JP2005195270A - Operation method of fluidized bed incinerator - Google Patents

Operation method of fluidized bed incinerator Download PDF

Info

Publication number
JP2005195270A
JP2005195270A JP2004002771A JP2004002771A JP2005195270A JP 2005195270 A JP2005195270 A JP 2005195270A JP 2004002771 A JP2004002771 A JP 2004002771A JP 2004002771 A JP2004002771 A JP 2004002771A JP 2005195270 A JP2005195270 A JP 2005195270A
Authority
JP
Japan
Prior art keywords
bed
fluidized bed
incinerator
sand
bed material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004002771A
Other languages
Japanese (ja)
Inventor
Junichi Shigeta
潤一 茂田
Shinya Mori
慎也 毛利
Mitsunori Matsuura
光紀 松浦
Naoaki Yasuda
直明 安田
Yasukatsu Satsumoto
泰克 札本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004002771A priority Critical patent/JP2005195270A/en
Publication of JP2005195270A publication Critical patent/JP2005195270A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method of a fluidized bed incinerator, preventing the occurrence of flowing failure due to fixing of mutual bed materials to decrease the frequency of stopping operation in incinerating waste containing a large quantity of alkaline metals and cleaning in the incinerator, and continuing stable operation. <P>SOLUTION: The temperature in the bed of the incinerator body 1 for burning the waste 6 while being fluidized with the bed material 2 is controlled to a target temperature or lower to prevent the occurrence of flowing failure due to fixing of mutual bed materials 2, that is, about 600°C. Inorganic chemical compound additive such as dolomite, magnesium hydroxide or limestone is added to the bed material 2 to use sand having high thermal crush resistance as the bed material 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流動層焼却炉の運転方法に関するものである。   The present invention relates to a method for operating a fluidized bed incinerator.

従来より、廃棄物を焼却処理する手段として流動層焼却炉が利用されている。   Conventionally, fluidized bed incinerators have been used as means for incinerating waste.

前記流動層焼却炉においては、硅砂(SiO2)等のベッド材を散気管から吹き出される空気によりバブリングさせて流動層を形成した状態で、該流動層に給塵機から廃棄物を供給し、該廃棄物をベッド材と共に流動化させながら燃焼させるようになっている。 In the fluidized bed incinerator, waste material is supplied to the fluidized bed from a dust feeder in a state where a fluidized bed is formed by bubbling a bed material such as silica sand (SiO 2 ) with air blown from a diffuser tube. The waste is combusted while being fluidized together with the bed material.

尚、前述の如き流動層焼却炉に関連する流動層ボイラの運転方法を示すものとしては、例えば、特許文献1がある。
特開2003−240210号公報
Patent Document 1 is an example of a fluidized bed boiler operating method related to the fluidized bed incinerator as described above.
JP 2003-240210 A

しかしながら、前述の如き流動層焼却炉では、焼却処理する廃棄物中にアルカリ金属(ナトリウムやカリウム)分が多く含まれている場合、ベッド材同士が固着して流動不良が発生し、運転停止並びに焼却炉内の清掃が余儀なくされるという欠点を有していた。   However, in the fluidized bed incinerator as described above, when the waste to be incinerated contains a large amount of alkali metals (sodium and potassium), the bed materials adhere to each other and flow failure occurs. It had the disadvantage that cleaning of the incinerator was forced.

そのため、アルカリ金属濃度の高い廃棄物は、焼却処分しないか、或いは、他の廃棄物に少量ずつ混ぜて焼却するしか方法がなかった。   For this reason, wastes with a high alkali metal concentration can only be incinerated or mixed with other wastes in small amounts and incinerated.

本発明は、斯かる実情に鑑み、アルカリ金属分が多く含まれる廃棄物を焼却処理する際、ベッド材同士の固着による流動不良の発生を防止し得、運転停止や焼却炉内の清掃の頻度を少なくでき、安定運転を継続し得る流動層焼却炉の運転方法を提供しようとするものである。   In view of such circumstances, the present invention can prevent the occurrence of poor flow due to the sticking of bed materials when incinerating waste containing a large amount of alkali metal, and the frequency of shutdown and incinerator cleaning. It is an object of the present invention to provide a method for operating a fluidized bed incinerator capable of reducing the amount of heat and continuing stable operation.

