JP2005194962A - Exhaust pipe and exhaust device for internal combustion engine - Google Patents

Exhaust pipe and exhaust device for internal combustion engine Download PDF

Info

Publication number
JP2005194962A
JP2005194962A JP2004003341A JP2004003341A JP2005194962A JP 2005194962 A JP2005194962 A JP 2005194962A JP 2004003341 A JP2004003341 A JP 2004003341A JP 2004003341 A JP2004003341 A JP 2004003341A JP 2005194962 A JP2005194962 A JP 2005194962A
Authority
JP
Japan
Prior art keywords
pipe
exhaust
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003341A
Other languages
Japanese (ja)
Inventor
Koichiro Nakatani
好一郎 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004003341A priority Critical patent/JP2005194962A/en
Publication of JP2005194962A publication Critical patent/JP2005194962A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve emission control efficiency by maintaining exhaust gas temperature in appropriate temperature in an exhaust pipe of an internal combustion engine. <P>SOLUTION: A double exhaust pipe 29 having an outer pipe 33 provided outside of an inner pipe 31 via a space part 32 is provided between an exhaust manifold 28 and an emission control catalyst device 30. A heat conduction member 34 made of shape memory alloy is attached on an inner circumference surface of the outer pipe 33. The heat conduction member 34 deforms according to temperature of the outer pipe 33 correlating to temperature of exhaust gas and the inner pipe 31 and the outer pipe 33 can be switched in a connection condition and a disconnection condition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関で燃焼した排気ガスを処理する排気管及び排気装置に関するものである。   The present invention relates to an exhaust pipe and an exhaust device that process exhaust gas burned in an internal combustion engine.

内燃機関の排気系には、燃焼後に排出される排気ガスを処理する触媒が設けられており、例えば、三元触媒は、排気ガス中に含まれる炭化窒素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などの有害物質を浄化処理することができる。しかし、この三元触媒は、これらの有害物質を効率的に処理するために所定の活性化温度に維持する必要があるが、特に、内燃機関の冷態始動時では、内燃機関の各構成部材が低温状態にあるために排気ガスの熱が奪われてしまい、この排気ガスにより三元触媒を昇温することができない。   An exhaust system of an internal combustion engine is provided with a catalyst for treating exhaust gas discharged after combustion. For example, a three-way catalyst includes nitrogen carbide (HC) and carbon monoxide (CO) contained in exhaust gas. In addition, harmful substances such as nitrogen oxides (NOx) can be purified. However, this three-way catalyst needs to be maintained at a predetermined activation temperature in order to efficiently treat these harmful substances. Particularly, at the time of cold start of the internal combustion engine, each component of the internal combustion engine Since the temperature of the exhaust gas is low, the heat of the exhaust gas is deprived and the temperature of the three-way catalyst cannot be increased by the exhaust gas.

そこで、排気ガスの温度低下を抑制するために排気管を二重管とし、内燃機関の冷態始動時であっても、高温の排気ガスを三元触媒に導入して昇温することで、早期の活性化を図るようにした技術が提案されている。ところが、内燃機関の高速運転時には、排気ガスの温度が高温となり、排気ガスの浄化処理領域を外れて有害物質を適正に浄化処理できなくなったり、あるは、三元触媒が高温の排気ガスにより熱劣化してしまうという問題がある。   Therefore, in order to suppress the temperature drop of the exhaust gas, the exhaust pipe is a double pipe, and even during the cold start of the internal combustion engine, by introducing a high temperature exhaust gas into the three-way catalyst and raising the temperature, Techniques that enable early activation have been proposed. However, during high-speed operation of the internal combustion engine, the exhaust gas temperature becomes high, and the exhaust gas purification process area is out of place and the harmful substances cannot be properly purified, or the three-way catalyst is heated by the hot exhaust gas. There is a problem of deterioration.

この問題を解決するものとして下記特許文献1に記載された「排気装置」がある。この特許文献1に記載されたものは、内管と外管とから排気管を構成し、低温時には外管に対して内管が離間した位置にあり、所定温度以上になると内管が変形して外管に密着するものである。従って、内管の内側を通る高温の排気ガスは外管を通して放熱し、この排気ガスの温度を低下させて三元触媒の熱劣化を防止することができる。   As an solution to this problem, there is an “exhaust device” described in Patent Document 1 below. The one described in Patent Document 1 constitutes an exhaust pipe from an inner pipe and an outer pipe, and the inner pipe is located at a position separated from the outer pipe at a low temperature. It is in close contact with the outer tube. Therefore, the high-temperature exhaust gas passing through the inside of the inner pipe can radiate heat through the outer pipe, and the temperature of the exhaust gas can be lowered to prevent thermal degradation of the three-way catalyst.

特開2000−027638号公報JP 2000-027638 A

上述した従来の「排気装置」にあっては、排気管の内管を形状記憶合金によって構成し、排気ガスが所定温度以上になったら内管を変形させて外管に密着させることで、排気ガスを放熱させている。ところが、排気管は所定の長さを有するものであり、全長にわたって高価な形状記憶合金を用いて製造することは、材料コストの増加を招いてしまう。また、一般に、円筒形状をなす排気管の内管を、低温時に横断面波形状などの異形断面形状に成形することは技術的に難しく、製造コストも増加してしまう。   In the above-described conventional “exhaust device”, the inner pipe of the exhaust pipe is made of a shape memory alloy, and when the exhaust gas reaches a predetermined temperature or more, the inner pipe is deformed and brought into close contact with the outer pipe. The gas is dissipating heat. However, the exhaust pipe has a predetermined length, and manufacturing using an expensive shape memory alloy over the entire length leads to an increase in material cost. In general, it is technically difficult to mold the inner pipe of the exhaust pipe having a cylindrical shape into an irregular cross-sectional shape such as a cross-sectional wave shape at a low temperature, and the manufacturing cost increases.

本発明は、このような問題を解決するためのものであって、排気ガス温度を適正温度に維持することで排気浄化効率の向上を図った内燃機関の排気管及び排気装置を提供することを目的とする。   The present invention is intended to solve such problems, and provides an exhaust pipe and an exhaust device for an internal combustion engine that improve exhaust purification efficiency by maintaining the exhaust gas temperature at an appropriate temperature. Objective.

上述した課題を解決し、目的を達成するために、本発明の内燃機関の排気管は、内部に排気ガスが流れる排気通路を有する内管と、該内管の外側に空間部をもって配設された外管とを有する内燃機関の排気管において、前記空間部に排気ガスの温度に応じて前記内管と前記外管とを接続状態または非接続状態に切換可能な伝熱部材を設けたことを特徴とするものである。   In order to solve the above-described problems and achieve the object, an exhaust pipe of an internal combustion engine of the present invention is provided with an inner pipe having an exhaust passage through which exhaust gas flows and a space portion outside the inner pipe. In the exhaust pipe of an internal combustion engine having an outer pipe, a heat transfer member capable of switching the inner pipe and the outer pipe to a connected state or a non-connected state in accordance with the temperature of the exhaust gas is provided in the space portion. It is characterized by.

本発明の内燃機関の排気管では、前記伝熱部材は、一端部が前記外管の内周面に装着され、排気ガスの温度が予め設定された所定温度を超えると変形して他端部が前記内管の外周面に接触することを特徴としている。   In the exhaust pipe of the internal combustion engine of the present invention, one end of the heat transfer member is attached to the inner peripheral surface of the outer pipe, and the other end is deformed when the temperature of the exhaust gas exceeds a predetermined temperature. Is in contact with the outer peripheral surface of the inner tube.

本発明の内燃機関の排気管では、前記伝熱部材は、前記外管の温度が予め設定された所定温度を超えると変形して他端部が前記内管の外周面に接触することを特徴としている。   In the exhaust pipe of the internal combustion engine of the present invention, the heat transfer member is deformed when the temperature of the outer pipe exceeds a preset predetermined temperature, and the other end contacts the outer peripheral surface of the inner pipe. It is said.

本発明の内燃機関の排気管では、前記伝熱部材は、排気ガスの温度または前記外管の温度に応じて変形する形状記憶合金であることを特徴としている。   In the exhaust pipe of the internal combustion engine of the present invention, the heat transfer member is a shape memory alloy that deforms according to the temperature of the exhaust gas or the temperature of the outer pipe.

本発明の内燃機関の排気管では、前記伝熱部材は、前記排気管の長手方向に沿って複数設けられ、該各伝熱部材は異なる排気ガスの温度に応じて前記内管と前記外管とを接続状態または非接続状態に切換えることを特徴としている。   In the exhaust pipe of the internal combustion engine according to the present invention, a plurality of the heat transfer members are provided along the longitudinal direction of the exhaust pipe, and each of the heat transfer members corresponds to the temperature of the different exhaust gas. Are switched to a connected state or a disconnected state.

本発明の内燃機関の排気装置は、触媒の上流側に前記請求項1記載の排気管を設け、前記伝熱部材は、排気ガス温度が予め設定された触媒浄化温度領域を超えたときに前記内管と前記外管とを接続状態とすることを特徴とするものである。   An exhaust system for an internal combustion engine according to the present invention is provided with the exhaust pipe according to claim 1 on the upstream side of a catalyst, and the heat transfer member is configured so that the exhaust gas temperature exceeds the preset catalyst purification temperature region. The inner tube and the outer tube are connected to each other.

本発明の内燃機関の排気装置は、内燃機関の排気通路に三元触媒とNOx触媒とを直列に配設し、前記三元触媒の上流側に前記請求項1記載の第1排気管を設けると共に、前記三元触媒と前記NOx触媒との間に前記請求項1記載の第2排気管を設け、前記第1排気管の伝熱部材は、排気ガス温度が予め設定された三元触媒浄化温度領域を超えたときに前記内管と前記外管とを接続状態とし、前記第2排気管の伝熱部材は、排気ガス温度が予め設定されたNOx触媒浄化温度領域を超えたときに前記内管と前記外管とを接続状態とすることを特徴とするものである。   In the exhaust system for an internal combustion engine according to the present invention, a three-way catalyst and a NOx catalyst are arranged in series in an exhaust passage of the internal combustion engine, and the first exhaust pipe according to claim 1 is provided upstream of the three-way catalyst. In addition, the second exhaust pipe according to claim 1 is provided between the three-way catalyst and the NOx catalyst, and the heat transfer member of the first exhaust pipe is a three-way catalyst purification in which an exhaust gas temperature is preset. When the temperature range is exceeded, the inner pipe and the outer pipe are connected, and the heat transfer member of the second exhaust pipe has the exhaust gas temperature when the exhaust gas temperature exceeds a preset NOx catalyst purification temperature range. The inner tube and the outer tube are connected to each other.

