電体層の厚みが1.5μm以下となるような薄層化を行うために、導電性ペーストの塗布厚みを薄くすると、内部導電体層となるべき乾燥後の導電性ペースト膜の表面の平滑性が低下してしまうとともに、導電性ペースト膜の凝集物による内部導電体層の凸部がグリーンシートを貫通してしまい、ショート不良が増加し、歩留を低下させる傾向にある。   In addition, nickel powder synthesized by a vapor phase method has high reaction activity on the surface of the powder, and the powder tends to stick together. That is, it is easy to aggregate. For this reason, the average particle size of the powder synthesized by the vapor phase method is, for example, thin enough that the thickness of the internal conductor layer is 1.5 μm or less using a conductive paste containing nickel powder of 0.4 μm or more. If the coating thickness of the conductive paste is reduced in order to perform layering, the smoothness of the surface of the conductive paste film after drying, which should become the internal conductor layer, decreases, and the aggregate of the conductive paste film The convex portion of the internal conductor layer due to the piercing through the green sheet tends to increase short-circuit defects and lower the yield.

このような背景の下、積層セラミックコンデンサの小型化、大容量化を目的としたセラミック層の薄層化において、クラックやデラミネーションなどの内部構造欠陥、また、貫通によるショート不良の問題を引き起こさない、内部導電体層形成のための導電性ペーストの実現が望まれる。   Against this backdrop, when the ceramic layer is made thinner for the purpose of reducing the size and increasing the capacity of the multilayer ceramic capacitor, internal structural defects such as cracks and delamination, and short-circuit defects due to penetration do not occur. Realization of a conductive paste for forming an internal conductor layer is desired.

前記目的を達成するために、本発明は以下の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、液相法で合成した凝集しにくい導電性金属粉末と、気相法で合成した結晶性が高い導電性金属粉末と、有機ビヒクルとを含み、液相法で合成した導電性金属粉末と気相法で合成した導電性金属粉末の比率が体積比率で1:9〜9:1の範囲にある導電性ペーストであり、焼成時におけるセラミック層と内部導電体層との焼結収縮開始温度の差が小さくなり、クラックやデラミネーションなどの内部構造欠陥が生じにくく、導電性ペースト膜の凝集物により内部導電体層の凸部がグリーンシートを貫通してしまうことによるショート不良を少なくすることができる積層セラミック電子部品を提供することができる。   The invention according to claim 1 of the present invention includes a conductive metal powder that is not easily aggregated synthesized by a liquid phase method, a conductive metal powder that is synthesized by a vapor phase method and has high crystallinity, and an organic vehicle. A conductive paste in which the ratio of the conductive metal powder synthesized by the phase method and the conductive metal powder synthesized by the vapor phase method is in the range of 1: 9 to 9: 1 by volume, and the ceramic layer and the interior during firing The difference in sintering shrinkage start temperature with the conductor layer is reduced, and internal structural defects such as cracks and delamination are unlikely to occur, and the convex portion of the inner conductor layer penetrates the green sheet due to the aggregate of the conductive paste film. Therefore, it is possible to provide a multilayer ceramic electronic component that can reduce short-circuit defects due to the occurrence of the failure.

本発明の請求項2に記載の発明は、平均粒径が0.2μm以下のニッケル粉末を用いることで、たとえ、凝集物が発生したとしても、内部導電体層の凸部が形成されにくいため、グリーンシートを貫通してしまうショート不良をさらに少なくすることができる。   According to the second aspect of the present invention, the use of nickel powder having an average particle size of 0.2 μm or less makes it difficult to form convex portions of the internal conductor layer even if aggregates are generated. Further, it is possible to further reduce short-circuit defects that penetrate the green sheet.

本発明の請求項3に記載の発明は、導電性ペーストは、目開きが5μm以下のフィルターで濾過することで、ニッケル粉末の凝集粒子を除去することができ、印刷した内部導電体層の平滑性が得られ、貫通してしまうショート不良をさらに低減させることができる。   According to a third aspect of the present invention, the conductive paste can be filtered with a filter having an opening of 5 μm or less to remove the agglomerated particles of the nickel powder, and the smoothness of the printed internal conductor layer. The short-circuit defect which penetrates and can penetrate can be further reduced.

