JP2005195252A - Heating furnace wall, microwave firing furnace and ceramic electronic component manufacturing method - Google Patents

Heating furnace wall, microwave firing furnace and ceramic electronic component manufacturing method Download PDF

Info

Publication number
JP2005195252A
JP2005195252A JP2004001999A JP2004001999A JP2005195252A JP 2005195252 A JP2005195252 A JP 2005195252A JP 2004001999 A JP2004001999 A JP 2004001999A JP 2004001999 A JP2004001999 A JP 2004001999A JP 2005195252 A JP2005195252 A JP 2005195252A
Authority
JP
Japan
Prior art keywords
furnace
microwave
firing
furnace wall
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004001999A
Other languages
Japanese (ja)
Inventor
Hideo Ito
英雄 伊藤
Hiroshi Morii
博史 森井
Shigeru Akimoto
茂 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004001999A priority Critical patent/JP2005195252A/en
Publication of JP2005195252A publication Critical patent/JP2005195252A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating furnace wall 22 to be suitably used for microwave firing of ceramic compacts, having construction easily adaptable to different materials for fired objects W while holding uniform temperature distribution in a firing chamber 20 of a microwave firing furnace 1. <P>SOLUTION: The heating furnace wall 22 is detachably provided on the in-furnace surface of the firing chamber 20 of the microwave firing furnace. The heating furnace wall 22 comprises a heating element 24 having microwave absorbing property and a plate 23 for holding the heating element 24. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被焼成体をマイクロ波にて焼成するマイクロ波焼成炉、およびその焼成室の炉内側表面を構成する発熱炉壁、ならびにマイクロ波焼成炉によるセラミック電子部品の製造方法に関する。   The present invention relates to a microwave firing furnace that fires an object to be fired by microwaves, a heating furnace wall that constitutes the furnace inner surface of the firing chamber, and a method of manufacturing a ceramic electronic component using the microwave firing furnace.

従来、電気炉やガス炉等の焼成炉においては、被焼成体の表面と内部との間で加熱温度に差が生じないように、炉内温度を徐々に上昇させる必要があるため、加熱処理に要する時間が長くかかってしまう。   Conventionally, in a firing furnace such as an electric furnace or a gas furnace, it is necessary to gradually increase the temperature in the furnace so that there is no difference in the heating temperature between the surface and the inside of the body to be fired. It takes a long time to complete.

そこで、被焼成体の表面と内部との間でその加熱温度に差が生じないように、マイクロ波を用いて被焼成体を加熱処理するマイクロ波焼成炉が提案されている。このマイクロ波焼成炉においては、マイクロ波が被焼成体の表面,内部に関わらず均一に吸収されるため、加熱処理に際して被焼成体の表面と内部との間で加熱温度に差が生じる恐れが少ない。そのため、炉内温度を徐々にではなく早く上昇させることができる結果、被焼成体の加熱処理に要する時間を短縮させることができるうえ均一な加熱処理も可能となる。   In view of this, a microwave baking furnace has been proposed that heat-treats the body to be fired using microwaves so that the heating temperature does not differ between the surface and the inside of the body to be fired. In this microwave baking furnace, microwaves are uniformly absorbed regardless of the surface and inside of the body to be fired, so that there may be a difference in heating temperature between the surface and inside of the body to be fired during heat treatment. Few. As a result, the furnace temperature can be raised quickly rather than gradually, so that the time required for the heat treatment of the object to be fired can be shortened and uniform heat treatment can be performed.

そして、このようなマイクロ波焼成炉においては、従来から、被焼成体と等価なマイクロ波吸収特性を備えた炉壁にて被焼成体を取り囲むことにより、当該被焼成体を擬似的には完全な断熱構造の状態として、放射冷却によって被焼成体に熱勾配が生じるのを抑制した技術が提案されている(特許文献1参照)。   In such a microwave firing furnace, conventionally, the fired body is pseudo-completely surrounded by surrounding the fired body with a furnace wall having microwave absorption characteristics equivalent to the fired body. As a state of a proper heat insulating structure, a technique has been proposed in which a thermal gradient is prevented from being generated in a fired body by radiation cooling (see Patent Document 1).

図11に、このようなマイクロ波焼成炉1の一例を示す。 図11を参照して、10はチャンバ、11,11はそれぞれチャンバ10の、図上で下面に、各導波管12,12それぞれを介して、併設されて当該チャンバ10内にマイクロ波を発信するマイクロ波発信器を示す。   FIG. 11 shows an example of such a microwave baking furnace 1. Referring to FIG. 11, reference numeral 10 denotes a chamber, 11 and 11 denote chambers 10, respectively, and the microwave is transmitted to the inside of the chamber 10 on the lower surface of the figure via the respective waveguides 12 and 12. A microwave transmitter is shown.

13,13はそれぞれチャンバ10の対向する、図上、左側面と右側面とに取り付けられて、チャンバ10内に入射されてきた上記両マイクロ波をそれぞれ攪拌する攪拌機構を示す。   Reference numerals 13 and 13 denote stir mechanisms that are respectively attached to the left and right sides of the chamber 10 facing each other and that stir the both microwaves that have entered the chamber 10.

攪拌機構13,13は、それぞれ、駆動モータ14,14と、駆動モータ14,14それぞれにより回転される回転軸15,15と、回転軸15,15それぞれの先端に取り付けられたファン16,16とにより構成されている。   The agitating mechanisms 13 and 13 include drive motors 14 and 14, rotary shafts 15 and 15 rotated by the drive motors 14 and 14, and fans 16 and 16 attached to the tips of the rotary shafts 15 and 15, respectively. It is comprised by.