本発明の内燃機関の排気装置は、内燃機関の排気通路に過給機のタービンと触媒とを直列に配設し、前記タービンと前記触媒との間に前記請求項1記載の排気管を設け、該排気管の伝熱部材は、排気ガス温度が予め設定された触媒浄化温度領域を超えたときに前記内管と前記外管とを接続状態とすることを特徴とするものである。   An exhaust system for an internal combustion engine according to the present invention includes a turbocharger turbine and a catalyst arranged in series in an exhaust passage of the internal combustion engine, and the exhaust pipe according to claim 1 is provided between the turbine and the catalyst. The heat transfer member of the exhaust pipe is characterized in that the inner pipe and the outer pipe are connected when the exhaust gas temperature exceeds a preset catalyst purification temperature region.

本発明の内燃機関の排気管及び排気装置によれば、内管と外管との空間部に排気ガスの温度に応じてこの内管と外管とを接続状態または非接続状態に切換可能な伝熱部材を設けたので、排気ガスの低温時には、内管と外管とが非接続状態となり、内管の内側を流動する排気ガスの温度低下を抑制することができる一方、排気ガスの高温時には、内管と外管とが伝熱部材を介して接続状態となり、内管の内側を流動する排気ガスの熱を内管から伝熱部材を通して外管へ放出し、温度上昇を抑制することができ、その結果、排気ガス温度を適正温度に維持することで、触媒での排気浄化効率の向上を図ることができる。   According to the exhaust pipe and exhaust system of the internal combustion engine of the present invention, the inner pipe and the outer pipe can be switched between a connected state and a non-connected state in the space between the inner pipe and the outer pipe depending on the temperature of the exhaust gas. Since the heat transfer member is provided, when the exhaust gas is at a low temperature, the inner tube and the outer tube are disconnected from each other, and the temperature drop of the exhaust gas flowing inside the inner tube can be suppressed. Sometimes the inner tube and the outer tube are connected via the heat transfer member, and the heat of the exhaust gas flowing inside the inner tube is released from the inner tube to the outer tube through the heat transfer member, thereby suppressing the temperature rise. As a result, by maintaining the exhaust gas temperature at an appropriate temperature, it is possible to improve the exhaust purification efficiency of the catalyst.

以下に、本発明にかかる内燃機関の排気管及び排気装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of an exhaust pipe and an exhaust device for an internal combustion engine according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の実施例1に係る内燃機関の排気管を表す要部断面図、図2−1は、実施例1の排気管を表す概略図、図2−2は、実施例1の排気管の作用を表す概略図、図3は、実施例1の排気管が適用された内燃機関の概略構成図である。   1 is a cross-sectional view of an essential part showing an exhaust pipe of an internal combustion engine according to a first embodiment of the present invention, FIG. 2-1 is a schematic diagram showing an exhaust pipe of the first embodiment, and FIG. FIG. 3 is a schematic configuration diagram of an internal combustion engine to which the exhaust pipe of the first embodiment is applied.

実施例1の排気管が適用された内燃機関において、図3に示すように、エンジン11は、火花点火式のエンジンである。このエンジン11にて、シリンダブロック12上にシリンダヘッド13が締結されており、このシリンダブロック12に形成された複数のシリンダボア14にピストン15がそれぞれ上下移動自在に嵌合している。そして、シリンダブロック12の下部に図示しないクランクシャフトが回転自在に支持されており、各ピストン15はコネクティングロッド16を介してこのクランクシャフトにそれぞれ連結されている。以下の説明では、一つの気筒についてのみ説明する。   In the internal combustion engine to which the exhaust pipe of the first embodiment is applied, as shown in FIG. 3, the engine 11 is a spark ignition engine. In the engine 11, a cylinder head 13 is fastened on a cylinder block 12, and pistons 15 are respectively fitted to a plurality of cylinder bores 14 formed in the cylinder block 12 so as to be vertically movable. A crankshaft (not shown) is rotatably supported at the lower portion of the cylinder block 12, and each piston 15 is connected to the crankshaft via a connecting rod 16. In the following description, only one cylinder will be described.

燃焼室17は、シリンダブロック12とシリンダヘッド13とピストン15により構成されており、燃焼室17の上部、つまり、シリンダヘッド12の下面に吸気ポート18及び排気ポート19が対向して形成されており、この吸気ポート18及び排気ポート19に対して吸気バルブ20及び排気バルブ21の下端部が位置している。従って、この吸気バルブ20及び排気バルブ21が所定のタイミングで上下移動することで、吸気ポート18及び排気ポート19を開閉し、吸気ポート18と燃焼室17、燃焼室17と排気ポート19とをそれぞれ連通することができる。   The combustion chamber 17 includes a cylinder block 12, a cylinder head 13, and a piston 15, and an intake port 18 and an exhaust port 19 are formed facing the upper portion of the combustion chamber 17, that is, the lower surface of the cylinder head 12. The lower ends of the intake valve 20 and the exhaust valve 21 are located with respect to the intake port 18 and the exhaust port 19. Accordingly, when the intake valve 20 and the exhaust valve 21 move up and down at a predetermined timing, the intake port 18 and the exhaust port 19 are opened and closed, and the intake port 18 and the combustion chamber 17, and the combustion chamber 17 and the exhaust port 19 are respectively opened and closed. You can communicate.

そして、吸気ポート18には、インテークマニホールド22を介して吸気管23が連結されており、この吸気管23の空気取入口にはエアクリーナ24が取付けられると共に、このエアクリーナ24の下流側にスロットル弁25が設けられている。また、インテークマニホールド22には、各吸気ポート18に燃料(ガソリン)を噴射するインジェクタ26が装着されており、シリンダヘッド13には、燃焼室17の上方に位置して混合気に着火する点火プラグ27が装着されている。   An intake pipe 23 is connected to the intake port 18 via an intake manifold 22. An air cleaner 24 is attached to an air intake port of the intake pipe 23, and a throttle valve 25 is provided downstream of the air cleaner 24. Is provided. The intake manifold 22 is provided with an injector 26 for injecting fuel (gasoline) into each intake port 18, and the cylinder head 13 is positioned above the combustion chamber 17 to ignite the air-fuel mixture. 27 is attached.

一方、排気ポート19には、エギゾーストマニホールド28を介して排気管29が連結されており、この排気管29には排気浄化触媒装置(例えば、三元触媒)30が装着されている。   On the other hand, an exhaust pipe 29 is connected to the exhaust port 19 via an exhaust manifold 28, and an exhaust purification catalyst device (for example, a three-way catalyst) 30 is attached to the exhaust pipe 29.

そして、電子制御ユニットは、インジェクタ26の燃料噴射タイミングや点火プラグ27の点火時期などを制御可能となっており、検出した吸入空気量、スロットル開度(またはアクセル開度)、エンジン回転数などのエンジン運転状態に基づいて燃料噴射量、噴射時期、点火時期などを決定している。   The electronic control unit can control the fuel injection timing of the injector 26, the ignition timing of the spark plug 27, and the like. The detected intake air amount, throttle opening (or accelerator opening), engine speed, etc. The fuel injection amount, injection timing, ignition timing, etc. are determined based on the engine operating state.

ところで、エンジン11の排気管29に設けられた排気浄化触媒装置30は、排気ガス中に含まれるHC、CO、NOxなどの有害物質を浄化処理することができるものの、エンジン11の冷態始動時など所定の活性化温度以下では、これらの有害物質を効率的に浄化処理することができず、また、エンジン11の高速運転時など所定の温度以上では、排気熱により熱劣化してしまう虞がある。   By the way, the exhaust purification catalyst device 30 provided in the exhaust pipe 29 of the engine 11 can purify harmful substances such as HC, CO, NOx contained in the exhaust gas, but at the time of cold start of the engine 11. If the temperature is lower than a predetermined activation temperature, the harmful substances cannot be efficiently purified. If the temperature is higher than a predetermined temperature such as when the engine 11 is operated at high speed, the exhaust heat may cause thermal deterioration. is there.

そこで、本実施例では、外気(冷気)による排気ガスの温度低下を抑制するために排気管29を二重管とし、且つ、高温の排気ガスによる排気浄化触媒装置30の熱劣化を防止するために内管と外管との間に可動式の伝熱部材を設けている。これにより、エンジン11の冷態時は、内管を通る排気ガスの温度低下を抑制する一方、エンジン11の高速運転時は、内管を通る高温の排気ガスを伝熱部材を介して外管で放熱し、排気ガスの温度を適正に制御して排気浄化触媒装置30による浄化能力を常時確保できるようにしている。   Therefore, in this embodiment, the exhaust pipe 29 is a double pipe in order to suppress the temperature drop of the exhaust gas due to the outside air (cold air), and the thermal purification of the exhaust purification catalyst device 30 due to the high temperature exhaust gas is prevented. A movable heat transfer member is provided between the inner tube and the outer tube. Thereby, when the engine 11 is in a cold state, the temperature reduction of the exhaust gas passing through the inner pipe is suppressed, while when the engine 11 is operating at high speed, the hot exhaust gas passing through the inner pipe is passed through the heat transfer member through the outer pipe. The exhaust gas is radiated and the temperature of the exhaust gas is appropriately controlled so that the purification ability of the exhaust purification catalyst device 30 can always be secured.

