JP2005195419A - Height measuring device - Google Patents

Height measuring device Download PDF

Info

Publication number
JP2005195419A
JP2005195419A JP2004001035A JP2004001035A JP2005195419A JP 2005195419 A JP2005195419 A JP 2005195419A JP 2004001035 A JP2004001035 A JP 2004001035A JP 2004001035 A JP2004001035 A JP 2004001035A JP 2005195419 A JP2005195419 A JP 2005195419A
Authority
JP
Japan
Prior art keywords
maximum light
height
measurement object
optical axis
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004001035A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
康夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004001035A priority Critical patent/JP2005195419A/en
Publication of JP2005195419A publication Critical patent/JP2005195419A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a height measuring device capable of detecting the height of a measuring object accurately at high speed in the noncontact state. <P>SOLUTION: This height measuring device is equipped with a two-dimensional photodetection part 30 for receiving light from the measuring object 5 by changing a relative position in the optical axis L1 direction in a confocal optical system 10 to the measuring object 5, and an operation control part 40 for outputting the height of the measuring object 5 based on a detection result detected by the two-dimensional photodetection part 30. In the device, position information in the optical axis direction of a pixel from which the maximum light quantity is detected, which is acquired based on output results from a maximum light quantity detection part 33 for detecting the maximum light quantity of each pixel and a coordinate counter 51 for outputting information of the relative position in the optical axis direction in the confocal optical system 10, is retained in a peak coordinate latch part 35, and outputted to the operation control part 40. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は高さ測定装置に関する。   The present invention relates to a height measuring device.

従来の高さ測定装置として、測定対象物に対する共焦点光学系の光軸方向の相対位置を変えて測定対象物からの光を受光する2次元光電センサと、この2次元光電センサによって検出された画像に基いて測定対象物の高さを出力する演算処理部とを備えているものが知られている。この共焦点光学系では焦点位置の周辺で点像分布関数の光量が増減する。
特開平9−126739号公報
As a conventional height measurement device, a two-dimensional photoelectric sensor that receives light from a measurement object by changing the relative position of the confocal optical system with respect to the measurement object in the optical axis direction, and the two-dimensional photoelectric sensor detected by the two-dimensional photoelectric sensor What is provided with the arithmetic processing part which outputs the height of a measuring object based on an image is known. In this confocal optical system, the amount of light of the point spread function increases or decreases around the focal position.
Japanese Patent Laid-Open No. 9-12639

近年、高速で光軸方向へ測定対象物を移動させながら点像分布関数上の数点を取り、これらの点の中から最大光量になる座標を算出することで、測定対象物の高さを高速で測定することが行われている。   In recent years, while moving the measurement object in the direction of the optical axis at high speed, taking the several points on the point spread function and calculating the coordinate that gives the maximum light intensity from these points, the height of the measurement object can be calculated. Measurements are being made at high speed.

ところで、高精度な高さ測定を行うには光学系のNA(開口)が大きい方が有利であるが、共焦点光学系の点像分布関数の幅(光軸方向位置と光量との点像分布関数的な振るまいの幅:Z−Iプロファイルという)をDとしたとき、DとNAとの間にはD=K/(NA2 )の関係が成立する。なお、Kは波長によって決まる定数である。したがって、NAが大きくなると幅Dは小さくなる。 By the way, in order to perform highly accurate height measurement, it is advantageous that the NA (aperture) of the optical system is large. However, the width of the point spread function of the confocal optical system (point image of the position in the optical axis direction and the amount of light). When the distribution function-like behavior width (referred to as Z-I profile) is D, a relationship of D = K / (NA 2 ) is established between D and NA. K is a constant determined by the wavelength. Therefore, the width D decreases as NA increases.

離散的に画像を取り込む場合、幅Dの数点で離散データを含む画像サンプリングを行う必要があり、NAを大きくすると、幅Dの減少に対応した細かな画像サンプリングが必要になる。したがって、測定に多くの時間が必要になる。   When capturing an image discretely, it is necessary to perform image sampling including discrete data at several points of the width D. When NA is increased, fine image sampling corresponding to the decrease in the width D is required. Therefore, much time is required for the measurement.

この発明はこのような事情に鑑みてなされたもので、その課題は高速かつ正確に非接触で測定対象物の高さを検出できる高さ測定装置を提供することである。   The present invention has been made in view of such circumstances, and an object thereof is to provide a height measuring device capable of detecting the height of a measurement object at high speed and accurately without contact.