本発明の請求項4に記載の発明は、請求項1に記載の導電性ペーストを用いて内部導電体層を形成したセラミックグリーンシートを積層、切断、焼成して積層セラミック電子部品を得ることにより、クラックやデラミネーションなどの内部構造欠陥が生じにくく、ショート不良が少ない積層セラミック電子部品を提供することができる。   According to a fourth aspect of the present invention, there is provided a multilayer ceramic electronic component obtained by laminating, cutting and firing a ceramic green sheet having an internal conductor layer formed using the conductive paste according to the first aspect. In addition, it is possible to provide a multilayer ceramic electronic component that is less prone to internal structural defects such as cracks and delamination and has few short-circuit defects.

本発明の導電性ペーストは、液相法で合成した凝集しにくい導電性金属粉末と、気相法で合成した結晶性が高い導電性金属粉末とを含み、焼成時におけるセラミック層と内部導電体層との焼結収縮開始温度の差を小さくできるため、クラックやデラミネーションなどの内部構造欠陥が生じにくく、かつ内部導電体層の凸部がグリーンシートを貫通してしまうショート不良を少なくすることができるという効果を奏するものである。   The conductive paste of the present invention includes a conductive metal powder which is not easily aggregated synthesized by a liquid phase method and a conductive metal powder which is synthesized by a vapor phase method and has high crystallinity, and a ceramic layer and an internal conductor during firing. Because the difference in sintering shrinkage start temperature with the layer can be reduced, internal defects such as cracks and delamination are unlikely to occur, and short-circuit defects in which the convex portion of the internal conductor layer penetrates the green sheet are reduced. It has the effect of being able to.

(実施の形態1)
以下、積層セラミックコンデンサを例にして本発明の実施の形態1を用いて、本発明の特に請求項1〜4について説明する。
(Embodiment 1)
Hereinafter, the first to fourth embodiments of the present invention will be described with reference to a multilayer ceramic capacitor as an example.

まず平均粒径0.5μmのチタン酸バリウムと添加物を含むセラミック粉末と、有機バインダと、有機溶剤とを所定量混合し、セラミックスラリーを得た。このセラミックスラリーを用いて、ドクターブレード法により、焼成後の厚みが2.0μmとなるように厚みを設定したセラミックグリーンシートを作製した。   First, ceramic slurry containing barium titanate having an average particle size of 0.5 μm, an additive, an organic binder, and an organic solvent were mixed to obtain a ceramic slurry. Using this ceramic slurry, a ceramic green sheet having a thickness set to 2.0 μm after firing was prepared by a doctor blade method.

また、内部導電体層形成用導電性ペーストとして、(表1)に示した平均粒径を持ち、気相法によるニッケル粉末としてCVD法で合成した粉末と、液相法によるニッケル粉末としてアルコキシド法で合成した粉末とを、(表1)に示した体積比率にて混合し、さらに有機バインダと有機溶剤とを所定量添加し、混練、分散を行うことによって、導電性ペーストを作製した。   Further, as the conductive paste for forming the internal conductor layer, the powder having the average particle size shown in Table 1 and synthesized by the CVD method as the nickel powder by the vapor phase method and the alkoxide method as the nickel powder by the liquid phase method The conductive powder was prepared by mixing the powder synthesized in (1) at a volume ratio shown in (Table 1), adding a predetermined amount of an organic binder and an organic solvent, and kneading and dispersing.

なお、(表1)において、合成方法・平均粒径の欄になしと記載されている試料については、その合成方法のニッケル粉末を用いなかったことを意味している。   In Table 1, the sample described as “None” in the column of the synthesis method / average particle size means that the nickel powder of the synthesis method was not used.

この導電性ペーストを用いて、焼成後の厚みが1.5μmとなるように厚みを設定して、セラミックグリーンシート上に所定のパターンで内部導電体層をスクリーン印刷により形成した。   Using this conductive paste, the thickness was set so that the thickness after firing was 1.5 μm, and the internal conductor layer was formed on the ceramic green sheet in a predetermined pattern by screen printing.