即ち、実施例1の排気管29は、図1及び図2−1に示すように、内部に排気ガスが流れる排気通路を有する内管31と、この内管31の外側に空間部32をもって配設された外管33とから構成されている。この内管31及び外管33は互いに円筒形状をなし、長手方向の各端部は空間部32を閉塞するように接合され、一端部(上流側端部)がエキゾーストマニホールド28の下流側端部に連結され、他端部(下流側端部)が排気浄化触媒装置30に連結されている。つまり、エキゾーストマニホールド28と排気浄化触媒装置30との間に二重管の排気管29が設けられ、排気ガスをエキゾーストマニホールド28から排気管29の内管31内を通して排気浄化触媒装置30に導くこととなる。   That is, as shown in FIGS. 1 and 2-1, the exhaust pipe 29 according to the first embodiment is arranged with an inner pipe 31 having an exhaust passage through which exhaust gas flows and a space portion 32 outside the inner pipe 31. The outer tube 33 is provided. The inner tube 31 and the outer tube 33 have a cylindrical shape, each end portion in the longitudinal direction is joined so as to close the space portion 32, and one end portion (upstream end portion) is the downstream end portion of the exhaust manifold 28. The other end (downstream end) is connected to the exhaust purification catalyst device 30. That is, a double-pipe exhaust pipe 29 is provided between the exhaust manifold 28 and the exhaust purification catalyst device 30, and the exhaust gas is guided from the exhaust manifold 28 to the exhaust purification catalyst device 30 through the inner pipe 31 of the exhaust pipe 29. It becomes.

この空間部32は、内管31の外周面と外管33の内周面とが非接触状態に維持し、断熱層として寄与するものであり、空気や不活性ガスが充填されるか、または、真空状態としてもよい。   The space portion 32 maintains the outer peripheral surface of the inner tube 31 and the inner peripheral surface of the outer tube 33 in a non-contact state and contributes as a heat insulating layer, and is filled with air or an inert gas, or It is good also as a vacuum state.

そして、排気管29の外管33にて、その内周面には伝熱部材34の基端部が固定されており、先端部は自由に変形して内管31の外周面に接触できるように、拘束されていないフリーの状態となっている。この伝熱部材34は、予め設定された所定温度に応じて変形する形状記憶合金(例えば、チタンとニッケルの合金)によって板状に形成され、基端部が溶接35により外管33の内周面に固定されている。そのため、排気管29内を流れる排気ガスが低温であるときに、この伝熱部材34は変形せずに内管31と外管33とは非接続状態に維持され、排気管29内を流れる排気ガスが高温であるときに、伝熱部材34は屈曲変形して内管31に接触し、内管31と外管33とは接続状態となる。   The base end portion of the heat transfer member 34 is fixed to the inner peripheral surface of the outer pipe 33 of the exhaust pipe 29 so that the distal end portion can be freely deformed to contact the outer peripheral surface of the inner pipe 31. Furthermore, it is in a free state that is not restrained. The heat transfer member 34 is formed in a plate shape by a shape memory alloy (for example, an alloy of titanium and nickel) that deforms in accordance with a predetermined temperature set in advance, and a base end portion is welded 35 to the inner periphery of the outer tube 33. It is fixed to the surface. Therefore, when the exhaust gas flowing through the exhaust pipe 29 is at a low temperature, the heat transfer member 34 is not deformed and the inner pipe 31 and the outer pipe 33 are maintained in a disconnected state, and the exhaust gas flowing through the exhaust pipe 29 is maintained. When the gas is at a high temperature, the heat transfer member 34 is bent and deformed to contact the inner tube 31, and the inner tube 31 and the outer tube 33 are connected.

本実施例の場合、伝熱部材34は外管33に固定されており、排気ガスの温度と相関関係にある外管33の温度に応じて変形するように構成されている。例えば、排気浄化触媒30は有害物質を浄化処理できる浄化温度領域が設定されており、この浄化温度領域を超えると熱劣化してしまう虞がある。そのため、排気浄化触媒30の浄化温度領域の上限値、つまり、熱劣化温度が800℃であるとしたとき、予め、実験に基づいて、内管31内を通過する排気ガスの温度が800℃のときの外管33の温度を求めておき、この温度を排気浄化触媒30の熱劣化判定温度として設定する。そして、伝熱部材34が変形する温度をこの熱劣化判定温度となるように構成しておく。急加速時などには内管31と外管33の温度差が広がるものの、一般の運転状態では、外管33の温度は内管31の温度に対して200℃〜300℃低くなっている。   In the case of the present embodiment, the heat transfer member 34 is fixed to the outer tube 33 and is configured to be deformed according to the temperature of the outer tube 33 that is correlated with the temperature of the exhaust gas. For example, the exhaust purification catalyst 30 has a purification temperature region in which harmful substances can be purified. If the exhaust purification catalyst 30 exceeds this purification temperature region, there is a risk of thermal degradation. Therefore, when the upper limit value of the purification temperature region of the exhaust purification catalyst 30, that is, the heat deterioration temperature is 800 ° C., the temperature of the exhaust gas passing through the inner pipe 31 is 800 ° C. based on experiments in advance. The temperature of the outer pipe 33 at that time is obtained, and this temperature is set as the thermal deterioration determination temperature of the exhaust purification catalyst 30. Then, the temperature at which the heat transfer member 34 is deformed is configured to be the heat deterioration determination temperature. Although the temperature difference between the inner tube 31 and the outer tube 33 widens during sudden acceleration, the temperature of the outer tube 33 is lower by 200 ° C. to 300 ° C. than the temperature of the inner tube 31 in a general operating state.

従って、外管33の温度が熱劣化判定温度よりも低いときは、図2−1に示すように、伝熱部材34は変形せずに平坦のままであり、先端部が内管31の外周面に接触せず、内管31と外管33とは非接続状態に維持される。一方、外管33の温度が熱劣化判定温度よりも高いときは、図2−2に示すように、伝熱部材34は屈曲変形し、先端部が内管31の外周面に接触し、内管31と外管33とは接続状態となる。   Therefore, when the temperature of the outer tube 33 is lower than the thermal deterioration determination temperature, the heat transfer member 34 remains flat without being deformed as shown in FIG. The inner tube 31 and the outer tube 33 are maintained in a non-connected state without contacting the surface. On the other hand, when the temperature of the outer tube 33 is higher than the thermal deterioration determination temperature, the heat transfer member 34 is bent and deformed as shown in FIG. The tube 31 and the outer tube 33 are connected.

なお、この伝熱部材34は、排気管29の所定の位置、つまり、外管33の周方向に所定間隔で複数、また、長手方向に所定間隔で複数設けられている。そして、本実施例の場合、この二重管の排気管29と排気浄化触媒装置30により排気装置が構成される。   A plurality of heat transfer members 34 are provided at predetermined positions in the exhaust pipe 29, that is, in the circumferential direction of the outer pipe 33, and at a predetermined interval in the longitudinal direction. In this embodiment, the double exhaust pipe 29 and the exhaust purification catalyst device 30 constitute an exhaust device.

このように構成された本実施例の内燃機関の排気管において、エンジン11の冷態始動時、運転者によりイグニッションスイッチがオンされると、アイドル時における所定量の空気が吸気管23から吸気ポート18に取り込まれると共に、この空気量に見合った燃料量が噴射される。この空気と燃料の混合気は、吸気バルブ20の開閉時に燃焼室17に吸入され、圧縮後に点火プラグ27により着火されて燃焼し、燃焼ガスは、排気バルブ21の開閉時に排気ガスとして排気ポート19を通してエキゾーストマニホールド28に排出される。その後、排気ガスは、排気管29を通って排気浄化触媒装置30に導入され、ここで、排気ガス中のHC、CO、NOxなどの有害物質が浄化処理される。   In the exhaust pipe of the internal combustion engine of the present embodiment configured as described above, when the ignition switch is turned on by the driver when the engine 11 is cold-started, a predetermined amount of air at the time of idling is drawn from the intake pipe 23 to the intake port. 18 and the amount of fuel commensurate with the amount of air is injected. This mixture of air and fuel is sucked into the combustion chamber 17 when the intake valve 20 is opened and closed, and after being compressed, is ignited and burned by the spark plug 27, and the combustion gas is exhausted as an exhaust gas when the exhaust valve 21 is opened and closed. Through the exhaust manifold 28. Thereafter, the exhaust gas is introduced into the exhaust purification catalyst device 30 through the exhaust pipe 29, where harmful substances such as HC, CO, and NOx in the exhaust gas are purified.

このエンジン11の冷態始動時、外管33の温度は熱劣化判定温度よりも低く、排気浄化触媒30の温度が浄化温度領域にあるため、伝熱部材34は変形せずに内管31と外管33は非接続状態となっている。そのため、エンジン11は低温であるものの、排気管29の内管31はその外側が空間部(断熱層)32及び外管33に被覆されており、この内管31内を流動する排気ガスは保温されて温度低下が抑制される。従って、排気ガスを高温のまま排気浄化触媒装置30に導入することができ、この排気浄化触媒装置30を早期に昇温して活性化させることができ、排気浄化効率を向上することができる。   When the engine 11 is cold-started, the temperature of the outer tube 33 is lower than the heat deterioration determination temperature, and the temperature of the exhaust purification catalyst 30 is in the purification temperature region, so that the heat transfer member 34 is not deformed and the inner tube 31 is not deformed. The outer tube 33 is not connected. Therefore, although the engine 11 is at a low temperature, the outer pipe 31 of the exhaust pipe 29 is covered with a space (heat insulating layer) 32 and an outer pipe 33, and the exhaust gas flowing through the inner pipe 31 is kept warm. Thus, the temperature drop is suppressed. Therefore, the exhaust gas can be introduced into the exhaust purification catalyst device 30 at a high temperature, and the exhaust purification catalyst device 30 can be heated and activated at an early stage, and the exhaust purification efficiency can be improved.

エンジン11が始動した後に高速運転が継続すると、排気ガスの温度が高温となり、排気ガスの熱により外管33の温度が上昇する。そして、外管33の温度が熱劣化判定温度よりも高くなり、排気浄化触媒30の温度が浄化温度領域を超えると伝熱部材34もほぼ同様の温度となり、屈曲変形して先端部が内管31の外周面に接触し、内管31と外管33とは接続状態となる。そのため、内管31の内側を流動する排気ガスはその熱が伝熱部材34を通して外管33に伝達され、この外管33から外気に放出されることとなり、内管31及び排気ガスの温度上昇を抑制することができる。従って、排気ガスの温度上昇を抑制しながら排気浄化触媒装置30に導入することができ、この排気浄化触媒装置30の熱劣化を防止することができ、高い排気浄化効率を継続して確保することができる。   If the high speed operation continues after the engine 11 is started, the temperature of the exhaust gas becomes high, and the temperature of the outer tube 33 rises due to the heat of the exhaust gas. When the temperature of the outer tube 33 becomes higher than the heat deterioration determination temperature and the temperature of the exhaust purification catalyst 30 exceeds the purification temperature region, the heat transfer member 34 becomes substantially the same temperature, and is bent and deformed, and the tip portion is in the inner tube. The inner tube 31 and the outer tube 33 are in a connected state in contact with the outer peripheral surface of the tube 31. Therefore, the heat of the exhaust gas flowing inside the inner pipe 31 is transmitted to the outer pipe 33 through the heat transfer member 34 and is released from the outer pipe 33 to the outside air, and the temperature rise of the inner pipe 31 and the exhaust gas. Can be suppressed. Accordingly, the exhaust gas purification catalyst device 30 can be introduced while suppressing an increase in the temperature of the exhaust gas, the thermal purification of the exhaust gas purification catalyst device 30 can be prevented, and high exhaust purification efficiency is continuously ensured. Can do.