本発明は、廃棄物をベッド材と共に流動化させながら燃焼させる流動層焼却炉の運転方法において、層内温度を、ベッド材同士の固着による流動不良の発生を防止可能な目標温度以下に制御することを特徴とする流動層焼却炉の運転方法にかかるものである。   The present invention controls a fluidized bed incinerator operating method in which waste is combusted while being fluidized together with a bed material, and the temperature in the bed is controlled to be equal to or lower than a target temperature capable of preventing the occurrence of a flow failure due to adhesion between the bed materials. The present invention relates to a method for operating a fluidized bed incinerator.

前記流動層焼却炉の運転方法においては、ベッド材同士の固着による流動不良の発生を防止可能な目標温度を約600[℃]に設定することができる。   In the operation method of the fluidized bed incinerator, the target temperature capable of preventing the occurrence of flow failure due to the fixation of the bed materials can be set to about 600 [° C.].

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

焼却処理する廃棄物中にアルカリ金属(ナトリウムやカリウム)分が多く含まれている場合、流動層内で生成されるアルカリ金属化合物は、炭酸ナトリウム(Na2CO3)、硫酸ナトリウム(Na2SO4)、塩化ナトリウム(NaCl)、炭酸カリウム(K2CO3)、硫酸カリウム(K2SO4)、塩化カリウム(KCl)等で、これらのアルカリ金属化合物が互いに反応して融点の低い共晶化合物を形成し、650[℃]前後で溶融し、ベッド材表面に付着した後、更に、ベッド材表面の二酸化珪素(SiO2)と反応し、低融点の珪酸塩化合物を形成し、表面溶融したベッド材同士が結合し、塊状化して流動不良が発生することが、本発明者等によって解明されたが、前述の如く、層内温度を、ベッド材同士の固着による流動不良の発生を防止可能な目標温度以下、即ち約600[℃]以下に制御すると、アルカリ金属化合物の反応によって形成される融点の低い共晶化合物が溶融しなくなり、ベッド材表面に付着しにくくなって、低融点の珪酸塩化合物が形成されず、ベッド材同士が結合して塊状化しなくなり、流動不良が発生しなくなるため、運転を停止して焼却炉内の清掃を頻繁に行わなくて済む。 When the waste to be incinerated contains a large amount of alkali metals (sodium and potassium), the alkali metal compounds produced in the fluidized bed are sodium carbonate (Na 2 CO 3 ), sodium sulfate (Na 2 SO). 4 ), sodium chloride (NaCl), potassium carbonate (K 2 CO 3 ), potassium sulfate (K 2 SO 4 ), potassium chloride (KCl), etc., these alkali metal compounds react with each other and have a low melting point. After the compound is formed and melted around 650 [° C.] and adhered to the bed material surface, it reacts with the silicon dioxide (SiO 2 ) on the bed material surface to form a low melting point silicate compound, and the surface melts The inventors of the present invention have clarified that the bed materials are bonded together and agglomerate to cause a flow failure, but as described above, the in-layer temperature is reduced due to the adhesion between the bed materials. When the temperature is controlled below the target temperature at which generation can be prevented, that is, about 600 [° C.] or less, the eutectic compound having a low melting point formed by the reaction of the alkali metal compound does not melt and hardly adheres to the bed material surface. Since the low melting point silicate compound is not formed, the bed materials are not joined together to become agglomerated and no flow failure occurs, so that it is not necessary to stop the operation and frequently clean the incinerator.