次いで、この内部導電体層が形成されたグリーンシートを300枚積層し、上下に保護層として適宜枚数の無地のセラミックグリーンシートを積層し、積層体を得た。得られた積層体を加熱圧着して積層体グリーンブロックとした後、所定形状に切断、分離し積層体グリーンチップを得た。その後、積層体グリーンチップを、還元性雰囲気下で最高温度1250℃で焼成し、焼結体を得た。得られた焼結体の内部導電体層が露出する両端面に外部電極を形成し、積層セラミックコンデンサを得た。   Next, 300 green sheets on which this internal conductor layer was formed were laminated, and a suitable number of plain ceramic green sheets were laminated as protective layers on the top and bottom to obtain a laminate. The obtained laminate was thermocompression bonded to obtain a laminate green block, and then cut and separated into a predetermined shape to obtain a laminate green chip. Thereafter, the multilayer green chip was fired at a maximum temperature of 1250 ° C. in a reducing atmosphere to obtain a sintered body. External electrodes were formed on both end faces from which the internal conductor layer of the obtained sintered body was exposed to obtain a multilayer ceramic capacitor.

このようにして得られた積層セラミックコンデンサの外形寸法は、幅1.6mm、長さ3.2mmおよび厚さ1.5mmであった。   The outer dimensions of the multilayer ceramic capacitor thus obtained were 1.6 mm in width, 3.2 mm in length, and 1.5 mm in thickness.

このようにして得られた積層セラミックコンデンサの各試料について、構造欠陥発生数およびショート不良数をそれぞれ評価した。   With respect to each sample of the multilayer ceramic capacitor thus obtained, the number of structural defects and the number of short-circuit defects were evaluated.

より詳細には、作製した試料の中から無作為に100個の試料を抜き取り、断面を顕微鏡観察することによって、クラックまたはデラミネーションなどの構造欠陥が発生している試料数をカウントし、構造欠陥発生数とした。   More specifically, 100 samples are randomly extracted from the prepared samples and the number of samples in which structural defects such as cracks or delamination are generated is counted by observing the cross section under a microscope. The number of occurrences.

また、温度25℃、1kHzおよび1Vrmsの条件下で、電気特性を測定してショート不良が生じている試料数をカウントし、ショート不良数とした。   Moreover, electrical characteristics were measured under the conditions of a temperature of 25 ° C., 1 kHz, and 1 Vrms, and the number of samples in which a short circuit failure occurred was counted, and the number of short circuit failures was obtained.

Figure 2005197019
Figure 2005197019

(表1)から、液相法で合成したニッケル粉末のみの導電性ペーストを用いて内部導電体層を形成した試料番号1,6,11では、ショート不良数は少ないが、構造欠陥発生数が多いことが分かる。これは、液相法で合成されたニッケル粉末は、焼結が進みやすいため、内部導電体層の焼結収縮開始温度が低温化し、その結果セラミック層との焼結収縮開始温度の差が大きくなり、クラックやデラミネーションなどの内部構造欠陥が生じやすいためである。   From Table 1, Sample Nos. 1, 6, and 11 in which the internal conductor layer was formed using the conductive paste made only of nickel powder synthesized by the liquid phase method had a small number of short-circuit defects but the number of structural defects generated. I understand that there are many. This is because the nickel powder synthesized by the liquid phase method is easy to sinter, so the sintering shrinkage start temperature of the internal conductor layer is lowered, resulting in a large difference in the sintering shrinkage start temperature with the ceramic layer. This is because internal structural defects such as cracks and delamination are likely to occur.