50はチャンバ10内において攪拌機構13,13それぞれのファン16,16の対向間に配置されて被焼成体Wを収納する焼成室を示す。焼成室50は、セラミック製の断熱ボード51の炉内側表面に、直接、被焼成体Wと同じ材料(主に、ムライト系材料)からなるスラリーをコーティングして層52が構成されている。
特開2002−130960号
Reference numeral 50 denotes a firing chamber that is placed between the fans 16 and 16 of the stirring mechanisms 13 and 13 in the chamber 10 and accommodates the body W to be fired. In the firing chamber 50, a layer 52 is configured by directly coating the inner surface of the ceramic heat insulating board 51 with a slurry made of the same material (mainly mullite-based material) as the body W to be fired.
JP 2002-130960 A

図12に示した従来のマイクロ波焼成炉における焼成室50は、主に陶磁器などのムライト材料をマイクロ波加熱により焼成するものであり、市販のアルミナ−シリカ系の断熱ボード51にスラリーを直接コーティングして層52を形成できるため、製作することが容易であるという利点がある反面、セラミック成形体の焼成に適用することは困難であった。   The firing chamber 50 in the conventional microwave firing furnace shown in FIG. 12 is mainly used for firing mullite materials such as ceramics by microwave heating, and the slurry is directly coated on a commercially available alumina-silica heat insulation board 51. Thus, since the layer 52 can be formed, there is an advantage that it is easy to manufacture, but it is difficult to apply it to firing of the ceramic molded body.

その理由を詳しく説明すると、被焼成体Wをセラミック成形体とした場合には、焼成室50全体の内部温度を精密に制御した温度環境状態に確保することが要求される。このような温度環境状態を確保するには、層52を厚くすることが考えられる。   The reason will be described in detail. When the body to be fired W is a ceramic molded body, it is required to ensure a temperature environment state in which the internal temperature of the entire firing chamber 50 is precisely controlled. In order to ensure such a temperature environment state, it is conceivable to make the layer 52 thick.

しかしながら、このように層52を厚くするにもコーティング技術により限度がある。また、仮に層52を厚くコーティングすることができたとしても、層52の表面やその内部に亀裂や剥離などが生じるおそれが大きく、実用性に欠けるものとなってしまう。さらに、層52の剥離が生じてしまうと、焼成室50の炉壁に発熱ムラが生じてしまい、炉内の温度を上記温度環境状態を維持できなくなるという課題があった。   However, the thickening of the layer 52 is limited by the coating technique. Further, even if the layer 52 can be coated thickly, there is a great possibility that cracks or peeling will occur on the surface of the layer 52 or in the inside thereof, which will be impractical. Further, when the layer 52 is peeled off, heat generation unevenness occurs in the furnace wall of the firing chamber 50, and there is a problem that the temperature in the furnace cannot be maintained in the above temperature environment state.

層52における上記コーティングの厚さを説明する。この層52のコーティング厚さを約1mm程度として、焼成室50に配備した温度センサにより当該焼成室50内部の温度を測定した。この測定結果では焼成室50内の温度バラツキは20〜40℃という大きいバラツキとなった。このため、このような温度バラツキのある焼成室50内で焼成した電子部品等のセラミック成形体の特性は、実用上の規格に入らなかった。   The thickness of the coating in layer 52 will be described. The coating thickness of the layer 52 was set to about 1 mm, and the temperature inside the firing chamber 50 was measured by a temperature sensor provided in the firing chamber 50. In this measurement result, the temperature variation in the firing chamber 50 was as large as 20 to 40 ° C. For this reason, the characteristics of ceramic molded bodies such as electronic parts fired in the firing chamber 50 having such temperature variations did not fall within practical standards.

また、セラミック成形体は、材料的に多種類存在するから、セラミック成形体の種類ごとに対応して断熱ボード51にコーティングする層52の材料の種類を変更する必要が生じる。   In addition, since there are many types of ceramic molded bodies, it is necessary to change the material type of the layer 52 to be coated on the heat insulating board 51 corresponding to the type of ceramic molded body.

しかしながら、層52は断熱ボード51に直接、コーティングされているために層52だけを取り替えることはできず、層52を含む断熱ボード51全体を取り替える必要がある。このような取り替え作業は、コストが高くつく。   However, since the layer 52 is coated directly on the insulating board 51, the layer 52 alone cannot be replaced, and the entire insulating board 51 including the layer 52 needs to be replaced. Such replacement work is costly.

本発明による発熱炉壁は、マイクロ波吸収特性を有する発熱体と、発熱体を保持する保持体とを含み、マイクロ波焼成炉の焼成室の炉内側表面に対して着脱自在に取り付け得る構成を備えていることを特徴とするものである。   The heating furnace wall according to the present invention includes a heating element having microwave absorption characteristics and a holding body for holding the heating element, and has a configuration that can be detachably attached to the furnace inner surface of the firing chamber of the microwave firing furnace. It is characterized by having.

保持体は、上記着脱自在に取り付け得る構成として、好ましくは、一対のプレートからなり、これら一対のプレート間に発熱体を挟み込んで構成されている。そして、この保持体は、焼成室を構成する断熱ボードの内面に形成した溝等に嵌め込み可能な構成にしたり、あるいは、断熱ボードの内面に留め具等により固定可能な構成とすることにより、当該焼成室の炉内側表面に対して着脱自在とすることができる。   The holding body preferably includes a pair of plates as a configuration that can be detachably attached, and is configured by sandwiching a heating element between the pair of plates. And this holding body can be fitted into a groove or the like formed on the inner surface of the heat insulating board constituting the firing chamber, or it can be fixed to the inner surface of the heat insulating board with a fastener or the like. It can be made detachable with respect to the furnace inner surface of the firing chamber.

本発明においては、焼成室の炉内側表面に対する保持体の着脱自在な構成は上記に限定されるものではなく、その他の着脱自在とした構成も含む。   In the present invention, the detachable structure of the holding body with respect to the furnace inner surface of the baking chamber is not limited to the above, and includes other detachable structures.

保持体は、好ましくは、その表面に空隙部を有したプレートからなり、プレートの空隙部に被焼成体と等価なマイクロ波吸収特性を有する物質(スラリー)を充填して発熱体とする。   The holding body is preferably composed of a plate having a void portion on the surface thereof, and the void portion of the plate is filled with a substance (slurry) having a microwave absorption characteristic equivalent to the fired body to form a heating element.

