JP3815140B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3815140B2
JP3815140B2 JP25176399A JP25176399A JP3815140B2 JP 3815140 B2 JP3815140 B2 JP 3815140B2 JP 25176399 A JP25176399 A JP 25176399A JP 25176399 A JP25176399 A JP 25176399A JP 3815140 B2 JP3815140 B2 JP 3815140B2
Authority
JP
Japan
Prior art keywords
exhaust
engine
control valve
unburned
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25176399A
Other languages
Japanese (ja)
Other versions
JP2001073811A (en
Inventor
孝充 浅沼
信也 広田
俊祐 利岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25176399A priority Critical patent/JP3815140B2/en
Publication of JP2001073811A publication Critical patent/JP2001073811A/en
Application granted granted Critical
Publication of JP3815140B2 publication Critical patent/JP3815140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
ディーゼル機関においては機関の低速低負荷運転時、特に機関の暖機運転時には燃焼室内の温度が低くなり、その結果多量の未燃HCが発生する。そこで機関排気通路内に排気制御弁を配置し、機関低速低負荷運転時に排気制御弁を閉弁すると共に燃料噴射量を大巾に増量することにより燃焼室内の温度を高めて噴射燃料を燃焼室内で完全燃焼させ、それによって未燃HCの発生量を抑制するようにしたディーゼル機関が公知である(特開昭49−80414号公報参照)。
【0003】
また、機関排気通路内に排気浄化用触媒を配置した場合には触媒温度が十分に高くならないと触媒による良好な排気浄化作用は行われない。そこで機関の出力を発生させるための主燃料の噴射に加え副燃料を膨張行程中に噴射し、副燃料を燃焼させることにより排気ガス温を上昇させ、それによって触媒の温度を上昇させるようにした内燃機関が公知である(特開平8−303290号公報および特開平10−212995号公報参照)。
【0004】
また、従来より未燃HCを吸着しうる触媒が知られている。この触媒は周囲の圧力が高くなればなるほど未燃HCの吸着量が増大し、周囲の圧力が低くなると吸着した未燃HCを放出する性質を有する。そこでこの性質を利用して触媒から放出された未燃HCによりNOx を還元するために、機関排気通路内にこの触媒を配置すると共に触媒下流の機関排気通路内に排気制御弁を配置し、NOx の発生量の少ない機関低速低負荷運転時には機関出力の発生のための主燃料に加え少量の副燃料を膨張行程中又は排気行程中に噴射して多量の未燃HCを燃焼室から排出させ、更にこのとき機関の出力低下が許容範囲内に納まるように排気制御弁を比較的に小さな開度まで閉弁することにより排気通路内の圧力を高めて燃焼室から排出される多量の未燃HCを触媒内に吸着させ、NOx の発生量の多い機関高速又は高負荷運転時には排気制御弁を全開にして排気通路内の圧力を低下させ、このとき触媒から放出される未燃HCによってNOx を還元するようにした内燃機関が公知である(特開平10−238336号公報参照)。
【0005】
【発明が解決しようとする課題】