上記課題を解決するため請求項1記載の発明は、測定対象物に対する共焦点光学系の光軸方向の相対位置を変えて前記測定対象物からの光を受光する2次元光検出手段と、この2次元光検出手段によって検出された検出結果に基いて前記測定対象物の高さを出力する算出手段とを備えている高さ測定装置において、前記2次元光検出手段は、各画素の最大光量を検出する最大光量検出手段と、前記測定対象物に対する前記共焦点光学系の光軸方向の相対位置の情報を出力する位置情報出力手段と、前記最大光量検出手段と前記位置情報出力手段との出力結果に基いて得られた、最大光量を検出した画素の光軸方向の位置情報を保持しておくピーク座標ラッチ手段とを備えていることを特徴とする。   In order to solve the above-mentioned problem, a first aspect of the present invention provides a two-dimensional light detection means for receiving light from the measurement object by changing a relative position in the optical axis direction of the confocal optical system with respect to the measurement object. A height measuring apparatus comprising: a calculating means for outputting the height of the measurement object based on a detection result detected by the two-dimensional light detecting means; wherein the two-dimensional light detecting means is a maximum light quantity of each pixel. A maximum light amount detection means for detecting the position, a position information output means for outputting information on the relative position of the confocal optical system in the optical axis direction with respect to the measurement object, the maximum light amount detection means, and the position information output means. And a peak coordinate latch means for holding position information in the optical axis direction of the pixel in which the maximum light quantity is detected, obtained based on the output result.

請求項2に記載の発明は、請求項1記載の高さ測定装置において、前記最大光量検出手段で検出された各画素の最大光量情報を保持して前記算出手段に出力するピーク光量ラッチ手段を備えていることを特徴とする。   According to a second aspect of the present invention, in the height measuring device according to the first aspect, a peak light amount latching unit that holds the maximum light amount information of each pixel detected by the maximum light amount detection unit and outputs the information to the calculation unit. It is characterized by having.

この発明の高さ測定装置によれば、高速かつ正確に非接触で測定対象物の高さを検出できる。   According to the height measuring apparatus of the present invention, the height of the measuring object can be detected at high speed and accurately without contact.

以下、この発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1はこの発明の第1実施形態に係る高さ測定装置を示すブロック図である。   FIG. 1 is a block diagram showing a height measuring apparatus according to the first embodiment of the present invention.

高さ測定装置1は共焦点光学系10と2次元光検出部(2次元光検出手段)30と、演算制御部(算出手段)40とを備えている。   The height measuring apparatus 1 includes a confocal optical system 10, a two-dimensional light detection unit (two-dimensional light detection unit) 30, and an arithmetic control unit (calculation unit) 40.

共焦点光学系10は光源11とハーフプリズム12と結像レンズ13とニポウディスク20と対物レンズ14とλ/4板15とを有する。   The confocal optical system 10 includes a light source 11, a half prism 12, an imaging lens 13, a Nipou disk 20, an objective lens 14, and a λ / 4 plate 15.

光源11は光軸L2上に配置されている。光源11としてはハロゲンランプ等が用いられる。   The light source 11 is disposed on the optical axis L2. A halogen lamp or the like is used as the light source 11.

結像レンズ13はハーフプリズム12とニポウディスク20との間に配置され、光源11から出射され、ハーフプリズム12で反射された照明光をピンホール21に集光させる。   The imaging lens 13 is disposed between the half prism 12 and the Niipou disk 20, and condenses the illumination light emitted from the light source 11 and reflected by the half prism 12 in the pinhole 21.

ニポウディスク20には同じ径の複数のピンホール21が予め定められた間隔で螺旋状に形成されている。ピンホール21の径は対物レンズ14のエアリーディスク径に対応している。対物レンズ14は光源11からの光を測定対象物5に集光させる。なお、測定対象物5は光軸方向へ移動可能なステージ50に載置されている。   A plurality of pinholes 21 having the same diameter are formed in the Nipkow disk 20 in a spiral shape at predetermined intervals. The diameter of the pinhole 21 corresponds to the Airy disk diameter of the objective lens 14. The objective lens 14 condenses the light from the light source 11 on the measurement object 5. The measurement object 5 is placed on a stage 50 that can move in the optical axis direction.

ニポウディスク20の中心部はディスク回転用モータ25の回転軸に固定されている。   The central portion of the Nipkow disc 20 is fixed to the rotating shaft of the disc rotating motor 25.

λ/4板15は対物レンズ14と測定対象物5との間に配置され、光波に位相差(λ/4)を与える。   The λ / 4 plate 15 is disposed between the objective lens 14 and the measurement object 5, and gives a phase difference (λ / 4) to the light wave.