なお、運転者がエンジン11を停止したり、低速運転が継続して排気温度が下がったりすると、外管33の温度が熱劣化判定温度よりも低くなり、変形状態にある伝熱部材34は元の位置に復帰して内管31と外管33は非接続状態となる。   When the driver stops the engine 11 or when the exhaust temperature is lowered due to low-speed operation, the temperature of the outer tube 33 becomes lower than the thermal deterioration determination temperature, and the heat transfer member 34 in the deformed state is the original. The inner pipe 31 and the outer pipe 33 are disconnected from each other.

このように実施例1の内燃機関の排気管にあっては、エキゾーストマニホールド28と排気浄化触媒装置30との間に、内管31の外側に空間部32を介して外管33を設けて構成した二重の排気管29を設け、この外管33の内周面に形状記憶合金からなる伝熱部材34を装着している。そして、排気ガスの温度と相関関係にある外管33の温度に応じて伝熱部材34が変形し、内管31と外管33とを接続状態または非接続状態に切換可能としている。   As described above, the exhaust pipe of the internal combustion engine according to the first embodiment is configured by providing the outer pipe 33 between the exhaust manifold 28 and the exhaust purification catalyst device 30 outside the inner pipe 31 via the space portion 32. A double exhaust pipe 29 is provided, and a heat transfer member 34 made of a shape memory alloy is mounted on the inner peripheral surface of the outer pipe 33. Then, the heat transfer member 34 is deformed according to the temperature of the outer tube 33 that is correlated with the temperature of the exhaust gas, and the inner tube 31 and the outer tube 33 can be switched between a connected state and a non-connected state.

従って、排気ガスの低温時には、外管33が所定温度(熱劣化判定温度)より低いため、内管31と外管33とが非接続状態となり、空間部32が断熱層として機能して内管31を流動する排気ガスの温度低下を抑制し、排気浄化触媒装置30を早期に活性化することができる。一方、排気ガスの高温時には、外管33及び伝熱部材34が所定温度(熱劣化判定温度)より高いため、内管31と外管33とが伝熱部材34を介して接続状態となり、内管31を流動する排気ガスの熱が内管31から伝熱部材34を通して外管33へ放出され、排気ガスの温度上昇を抑制し、排気浄化触媒装置30の熱劣化を防止することができる。その結果、エンジン11の運転状態に拘らず、排気ガス温度を適正温度に維持することで、排気浄化触媒装置30の排気浄化効率を向上することができる。   Therefore, when the exhaust gas is at a low temperature, the outer tube 33 is lower than a predetermined temperature (thermal deterioration determination temperature), so the inner tube 31 and the outer tube 33 are disconnected from each other, and the space portion 32 functions as a heat insulating layer. It is possible to suppress the temperature drop of the exhaust gas flowing through 31 and to activate the exhaust purification catalyst device 30 at an early stage. On the other hand, when the exhaust gas is at a high temperature, the outer tube 33 and the heat transfer member 34 are higher than a predetermined temperature (thermal deterioration determination temperature), so the inner tube 31 and the outer tube 33 are connected via the heat transfer member 34, The heat of the exhaust gas flowing through the pipe 31 is released from the inner pipe 31 to the outer pipe 33 through the heat transfer member 34, and the temperature rise of the exhaust gas can be suppressed and thermal deterioration of the exhaust purification catalyst device 30 can be prevented. As a result, the exhaust gas purification efficiency of the exhaust gas purification catalyst device 30 can be improved by maintaining the exhaust gas temperature at an appropriate temperature regardless of the operating state of the engine 11.

また、伝熱部材34を外管33の内周面に装着し、外管33の温度に応じて変形して内管31に接触するようにしている。この場合、伝熱部材34を内管31の外周面に装着すると、排気ガスにより内管31が高温となり、伝熱部材34が変形して外管33に接触し、排気ガスの熱を外管33を通して放出するが、すぐに外管33に接触する伝熱部材34の温度が低下して変形が戻ってしまい、排気ガスの熱を十分に低下させることができない。一方、伝熱部材34を外管33の内周面に装着すると、排気ガスにより外管33が高温となり、伝熱部材34が変形して内管31に接触し、排気ガスの熱を外管33を通して放出する。このとき、外管33よりも内管31の方が高温であるため、内管31に接触する伝熱部材34の温度がすぐに低下することはなく、排気ガスの熱を十分に低下させることができる。   Further, the heat transfer member 34 is mounted on the inner peripheral surface of the outer tube 33, and is deformed according to the temperature of the outer tube 33 so as to come into contact with the inner tube 31. In this case, when the heat transfer member 34 is mounted on the outer peripheral surface of the inner tube 31, the inner tube 31 becomes hot due to the exhaust gas, and the heat transfer member 34 is deformed to contact the outer tube 33, and the heat of the exhaust gas is transferred to the outer tube. However, the temperature of the heat transfer member 34 that immediately contacts the outer tube 33 is lowered and the deformation is restored, so that the heat of the exhaust gas cannot be lowered sufficiently. On the other hand, when the heat transfer member 34 is mounted on the inner peripheral surface of the outer tube 33, the outer tube 33 becomes hot due to the exhaust gas, the heat transfer member 34 is deformed and contacts the inner tube 31, and the heat of the exhaust gas is removed. 33 through. At this time, since the inner tube 31 is hotter than the outer tube 33, the temperature of the heat transfer member 34 contacting the inner tube 31 does not decrease immediately, and the heat of the exhaust gas is sufficiently decreased. Can do.

図4は、本発明の実施例2に係る内燃機関の排気管が適用された内燃機関の概略構成図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 4 is a schematic configuration diagram of an internal combustion engine to which the exhaust pipe of the internal combustion engine according to the second embodiment of the present invention is applied. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例2の内燃機関の排気管において、図4に示すように、エンジン41は、筒内噴射式の火花点火エンジンである。このエンジン41にて、燃焼室17は、シリンダブロック12とシリンダヘッド13とピストン15により構成されており、吸気ポート18及び排気ポート19が連通し、この吸気ポート18及び排気ポート19は吸気バルブ20及び排気バルブ21開閉可能となっている。そして、シリンダヘッド12には、燃焼室17に直接燃料(ガソリン)を噴射するインジェクタ26が装着されると共に、燃焼室17の上方に点火プラグ27が装着されている。   In the exhaust pipe of the internal combustion engine of the second embodiment, as shown in FIG. 4, the engine 41 is a cylinder ignition type spark ignition engine. In this engine 41, the combustion chamber 17 is composed of a cylinder block 12, a cylinder head 13, and a piston 15, and an intake port 18 and an exhaust port 19 communicate with each other, and the intake port 18 and the exhaust port 19 are connected to an intake valve 20. The exhaust valve 21 can be opened and closed. The cylinder head 12 is equipped with an injector 26 that directly injects fuel (gasoline) into the combustion chamber 17, and a spark plug 27 is mounted above the combustion chamber 17.

一方、排気ポート19には、エギゾーストマニホールド28を介して第1排気管42を介して三元触媒43が連結されると共に、第2排気管44を介してNOx吸蔵還元型触媒45が連結されている。この三元触媒43は、排気ガス中に含まれるHC、CO、NOxを酸化還元反応により同時に浄化処理するものである。NOx吸蔵還元型触媒45は、成層燃焼時に排気ガス中に含まれるNOxを一旦貯蔵し、リッチ燃焼域またはストイキ燃焼域にあるときに排ガス中に含まれるHC及びCOを還元剤として吸蔵したNOxを還元して浄化処理するものである。   On the other hand, a three-way catalyst 43 is connected to the exhaust port 19 via the exhaust manifold 28 via the first exhaust pipe 42 and a NOx occlusion reduction type catalyst 45 is connected via the second exhaust pipe 44. Yes. This three-way catalyst 43 simultaneously purifies HC, CO, and NOx contained in the exhaust gas by an oxidation-reduction reaction. The NOx occlusion reduction type catalyst 45 temporarily stores NOx contained in the exhaust gas at the time of stratified combustion, and stores NOx occluded by using HC and CO contained in the exhaust gas as a reducing agent when in the rich combustion region or stoichiometric combustion region. It is reduced and purified.

ところで、この三元触媒43並びにNOx吸蔵還元型触媒45は、エンジン61の高速運転時など、排気ガスが所定の温度以上になると、その排気熱により熱劣化してしまう虞がある。そして、三元触媒43及びNOx吸蔵還元型触媒45は、熱劣化する限界温度がそれぞれ異なる温度となっている。   By the way, the three-way catalyst 43 and the NOx occlusion reduction type catalyst 45 may be thermally deteriorated by the exhaust heat when the exhaust gas becomes a predetermined temperature or higher, such as when the engine 61 is operated at high speed. The three-way catalyst 43 and the NOx occlusion reduction catalyst 45 have different temperature limits for thermal degradation.

そこで、本実施例では、第1、第2排気管42,44を二重管とし、高温の排気ガスによる各触媒43,45の熱劣化を防止するためにそれぞれの内管と外管との間に可動式の伝熱部材を設け、それぞれ異なる温度で可動するようにしている。これにより、エンジン61の高速運転時、内管を通る高温の排気ガスを各伝熱部材を介して外管で放熱し、各触媒43,45ごとに排気ガスの温度を適正に制御して浄化能力を常時確保できるようにしている。   Therefore, in this embodiment, the first and second exhaust pipes 42 and 44 are double pipes, and in order to prevent thermal degradation of the respective catalysts 43 and 45 due to high-temperature exhaust gas, the inner pipe and the outer pipe are connected. A movable heat transfer member is provided between them so that they can move at different temperatures. As a result, during high-speed operation of the engine 61, high-temperature exhaust gas passing through the inner pipe is radiated by the outer pipe through each heat transfer member, and the temperature of the exhaust gas is appropriately controlled for each catalyst 43, 45 for purification. The ability is always secured.