又、前記流動層焼却炉の運転方法においては、ベッド材に無機化合物系添加剤を添加することが望ましく、無機化合物系添加剤としては、例えば、ドロマイト、水酸化マグネシウム、石灰石を選定することができ、このような無機化合物系添加剤をベッド材に添加すると、アルカリ金属化合物同士の凝集、並びにベッド材とアルカリ金属化合物との反応が抑制される一方、燃焼灰の溶融温度が上昇し、ベッド材の塊状化防止により有効となる。   Moreover, in the operation method of the fluidized bed incinerator, it is desirable to add an inorganic compound-based additive to the bed material. As the inorganic compound-based additive, for example, dolomite, magnesium hydroxide, limestone can be selected. When such an inorganic compound-based additive is added to the bed material, the aggregation of alkali metal compounds and the reaction between the bed material and the alkali metal compound are suppressed, while the melting temperature of the combustion ash increases, It becomes effective by preventing the material from agglomerating.

更に又、前記流動層焼却炉の運転方法においては、ベッド材として耐熱破砕性の高い砂を使用することが望ましく、このようにすると、耐熱破砕性の高い砂は、熱により破砕、粉化しにくく、低融点の珪酸塩化合物の生成が抑制されるため、ベッド材同士が固着凝集することを防ぐのに役立つ。   Further, in the operation method of the fluidized bed incinerator, it is desirable to use sand having high heat-breaking resistance as the bed material, and in this way, the sand having high heat-breaking resistance is not easily crushed and pulverized by heat. Since the generation of a low melting point silicate compound is suppressed, it helps to prevent the bed materials from sticking and agglomerating.

本発明の請求項1〜7記載の流動層焼却炉の運転方法によれば、アルカリ金属分が多く含まれる廃棄物を焼却処理する際、ベッド材同士の固着による流動不良の発生を防止し得、運転停止や焼却炉内の清掃の頻度を少なくでき、安定運転を継続し得るという優れた効果を奏し得る。   According to the operation method of the fluidized-bed incinerator according to claims 1 to 7 of the present invention, when incinerating waste containing a large amount of alkali metal, it is possible to prevent the occurrence of fluid failure due to adhesion between bed materials. The frequency of stoppage of operation and cleaning of the incinerator can be reduced, and an excellent effect that stable operation can be continued can be achieved.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例であって、1は硅砂(SiO2)等のベッド材2を散気管3から吹き出される空気によりバブリングさせて流動層4を形成する焼却炉本体であり、該焼却炉本体1の流動層4に給塵機5から廃棄物6を供給し、該廃棄物6をベッド材2と共に流動化させながら燃焼させ、その燃焼排ガス7を廃熱ボイラ8に導いて熱回収し、該廃熱ボイラ8で熱回収された燃焼排ガス7中に含まれる灰9を集塵機10で捕集した後、該集塵機10で灰9が除去された燃焼排ガス7を誘引通風機11を介して煙突12から大気中へ放出するようにしたものである。尚、前記廃熱ボイラ8において回収されるボイラダスト13と、前記集塵機10で捕集された灰9は、灰貯槽ヘ送られるようになっている。 FIG. 1 is an example of an embodiment for carrying out the present invention. Reference numeral 1 denotes an incinerator main body that forms a fluidized bed 4 by bubbling a bed material 2 such as silica sand (SiO 2 ) with air blown from an air diffuser 3. Yes, waste 6 is supplied from the dust feeder 5 to the fluidized bed 4 of the incinerator body 1, the waste 6 is combusted while being fluidized together with the bed material 2, and the combustion exhaust gas 7 is transferred to the waste heat boiler 8. After the ash 9 contained in the combustion exhaust gas 7 that has been guided and recovered by heat and is recovered by the waste heat boiler 8 is collected by the dust collector 10, the combustion exhaust gas 7 from which the ash 9 has been removed by the dust collector 10 is induced. The air is discharged from the chimney 12 into the atmosphere via the machine 11. The boiler dust 13 collected in the waste heat boiler 8 and the ash 9 collected by the dust collector 10 are sent to an ash storage tank.

ここで、先ず、本発明者等は、ベッド材2同士の固着による流動不良の発生メカニズムを解明すると共に、その防止対策について検討した。   Here, the present inventors first elucidated the generation mechanism of the flow failure due to the fixation of the bed materials 2 and examined the prevention measures.