光源11から出射された照明光はハーフプリズム12で反射され、結像レンズ13に入射し、ピンホール21に集光される。   The illumination light emitted from the light source 11 is reflected by the half prism 12, enters the imaging lens 13, and is condensed on the pinhole 21.

ピンホール21を通った照明光は対物レンズ14に入射する。対物レンズ14を通過した照明光はλ/4板15を通過し、測定対象物5の表面に集光される。   The illumination light that has passed through the pinhole 21 enters the objective lens 14. The illumination light that has passed through the objective lens 14 passes through the λ / 4 plate 15 and is condensed on the surface of the measurement object 5.

測定対象物5がピンホール21の位置に対応する合焦位置にあるとき、測定対象物5の表面からの反射光はλ/4板15を通過し、対物レンズ14によって再度ピンホール21に集光される。   When the measurement object 5 is in the in-focus position corresponding to the position of the pinhole 21, the reflected light from the surface of the measurement object 5 passes through the λ / 4 plate 15 and is collected again in the pinhole 21 by the objective lens 14. Lighted.

ピンホール21を通った反射光は結像レンズ13に至り、結像レンズ13によって2次元光検出部30のC−MOSセンサ31(図2参照)の受光面に結像される。   The reflected light that has passed through the pinhole 21 reaches the imaging lens 13 and is imaged by the imaging lens 13 on the light receiving surface of the C-MOS sensor 31 (see FIG. 2) of the two-dimensional light detection unit 30.

測定対象物5がピンホール21の位置に対応する合焦位置にないとき、測定対象物5の表面からの反射光はピンホール21に集光しない。そのため、ピンホール21を通過する光量が減少し、C−MOSセンサ31に達する反射光が減少する。   When the measurement object 5 is not in the in-focus position corresponding to the position of the pinhole 21, the reflected light from the surface of the measurement object 5 is not condensed on the pinhole 21. Therefore, the amount of light passing through the pinhole 21 is reduced, and the reflected light reaching the C-MOS sensor 31 is reduced.

図2は2次元光検出部のブロック図である。   FIG. 2 is a block diagram of the two-dimensional light detection unit.

2次元光検出部30はC−MOSセンサ31とLOG変換部32と光量ピーク検出部(最大光量検出手段)33とピーク座標ラッチ部(ピーク座標ラッチ手段)34と座標カウンタ(位置情報出力手段)51とを有する。   The two-dimensional light detection unit 30 includes a C-MOS sensor 31, a LOG conversion unit 32, a light amount peak detection unit (maximum light amount detection unit) 33, a peak coordinate latch unit (peak coordinate latch unit) 34, and a coordinate counter (position information output unit). 51.

C−MOSセンサ31の画素数は1000×1000である。   The number of pixels of the C-MOS sensor 31 is 1000 × 1000.

LOG変換部32はC−MOSセンサ31の出力を画素単位でLOG変換してダイナミックレンジを広げる。   The LOG converter 32 LOG-converts the output of the C-MOS sensor 31 in units of pixels to widen the dynamic range.

光量ピーク検出部33は画素単位で最大光量を検出する。   The light quantity peak detection unit 33 detects the maximum light quantity in units of pixels.

座標カウンタ51は測定対象物5に対する共焦点光学系10の光軸方向の相対位置の情報を出力する。位置の情報はエンコーダ(図示せず)から出力された、例えばステージ50の光軸方向の移動に対応するパルス信号である。   The coordinate counter 51 outputs information on the relative position of the confocal optical system 10 in the optical axis direction with respect to the measurement object 5. The position information is a pulse signal output from an encoder (not shown), for example, corresponding to the movement of the stage 50 in the optical axis direction.

ピーク座標ラッチ部34は光量ピーク検出部33と座標カウンタ51との出力に基いて得られた、最大光量を検出した画素の光軸方向の位置情報を画素単位で保持する。   The peak coordinate latch unit 34 holds, in units of pixels, position information in the optical axis direction of the pixel from which the maximum light amount is detected, obtained based on outputs from the light amount peak detection unit 33 and the coordinate counter 51.

例えばステージ50を上昇させたとき、ステージ50の移動にしたがって座標カウンタの値が大きくなる。光量ピーク検出部33では画素単位で最大光量を検出する。ピーク座標ラッチ部34は座標カウンタ51のカウンタ値毎に最大光量となった座標(ピーク座標)を画素単位で保持する。ピーク座標が検出されなくなるまで、ステージ50を移動させる。   For example, when the stage 50 is raised, the value of the coordinate counter increases as the stage 50 moves. The light quantity peak detection unit 33 detects the maximum light quantity for each pixel. The peak coordinate latch unit 34 holds the coordinates (peak coordinates) having the maximum light amount for each counter value of the coordinate counter 51 in units of pixels. The stage 50 is moved until no peak coordinates are detected.