被焼成体と等価なマイクロ波吸収特性を有する発熱体の材料としては、被焼成体と同材料を用いることの他、異なる材料であっても被焼成体のマイクロ波吸収特性とほぼ同等のマイクロ波吸収特性を有する材料からなるものであればよい。   In addition to using the same material as the material to be fired as a material for the heating element equivalent to the material to be fired, a micro-material having almost the same microwave absorption property as the material to be fired is used. Any material may be used as long as the material has wave absorption characteristics.

本発明によるマイクロ波焼成炉は、被焼成体を収納する焼成室を備えたマイクロ波焼成炉であって、焼成室の炉内側表面に上記発熱炉壁を設けていることを特徴とするものである。   A microwave baking furnace according to the present invention is a microwave baking furnace provided with a baking chamber for storing an object to be fired, wherein the heating furnace wall is provided on the furnace inner surface of the baking chamber. is there.

本発明によるセラミック電子部品の製造方法は、上記マイクロ波焼成炉を用いてセラミック電子部品を製造する方法であって、マイクロ波焼成炉の焼成室内に、被焼成体としてセラミック成形体を収納する工程と、焼成室内にマイクロ波を照射して、前記セラミック成形体を焼成する工程とを含むことを特徴とするものである。   A method for producing a ceramic electronic component according to the present invention is a method for producing a ceramic electronic component using the above-mentioned microwave firing furnace, wherein a ceramic molded body is stored as a body to be fired in a firing chamber of the microwave firing furnace. And firing the ceramic molded body by irradiating microwaves into the firing chamber.

被焼成体としては、陶磁器の他、各種セラミック成形体が挙げられる。また、被焼成体と等価なマイクロ波吸収特性を有する発熱体の材料としては、ムライト系、窒化珪素系、アルミナ系がある。   As a to-be-fired body, various ceramic molded bodies other than ceramics are mentioned. In addition, examples of a material for a heating element having a microwave absorption characteristic equivalent to a fired body include a mullite type, a silicon nitride type, and an alumina type.

本発明の発熱炉壁、焼成炉、セラミック電子部品の製造方法によると、焼成炉の焼成室の炉内側表面に発熱炉壁が着脱自在に設けられており、被焼成体と等価なマイクロ波吸収特性を有する発熱体を備えた発熱炉壁に容易に交換でき、多数の材料が存在するセラミック成形体のマイクロ波焼成に適する。   According to the method for manufacturing a heating furnace wall, a firing furnace, and a ceramic electronic component of the present invention, the heating furnace wall is detachably provided on the furnace inner surface of the firing chamber of the firing furnace, and the microwave absorption equivalent to the body to be fired is provided. It can be easily replaced with a heating furnace wall provided with a heating element having characteristics, and is suitable for microwave firing of a ceramic molded body having a large number of materials.

また、発熱炉壁は、マイクロ波吸収特性を有する発熱体を保持体にて保持してなり、発熱体の厚さを十分に厚くでき、亀裂や剥離が発生せず、炉壁に発熱ムラが発生せず、炉内の温度分布を均一にすることができる。   In addition, the heating furnace wall is formed by holding a heating element having microwave absorption characteristics with a holding body, and the thickness of the heating element can be made sufficiently thick, so that cracks and peeling do not occur, and uneven heating is generated on the furnace wall. It does not occur, and the temperature distribution in the furnace can be made uniform.

本発明の発熱炉壁、焼成炉によれば、炉内の温度分布を均一に保つことができ、かつ、被焼成体の材料の違いに容易に対応して被焼成体と等価なマイクロ波吸収特性を備えた炉壁にて被焼成体を囲むことができ、セラミック成形体のマイクロ波焼成に適しているという効果が得られる。また、本発明のセラミック電子部品の製造方法によれば、特性のバラツキのない良好なものが得られる。   According to the heating furnace wall and firing furnace of the present invention, the temperature distribution in the furnace can be kept uniform, and the microwave absorption equivalent to the fired body can be easily accommodated to the difference in the material of the fired body. An object to be fired can be surrounded by a furnace wall having characteristics, and an effect of being suitable for microwave firing of a ceramic molded body can be obtained. In addition, according to the method for manufacturing a ceramic electronic component of the present invention, a good product with no variation in characteristics can be obtained.

以下、本発明を実施するための最良の形態(以下、実施例1という)を、図面を参照して、詳細に説明する。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as Example 1) will be described in detail with reference to the drawings.

図1ないし図4は、本発明の実施例1に係り、図1はマイクロ波焼成炉の概略構造を示す断面図、図2は図1のマイクロ波焼成炉内に配置された焼成室を拡大して示す断面図、図3は図2の焼成室を構成する発熱炉壁を分解して示す斜視図、図4は図3の発熱炉壁の断面構造を示す断面図である。   1 to 4 relate to Embodiment 1 of the present invention, FIG. 1 is a sectional view showing a schematic structure of a microwave baking furnace, and FIG. 2 is an enlarged view of a baking chamber disposed in the microwave baking furnace of FIG. 3 is an exploded perspective view showing a heating furnace wall constituting the firing chamber of FIG. 2, and FIG. 4 is a sectional view showing a sectional structure of the heating furnace wall of FIG.

図1を参照して、1はマイクロ波焼成炉全体を示す。
10はチャンバであり、このチャンバ10の図面上で下面に2つのマイクロ波発信器11,11が、それぞれ、対応する導波管12,12を介して、取り付けられている。チャンバ10の図面上で左右の両側面には、マイクロ波発信器11,11それぞれからチャンバ10内に入射されてきたマイクロ波を攪拌する攪拌機構13,13が配備されている。このチャンバ10内の中央部には、被焼成体Wを収納する焼成室20が配備されている。
With reference to FIG. 1, 1 shows the whole microwave baking furnace.
Reference numeral 10 denotes a chamber, and two microwave transmitters 11 and 11 are attached to the lower surface of the chamber 10 via the corresponding waveguides 12 and 12, respectively. On both the left and right side surfaces of the chamber 10 in the drawing, stirring mechanisms 13 and 13 for stirring the microwaves that have entered the chamber 10 from the microwave transmitters 11 and 11 are provided. A firing chamber 20 that houses the object to be fired W is disposed in the center of the chamber 10.