即ち、エキゾーストマニホールド28と三元触媒43との間に設けられた第1排気管42は、内管46と、この内管46の外側に空間部47をもって配設された外管48とから構成されている。そして、外管48の内周面に形状記憶合金により形成された複数の伝熱部材49の基端部が固定されており、排気ガス、つまり、外管48が高温になると、伝熱部材49もほほ同様の温度となって先端部が屈曲変形して内管46に接触し、内管46と外管47とを接続状態とする。本実施例にて、三元触媒43の熱劣化温度が800℃であるとしたとき、予め、実験に基づいてこのときの外管48の温度を求めておき、この温度を三元触媒43の熱劣化判定温度とし、伝熱部材49が変形する温度としておく。   That is, the first exhaust pipe 42 provided between the exhaust manifold 28 and the three-way catalyst 43 is composed of an inner pipe 46 and an outer pipe 48 provided with a space 47 outside the inner pipe 46. Has been. And the base end part of the several heat-transfer member 49 formed of the shape memory alloy is being fixed to the internal peripheral surface of the outer tube | pipe 48, and when the exhaust gas, ie, the outer tube | pipe 48, becomes high temperature, the heat-transfer member 49 The tip is bent and deformed to come into contact with the inner tube 46 at the same temperature, and the inner tube 46 and the outer tube 47 are connected. In this embodiment, when the heat deterioration temperature of the three-way catalyst 43 is 800 ° C., the temperature of the outer tube 48 at this time is obtained in advance based on experiments, and this temperature is determined by the three-way catalyst 43. The heat deterioration determination temperature is set to a temperature at which the heat transfer member 49 is deformed.

また、三元触媒43とNOx吸蔵還元型触媒45との間に設けられた第2排気管44は、内管50と、この内管50の外側に空間部51をもって配設された外管52とから構成されている。そして、外管52の内周面に形状記憶合金により形成された複数の伝熱部材53の基端部が固定されており、排気ガス、つまり、外管52が高温になると、伝熱部材53もほぼ同様の温度となって先端部が屈曲変形して内管50に接触し、内管50と外管52とを接続状態とする。本実施例にて、NOx吸蔵還元型触媒45の熱劣化温度が500℃であるとしたとき、予め、実験に基づいてこのときの外管52の温度を求めておき、この温度をNOx吸蔵還元型触媒45の熱劣化判定温度とし、伝熱部材53が変形する温度としておく。   The second exhaust pipe 44 provided between the three-way catalyst 43 and the NOx occlusion reduction type catalyst 45 includes an inner pipe 50 and an outer pipe 52 provided with a space 51 on the outside of the inner pipe 50. It consists of and. And the base end part of the several heat-transfer member 53 formed with the shape memory alloy is being fixed to the internal peripheral surface of the outer tube | pipe 52, and when the exhaust gas, ie, the outer tube | pipe 52, becomes high temperature, the heat-transfer member 53 The tip portion is bent and deformed to come into contact with the inner tube 50 to bring the inner tube 50 and the outer tube 52 into a connected state. In this embodiment, when the thermal deterioration temperature of the NOx occlusion reduction catalyst 45 is 500 ° C., the temperature of the outer tube 52 at this time is obtained in advance based on experiments, and this temperature is used as the NOx occlusion reduction. It is set as a temperature at which the heat transfer member 53 is deformed as the heat deterioration determination temperature of the mold catalyst 45.

従って、エンジン41の冷態始動時には、各外管48,52の温度は各触媒43,45の熱劣化判定温度よりも低いため、各伝熱部材49,53は変形せずに内管46,50と外管48,52は非接続状態である。この場合、エンジン41は低温であるものの、各内管46,50はその外側が空間部(断熱層)47,51及び外管48,52に被覆されており、排気ガスは保温されて温度低下が抑制される。そのため、排気ガスは高温のまま三元触媒43とNOx吸蔵還元型触媒45に導入されることとなり、各触媒43,45を早期に昇温して活性化させることができる。   Accordingly, when the engine 41 is cold-started, the temperatures of the outer pipes 48 and 52 are lower than the thermal deterioration determination temperature of the catalysts 43 and 45, so that the heat transfer members 49 and 53 are not deformed and the inner pipes 46 and 53 are not deformed. 50 and the outer tubes 48 and 52 are not connected. In this case, although the engine 41 is at a low temperature, the inner pipes 46 and 50 are covered with the outer space (heat insulating layers) 47 and 51 and the outer pipes 48 and 52 so that the exhaust gas is kept warm and the temperature is lowered. Is suppressed. Therefore, the exhaust gas is introduced into the three-way catalyst 43 and the NOx occlusion reduction type catalyst 45 at a high temperature, and each catalyst 43, 45 can be heated up and activated at an early stage.

一方、エンジン41の高速運転時には、排気ガスの温度が高温となって各排気管42,44の温度が上昇し、第2排気管44の外管52の温度がNOx吸蔵還元型触媒45の熱劣化判定温度よりも高くなると、伝熱部材53もほぼ同様の温度となって屈曲変形し、先端部が内管50の外周面に接触し、内管50と外管52とが接続状態となる。この場合、内管50の内側を流動する排気ガスは、その熱が伝熱部材53を通して外管52に伝達されて外気に放出されることとなり、内管50及び排気ガスの温度上昇を抑制することができる。そのため、排気ガスは温度上昇が抑制されてNOx吸蔵還元型触媒45に導入することとなり、このNOx吸蔵還元型触媒45の熱劣化を防止することができる。   On the other hand, when the engine 41 is operated at high speed, the temperature of the exhaust gas becomes high, the temperature of the exhaust pipes 42 and 44 rises, and the temperature of the outer pipe 52 of the second exhaust pipe 44 is the heat of the NOx storage reduction catalyst 45. When the temperature is higher than the deterioration determination temperature, the heat transfer member 53 is also bent and deformed at substantially the same temperature, the tip portion comes into contact with the outer peripheral surface of the inner tube 50, and the inner tube 50 and the outer tube 52 are connected. . In this case, the exhaust gas flowing inside the inner pipe 50 is transmitted to the outer pipe 52 through the heat transfer member 53 and released to the outside air, thereby suppressing the temperature rise of the inner pipe 50 and the exhaust gas. be able to. Therefore, the exhaust gas is introduced into the NOx storage reduction catalyst 45 with the temperature rise suppressed, and thermal degradation of the NOx storage reduction catalyst 45 can be prevented.

また、排気ガスの温度が更に高温となり、第1排気管42の外管46の温度が三元触媒43の熱劣化判定温度よりも高くなると、伝熱部材49もほぼ同様の温度となって屈曲変形し、先端部が内管46の外周面に接触し、内管46と外管48とが接続状態となる。この場合、内管46の内側を流動する排気ガスは、その熱が伝熱部材49を通して外管48に伝達されて外気に放出されることとなり、内管46及び排気ガスの温度上昇を抑制することができる。そのため、排気ガスは温度上昇が抑制されて三元触媒43に導入することとなり、この三元触媒43の熱劣化を防止することができる。   Further, when the temperature of the exhaust gas becomes higher and the temperature of the outer pipe 46 of the first exhaust pipe 42 becomes higher than the thermal deterioration determination temperature of the three-way catalyst 43, the heat transfer member 49 is bent at substantially the same temperature. As a result, the distal end portion contacts the outer peripheral surface of the inner tube 46, and the inner tube 46 and the outer tube 48 are connected. In this case, the exhaust gas flowing inside the inner pipe 46 is transmitted to the outer pipe 48 through the heat transfer member 49 and released to the outside air, thereby suppressing the temperature rise of the inner pipe 46 and the exhaust gas. be able to. For this reason, the exhaust gas is introduced into the three-way catalyst 43 with the temperature rise suppressed, and thermal deterioration of the three-way catalyst 43 can be prevented.

このように実施例2の内燃機関の排気管にあっては、エンジン61を筒内噴射式として排気系に三元触媒43とNOx吸蔵還元型触媒45を設け、エキゾーストマニホールド28と三元触媒43との間に内管46と外管48と伝熱部材49からなる二重の第1排気管42を設け、三元触媒43とNOx吸蔵還元型触媒45との間に内管50と外管52と伝熱部材53からなる二重の第2排気管44を設け、各伝熱部材49,53がそれぞれ異なる温度で変形し、各内管46,50と外管48,52とを接続状態または非接続状態に切換可能としている。   Thus, in the exhaust pipe of the internal combustion engine of the second embodiment, the engine 61 is in-cylinder injection type, the three-way catalyst 43 and the NOx occlusion reduction type catalyst 45 are provided in the exhaust system, and the exhaust manifold 28 and the three-way catalyst 43 are provided. A double first exhaust pipe 42 composed of an inner pipe 46, an outer pipe 48 and a heat transfer member 49 is provided between the inner pipe 50 and the outer pipe between the three-way catalyst 43 and the NOx occlusion reduction type catalyst 45. A double second exhaust pipe 44 comprising 52 and a heat transfer member 53 is provided, and the heat transfer members 49 and 53 are deformed at different temperatures, and the inner pipes 46 and 50 and the outer pipes 48 and 52 are connected. Alternatively, it can be switched to a disconnected state.

従って、第2排気管44の伝熱部材53は、排気ガスの温度がNOx吸蔵還元型触媒45の熱劣化判定温度を超えたときに変形して内管50と外管52とを接続状態とし、第1排気管の伝熱部材49は、排気ガスの温度が三元触媒43の熱劣化判定温度を超えたときに変形して内管46と外管48とを接続状態とする。そのため、排気ガスは、各触媒43,45の浄化特性に適した温度に抑制されることとなり、三元触媒43及びNOx吸蔵還元型触媒45の熱劣化を防止することができ、エンジン41の運転状態に拘らず、排気ガス温度を適正温度に維持することで、各触媒43,45の排気浄化効率を向上することができる。   Accordingly, the heat transfer member 53 of the second exhaust pipe 44 is deformed when the temperature of the exhaust gas exceeds the thermal deterioration determination temperature of the NOx storage reduction catalyst 45, and the inner pipe 50 and the outer pipe 52 are connected. The heat transfer member 49 of the first exhaust pipe is deformed when the temperature of the exhaust gas exceeds the thermal deterioration determination temperature of the three-way catalyst 43 to bring the inner pipe 46 and the outer pipe 48 into a connected state. Therefore, the exhaust gas is suppressed to a temperature suitable for the purification characteristics of the catalysts 43 and 45, the thermal deterioration of the three-way catalyst 43 and the NOx storage reduction catalyst 45 can be prevented, and the operation of the engine 41 is performed. Regardless of the state, by maintaining the exhaust gas temperature at an appropriate temperature, the exhaust purification efficiency of each of the catalysts 43 and 45 can be improved.