また、気相法で合成したニッケル粉末だけを用いた試料番号5,10,13の場合には、構造欠陥発生数を確実に抑制することができるが、ショート不良数が多いことが分かる。これは、気相法で合成されたニッケル粉末は、粉末表面の反応活性が高く、粉どうしがくっつきやすい(凝集しやすい)ため、内部導電体層となるべき乾燥後の導電性ペースト膜の表面の平滑性が低下してしまうとともに、導電性ペースト膜の凝集物による内部導電体層の凸部がグリーンシートを貫通してしまい、ショート不良が増加するためである。   In the case of sample numbers 5, 10, and 13 using only nickel powder synthesized by the vapor phase method, the number of structural defects can be surely suppressed, but it can be seen that the number of short-circuit defects is large. This is because the nickel powder synthesized by the vapor phase method has a high reaction activity on the powder surface, and the powder tends to stick together (easy to aggregate), so the surface of the conductive paste film after drying that should become the internal conductor layer This is because the smoothness of the inner conductive layer is reduced and the convex portion of the inner conductive layer due to the aggregate of the conductive paste film penetrates the green sheet, thereby increasing short-circuit defects.

一方、本発明により液相法で合成したニッケル粉末と、気相法で合成したニッケル粉末を体積比率で1:9〜9:1で含む導電性ペーストを使用して内部導電体層を形成した試料番号2〜4,7〜9,12の場合には、構造欠陥発生数を確実に抑制することができるとともにショート不良数を少なくすることができる。   Meanwhile, an internal conductor layer was formed using a conductive paste containing a nickel powder synthesized by a liquid phase method according to the present invention and a nickel powder synthesized by a gas phase method in a volume ratio of 1: 9 to 9: 1. In the case of sample numbers 2-4, 7-9, and 12, the number of structural defects can be reliably suppressed and the number of short-circuit defects can be reduced.

また(表1)より、ニッケル粉末の平均粒径が0.2μmを超える導電性ペーストを用いた試料番号2〜4では、ショート不良数が多いことがわかる。   From Table 1, it can be seen that Sample Nos. 2 to 4 using the conductive paste having an average particle diameter of nickel powder exceeding 0.2 μm have a large number of short-circuit defects.

これに対して、試料番号7〜9,12のように、ニッケル粉末の平均粒径が0.2μm以下の導電性ペーストを用いた場合には、ショート不良数が少なくなっていることがわかる。   On the other hand, it can be seen that the number of short-circuit defects is reduced when a conductive paste having an average particle diameter of nickel powder of 0.2 μm or less is used as in sample numbers 7 to 9 and 12.

(実施の形態2)
次に、液相法で合成した0.2μmのニッケル粉末と、気相法で合成した0.2μmのニッケル粉末を用いて、体積比率1:1で、実施の形態1と同様の方法によって、導電性ペーストを作製した後、目開きが5μm、10μmの2種のフィルターを用いて濾過し、2種類の導電性ペーストを作製した。
(Embodiment 2)
Next, by using a 0.2 μm nickel powder synthesized by a liquid phase method and a 0.2 μm nickel powder synthesized by a gas phase method at a volume ratio of 1: 1, the same method as in the first embodiment, After producing the conductive paste, the mixture was filtered using two types of filters having openings of 5 μm and 10 μm to produce two types of conductive paste.

この導電性ペーストを用いてセラミックグリーンシート上に内部導電体層を形成し、積層して、積層セラミックコンデンサを得た。   Using this conductive paste, an internal conductor layer was formed on a ceramic green sheet and laminated to obtain a multilayer ceramic capacitor.

このようにして得られた積層セラミックコンデンサの各試料の構造欠陥発生数およびショート不良数を実施の形態1の場合と同様の方法によって評価した。   The number of structural defects and the number of short-circuit defects in each sample of the multilayer ceramic capacitor thus obtained were evaluated by the same method as in the first embodiment.

その結果を(表2)に示す。   The results are shown in (Table 2).

なお、(表2)において、濾過の欄になしと記載されている試料については、導電性ペーストの濾過を行わなかったことを意味している。   It should be noted that in (Table 2), the sample described as “None” in the column of filtration means that the conductive paste was not filtered.

Figure 2005197019
Figure 2005197019

(表2)から、試料番号14のように、導電性ペーストの濾過を行わなかった場合には、ショート不良数は7/100個であり、(表1)の数字と比べて、あまり減少していない。   From (Table 2), when the conductive paste was not filtered as in sample number 14, the number of short-circuit defects was 7/100, which was much less than the numbers in (Table 1). Not.