その結果、ピーク座標ラッチ部34には各画素のピーク座標データが画素単位で保持される。このピーク座標は演算処理部40へ出力される。ピーク座標データは各画素の高さを示す座標データであるので、演算処理部40では測定対象物5の高さを出力することができる。   As a result, the peak coordinate latch unit 34 holds the peak coordinate data of each pixel in units of pixels. The peak coordinates are output to the arithmetic processing unit 40. Since the peak coordinate data is coordinate data indicating the height of each pixel, the arithmetic processing unit 40 can output the height of the measurement object 5.

この実施形態によれば、従来例のように最大光量点を算出する演算が不要になるので、高速かつ正確に非接触で測定対象物の高さを検出できる。また、従来例のように高さ測定のためのデータとして多数のスライス画像を取得しなくてもよいので、測定時間を短縮できる。更に、NAの大きな光学系でも細かく画像を取得しなくてもよい。   According to this embodiment, since the calculation for calculating the maximum light amount point is not required as in the conventional example, the height of the measurement object can be detected at high speed and accurately without contact. Moreover, since it is not necessary to acquire many slice images as data for height measurement as in the conventional example, the measurement time can be shortened. Furthermore, it is not necessary to acquire a fine image even with an optical system having a large NA.

また、従来例のように画像を時間単位で取得する構成でないので、速度ムラに起因して誤った測定結果が生じるおそれはなく、光軸方向の移動機構を簡素化できる。したがって、顕微鏡に2次元光検出部30を取り付けて手動でステージ50を光軸方向へ移動させるようにしてもよい。   In addition, since the image is not acquired in units of time as in the conventional example, there is no possibility that an erroneous measurement result is caused due to the speed unevenness, and the moving mechanism in the optical axis direction can be simplified. Therefore, the two-dimensional light detection unit 30 may be attached to the microscope and the stage 50 may be manually moved in the optical axis direction.

図3はこの発明の変形例に係る2次元光検出部のブロック図であり、上記実施形態と共通する部分には同一符号を付してその説明を省略する。   FIG. 3 is a block diagram of a two-dimensional light detection unit according to a modification of the present invention. The same reference numerals are given to the same parts as those in the above embodiment, and the description thereof is omitted.

2次元光検出部130はC−MOSセンサ31とLOG変換部32と光量ピーク検出部(最大光量検出手段)33とピーク座標ラッチ部(ピーク座標ラッチ手段)34とピーク光量ラッチ部(ピーク光量ラッチ手段)35と座標カウンタ(位置情報出力手段)51とを有する。   The two-dimensional light detection unit 130 includes a C-MOS sensor 31, a LOG conversion unit 32, a light amount peak detection unit (maximum light amount detection unit) 33, a peak coordinate latch unit (peak coordinate latch unit) 34, and a peak light amount latch unit (peak light amount latch). Means) 35 and a coordinate counter (position information output means) 51.

ピーク光量ラッチ部35は各画素の最大光量情報を保持する。   The peak light amount latch unit 35 holds the maximum light amount information of each pixel.

このピーク光量情報はピーク座標情報とともに演算処理部40へ出力される。   This peak light quantity information is output to the arithmetic processing unit 40 together with the peak coordinate information.

この変形例によれば、上記実施形態と同様の効果を奏するとともに、すべての画素の焦点が合った状態のデータが演算処理部40へ出力されるので、このデータに基づいて全面で焦点の合った画像を得ることができる。   According to this modification, the same effect as in the above embodiment is obtained, and data in a state where all the pixels are in focus is output to the arithmetic processing unit 40, so that the entire surface is focused based on this data. Images can be obtained.

図1はこの発明の第1実施形態に係る高さ測定装置のブロック図である。FIG. 1 is a block diagram of a height measuring apparatus according to the first embodiment of the present invention. 図2は2次元光検出部のブロック図である。FIG. 2 is a block diagram of the two-dimensional light detection unit. 図3はこの発明の変形例に係る2次元光検出部のブロック図である。FIG. 3 is a block diagram of a two-dimensional light detection unit according to a modification of the present invention.