チャンバ10は、少なくとも内面がマイクロ波を反射する構造とされている。このマイクロ波を反射させる材料としては例えばステンレス鋼等があるが、その材料は適宜に選択することができる。   The chamber 10 has a structure in which at least an inner surface reflects microwaves. Examples of the material that reflects the microwave include stainless steel, and the material can be appropriately selected.

両マイクロ波発信器11,11は、それぞれ、マイクロ波を発信するものであり、その発信するマイクロ波の周波数は、例えば0.9〜100GHz程度である。マイクロ波発信器11,11は、導波管12,12を介して、図面上、チャンバ10の下面の両側に互いから所定の距離を隔てられて配備されている。   Both the microwave transmitters 11 and 11 transmit microwaves, respectively, and the frequency of the transmitted microwaves is, for example, about 0.9 to 100 GHz. The microwave transmitters 11 and 11 are disposed on the both sides of the lower surface of the chamber 10 via the waveguides 12 and 12 at a predetermined distance from each other on the drawing.

攪拌機構13,13は、それぞれ、駆動モータ14,14と、その回転軸15,15と、それら回転軸15,15それぞれの先端に取り付けられたファン16,16とにより構成されている。   The agitation mechanisms 13 and 13 are configured by drive motors 14 and 14, rotary shafts 15 and 15 thereof, and fans 16 and 16 attached to the tips of the rotary shafts 15 and 15, respectively.

焼成室20は、中空直方体の形状とされた断熱ボード21を備える。断熱ボード21の炉内側の表面には、複数の発熱炉壁22が設けられている。なお、これら発熱炉壁22は、図解の容易な理解のため、断熱ボード21に対する配置位置を問わず、同じ符号で示している。   The firing chamber 20 includes a heat insulating board 21 having a hollow rectangular parallelepiped shape. A plurality of heating furnace walls 22 are provided on the inner surface of the heat insulating board 21. In addition, these heat generating furnace walls 22 are shown with the same code | symbol irrespective of the arrangement position with respect to the heat insulation board 21, for easy understanding of illustration.

各発熱炉壁22は、底面、天面、左右両側面だけ図示されているが、正面側と背面側にも設けられている。したがって、焼成室20における正面側と背面側は図に表れていないが、これらすべての発熱炉壁は単に発熱炉壁22ということにする。この焼成室20には、図示しないが、当該焼成室20を囲む補助断熱壁を設けることが好ましい。   Each heating furnace wall 22 is shown only on the bottom surface, top surface, and left and right side surfaces, but is also provided on the front side and the back side. Therefore, although the front side and the back side in the firing chamber 20 are not shown in the figure, all these heating furnace walls are simply referred to as heating furnace walls 22. Although not shown in the drawing, the baking chamber 20 is preferably provided with an auxiliary heat insulating wall surrounding the baking chamber 20.

断熱ボード21は、断熱性とマイクロ波透過性とを具有する物質、例えばアルミナファイバーや発泡アルミナ等で形成されている。断熱ボード21の図上では正面側が被焼成体Wの出し入れ用の嵌め込み式の扉となっている。扉は図解の簡略のため図示していない。   The heat insulation board 21 is made of a material having heat insulation properties and microwave transmission properties, such as alumina fiber and foamed alumina. In the figure of the heat insulation board 21, the front side is a fitting door for taking in and out the body W to be fired. The door is not shown for simplicity of illustration.

このように発熱炉壁22は、断熱ボード21の炉内側表面のすべてに設置されている。断熱ボード21の炉内側表面に対する発熱炉壁22の取り付けは、当該発熱炉壁22が断熱ボード21から容易に着脱することができるように、断熱ボード21の内面に形成した溝に嵌め込んだり、あるいは、簡単に着脱することができる留め具等にて固定する。   Thus, the heating furnace wall 22 is installed on all the furnace inner surfaces of the heat insulation board 21. The heating furnace wall 22 is attached to the furnace inner surface of the heat insulating board 21 by being fitted into a groove formed on the inner surface of the heat insulating board 21 so that the heat generating furnace wall 22 can be easily detached from the heat insulating board 21. Or it fixes with the fastener etc. which can be attached or detached easily.

図2ないし図4を参照して、焼成室20の構造を詳しく説明する。   The structure of the baking chamber 20 will be described in detail with reference to FIGS.

各発熱炉壁22は、それぞれ、保持体として対向する一対の矩形のプレート23,23と、両プレート23,23間に挟み込まれた、発熱物質からなる板状の発熱体24と、プレート23,23の両対向端部を発熱体24を内包した状態で接合する一対の外枠25,25とから構成されている。両外枠25,25は、例えば両プレート23,23と同じ材質のもので形成されている。両プレート23,23と両外枠25,25との接着にはアルミナ系の接着剤を用いる。   Each heating furnace wall 22 includes a pair of rectangular plates 23 and 23 facing each other as a holding body, a plate-like heating element 24 made of a heating material sandwiched between the plates 23 and 23, a plate 23, 23, a pair of outer frames 25 and 25 are joined together in a state in which a heat generating body 24 is included. Both outer frames 25, 25 are made of the same material as the plates 23, 23, for example. An alumina adhesive is used for bonding the plates 23 and 23 to the outer frames 25 and 25.

各発熱炉壁22において、両プレート23,23は、被焼成体Wと比べてマイクロ波吸収特性に劣る材質のもので形成されている。例えば、両プレート23,23は、アルミナやジルコニア等にて形成されている。   In each heating furnace wall 22, both plates 23, 23 are formed of a material inferior in microwave absorption characteristics as compared with the body to be fired W. For example, both plates 23 and 23 are formed of alumina, zirconia, or the like.