なお、この実施例2にて、内燃機関を筒内噴射式の火花点火エンジンとしたが、ポート噴射式のエンジンであっても良い。また、第2排気管44を介してNOx吸蔵還元型触媒45を連結したが、NOx触媒であれば良く、NOx吸蔵還元型触媒45に代えて選択還元型NOx触媒としてもよい。   In the second embodiment, the internal combustion engine is an in-cylinder spark ignition engine. However, a port injection engine may be used. Further, the NOx occlusion reduction type catalyst 45 is connected via the second exhaust pipe 44, but any NOx catalyst may be used, and a selective reduction type NOx catalyst may be used in place of the NOx occlusion reduction type catalyst 45.

図5は、本発明の実施例3に係る内燃機関の排気管が適用された内燃機関の概略構成図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 5 is a schematic configuration diagram of an internal combustion engine to which an exhaust pipe of an internal combustion engine according to Embodiment 3 of the present invention is applied. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例3の内燃機関の排気管において、図5に示すように、エンジン61は、ディーゼルエンジンである。このエンジン61にて、インテークマニホールド22には吸気管23が連結され、この吸気管23の空気取入口にはエアクリーナ24が取付けられている。一方、エギゾーストマニホールド28には第1排気管62及び第2排気管63を介して排気浄化触媒装置(例えば、酸化触媒を担持したディーゼルパティキュレートフィルタ)64が装着されている。   In the exhaust pipe of the internal combustion engine of the third embodiment, as shown in FIG. 5, the engine 61 is a diesel engine. In the engine 61, an intake pipe 23 is connected to the intake manifold 22, and an air cleaner 24 is attached to an air intake port of the intake pipe 23. On the other hand, an exhaust purification catalyst device (for example, a diesel particulate filter carrying an oxidation catalyst) 64 is attached to the exhaust manifold 28 via a first exhaust pipe 62 and a second exhaust pipe 63.

そして、このエンジン61に過給機(ターボチャージャー)65が設けられている。この過給機65は、吸気管23に設けられたコンプレッサ66と、排気管62,63に設けられたタービン67とが同軸上に連結されて構成されている。そして、吸気管23には、コンプレッサ66の下流側に位置してインタークーラ68が設けられている。また、エキゾーストマニホールド28と吸気管23の下流部との間には、排気を還流するEGR通路69が設けられており、EGRコントロールバルブ70の開閉動作によりEGR量を調整することができる。   The engine 61 is provided with a supercharger (turbocharger) 65. The supercharger 65 is configured by coaxially connecting a compressor 66 provided in the intake pipe 23 and a turbine 67 provided in the exhaust pipes 62 and 63. The intake pipe 23 is provided with an intercooler 68 located downstream of the compressor 66. Further, an EGR passage 69 that recirculates exhaust gas is provided between the exhaust manifold 28 and the downstream portion of the intake pipe 23, and the EGR amount can be adjusted by opening and closing the EGR control valve 70.

本実施例では、過給機65のタービン67と排気浄化触媒装置64との間に設けられた第2排気管63を二重管とし、高温の排気ガスによる熱劣化を防止するために内管と外管との間に可動式の伝熱部材を設けている。これにより、過給機65の効率を低下させずに、エンジン61の高速運転時に、排気浄化触媒装置64に流れる高温の排気ガスを伝熱部材を介して外管で放熱し、排気ガスの温度を適正に制御して排気浄化触媒装置64の浄化能力を常時確保できるようにしている。   In the present embodiment, the second exhaust pipe 63 provided between the turbine 67 of the supercharger 65 and the exhaust purification catalyst device 64 is a double pipe, and the inner pipe is used to prevent thermal deterioration due to high-temperature exhaust gas. A movable heat transfer member is provided between the outer tube and the outer tube. Thus, without reducing the efficiency of the supercharger 65, the high-temperature exhaust gas flowing through the exhaust purification catalyst device 64 is radiated by the outer pipe via the heat transfer member during high-speed operation of the engine 61, and the temperature of the exhaust gas Is appropriately controlled so that the purification ability of the exhaust purification catalyst device 64 can be always secured.

即ち、第2排気管63は、内管71と、この内管71の外側に空間部72をもって配設された外管73とから構成されている。そして、外管73の内周面に形状記憶合金により形成された複数の伝熱部材74の基端部が固定されており、排気ガス、つまり、外管73が高温になると、伝熱部材74もほぼ同様の温度となって先端部が屈曲変形して内管71に接触し、内管71と外管73とを接続状態とする。本実施例にて、排気浄化触媒装置64の熱劣化温度が500℃であるとしたとき、予め、実験に基づいてこのときの外管73の温度を求めておき、この温度を排気浄化触媒装置64の熱劣化判定温度とし、伝熱部材74が変形する温度としておく。   That is, the second exhaust pipe 63 includes an inner pipe 71 and an outer pipe 73 disposed with a space portion 72 outside the inner pipe 71. And the base end part of the several heat-transfer member 74 formed with the shape memory alloy is being fixed to the internal peripheral surface of the outer tube | pipe 73, and when the exhaust gas, ie, the outer tube | pipe 73, becomes high temperature, the heat-transfer member 74 is carried out. The tip portion is bent and deformed to come into contact with the inner tube 71 to bring the inner tube 71 and the outer tube 73 into a connected state. In this embodiment, when the heat deterioration temperature of the exhaust purification catalyst device 64 is 500 ° C., the temperature of the outer pipe 73 at this time is obtained in advance based on experiments, and this temperature is used as the exhaust purification catalyst device. It is set as the temperature at which the heat transfer member 74 is deformed.

従って、エンジン71の高速運転時に、エンジン61から排出された高温の排気ガスは、エギゾーストマニホールド28から第1排気管62を通ってほとんど温度低下せずに過給機65のタービン67を駆動し、その後、第2排気管63を通って排気浄化触媒装置64に導入され、ここで有害物質が浄化処理される。このとき、高温の排気ガスにより第2排気管63の温度が上昇し、外管73の温度が排気浄化触媒装置64の熱劣化判定温度よりも高くなると、伝熱部材74もほぼ同様の温度となって屈曲変形し、先端部が内管71の外周面に接触し、内管71と外管73とが接続状態となる。この場合、内管71の内側を流動する排気ガスは、その熱が伝熱部材74を通して外管73に伝達されて外気に放出されることとなり、内管71及び排気ガスの温度上昇を抑制することができる。そのため、排気ガスは温度上昇が抑制されて排気浄化触媒装置64に導入することとなり、この排気浄化触媒装置64の熱劣化を防止することができる。   Accordingly, during the high-speed operation of the engine 71, the high-temperature exhaust gas discharged from the engine 61 drives the turbine 67 of the supercharger 65 with almost no temperature drop from the exhaust manifold 28 through the first exhaust pipe 62, Thereafter, the exhaust gas is introduced into the exhaust purification catalyst device 64 through the second exhaust pipe 63, where the harmful substances are purified. At this time, when the temperature of the second exhaust pipe 63 rises due to the high-temperature exhaust gas and the temperature of the outer pipe 73 becomes higher than the thermal deterioration determination temperature of the exhaust purification catalyst device 64, the heat transfer member 74 also has substantially the same temperature. As a result, the distal end portion comes into contact with the outer peripheral surface of the inner tube 71, and the inner tube 71 and the outer tube 73 are connected. In this case, the exhaust gas flowing inside the inner pipe 71 has its heat transferred to the outer pipe 73 through the heat transfer member 74 and released to the outside air, thereby suppressing the temperature rise of the inner pipe 71 and the exhaust gas. be able to. Therefore, the exhaust gas is introduced into the exhaust purification catalyst device 64 with the temperature rise suppressed, and thermal deterioration of the exhaust purification catalyst device 64 can be prevented.

このように実施例3の内燃機関の排気管にあっては、ディーゼルエンジン61に過給機65を装着し、過給機65のタービン67と排気浄化触媒装置64との間に内管71と外管73と伝熱部材74からなる二重の第2排気管63を設け、伝熱部材74が排気浄化触媒装置64の熱劣化判定温度を超えたら変形し、内管71と外管73とを接続状態に切換可能としている。   Thus, in the exhaust pipe of the internal combustion engine of the third embodiment, the turbocharger 65 is mounted on the diesel engine 61, and the inner pipe 71 and the exhaust purification catalyst device 64 are connected between the turbine 67 of the supercharger 65 and the exhaust purification catalyst device 64. A double second exhaust pipe 63 composed of an outer pipe 73 and a heat transfer member 74 is provided, and deforms when the heat transfer member 74 exceeds the thermal degradation determination temperature of the exhaust purification catalyst device 64, and the inner pipe 71 and the outer pipe 73 Can be switched to the connected state.

従って、エンジン61から排出された高温の排気ガスは第1排気管62を通してほとんど温度低下せずに過給機65のタービン67を駆動することとなり、所定の過給効率を確保することができる。そして、タービン67を駆動した排気ガスが第2排気管63に流れて外管73を昇温し、この外管73及び伝熱部材74の温度が、排気浄化触媒装置64の熱劣化判定温度を超えたときに、伝熱部材74が変形して内管71と外管73とを接続状態とする。そのため、排気ガスは、排気浄化触媒装置64の浄化特性に適した温度に抑制されることとなり、熱劣化を防止して排気浄化効率を向上することができる。   Therefore, the high-temperature exhaust gas discharged from the engine 61 drives the turbine 67 of the supercharger 65 with little temperature drop through the first exhaust pipe 62, and a predetermined supercharging efficiency can be ensured. Then, the exhaust gas that has driven the turbine 67 flows into the second exhaust pipe 63 to raise the temperature of the outer pipe 73, and the temperatures of the outer pipe 73 and the heat transfer member 74 become the heat deterioration determination temperature of the exhaust purification catalyst device 64. When exceeded, the heat transfer member 74 is deformed to bring the inner tube 71 and the outer tube 73 into a connected state. Therefore, the exhaust gas is suppressed to a temperature suitable for the purification characteristics of the exhaust purification catalyst device 64, and thermal degradation can be prevented and exhaust purification efficiency can be improved.