また、目開きが10μmのフィルターを濾過した導電性ペーストを用いて内部導電体層を形成した試料番号15では、ショート不良数は6/100個と、あまり減少は見られなかった。   In Sample No. 15 in which the internal conductor layer was formed using a conductive paste obtained by filtering a filter having an opening of 10 μm, the number of short-circuit defects was 6/100, which was not significantly reduced.

これに対して、目開きが5μmのフィルターを用いて濾過を行った導電性ペーストを用いた試料番号16の場合には、ショート不良数が0個と極めて良好な結果が得られた。   On the other hand, in the case of Sample No. 16 using the conductive paste that was filtered using a filter having an opening of 5 μm, the number of short-circuit defects was 0, and an extremely good result was obtained.

以上、積層セラミックコンデンサの実施の形態に基づき説明したが、上述した積層セラミックコンデンサに限らず、他の積層セラミック電子部品、例えば、積層バリスタ、積層チップサーミスタなどについても、同様の効果が得られる。   As described above, the multilayer ceramic capacitor has been described based on the embodiment. However, the same effect can be obtained not only for the multilayer ceramic capacitor described above but also for other multilayer ceramic electronic components such as a multilayer varistor and a multilayer chip thermistor.

また、上記実施の形態では気相法合成金属粉末としてCVD法で合成したニッケル粉末と、液相法合成金属粉末としてアルコキシド法で合成したニッケル粉末とを用いたが、他の気相合成法、液相合成法で作製された金属粉末を用いた場合にも同様の効果が得られる。   Further, in the above embodiment, nickel powder synthesized by CVD method as vapor phase synthetic metal powder and nickel powder synthesized by alkoxide method as liquid phase synthetic metal powder were used. The same effect can be obtained when using a metal powder produced by a liquid phase synthesis method.

本発明にかかる導電性ペーストは、液相法で合成した凝集しにくい導電性金属粉末と、気相法で合成した結晶性が高い導電性金属粉末とを特定の体積比率で含むことにより、焼成時におけるセラミック層と内部導電体層との焼結収縮開始温度の差を小さくすることができ、クラックやデラミネーションなどの内部構造欠陥が生じにくく、またショート不良を少なくすることができるという効果を有し、積層セラミック電子部品において、セラミック層および内部導電体層の薄層化によって、小型化かつ大容量化などを進める上で有用である。   The conductive paste according to the present invention includes a conductive metal powder which is not easily aggregated synthesized by a liquid phase method and a conductive metal powder which is synthesized by a gas phase method and has a high crystallinity in a specific volume ratio. The difference in sintering shrinkage start temperature between the ceramic layer and the internal conductor layer at the time can be reduced, internal structural defects such as cracks and delamination are less likely to occur, and short-circuit defects can be reduced. In the multilayer ceramic electronic component, it is useful for reducing the size and increasing the capacity by thinning the ceramic layer and the internal conductor layer.

Claims (4)

少なくとも液相法で合成した導電性金属粉末と気相法で合成した導電性金属粉末と、有機ビヒクルとを含み、前記液相法で合成した導電性金属粉末と前記気相法で合成した導電性金属粉末の比率が体積比率で1:9〜9:1の範囲にある導電性ペースト。 At least a conductive metal powder synthesized by the liquid phase method, a conductive metal powder synthesized by the vapor phase method, and an organic vehicle, and the conductive metal powder synthesized by the liquid phase method and the conductive phase synthesized by the vapor phase method. The conductive paste in which the ratio of the conductive metal powder is in the range of 1: 9 to 9: 1 by volume. 導電性金属粉末は、平均粒径が0.2μm以下のニッケル粉末である請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the conductive metal powder is nickel powder having an average particle size of 0.2 μm or less. 導電性ペーストは、目開きが5μm以下のフィルターで濾過する請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the conductive paste is filtered with a filter having an opening of 5 μm or less. 少なくとも液相法で合成した導電性金属粉末と気相法で合成した導電性金属粉末と、有機ビヒクルとを含み、前記液相法で合成した導電性金属粉末と気相法で合成した導電性金属粉末の比率が体積比率で1:9〜9:1の範囲にある導電性ペーストを用いてセラミックグリーンシートに所望のパターンを有する内部導電体層を形成したセラミックグリーンシートを積層し、切断し焼成して得られる積層セラミック電子部品。 At least a conductive metal powder synthesized by the liquid phase method, a conductive metal powder synthesized by the gas phase method, and an organic vehicle, and the conductive metal powder synthesized by the liquid phase method and the conductivity synthesized by the gas phase method. A ceramic green sheet in which an internal conductor layer having a desired pattern is formed is laminated on a ceramic green sheet using a conductive paste having a volume ratio of 1: 9 to 9: 1 by volume, and then cut. Multilayer ceramic electronic parts obtained by firing.
JP2004000076A 2004-01-05 2004-01-05 Conductive paste and laminated ceramic electronic component Pending JP2005197019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000076A JP2005197019A (en) 2004-01-05 2004-01-05 Conductive paste and laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000076A JP2005197019A (en) 2004-01-05 2004-01-05 Conductive paste and laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2005197019A true JP2005197019A (en) 2005-07-21