即ち、焼却処理する廃棄物6中にアルカリ金属(ナトリウムやカリウム)分が多く含まれている場合、流動層4内で生成されるアルカリ金属化合物は、炭酸ナトリウム(Na2CO3)、硫酸ナトリウム(Na2SO4)、塩化ナトリウム(NaCl)、炭酸カリウム(K2CO3)、硫酸カリウム(K2SO4)、塩化カリウム(KCl)等で、これらのアルカリ金属化合物が互いに反応して融点の低い共晶化合物を形成し、650[℃]前後で溶融し、ベッド材2表面に付着した後、更に、ベッド材2表面の二酸化珪素(SiO2)と反応し、低融点の珪酸塩化合物を形成し、表面溶融したベッド材2同士が結合し、塊状化して流動不良が発生することが判明した。 That is, when the waste 6 to be incinerated contains a large amount of alkali metals (sodium and potassium), the alkali metal compounds produced in the fluidized bed 4 are sodium carbonate (Na 2 CO 3 ) and sodium sulfate. (Na 2 SO 4 ), sodium chloride (NaCl), potassium carbonate (K 2 CO 3 ), potassium sulfate (K 2 SO 4 ), potassium chloride (KCl), etc. A low-melting silicate compound that forms a low-eutectic eutectic compound, melts around 650 [° C.], adheres to the surface of the bed material 2 and further reacts with silicon dioxide (SiO 2 ) on the surface of the bed material 2 It was found that the bed materials 2 that were melted on the surface were bonded together and agglomerated to cause poor flow.

このため、ベッド材2同士の固着による流動不良の第一の防止対策として、流動層4における層内温度を検出する温度検出器14を設け、該温度検出器14で検出される層内温度を、ベッド材同士の固着による流動不良の発生を防止可能な目標温度以下、即ち約600[℃]以下に制御するようにした。尚、層内温度を前記目標温度(約600[℃])以下に制御するためには、例えば、温度検出器14で検出される層内温度に基づいて、給塵機5から焼却炉本体1の流動層4に供給される廃棄物の量を調節すれば良い。又は、流動層4への水噴霧を行なえば良い。   For this reason, a temperature detector 14 for detecting the temperature in the fluidized bed 4 is provided as a first preventive measure against flow failure due to adhesion between the bed materials 2, and the temperature in the layer detected by the temperature detector 14 is set. In addition, the temperature is controlled to be equal to or lower than a target temperature at which occurrence of poor flow due to adhesion between bed materials can be prevented, that is, about 600 [° C.] or lower. In order to control the temperature in the bed below the target temperature (about 600 [° C.]), for example, from the dust feeder 5 to the incinerator main body 1 based on the temperature in the bed detected by the temperature detector 14. The amount of waste supplied to the fluidized bed 4 may be adjusted. Alternatively, water spray on the fluidized bed 4 may be performed.

前述の如く、層内温度を、ベッド材同士の固着による流動不良の発生を防止可能な目標温度以下、即ち約600[℃]以下に制御すると、アルカリ金属化合物の反応によって形成される融点の低い共晶化合物が溶融しなくなり、ベッド材2表面に付着しにくくなって、低融点の珪酸塩化合物が形成されず、ベッド材2同士が結合して塊状化しなくなり、流動不良が発生しなくなるため、運転を停止して焼却炉内の清掃を頻繁に行わなくて済む。   As described above, when the temperature in the layer is controlled to be equal to or lower than the target temperature at which the occurrence of flow failure due to adhesion between the bed materials can be prevented, that is, about 600 [° C.] or lower, the melting point formed by the reaction of the alkali metal compound is low. Since the eutectic compound does not melt, it becomes difficult to adhere to the surface of the bed material 2, the low melting point silicate compound is not formed, the bed materials 2 are not bonded together and agglomerated, and no flow failure occurs, It is not necessary to stop the operation and clean the incinerator frequently.