さて、現在ディーゼル機関はもとより火花点火式内燃機関においても機関低負荷運転時、特に機関の暖機運転時に発生する未燃HCの量をいかにして低減するかが大きな問題となっている。そこで本発明者はこの問題を解決すべく実験研究を行い、その結果機関の暖機運転時等において大気中に排出される未燃HCの量を大巾に低減するためには燃焼室内における未燃HCの発生量を低減しかつ同時に排気通路内における未燃HCの低減量を増大しなければならないことが判明したのである。
【0006】
具体的に言うと、膨張行程中又は排気行程中に燃焼室内に副燃料を追加噴射してこの副燃料を燃焼させ、機関排気ポートの出口からかなり距離を隔てた機関排気通路内に排気制御弁を設けてこの排気制御弁をほぼ全閉させると、これら副燃料の燃焼と排気制御弁による排気絞り作用との相乗効果によって燃焼室内における未燃HCの発生量が低減すると共に排気通路内における未燃HCの低減量が増大し、斯くして大気中に排出される未燃HCの量を大巾に低減しうることが判明したのである。
【0007】
もう少し詳しく言うと、副燃料が噴射されると副燃料自身が燃焼せしめられるばかりでなく主燃料の燃え残りである未燃HCが燃焼室内で燃焼せしめられる。従って燃焼室内で発生する未燃HCの量が大巾に低減するばかりでなく、主燃料の燃え残りである未燃HCおよび副燃料が燃焼せしめられるので既燃ガス温がかなり高温となる。
【0008】
一方、排気制御弁がほぼ全閉せしめられると機関の排気ポートから排気制御弁に到る排気通路内の圧力、即ち背圧がかなり高くなる。背圧が高いということは燃焼室内から排出された排気ガス温がさほど低下しないことを意味しており、従って排気ポート内における排気ガス温はかなり高温となっている。一方、背圧が高いということは排気ポート内に排出された排気ガスの流速が遅いことを意味しており、従って排気ガスは高温の状態で排気制御弁上流の排気通路内に長時間に亘って滞留することになる。この間に排気ガス中に含まれる未燃HCが酸化せしめられ、斯くして大気中に排出される未燃HCの量が大巾に低減されることになる。
【0009】
この場合、もし副燃料を噴射しなかった場合には主燃料の燃え残りの未燃HCがそのまま残存するために燃焼室内において多量の未燃HCが発生する。また副燃料を噴射しなかった場合には燃焼室内の既燃ガス温がさほど高くならないためにこのときたとえ排気制御弁をほぼ全閉させても排気制御弁上流の排気通路内での未燃HCの十分な酸化作用は期待できない。従ってこのときには多量の未燃HCが大気中に排出されることになる。
【0010】
一方、排気制御弁による排気絞り作用を行わない場合でも副燃料を噴射すれば燃焼室内で発生する未燃HCの発生量は低減し、燃焼室内の既燃ガス温は高くなる。しかしながら排気制御弁による排気絞り作用を行わない場合には燃焼室から排気ガスが排出されるや否や排気ガス圧はただちに低下し、斯くして排気ガス温もただちに低下する。従ってこの場合には排気通路内における未燃HCの酸化作用はほとんど期待できず、斯くしてこのときにも多量の未燃HCが大気中に排出されることになる。
【0011】
即ち、大気中に排出される未燃HCの量を大巾に低減するためには副燃料を噴射しかつ同時に排気制御弁をほぼ全閉にしなければならないことになる。
前述の特開昭49−80414号公報に記載されたディーゼル機関では副燃料が噴射されず、主燃料の噴射量が大巾に増大せしめられるので排気ガス温は上昇するが極めて多量の未燃HCが燃焼室内で発生する。このように燃焼室内において極めて多量の未燃HCが発生するとたとえ排気通路内において未燃HCの酸化作用が行われたとしても一部の未燃HCしか酸化されないので多量の未燃HCが大気中に排出されることになる。
【0012】
一方、前述の特開平8−303290号公報又は特開平10−212995号公報に記載された内燃機関では排気制御弁による排気絞り作用が行われていないので排気通路内における未燃HCの酸化作用はほとんど期待できない。従ってこの内燃機関においても多量の未燃HCが大気中に排出されることになる。
また前述の特開平10−238336号公報に記載された内燃機関では機関の出力低下が許容範囲内に納まるように排気制御弁が比較的小さな開度まで閉弁せしめられる。しかしながら機関の出力低下が許容範囲内に納まる程度の排気制御弁の閉弁量では背圧はそれほど高くなっていない。