各発熱炉壁22において、プレート23,23は、メッシュ状に形成されている。これは、焼成室20の外部から当該焼成室20の内部に対してマイクロ波が容易に透過し、かつ、マイクロ波の吸収により発熱体24の熱が炉内に迅速にかつ容易に伝わるようにするためである。プレート23は、上記メッシュ状以外に、例えば多孔板等を用いてもよく、あるいはマイクロ波や熱が十分通過するのであれば、孔等の空いていない単なる平板であってもよい。   In each heating furnace wall 22, the plates 23, 23 are formed in a mesh shape. This is so that microwaves can easily pass from the outside of the baking chamber 20 to the inside of the baking chamber 20, and the heat of the heating element 24 can be quickly and easily transferred into the furnace by absorption of the microwaves. It is to do. The plate 23 may be a perforated plate or the like other than the mesh shape, or may be a simple flat plate having no holes or the like as long as microwaves and heat pass sufficiently.

また、発熱体24は、被焼成体Wと等価なマイクロ波吸収特性を有する材質のものが用いられる。例えば、発熱体24を構成する物質には、被焼成体Wと同じ物質のものが用いられる。すなわち、マイクロ波により焼成する被焼成体Wとなるセラミック成形体が、例えば、誘電体共振器の(Zr,Sn)TiO系材料からなる場合、この(Zr,Sn)TiO系材料を発熱物質として用いて板状に形成し、さらに焼成して発熱体24を得る。なお、セラミック成形体とは異なる材料であって、マイクロ波吸収特性がほぼ同等な物質を用いて、発熱体24を形成してもよい。 Further, the heating element 24 is made of a material having a microwave absorption characteristic equivalent to that of the object to be fired W. For example, the same material as the body to be fired W is used as the material constituting the heating element 24. That is, when the ceramic molded body to be fired W to be fired by microwaves is made of, for example, a dielectric resonator (Zr, Sn) TiO 4 based material, the (Zr, Sn) TiO 4 based material generates heat. A heating element 24 is obtained by forming into a plate shape by using as a substance and further baking. In addition, you may form the heat generating body 24 using the material which is a different material from a ceramic molded body, and has a substantially the same microwave absorption characteristic.

なお、発熱体24は、収納状態にてプレート23,23や外枠25,25との間に若干の隙間が形成される大きさに形成されている。これは、焼成時に発熱体24が熱膨張した際に、プレート23,23や外枠25,25に当接して破損するのを防止するためである。   The heating element 24 is formed in such a size that a slight gap is formed between the plates 23 and 23 and the outer frames 25 and 25 in the housed state. This is to prevent the heat generating element 24 from coming into contact with the plates 23 and 23 and the outer frames 25 and 25 when the heat generating element 24 is thermally expanded during firing.

次に、セラミック成形体からなる被焼成体Wの焼成を説明する。   Next, firing of the body to be fired W made of a ceramic molded body will be described.

被焼成体Wは、例えば、セラミック粉末が円盤状にプレス成形され、予め脱脂されている。多数の被焼成体Wを焼成室20に収納する。この収納の状態で、攪拌機構13,13それぞれのモータ14,14を駆動させてファン16,16を回転させる。その一方、マイクロ波発信器11,11を作動させてマイクロ波をチャンバ10内に導入させる。マイクロ波は、焼成室20の断熱ボード21を透過し、発熱体24および被焼成体Wに吸収される。こうして吸収されたマイクロ波は、熱エネルギに変換され、発熱体24および被焼成体Wの温度が上昇させられる。   As for the to-be-fired body W, ceramic powder is press-molded in disk shape and degreased beforehand, for example. A large number of objects to be fired W are stored in the firing chamber 20. In this stored state, the motors 14 and 14 of the stirring mechanisms 13 and 13 are driven to rotate the fans 16 and 16. On the other hand, the microwave transmitters 11 and 11 are operated to introduce the microwave into the chamber 10. The microwave passes through the heat insulating board 21 in the baking chamber 20 and is absorbed by the heating element 24 and the object to be fired W. The microwave absorbed in this way is converted into thermal energy, and the temperature of the heating element 24 and the body to be fired W is raised.

焼成室20の炉内の温度制御は、例えば放射温度計を用いて得られる被焼成体Wの温度測定値に従いマイクロ波発信器11のマイクロ波出力を制御することによって行われる。本実施例1の場合、具体的には、焼成室20の炉内の温度を1350℃とし、その温度状態を2時間保持して焼成した。その後、このようにして製造したセラミック成形体の特性評価を行った。   Temperature control in the furnace of the baking chamber 20 is performed by controlling the microwave output of the microwave transmitter 11 according to the temperature measurement value of the to-be-fired body W obtained using a radiation thermometer, for example. In the case of Example 1, specifically, the temperature in the furnace of the baking chamber 20 was set to 1350 ° C., and the temperature state was maintained for 2 hours for baking. Thereafter, the characteristics of the ceramic molded body thus produced were evaluated.

このように構成した発熱炉壁、焼成炉及びセラミック電子部品の製造方法によると、焼成炉1の焼成室20の炉内側表面に発熱炉壁22を着脱自在としたから、被焼成体Wの種類が変更されても、この被焼成体Wと同等のマイクロ波吸収特性を有する材料からなる発熱体24を備えた発熱炉壁22に短時間で容易に取り替えることができるようになり、多数の種類の材料が存在するセラミック成形体のマイクロ波焼成に適したものとなる。   According to the method of manufacturing a heating furnace wall, a firing furnace and a ceramic electronic component configured as described above, the heating furnace wall 22 is detachable from the furnace inner surface of the firing chamber 20 of the firing furnace 1, so Can be easily replaced in a short time with a heating furnace wall 22 having a heating element 24 made of a material having a microwave absorption characteristic equivalent to that of the object to be fired W. It becomes suitable for the microwave firing of the ceramic molded body containing the material.