又、ベッド材2同士の固着による流動不良の第二の防止対策として、ベッド材2に、例えば、ドロマイト(CaCO3・MgCO3)、水酸化マグネシウム(Mg(OH)2)、石灰石(CaCO3)等の無機化合物系添加剤を添加するようにした。 In addition, as a second countermeasure against flow failure due to adhesion between the bed materials 2, for example, dolomite (CaCO 3 .MgCO 3 ), magnesium hydroxide (Mg (OH) 2 ), limestone (CaCO 3 ) ) And other inorganic compound additives.

ここで、図2はベッド材2に無機化合物系添加剤(ドロマイト、水酸化マグネシウム、石灰石)を添加した場合の添加剤濃度とラトラ強度(固着度)との関係を表わす実験データ線図であって、実機の流動層4内のクリンカの性状調査に基づき、該クリンカ性状に近いアルカリ濃度として3[%]Na+3[%]Kを含む硅砂に前記無機化合物系添加剤を添加した試料を電気炉に入れ、850[℃]の温度で三時間加熱した後、デシケータ内で放冷し、常温まで戻った状態でラトラ強度を測定した実験結果である。尚、ラトラ強度とは、電気炉で加熱処理した試料をラトラ試験器の回転籠に入れ、所定回転速度(今回の実験では80[rpm])、所定回転回数(今回の実験では250回)で回転させると、該回転籠の回転により試料が崩れて落下し重量が減少するが、このとき、
ラトラ強度=ラトラ試験後の試料の重量/ラトラ試験前の試料の重量
と定義されるものである。即ち、ラトラ強度が低いほど、ベッド材2の固着度が弱く、壊れやすくなり、ベッド材2が塊状化しにくくなることを意味しているが、図2の実験データ線図から明らかなように、ベッド材2に無機化合物系添加剤を添加しない場合、ラトラ強度が0.8程度であるのに対して、ベッド材2に無機化合物系添加剤を添加した場合、添加剤濃度3[%]でラトラ強度が0.5程度、添加剤濃度6[%]でラトラ強度が0.4程度まで低下することが確認された。
Here, FIG. 2 is an experimental data diagram showing the relationship between the additive concentration and rattra strength (adhesion degree) when an inorganic compound-based additive (dolomite, magnesium hydroxide, limestone) is added to the bed material 2. Based on the investigation of the properties of the clinker in the fluidized bed 4 of the actual machine, a sample obtained by adding the inorganic compound-based additive to dredged sand containing 3 [%] Na + 3 [%] K as an alkali concentration close to the clinker property It is the experimental result which measured Latra intensity | strength in the state returned to normal temperature, after cooling to 850 [degreeC] for 3 hours, allowing to cool in a desiccator, and returning to normal temperature. The Ratra strength refers to a sample heat-treated in an electric furnace placed in a rotary rod of a Ratra tester, and a predetermined rotation speed (80 [rpm] in this experiment) and a predetermined number of rotations (250 in this experiment). When rotating, the sample collapses and falls due to the rotation of the rotating rod, and the weight decreases.
Ratra strength = defined as the weight of the sample after the ratra test / the weight of the sample before the ratra test. That is, the lower the Ratra strength, the weaker the bed material 2 is, the more easily broken it is, and the bed material 2 is less likely to be agglomerated, but as is apparent from the experimental data diagram of FIG. When the inorganic compound-based additive is not added to the bed material 2, the Latra strength is about 0.8, whereas when the inorganic compound-based additive is added to the bed material 2, the additive concentration is 3 [%]. It was confirmed that the Latra strength was reduced to about 0.4 when the Latra strength was about 0.5 and the additive concentration was 6%.

このように、ベッド材2に、例えば、ドロマイト、水酸化マグネシウム、石灰石等の無機化合物系添加剤を添加すると、アルカリ金属化合物同士の凝集、並びにベッド材2とアルカリ金属化合物との反応が抑制される一方、燃焼灰の溶融温度が上昇し、ベッド材2の塊状化防止により有効となる。   Thus, for example, when an inorganic compound-based additive such as dolomite, magnesium hydroxide, or limestone is added to the bed material 2, aggregation of alkali metal compounds and reaction between the bed material 2 and the alkali metal compound are suppressed. On the other hand, the melting temperature of the combustion ash rises and becomes effective by preventing the bed material 2 from being agglomerated.