なお、この実施例3では、第2排気管63のみを二重管としたが、第1排気管62を二重管とし、排気ガスが1000℃を超えたときに伝熱部材が変形して内管と外管を接続状態とすることで、エキゾーストマニホールド28や過給機65などの過昇温を防止するようにしてもよい。また、排気管63に触媒機能を有していない排気浄化装置(例えば、ディーゼルパティキュレートフィルタ)を設け、この排気浄化装置を熱劣化判定温度以下に保つことも可能である。更に、内燃機関をディーゼルエンジンとしたが、火花点火式エンジンであっても良い。   In the third embodiment, only the second exhaust pipe 63 is a double pipe, but the first exhaust pipe 62 is a double pipe, and the heat transfer member is deformed when the exhaust gas exceeds 1000 ° C. By connecting the inner pipe and the outer pipe, excessive heating of the exhaust manifold 28 and the supercharger 65 may be prevented. It is also possible to provide an exhaust gas purification device (for example, a diesel particulate filter) that does not have a catalytic function in the exhaust pipe 63 and keep the exhaust gas purification device below the heat deterioration determination temperature. Further, although the internal combustion engine is a diesel engine, it may be a spark ignition engine.

また、上述した各実施例では、各触媒30,43,45,64の熱劣化判定温度を800℃や500℃などと設定したが、この温度は触媒の形態に応じて変化するものであり、触媒の種類に応じて適正な温度に設定すればよく、安全面を考慮して低めに設定することが望ましい。そして、伝熱部材34,49,53,74の数も排気管の長さに応じて適宜設定すればよく、複数の伝熱部材に対して、変形温度を300℃、500℃、800℃などと異なるものを設けてもよい。   Moreover, in each Example mentioned above, although the thermal degradation determination temperature of each catalyst 30,43,45,64 was set as 800 degreeC, 500 degreeC, etc., this temperature changes according to the form of a catalyst, An appropriate temperature may be set according to the type of the catalyst, and it is desirable to set the temperature lower in consideration of safety. And the number of the heat transfer members 34, 49, 53, 74 may be appropriately set according to the length of the exhaust pipe, and the deformation temperature is set to 300 ° C, 500 ° C, 800 ° C, etc. Different ones may be provided.

更に、上述した各実施例では、伝熱部材34,49,53,74を外管の内周面に固定し、排気ガスの温度上昇時に内管に接触するようにしたが、内管の外周面に固定して排気ガスの温度上昇時に外管に接触するようにしてもよい。また、伝熱部材34,49,53,74を形状記憶合金により形成し、外管33の温度に応じて変形するように構成したが、この構成に限るものではない。例えば、伝熱部材をアクチュエータなどにより作動するように構成すると共に、排気管内を流動する排気ガス(または、外管、内管)の温度を測定する温度センサを設け、この温度センサの測定結果に基づいてアクチュエータにより伝熱部材を作動し、内管と外管との接続状態及び非接続状態を切り換えるようにしてもよい。   Further, in each of the above-described embodiments, the heat transfer members 34, 49, 53, 74 are fixed to the inner peripheral surface of the outer pipe so as to come into contact with the inner pipe when the temperature of the exhaust gas rises. It may be fixed to the surface and contact the outer tube when the temperature of the exhaust gas rises. Further, although the heat transfer members 34, 49, 53, and 74 are formed of a shape memory alloy and are deformed according to the temperature of the outer tube 33, the present invention is not limited to this configuration. For example, the heat transfer member is configured to be actuated by an actuator or the like, and a temperature sensor is provided for measuring the temperature of exhaust gas (or outer pipe or inner pipe) flowing in the exhaust pipe. Based on this, the heat transfer member may be actuated by an actuator to switch the connection state and non-connection state between the inner tube and the outer tube.

また、本発明は、排気ガスの温度に応じて伝熱部材を変形して内管と外管とを接続状態または非接続状態に切換えるものであり、各実施例では、排気浄化触媒の浄化温度領域の上限値を熱劣化判定温度に設定し、排気ガス温度がこの熱劣化判定温度を超えたら伝熱部材が変形して内管と外管を接続状態としたが、本発明はこの実施例に限定されるものではない。   Further, the present invention changes the heat transfer member according to the temperature of the exhaust gas and switches the inner tube and the outer tube to a connected state or a non-connected state. In each embodiment, the purification temperature of the exhaust purification catalyst The upper limit value of the region is set to the heat deterioration determination temperature, and when the exhaust gas temperature exceeds the heat deterioration determination temperature, the heat transfer member is deformed to connect the inner tube and the outer tube. It is not limited to.

図6は、排気浄化触媒装置温度に対する浄化率を表すグラフである。この図6のグラフに表すように、排気浄化触媒の装置における有害物質の浄化率は、排気浄化触媒装置の温度が低いほど、また、高すぎるほど低率であり、その温度に適正浄化領域を設定する。この適正浄化領域は排気浄化触媒装置の形態により異なるものであるが、適正浄化領域の上限値T1が浄化最高温度であり、更に高温度T2が前述した熱劣化温度である。そして、排気浄化触媒における適正浄化領域の浄化最高温度T1を浄化判定温度に設定し、排気ガス温度がこの浄化判定温度を超えたら伝熱部材が変形して内管と外管を接続状態とするようにしても良い。従って、排気浄化触媒装置の温度を適正浄化温度領域に保持することができ、常時高い浄化率を維持することができる。 FIG. 6 is a graph showing the purification rate with respect to the exhaust purification catalyst device temperature. As shown in the graph of FIG. 6, the purification rate of harmful substances in the exhaust purification catalyst device is lower as the temperature of the exhaust purification catalyst device is lower or too high, and the appropriate purification region is set at that temperature. Set. The appropriate purification region varies depending on the form of the exhaust purification catalyst device, but the upper limit value T 1 of the appropriate purification region is the maximum purification temperature, and the high temperature T 2 is the above-described heat deterioration temperature. Then, the maximum purification temperature T 1 in the appropriate purification region in the exhaust purification catalyst is set as the purification determination temperature, and when the exhaust gas temperature exceeds the purification determination temperature, the heat transfer member is deformed and the inner pipe and the outer pipe are connected. You may make it do. Therefore, the temperature of the exhaust purification catalyst device can be maintained in the appropriate purification temperature region, and a high purification rate can be maintained at all times.

以上のように、本発明にかかる内燃機関の排気管及び排気装置は、排気管を二重構造としてその間に設けられた伝熱部材により排気ガスの温度に応じて内管と外管とを接続状態または非接続状態に切換可能とするものであり、下流側に触媒装置が設けられた内燃機関の排気管に有用である。   As described above, the exhaust pipe and the exhaust device of the internal combustion engine according to the present invention connect the inner pipe and the outer pipe according to the temperature of the exhaust gas by the heat transfer member provided between the exhaust pipe as a double structure. It can be switched to a state or a disconnected state, and is useful for an exhaust pipe of an internal combustion engine provided with a catalyst device on the downstream side.

本発明の実施例1に係る内燃機関の排気管を表す要部断面図である。It is principal part sectional drawing showing the exhaust pipe of the internal combustion engine which concerns on Example 1 of this invention. 実施例1の排気管を表す概略図である。2 is a schematic diagram illustrating an exhaust pipe of Example 1. FIG. 実施例1の排気管の作用を表す概略図である。FIG. 3 is a schematic diagram illustrating the operation of the exhaust pipe of the first embodiment. 実施例1の排気管が適用された内燃機関の概略構成図である。1 is a schematic configuration diagram of an internal combustion engine to which an exhaust pipe of Example 1 is applied. 本発明の実施例2に係る内燃機関の排気管が適用された内燃機関の概略構成図である。It is a schematic block diagram of the internal combustion engine to which the exhaust pipe of the internal combustion engine which concerns on Example 2 of this invention was applied. 本発明の実施例3に係る内燃機関の排気管が適用された内燃機関の概略構成図である。It is a schematic block diagram of the internal combustion engine to which the exhaust pipe of the internal combustion engine which concerns on Example 3 of this invention was applied. 排気浄化触媒装置温度に対する浄化率を表すグラフである。It is a graph showing the purification rate with respect to exhaust purification catalyst apparatus temperature.

符号の説明Explanation of symbols

11,41,61 エンジン
17 燃焼室
19 排気ポート
28 エキゾーストマニホールド
29 排気管
30,64 排気浄化触媒装置
31,46,50,71 内管
32,47,51,72 空間部
33,48,52,73 外管
34,49,53,74 伝熱部材
42,62 第1排気管
43 三元触媒
44,63 第2排気管
45 NOx吸蔵還元型触媒
65 過給機
67 タービン
11, 41, 61 Engine 17 Combustion chamber 19 Exhaust port 28 Exhaust manifold 29 Exhaust pipe 30, 64 Exhaust purification catalyst device 31, 46, 50, 71 Inner pipe 32, 47, 51, 72 Space 33, 48, 52, 73 Outer pipes 34, 49, 53, 74 Heat transfer members 42, 62 First exhaust pipe 43 Three-way catalyst 44, 63 Second exhaust pipe 45 NOx occlusion reduction type catalyst 65 Supercharger 67 Turbine

Claims (8)