また、発熱炉壁22は、被焼成体Wと等価なマイクロ波吸収特性を有する材料からなる発熱体24をプレート23にて保持してなり、発熱体24の厚さを十分に厚くでき、発熱炉壁22に亀裂や剥離が発生せず、当該発熱炉壁22に発熱ムラが発生せず、焼成室20の炉内温度の分布を均一に維持することができる。   Further, the heating furnace wall 22 holds a heating element 24 made of a material having a microwave absorption characteristic equivalent to the body to be fired W by a plate 23, so that the thickness of the heating element 24 can be sufficiently increased. Cracks and peeling do not occur in the furnace wall 22, and heat generation unevenness does not occur in the heating furnace wall 22, and the furnace temperature distribution in the firing chamber 20 can be maintained uniformly.

具体的には、発熱体24の厚さを約3mmとしたとき温度センサによる炉内の温度バラツキは5〜10℃の範囲に留まった。これは、剥離現象が生じない板状の発熱体24が発熱しているため、発熱ムラが生じ難くなっているためである。また、コーティングと比較して厚く、発熱量が増大していることも、温度分布均一にプラスに作用している。この結果、焼成後の共振器特性のバラツキは小さく、規格内に収まるという効果が得られた。   Specifically, when the thickness of the heating element 24 was about 3 mm, the temperature variation in the furnace due to the temperature sensor remained in the range of 5 to 10 ° C. This is because unevenness of heat generation is less likely to occur because the plate-like heating element 24 that does not cause the peeling phenomenon generates heat. Further, the fact that it is thicker than the coating and the calorific value is increased also has a positive effect on the uniform temperature distribution. As a result, the variation in the resonator characteristics after firing was small, and the effect of being within the standard was obtained.

発熱炉壁22は、保持体となる一対の矩形のプレート23,23間に、発熱体24を挟み込み、プレート23,23どうしを外枠25にて接合して形成され、製造が容易に行える。   The heating furnace wall 22 is formed by sandwiching a heating element 24 between a pair of rectangular plates 23 and 23 serving as a holding body, and joining the plates 23 and 23 with an outer frame 25, thereby facilitating manufacture.

以下において、他の実施例を説明する。   Other embodiments will be described below.

本発明の実施例2を図5ないし図7を参照して説明する。   A second embodiment of the present invention will be described with reference to FIGS.

図5は焼成炉の焼成室の断面図、図6は発熱炉壁の製造工程図、図7は発熱炉壁の斜視図である。   FIG. 5 is a sectional view of the firing chamber of the firing furnace, FIG. 6 is a manufacturing process diagram of the heating furnace wall, and FIG. 7 is a perspective view of the heating furnace wall.

実施例2は発熱炉壁32に特徴があり、焼成炉の全体構造、ならびに被焼成体Wの焼成方法等は、実施例1に記載の例と同様である。   The second embodiment is characterized by the heating furnace wall 32, and the overall structure of the firing furnace, the firing method of the body W to be fired, and the like are the same as the example described in the first embodiment.

発熱炉壁32の製造について説明する。   The production of the heating furnace wall 32 will be described.

図6に示すように、保持体となるアルミナ質のメッシュプレート33を、発熱体となる(Zr,Sn)TiO系材料からなるスラリー34中に浸し、乾燥、脱脂工程を経て焼成した。これによって空隙部となるメッシュ間にスラリー34が焼結して充填され、メッシュプレート33全体が発熱材料で構成されている状態に近い発熱炉壁32が得られた。 As shown in FIG. 6, an alumina mesh plate 33 serving as a holding body was immersed in a slurry 34 made of a (Zr, Sn) TiO 4 material serving as a heating element, followed by drying and degreasing steps. As a result, the slurry 34 was sintered and filled between the meshes serving as the voids, and a heating furnace wall 32 close to a state where the entire mesh plate 33 was made of a heating material was obtained.

このように構成された発熱炉壁32を、実施例1と同様、断熱ボード31の四方の側面ならびに天地両面の計六面に、それぞれ着脱可能に設置する。焼成室30内に被焼成体Wを収納してマイクロ波焼成した結果、実施例1と同様の効果が得られた。   Similarly to the first embodiment, the heating furnace wall 32 configured in this way is detachably installed on the four sides of the heat insulating board 31 and the top and bottom surfaces in total. As a result of accommodating the object to be fired W in the firing chamber 30 and performing microwave firing, the same effects as in Example 1 were obtained.

なお、メッシュプレート33に発熱体となるスラリー34を充填、焼成してなる発熱炉壁32を、実施例1に示した発熱炉壁22の発熱体24の代わりにプレート23間に挟み込み、発熱炉壁としてもよい。   A heating furnace wall 32 formed by filling and firing slurry 34 serving as a heating element in the mesh plate 33 is sandwiched between the plates 23 instead of the heating element 24 of the heating furnace wall 22 shown in the first embodiment, and the heating furnace is provided. It may be a wall.

なお、保持体はメッシュプレート33に限るものではなく、例えば、表面にスラリー34が充填される凹部からなる空隙部を有したプレートにて形成されていてもよい。   In addition, the holding body is not limited to the mesh plate 33, and may be formed of a plate having a void portion including a concave portion whose surface is filled with the slurry 34, for example.

次に、本発明の実施例3を図8ないし図10を参照して説明する。   Next, a third embodiment of the present invention will be described with reference to FIGS.

図8は焼成炉の焼成室の断面図、図9は発熱炉壁の分解斜視図、図10は発熱炉壁の断面図である。   FIG. 8 is a sectional view of the firing chamber of the firing furnace, FIG. 9 is an exploded perspective view of the heating furnace wall, and FIG. 10 is a sectional view of the heating furnace wall.

実施例3は発熱炉壁42に特徴があり、焼成炉の全体構造、ならびに被焼成体Wの焼成方法等は、実施例1に記載の例と同様である。   The third embodiment is characterized by the heating furnace wall 42, and the overall structure of the firing furnace, the firing method of the body W to be fired, and the like are the same as the example described in the first embodiment.