更に又、ベッド材2同士の固着による流動不良の第三の防止対策として、ベッド材2として耐熱破砕性の高い砂を使用するようにした。これは、破砕しやすい砂は、細かな粒子を多数生じ、アルカリ金属と反応して低融点の珪酸塩化合物が生成され、砂同士の固着につながるためである。   Furthermore, sand having high heat-resistant crushing property is used as the bed material 2 as a third measure for preventing the flow failure due to the adhesion between the bed materials 2. This is because sand that is easily crushed produces many fine particles and reacts with an alkali metal to produce a low melting point silicate compound, which leads to adhesion between the sands.

ここで、図3は産地の異なる砂(「岐阜県瑞浪」産の砂、「福島県いわき市」産の砂、「山形県大石田」産の砂)の平均粒径の経時変化と、所定粒径(710μ)以下の砂の全体に占める割合(微粉割合)の経時変化とを表わす実験データ線図であって、平均粒径については、運転当初、「岐阜県瑞浪」産の砂、「福島県いわき市」産の砂、「山形県大石田」産の砂ともに1000[μ]程度で略同等だったものが、運転開始後、「岐阜県瑞浪」産の砂と「福島県いわき市」産の砂とが開始直後から急激に小さくなり始め、その後も小さくなっているのに対し、「福島県いわき市」産の砂は、50[hr]経過後までほとんど小さくならず、その後、徐々に小さくなっていった。又、微粉割合については、運転当初、「岐阜県瑞浪」産の砂が4.4[%]、「福島県いわき市」産の砂が13.4[%]、「山形県大石田」産の砂が3.7[%]だったものが、運転開始後、「岐阜県瑞浪」産の砂の微粉割合は50[hr]経過後で約5倍となる20[%]強に増加し、「山形県大石田」産の砂の微粉割合は50[hr]経過後で約20倍となる70[%]強に増加しているのに対し、「福島県いわき市」産の砂の微粉割合は50[hr]経過後で約1.5倍となる19.6[%]に増加し、その後、徐々に増加していった。平均粒径の経時変化と、微粉割合の経時変化とを総合的に判定した結果、「岐阜県瑞浪」産の砂、「福島県いわき市」産の砂、「山形県大石田」産の砂の中では、「福島県いわき市」産の砂が最も耐熱破砕性の高い砂であり、ベッド材2に適していると言える。   Here, Fig. 3 shows the change over time in the average particle size of sand from different production areas (sand from Mizunami, Gifu Prefecture, sand from Iwaki City, Fukushima Prefecture, and sand from Oishida, Yamagata Prefecture). It is an experimental data diagram showing the change over time of the ratio (fine powder ratio) in the entire sand having a particle size (710 μm) or less, and the average particle size is the sand from “Mizunami, Gifu Prefecture” at the beginning of operation, The sand from "Iwaki City, Fukushima Prefecture" and the sand from "Oishida Yamagata Prefecture", both of which were about the same at about 1000 [μ], were sanded from Mizunami, Gifu Prefecture and "Iwaki City, Fukushima Prefecture" The sand produced in “Iwaki City, Fukushima Prefecture” began to decrease sharply immediately after the start, and subsequently decreased, but the sand produced in “Iwaki City, Fukushima Prefecture” did not decrease until after 50 hours, It gradually became smaller. As for the fine powder ratio, at the beginning of operation, sand produced in Mizunami, Gifu Prefecture was 4.4%, sand produced in Iwaki City, Fukushima Prefecture was 13.4%, and Oishida, Yamagata Prefecture. Although the percentage of sand was 3.7 [%], after the start of operation, the proportion of fine powder from Mizunami in Gifu Prefecture increased to about 20 [%], which is about 5 times after 50 [hr]. The proportion of fine sand in Yamagata Prefecture Oishida has increased to over 70%, which is about 20 times after 50 hours, whereas the amount of sand produced in Iwaki City, Fukushima Prefecture has increased. The fine powder ratio increased to 19.6 [%], which is about 1.5 times after 50 [hr], and then gradually increased. As a result of comprehensive determination of the change over time in the average particle size and the change over time in the fine powder ratio, sand from Mizunami, Gifu Prefecture, sand from Iwaki City, Fukushima Prefecture, and sand from Oishida, Yamagata Prefecture Among them, sand produced in Iwaki City, Fukushima Prefecture is the most heat-resistant crushing sand and can be said to be suitable for the bed material 2.