内部に排気ガスが流れる排気通路を有する内管と、該内管の外側に空間部をもって配設された外管とを有する内燃機関の排気管において、前記空間部に排気ガスの温度に応じて前記内管と前記外管とを接続状態または非接続状態に切換可能な伝熱部材を設けたことを特徴とする内燃機関の排気管。   In an exhaust pipe of an internal combustion engine having an inner pipe having an exhaust passage through which exhaust gas flows and an outer pipe disposed outside the inner pipe with a space portion, the space portion has a temperature corresponding to the temperature of the exhaust gas. An exhaust pipe for an internal combustion engine, comprising a heat transfer member capable of switching the inner pipe and the outer pipe to a connected state or a non-connected state. 請求項1記載の内燃機関の排気管において、前記伝熱部材は、一端部が前記外管の内周面に装着され、排気ガスの温度が予め設定された所定温度を超えると変形して他端部が前記内管の外周面に接触することを特徴とする内燃機関の排気管。   2. The exhaust pipe of the internal combustion engine according to claim 1, wherein the heat transfer member has one end attached to an inner peripheral surface of the outer pipe and is deformed when the temperature of the exhaust gas exceeds a predetermined temperature set in advance. An exhaust pipe of an internal combustion engine, characterized in that an end portion contacts an outer peripheral surface of the inner pipe. 請求項2記載の内燃機関の排気管において、前記伝熱部材は、前記外管の温度が予め設定された所定温度を超えると変形して他端部が前記内管の外周面に接触することを特徴とする内燃機関の排気管。   3. The exhaust pipe of an internal combustion engine according to claim 2, wherein the heat transfer member is deformed when the temperature of the outer pipe exceeds a predetermined temperature set in advance, and the other end contacts the outer peripheral surface of the inner pipe. An exhaust pipe for an internal combustion engine. 請求項1から3のいずれか一つ記載の内燃機関の排気管において、前記伝熱部材は、排気ガスの温度または前記外管の温度に応じて変形する形状記憶合金であることを特徴とする内燃機関の排気管。   4. The exhaust pipe of an internal combustion engine according to claim 1, wherein the heat transfer member is a shape memory alloy that deforms according to a temperature of exhaust gas or a temperature of the outer pipe. An exhaust pipe of an internal combustion engine. 請求項1から4のいずれか一つ記載の内燃機関の排気管において、前記伝熱部材は、前記排気管の長手方向に沿って複数設けられ、該各伝熱部材は異なる排気ガスの温度に応じて前記内管と前記外管とを接続状態または非接続状態に切換えることを特徴とする内燃機関の排気管。   The exhaust pipe of the internal combustion engine according to any one of claims 1 to 4, wherein a plurality of the heat transfer members are provided along a longitudinal direction of the exhaust pipe, and each of the heat transfer members has a different exhaust gas temperature. Accordingly, the exhaust pipe for an internal combustion engine is characterized in that the inner pipe and the outer pipe are switched between a connected state and a disconnected state. 触媒の上流側に前記請求項1記載の排気管を設け、前記伝熱部材は、排気ガス温度が予め設定された触媒浄化温度領域を超えたときに前記内管と前記外管とを接続状態とすることを特徴とする内燃機関の排気装置。   The exhaust pipe according to claim 1 is provided upstream of the catalyst, and the heat transfer member is connected to the inner pipe and the outer pipe when the exhaust gas temperature exceeds a preset catalyst purification temperature region. An exhaust system for an internal combustion engine, characterized in that 内燃機関の排気通路に三元触媒とNOx触媒とを直列に配設し、前記三元触媒の上流側に前記請求項1記載の第1排気管を設けると共に、前記三元触媒と前記NOx触媒との間に前記請求項1記載の第2排気管を設け、前記第1排気管の伝熱部材は、排気ガス温度が予め設定された三元触媒浄化温度領域を超えたときに前記内管と前記外管とを接続状態とし、前記第2排気管の伝熱部材は、排気ガス温度が予め設定されたNOx触媒浄化温度領域を超えたときに前記内管と前記外管とを接続状態とすることを特徴とする内燃機関の排気装置。   A three-way catalyst and a NOx catalyst are arranged in series in an exhaust passage of an internal combustion engine, the first exhaust pipe according to claim 1 is provided upstream of the three-way catalyst, and the three-way catalyst and the NOx catalyst. The second exhaust pipe according to claim 1 is provided between the inner pipe and the heat transfer member of the first exhaust pipe when the exhaust gas temperature exceeds a preset three-way catalyst purification temperature region. And the outer pipe are connected, and the heat transfer member of the second exhaust pipe is connected to the inner pipe and the outer pipe when the exhaust gas temperature exceeds a preset NOx catalyst purification temperature region. An exhaust system for an internal combustion engine, characterized in that 内燃機関の排気通路に過給機のタービンと触媒とを直列に配設し、前記タービンと前記触媒との間に前記請求項1記載の排気管を設け、該排気管の伝熱部材は、排気ガス温度が予め設定された触媒浄化温度領域を超えたときに前記内管と前記外管とを接続状態とすることを特徴とする内燃機関の排気装置。   A turbocharger turbine and a catalyst are arranged in series in an exhaust passage of the internal combustion engine, the exhaust pipe according to claim 1 is provided between the turbine and the catalyst, and a heat transfer member of the exhaust pipe includes: An exhaust system for an internal combustion engine, wherein the inner pipe and the outer pipe are connected when the exhaust gas temperature exceeds a preset catalyst purification temperature region.
JP2004003341A 2004-01-08 2004-01-08 Exhaust pipe and exhaust device for internal combustion engine Pending JP2005194962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003341A JP2005194962A (en) 2004-01-08 2004-01-08 Exhaust pipe and exhaust device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003341A JP2005194962A (en) 2004-01-08 2004-01-08 Exhaust pipe and exhaust device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005194962A true JP2005194962A (en) 2005-07-21

Family

ID=34818285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003341A Pending JP2005194962A (en) 2004-01-08 2004-01-08 Exhaust pipe and exhaust device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005194962A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069333A1 (en) 2007-11-28 2009-06-04 Ibiden Co., Ltd. Exhaust pipe
EP2210919A1 (en) 2009-01-22 2010-07-28 Ibiden Co., Ltd. Exhaust pipe paint, method for forming surface coat layer on exhaust pipe base, and exhaust pipe
EP2492319A1 (en) * 2009-01-22 2012-08-29 Ibiden Co., Ltd. Exhaust pipe paint, method for forming surface coat layer on exhaust pipe base, and exhaust pipe
JP2013519029A (en) * 2010-02-05 2013-05-23 ヨット エーバーシュペッヘル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Exhaust gas equipment
US8844576B2 (en) 2007-11-28 2014-09-30 Ibiden Co., Ltd. Exhaust pipe
JP2014227860A (en) * 2013-05-20 2014-12-08 いすゞ自動車株式会社 Exhaust emission control system and its radiation method
JP2017072041A (en) * 2015-10-06 2017-04-13 スズキ株式会社 Exhaust heat recovery device
JP2021008879A (en) * 2019-06-28 2021-01-28 株式会社クボタ engine
CN112302763A (en) * 2020-10-12 2021-02-02 绍兴宾果科技有限公司 Variable flux three-way catalyst mechanical arm

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8844576B2 (en) 2007-11-28 2014-09-30 Ibiden Co., Ltd. Exhaust pipe
EP2213856A1 (en) * 2007-11-28 2010-08-04 Ibiden Co., Ltd. Exhaust pipe
EP2213856A4 (en) * 2007-11-28 2010-12-22 Ibiden Co Ltd Exhaust pipe
US8201584B2 (en) 2007-11-28 2012-06-19 Ibiden Co., Ltd. Exhaust pipe
WO2009069333A1 (en) 2007-11-28 2009-06-04 Ibiden Co., Ltd. Exhaust pipe
EP2210919A1 (en) 2009-01-22 2010-07-28 Ibiden Co., Ltd. Exhaust pipe paint, method for forming surface coat layer on exhaust pipe base, and exhaust pipe
EP2492319A1 (en) * 2009-01-22 2012-08-29 Ibiden Co., Ltd. Exhaust pipe paint, method for forming surface coat layer on exhaust pipe base, and exhaust pipe
US8292999B2 (en) 2009-01-22 2012-10-23 Ibiden Co., Ltd. Exhaust pipe paint, method for producing exhaust pipe, and exhaust pipe
US8303703B2 (en) 2009-01-22 2012-11-06 Ibiden Co., Ltd. Exhaust pipe paint, method for forming surface coat layer on exhaust pipe base, and exhaust pipe
JP2013519029A (en) * 2010-02-05 2013-05-23 ヨット エーバーシュペッヘル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Exhaust gas equipment
JP2014227860A (en) * 2013-05-20 2014-12-08 いすゞ自動車株式会社 Exhaust emission control system and its radiation method
JP2017072041A (en) * 2015-10-06 2017-04-13 スズキ株式会社 Exhaust heat recovery device
JP2021008879A (en) * 2019-06-28 2021-01-28 株式会社クボタ engine
JP7264798B2 (en) 2019-06-28 2023-04-25 株式会社クボタ engine
CN112302763A (en) * 2020-10-12 2021-02-02 绍兴宾果科技有限公司 Variable flux three-way catalyst mechanical arm
CN112302763B (en) * 2020-10-12 2022-02-25 羽源洋(宁波)科技有限公司 Variable flux three-way catalyst mechanical arm

Similar Documents

Publication Publication Date Title
US7195006B2 (en) Exhaust gas recirculation system with control of EGR gas temperature
US8051644B2 (en) Electrically heated particulate filter zone-based post fuel injection system
KR100497829B1 (en) Exhaust emission control device of internal combustion engine
JP6376190B2 (en) Engine control device
EP1437503A2 (en) Internal combustion engine
JP2007100607A (en) Starting control device of internal combustion engine
KR19990072690A (en) cylinder injection type internal-cornbustion engine
JP4062056B2 (en) Control device for internal combustion engine having variable valve system
EP3205865B1 (en) Control device for vehicle
JP2005194962A (en) Exhaust pipe and exhaust device for internal combustion engine
JP4560978B2 (en) Spark ignition direct injection engine with turbocharger
US6658840B2 (en) Apparatus for and method of controlling a vehicle engine
JP3956107B2 (en) Exhaust purification device for multi-cylinder internal combustion engine
US9212590B2 (en) Internal combustion engine having an exhaust gas system
JP2005299408A (en) Device for raising temperature of engine
RU2684056C2 (en) Method (versions) and system for hydrocarbon conductor
JP6406158B2 (en) Engine control device
JP4538976B2 (en) Spark ignition direct injection engine with turbocharger
JP2004124752A (en) Control device for spark ignition type engine with supercharger
JP4239397B2 (en) Start control device for internal combustion engine
JP3536749B2 (en) Exhaust gas purification device for internal combustion engine
JP5195588B2 (en) High expansion ratio internal combustion engine
JP3815140B2 (en) Exhaust gas purification device for internal combustion engine
JP2005330864A (en) Control method for internal combustion engine
JP4292632B2 (en) Exhaust gas purification device for internal combustion engine