発熱炉壁42の製造について説明する。   The production of the heating furnace wall 42 will be described.

発熱体26は、被焼成体Wと等価なマイクロ波吸収特性を有する材質が用いられる。本実施例では、例えば、発熱体26としてチタン酸バリウムを主成分とするPTCサーミスタ材料を用いた。メッシュ状のプレート23に挟み込む形状としては、製品として生産されている焼成後の円盤状PTCサーミスタをそのまま用いた。これにより、実施例1のように、板状に成形する労力を省略でき、低コスト化が図れる。   The heating element 26 is made of a material having microwave absorption characteristics equivalent to the body to be fired W. In this embodiment, for example, a PTC thermistor material mainly composed of barium titanate is used as the heating element 26. As the shape sandwiched between the mesh-like plates 23, a disc-like PTC thermistor after firing produced as a product was used as it was. Thereby, like Example 1, the effort which shape | molds in plate shape can be abbreviate | omitted and cost reduction can be achieved.

発熱炉壁42は、保持体となる一対の矩形のプレート23,23間に、複数の発熱体26を並べて挟み込み、プレート23,23どうしを外枠25,25にて接合して形成される。   The heating furnace wall 42 is formed by sandwiching a plurality of heating elements 26 between a pair of rectangular plates 23 and 23 serving as a holding body, and joining the plates 23 and 23 with outer frames 25 and 25.

このように構成された発熱炉壁42を、実施例1と同様、断熱ボード41の四方の側面ならびに天地両面の計六面に、それぞれ着脱可能に設置する。   Similarly to the first embodiment, the heat generating furnace wall 42 configured in this manner is detachably installed on the four sides of the heat insulation board 41 and the top and bottom surfaces in total.

そして、焼成室40内に被焼成体Wを収納してマイクロ波焼成した結果、実施例1と同様の効果が得られた。   And as a result of accommodating the to-be-fired body W in the baking chamber 40 and carrying out microwave baking, the same effect as Example 1 was acquired.

なお、前記各実施例では、セラミック電子部品が誘電体共振器であって、被焼成体Wとなるセラミック成形体が(Zr,Sn)TiO系材料からなるものや、セラミック電子部品がPTCサーミスタであって、被焼成体Wとなるセラミック成形体がチタン酸バリウム材料からなるものを例示したが、これらに限るものではなく、発熱体も被焼成体Wと等価なマイクロ波吸収特性を有する材質を適宜用いることができる。 In each of the above embodiments, the ceramic electronic component is a dielectric resonator, and the ceramic molded body to be fired W is made of (Zr, Sn) TiO 4 based material, or the ceramic electronic component is a PTC thermistor. However, the ceramic molded body to be fired W is exemplified by a barium titanate material. However, the present invention is not limited thereto, and the heating element is a material having microwave absorption characteristics equivalent to that of the fired W. Can be used as appropriate.

本発明は、誘電体共振器やPTCサーミスタ等のセラミック電子部品を構成するセラミック成形体をマイクロ波にて焼成する焼成炉とその焼成室の発熱炉壁、ならびに焼成炉によるセラミック電子部品の製造方法として有用である。   The present invention relates to a firing furnace for firing a ceramic molded body constituting a ceramic electronic component such as a dielectric resonator or a PTC thermistor by microwaves, a heating furnace wall of the firing chamber, and a method for producing a ceramic electronic component using the firing furnace. Useful as.

本発明の実施例1に係るマイクロ波焼成炉の概略断面図Schematic cross-sectional view of a microwave baking furnace according to Example 1 of the present invention 同実施例1に係るマイクロ波焼成炉の焼成室の断面図Sectional drawing of the baking chamber of the microwave baking furnace which concerns on the same Example 1 同実施例1に係るマイクロ波焼成炉の発熱炉壁の分解斜視図The exploded perspective view of the heating furnace wall of the microwave baking furnace which concerns on the same Example 1 同実施例1に係るマイクロ波焼成炉の発熱炉壁の断面図Sectional drawing of the heating furnace wall of the microwave baking furnace which concerns on the Example 1 本発明の実施例2に係るマイクロ波焼成炉の焼成室の断面図Sectional drawing of the baking chamber of the microwave baking furnace which concerns on Example 2 of this invention 同実施例2に係るマイクロ波焼成炉の発熱炉壁の製造工程図Manufacturing process diagram of heating furnace wall of microwave firing furnace according to Example 2 同実施例2に係るマイクロ波焼成炉の発熱炉壁の斜視図The perspective view of the heating furnace wall of the microwave baking furnace which concerns on the same Example 2 本発明の実施例3に係るマイクロ波焼成炉の焼成室の断面図Sectional drawing of the baking chamber of the microwave baking furnace which concerns on Example 3 of this invention. 同実施例3に係るマイクロ波焼成炉の発熱炉壁の分解斜視図The exploded perspective view of the heating furnace wall of the microwave baking furnace which concerns on the same Example 3 同実施例3に係るマイクロ波焼成炉の発熱炉壁の断面図Sectional drawing of the heating furnace wall of the microwave baking furnace which concerns on the same Example 3 従来例の焼成炉の概略断面図Schematic cross-sectional view of a conventional firing furnace 従来例の焼成炉の焼成室の断面図Sectional view of the firing chamber of a conventional firing furnace

符号の説明Explanation of symbols

1 マイクロ波焼成炉
20,30,40 焼成室
22,32,42 発熱炉壁
23 プレート(保持体)
24,26 発熱体
33 メッシュプレート(保持体)
34 スラリー(発熱体)
W 被焼成体(セラミック成形体)
1 Microwave firing furnace 20, 30, 40 Firing chamber 22, 32, 42 Heating furnace wall 23 Plate (holding body)
24, 26 Heating element 33 Mesh plate (holding body)
34 Slurry (heating element)
W To-be-fired body (ceramic molded body)

Claims (5)