符号の説明Explanation of symbols

5 測定対象物
10 共焦点光学系
30,130 2次元光検出部(2次元光検出手段)
33 光量ピーク検出部(最大光量検出手段)
34 ピーク座標ラッチ部(ピーク座標ラッチ手段)
35 ピーク光量ラッチ部(ピーク光量ラッチ手段)
40 演算制御部(算出手段)
51 座標カウンタ(位置情報出力手段)
L1 光軸
5 Measurement object 10 Confocal optical system 30, 130 Two-dimensional light detection unit (two-dimensional light detection means)
33 Light intensity peak detector (maximum light intensity detection means)
34 Peak coordinate latch (peak coordinate latch means)
35 Peak light quantity latch (peak light quantity latch means)
40 Calculation control unit (calculation means)
51 Coordinate counter (position information output means)
L1 optical axis

Claims (2)

測定対象物に対する共焦点光学系の光軸方向の相対位置を変えて前記測定対象物からの光を受光する2次元光検出手段と、この2次元光検出手段によって検出された検出結果に基いて前記測定対象物の高さを出力する算出手段とを備えている高さ測定装置において、
前記2次元光検出手段は、各画素の最大光量を検出する最大光量検出手段と、前記測定対象物に対する前記共焦点光学系の光軸方向の相対位置の情報を出力する位置情報出力手段と、前記最大光量検出手段と前記位置情報出力手段との出力結果に基いて得られた、最大光量を検出した画素の光軸方向の位置情報を保持しておくピーク座標ラッチ手段とを備えていることを特徴とする高さ測定装置。
Based on the two-dimensional light detection means for receiving light from the measurement object by changing the relative position of the confocal optical system with respect to the measurement object and the detection result detected by the two-dimensional light detection means. In a height measuring device comprising a calculating means for outputting the height of the measurement object,
The two-dimensional light detection means includes a maximum light quantity detection means for detecting a maximum light quantity of each pixel, a position information output means for outputting information on a relative position in the optical axis direction of the confocal optical system with respect to the measurement object, Peak coordinate latch means for holding position information in the optical axis direction of the pixel from which the maximum light quantity is detected, obtained based on output results of the maximum light quantity detection means and the position information output means. A height measuring device characterized by.
前記最大光量検出手段で検出された各画素の最大光量情報を保持して前記算出手段に出力するピーク光量ラッチ手段を備えていることを特徴とする請求項1記載の高さ測定装置。   2. The height measuring apparatus according to claim 1, further comprising peak light amount latch means for holding maximum light amount information of each pixel detected by the maximum light amount detecting means and outputting the information to the calculating means.
JP2004001035A 2004-01-06 2004-01-06 Height measuring device Pending JP2005195419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001035A JP2005195419A (en) 2004-01-06 2004-01-06 Height measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004001035A JP2005195419A (en) 2004-01-06 2004-01-06 Height measuring device

Publications (1)

Publication Number Publication Date
JP2005195419A true JP2005195419A (en) 2005-07-21

Family

ID=34816671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001035A Pending JP2005195419A (en) 2004-01-06 2004-01-06 Height measuring device

Country Status (1)

Country Link
JP (1) JP2005195419A (en)

Similar Documents

Publication Publication Date Title
EP2993463B1 (en) Fluorescence imaging autofocus systems and methods
JPH08211282A (en) Autofocus microscope
JPH0610694B2 (en) Automatic focusing method and device
JP2010121960A (en) Measuring device and method of measuring subject
JP2008039750A (en) Device for height measuring
JP2008051576A (en) Shape-measuring apparatus and shape-measuring method
JP2006235250A (en) Measuring microscope
JP5086197B2 (en) Confocal microscope
JP2014153343A (en) Shape measurement device
JP3726028B2 (en) 3D shape measuring device
JP2009109315A (en) Light measuring device and scanning optical system
JP2007212305A (en) Minute height measuring instrument and displacement meter unit
CN110945398A (en) Digitally determining the position of the focus
JP2005195419A (en) Height measuring device
JP2000509825A (en) Optical scanning device
JP2004102032A (en) Scanning type confocal microscope system
JP2008128770A (en) Lens performance inspection device and lens performance inspection method
JP2633718B2 (en) Shape recognition device
JP4524793B2 (en) Confocal optical system and height measuring device
JP2007155472A (en) Shape measuring apparatus and shape measuring method
JP2006162462A (en) Image measuring instrument
JP4406873B2 (en) Scan measurement inspection equipment
JP2007286147A (en) Infrared microscope
JP2006003168A (en) Measurement method for surface shape and device therefor
JP2009042128A (en) Height measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090508