このように、ベッド材2として、例えば、「福島県いわき市」産の砂のような、耐熱破砕性の高い砂を使用すると、耐熱破砕性の高い砂は、熱により破砕、粉化しにくく、低融点の珪酸塩化合物の生成が抑制されるため、ベッド材2同士が固着凝集することを防ぐのに役立つ。   As described above, when the bed material 2 is sand having high heat-breaking resistance such as sand produced in Iwaki City, Fukushima Prefecture, the heat-resistant breaking sand is not easily crushed and pulverized by heat. Since the generation of a low melting point silicate compound is suppressed, it is useful for preventing the bed materials 2 from adhering to each other.

こうして、アルカリ金属分が多く含まれる廃棄物6を焼却処理する際、ベッド材2同士の固着による流動不良の発生を防止し得、運転停止や焼却炉内の清掃の頻度を少なくでき、安定運転を継続し得る。   In this way, when incinerating the waste 6 containing a large amount of alkali metal, it is possible to prevent the occurrence of poor flow due to the fixing of the bed materials 2 to each other, reducing the frequency of shutdown and cleaning of the incinerator, and stable operation. Can continue.

尚、本発明の流動層焼却炉の運転方法は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The operation method of the fluidized bed incinerator of the present invention is not limited to the illustrated example described above, and it is needless to say that various changes can be made without departing from the gist of the present invention.

本発明を実施する形態の一例の全体概要構成図である。1 is an overall schematic configuration diagram of an example of an embodiment for carrying out the present invention. ベッド材に無機化合物系添加剤(ドロマイト、水酸化マグネシウム、石灰石)を添加した場合の添加剤濃度とラトラ強度(固着度)との関係を表わす実験データ線図である。It is an experimental data diagram showing the relationship between the additive concentration and rattra strength (adhesion degree) when an inorganic compound-based additive (dolomite, magnesium hydroxide, limestone) is added to the bed material. 産地の異なる砂の平均粒径の経時変化と、所定粒径以下の砂の全体に占める割合の経時変化とを表わす実験データ線図である。It is an experimental data diagram showing the time-dependent change of the average particle diameter of sand having different production areas and the time-dependent change of the ratio of the sand having a predetermined particle diameter or less.

符号の説明Explanation of symbols

1 焼却炉本体
2 ベッド材
3 散気管
4 流動層
5 給塵機
6 廃棄物
14 温度検出器
DESCRIPTION OF SYMBOLS 1 Incinerator main body 2 Bed material 3 Aeration pipe 4 Fluidized bed 5 Dust feeder 6 Waste 14 Temperature detector

Claims (7)