マイクロ波吸収特性を有する発熱体と、
発熱体を保持する保持体とを含み、
マイクロ波焼成炉の焼成室の炉内側表面に対して着脱自在に取り付け得る構成を備えている、ことを特徴とする発熱炉壁。
A heating element having microwave absorption characteristics;
A holding body for holding the heating element,
A heating furnace wall characterized by having a structure that can be detachably attached to a furnace inner surface of a firing chamber of a microwave firing furnace.
保持体が少なくとも一対のプレートからなり、これら一対のプレート間に発熱体を挟み込んでなる、ことを特徴とする請求項1に記載の発熱炉壁。   The heating furnace wall according to claim 1, wherein the holding body is composed of at least a pair of plates, and the heating element is sandwiched between the pair of plates. 保持体が表面に空隙部を有したプレートからなり、プレートの空隙部にマイクロ波吸収特性を有する物質を充填して当該発熱体とされている、ことを特徴とする請求項1に記載の発熱炉壁。   The heating element according to claim 1, wherein the holding body is made of a plate having a gap portion on a surface thereof, and the gap portion of the plate is filled with a substance having microwave absorption characteristics to form the heating element. Furnace wall. 被焼成体を収納する焼成室を備えたマイクロ波焼成炉であって、
焼成室の炉内側表面に請求項1ないし請求項3のいずれかに記載の発熱炉壁を設けている、ことを特徴とするマイクロ波焼成炉。
A microwave firing furnace having a firing chamber for storing a body to be fired,
4. A microwave firing furnace characterized in that the heating furnace wall according to any one of claims 1 to 3 is provided on a furnace inner surface of the firing chamber.
請求項4に記載のマイクロ波焼成炉を用いてセラミック電子部品を製造する方法であって、
マイクロ波焼成炉の焼成室内に、被焼成体としてセラミック成形体を収納する工程と、
焼成室内にマイクロ波を照射して、セラミック成形体を焼成する工程とを含む、ことを特徴とするセラミック電子部品の製造方法。
A method for producing a ceramic electronic component using the microwave firing furnace according to claim 4,
In the firing chamber of the microwave firing furnace, a step of storing a ceramic molded body as a fired body,
And a step of irradiating microwaves into the firing chamber to fire the ceramic molded body.
JP2004001999A 2004-01-07 2004-01-07 Heating furnace wall, microwave firing furnace and ceramic electronic component manufacturing method Pending JP2005195252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001999A JP2005195252A (en) 2004-01-07 2004-01-07 Heating furnace wall, microwave firing furnace and ceramic electronic component manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004001999A JP2005195252A (en) 2004-01-07 2004-01-07 Heating furnace wall, microwave firing furnace and ceramic electronic component manufacturing method

Publications (1)

Publication Number Publication Date
JP2005195252A true JP2005195252A (en) 2005-07-21

Family

ID=34817352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001999A Pending JP2005195252A (en) 2004-01-07 2004-01-07 Heating furnace wall, microwave firing furnace and ceramic electronic component manufacturing method

Country Status (1)

Country Link
JP (1) JP2005195252A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311840A (en) * 2007-06-13 2008-12-25 Nec Corp System, apparatus, method, and program for registering identifier (id) transmitter location information
JP2012088041A (en) * 2011-12-07 2012-05-10 Micro Denshi Kk Microwave dryer
CN102853666A (en) * 2011-06-28 2013-01-02 戴煜 Box-type microwave high-temperature sintering furnace
CN103134305A (en) * 2011-11-30 2013-06-05 上海市电力公司 Positive temperature coefficient (PTC) sintering kiln
US9287043B2 (en) 2012-09-04 2016-03-15 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component having controlled difference in continuity between internal electrodes and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311840A (en) * 2007-06-13 2008-12-25 Nec Corp System, apparatus, method, and program for registering identifier (id) transmitter location information
CN102853666A (en) * 2011-06-28 2013-01-02 戴煜 Box-type microwave high-temperature sintering furnace
CN103134305A (en) * 2011-11-30 2013-06-05 上海市电力公司 Positive temperature coefficient (PTC) sintering kiln
JP2012088041A (en) * 2011-12-07 2012-05-10 Micro Denshi Kk Microwave dryer
US9287043B2 (en) 2012-09-04 2016-03-15 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component having controlled difference in continuity between internal electrodes and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7217909B2 (en) Microwave baking furnace
US20030111462A1 (en) Burning furnace,burnt body producing method, and burnt body
JP4214040B2 (en) Operation method of microwave heating furnace and microwave heating furnace
RU2313508C2 (en) Method of compaction of the ceramic materials under action of the centimeter electromagnetic waves and the vessel used for realization of this method
JP2003518473A5 (en)
JP2010025452A (en) Method and device for densifying ceramics
JP2005195252A (en) Heating furnace wall, microwave firing furnace and ceramic electronic component manufacturing method
JP3845777B2 (en) Firing furnace and method for producing fired body
WO2017106183A2 (en) A microwave furnace and a method of sintering
US7315012B2 (en) Microwave baking furnace
CN201585163U (en) Microwave high temperature heating furnace
US7223950B2 (en) Microwave burning furnace including heating element having two types of materials
JP3799454B2 (en) Firing furnace
JP2004257725A (en) Microwave baking furnace
JPH11118158A (en) Heating cooker
JP5554085B2 (en) Operation method of heating device
JP4028707B2 (en) Method for densifying ceramic products
RU2315443C1 (en) Method for caking a large-sized ceramic product using microwave radiation heating
KR20180056859A (en) Hybrid heater rapidly heated by microwave
EP2362175B1 (en) Housing for heating and use method of the same, heating jig and use method of the same, and operation method of heating device
JP2001128847A (en) Heat generating tray for microwave oven and heating medium material of heat generating tray for microwave oven as well as method for manufacturing heat generating tray for microwave oven
JP3999070B2 (en) Microwave firing furnace
US20170310088A1 (en) Spark Plug Insulator and Method of Making the Same
KR102126152B1 (en) Microwave furnace
JP2005114299A (en) Microwave kiln