Family

ID=34816022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000076A Pending JP2005197019A (en) 2004-01-05 2004-01-05 Conductive paste and laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2005197019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389645A (en) * 2018-03-02 2018-08-10 华南理工大学 A kind of preparation method of the liquid metal conductive filler based on liquid-solid two-phase structure
KR20220145326A (en) 2020-03-04 2022-10-28 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive pastes, electronic components and multilayer ceramic capacitors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389645A (en) * 2018-03-02 2018-08-10 华南理工大学 A kind of preparation method of the liquid metal conductive filler based on liquid-solid two-phase structure
CN108389645B (en) * 2018-03-02 2020-08-18 华南理工大学 Preparation method of liquid metal conductive filler based on liquid-solid two-phase structure
KR20220145326A (en) 2020-03-04 2022-10-28 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive pastes, electronic components and multilayer ceramic capacitors

Similar Documents

Publication Publication Date Title
JP2011139021A (en) Multilayer ceramic capacitor
JP2014022721A (en) Multilayer ceramic electronic component and method of manufacturing the same
JP5156805B2 (en) Multilayer ceramic capacitor
KR20110067509A (en) Paste compound for termination electrode and multilayer ceramic capacitor comprising the same and manufactuaring method thereof
JP7274372B2 (en) Ceramic electronic component and manufacturing method thereof
JP2012138579A (en) Conductive paste composition for external electrode, multilayer ceramic capacitor including the same and manufacturing method thereof
JP2007095382A (en) Internal electrode paste, manufacturing method of laminated ceramic capacitor, and laminated ceramic capacitor
JP2012182355A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP4303715B2 (en) Conductive paste and method for manufacturing multilayer electronic component
JPWO2005036571A1 (en) Electrode paste, ceramic electronic component and manufacturing method thereof
JP2008085041A (en) Multilayer ceramic capacitor and its manufacturing method
JP3944144B2 (en) Ceramic electronic component and method for manufacturing the same
KR101141441B1 (en) A method of manufacturing ceramic paste for multilayer ceramic electronic component and a method of manufacturing multilayer ceramic electronic component
JP2007234330A (en) Conductor paste and electronic part
JP2004096010A (en) Laminated ceramic electronic component fabricating process
JP4826881B2 (en) Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component
JP2005197019A (en) Conductive paste and laminated ceramic electronic component
JP2004179349A (en) Laminated electronic component and its manufacturing method
JPH10214520A (en) Conductive paste
JP2004345873A (en) Paste, production method therefor, multilayer ceramic electronic part, and production method therefor
JP2022154959A (en) Ceramic electronic component and manufacturing method thereof
JP6809280B2 (en) Method of manufacturing conductive paste
JP6601265B2 (en) Method for producing conductive paste and method for producing multilayer ceramic capacitor
JP3538706B2 (en) Method for producing ceramic slurry composition and method for producing ceramic green sheet
JP2007284297A (en) Green sheet, multilayer substrate using the same and method of manufacturing the same