廃棄物をベッド材と共に流動化させながら燃焼させる流動層焼却炉の運転方法において、層内温度を、ベッド材同士の固着による流動不良の発生を防止可能な目標温度以下に制御することを特徴とする流動層焼却炉の運転方法。   In a fluidized bed incinerator operation method in which waste is combusted while fluidizing with a bed material, the temperature in the bed is controlled to be equal to or lower than a target temperature capable of preventing the occurrence of flow failure due to adhesion between the bed materials. To operate a fluidized bed incinerator. ベッド材同士の固着による流動不良の発生を防止可能な目標温度を約600[℃]に設定した請求項1記載の流動層焼却炉の運転方法。   The method of operating a fluidized bed incinerator according to claim 1, wherein a target temperature capable of preventing the occurrence of flow failure due to adhesion between bed materials is set to about 600 [° C]. ベッド材に無機化合物系添加剤を添加するようにした請求項1又は2記載の流動層焼却炉の運転方法。   The method for operating a fluidized bed incinerator according to claim 1 or 2, wherein an inorganic compound-based additive is added to the bed material. 無機化合物系添加剤をドロマイトとした請求項3記載の流動層焼却炉の運転方法。   The operation method of a fluidized bed incinerator according to claim 3, wherein the inorganic compound-based additive is dolomite. 無機化合物系添加剤を水酸化マグネシウムとした請求項3記載の流動層焼却炉の運転方法。   The operation method of a fluidized bed incinerator according to claim 3, wherein the inorganic compound-based additive is magnesium hydroxide. 無機化合物系添加剤を石灰石とした請求項3記載の流動層焼却炉の運転方法。   The operation method of a fluidized bed incinerator according to claim 3, wherein the inorganic compound-based additive is limestone. ベッド材として耐熱破砕性の高い砂を使用するようにした請求項1〜6いずれかに記載の流動層焼却炉の運転方法。   The fluidized bed incinerator operating method according to any one of claims 1 to 6, wherein sand having high heat-resistant crushability is used as the bed material.
JP2004002771A 2004-01-08 2004-01-08 Operation method of fluidized bed incinerator Pending JP2005195270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002771A JP2005195270A (en) 2004-01-08 2004-01-08 Operation method of fluidized bed incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002771A JP2005195270A (en) 2004-01-08 2004-01-08 Operation method of fluidized bed incinerator

Publications (1)

Publication Number Publication Date
JP2005195270A true JP2005195270A (en) 2005-07-21

Family

ID=34817865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002771A Pending JP2005195270A (en) 2004-01-08 2004-01-08 Operation method of fluidized bed incinerator

Country Status (1)

Country Link
JP (1) JP2005195270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272707A (en) * 2007-05-07 2008-11-13 Takuma Co Ltd Method for suppressing elution of hexavalent chromium from incineration fly ash of fuel containing chromium and combustion apparatus to be used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272707A (en) * 2007-05-07 2008-11-13 Takuma Co Ltd Method for suppressing elution of hexavalent chromium from incineration fly ash of fuel containing chromium and combustion apparatus to be used therefor

Similar Documents

Publication Publication Date Title
TWI293645B (en) Fuel-combusting method
KR930011074B1 (en) Method for controlling generation of clinker ash form exhaust gas dust coal
JP2008537587A (en) Reduction of mercury emissions from coal combustion.
EP2891843A1 (en) Mineral additive blend compositions and methods for operating waste to energy combustors for improving their operational performance and availability, protecting combustor materials and equipment, improving ash quality and avoiding combustion problems
JP5536063B2 (en) Fluidized bed boiler combustion method and fluidized bed boiler
JP2008106270A (en) Method for manufacturing solid feedstock and fuel
JP5219256B2 (en) Granular additive and method for producing the same
JP2008143740A (en) Coal ash granule
JP2007225168A (en) Molten deposit removal method and melting furnace
JP2000297915A (en) Operation of fluidized bed combustion furnace
JP2009046342A (en) Exhaust gas component adhesion inhibitor and exhaust gas component adhesion-inhibiting method
JP2005195270A (en) Operation method of fluidized bed incinerator
JP3746010B2 (en) Fuel additive for preventing slagging and fuel combustion method
JP4448053B2 (en) Boiler corrosion prevention apparatus and corrosion prevention method
JP2004002587A (en) Ecofriendry method for recycling refuse
JP3780951B2 (en) How to prevent dirt on the heat transfer tube surface
JP6541039B2 (en) Incineration ash processing apparatus and incineration ash processing method
JP2004018704A (en) Fuel additive for preventing slagging and method of burning fuel
JP4901795B2 (en) Method of dissolving fly ash in molten slag
JP2010236787A (en) Method of crushing biomass, method of melting biomass, and melting device
JP2010236842A (en) Melting processing method of incineration ash, and melting processing equipment
JP2000274646A (en) Melting method for coal ash and fly ash of refuse incineration
JP2006097918A (en) Combustion furnace and waste treatment facility
JP2004083796A (en) Fuel additive for preventing slagging trouble and combustion method of fuel
JP2007160223A (en) Exhaust gas neutralizer using molten slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826