【0013】
また、この内燃機関では触媒に吸着すべき未燃HCを発生させるために少量の副燃料が膨張行程中又は排気行程中に噴射される。この場合、副燃料が良好に燃焼せしめられれば未燃HCが発生しなくなるのでこの内燃機関では副燃料が良好に燃焼しないように副燃料の噴射制御を行っているものと考えられる。従ってこの内燃機関では少量の副燃料が既燃ガス温の温度上昇にはさほど寄与していないものと考えられる。
【0014】
このようにこの内燃機関では多量の未燃HCが燃焼室内において発生せしめられ、しかも背圧はそれほど高くならず既燃ガス温もさほど温度上昇しないと考えられるので排気通路内においても未燃HCはさほど酸化されないものと考えられる。この内燃機関ではできるだけ多量の未燃HCを触媒に吸着させることを目的としており、従ってこのように考えるのが理にかなっていると言える。
【0015】
本発明の目的は機関の安定した運転を確保しつつ大気中に排出される未燃HCの量を大巾に低減することのできる内燃機関の排気浄化装置を提供することにある。
【0016】
【課題を解決するための手段】
上記目的を達成するために発明によれば、機関排気ポートの出口に接続された排気通路内に排気ポートの出口から予め定められた距離を隔てて排気制御弁を配置し、大気中への未燃HCの排出量を低減すべきであると判断されたときには排気制御弁をほぼ全閉にすると共に、機関出力を発生するために燃焼室内に噴射された主燃料を空気過剰のもとで燃焼させることに加え副燃料を副燃料が燃焼しうる膨張行程中又は排気行程中の予め定められた時期に燃焼室内に追加噴射しかつ排気弁の開弁時期又は閉弁時期の少なくとも一方を早めるようにし、排気制御弁がほぼ全閉せしめられたときには同一の機関運転状態のもとで排気制御弁が全開せしめられた場合の機関の発生トルクに近づくように同一の機関運転状態のもとで排気制御弁が全開せしめられた場合に比べて主燃料の噴射量を増量させるようにしている。
【0018】
【発明の実施の形態】
図1および図2は本発明を成層燃焼式内燃機関に適用した場合を示している。しかしながら本発明は均一リーン空燃比のもとで燃焼が行われる火花点火式内燃機関、および空気過剰のもとで燃焼が行われるディーゼル機関にも適用することができる。
【0019】
図1を参照すると、1は機関本体を示し、機関本体1は1番気筒#1、2番気筒#2、3番気筒#3および4番気筒#4からなる4つの気筒を有する。図2は各気筒#1,#2,#3,#4の側面断面図を示している。図2を参照すると、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6はシリンダヘッド3の内壁面周縁部に配置された燃料噴射弁、7はシリンダヘッド3の内壁面中央部に配置された点火栓、8は吸気弁、9は吸気ポート、10は排気弁、11は排気ポートを夫々示す。
【0020】
図1および図2を参照すると、吸気ポート9は対応する吸気枝管12を介してサージタンク13に連結され、サージタンク13は吸気ダクト14およびエアフローメータ15を介してエアクリーナ16に連結される。吸気ダクト14内にはステップモータ17により駆動されるスロットル弁18が配置される。一方、図1に示される実施例では点火順序が1−3−4−2とされており、図1に示されるように点火順序が一つおきの気筒#1,#4の排気ポート11は共通の第1の排気マニホルド19に連結され、点火順序が一つおきの残りの気筒#2,#3の排気ポート11は共通の第2の排気マニホルド20に連結される。これら第1の排気マニホルド19と第2の排気マニホルド20は共通の排気管21に連結され、排気管21は更に別の排気管22に連結される。排気管22内には負圧ダイアフラム装置又は電気モータからなるアクチュエータ23により駆動される排気制御弁24が配置される。
【0021】
図1に示されるように排気管21とサージタンク13とは排気ガス再循環(以下EGRと称す)通路25を介して互いに連結され、EGR通路25内には電気制御式EGR制御弁26が配置される。燃料噴射弁6は共通の燃料リザーバ、いわゆるコモンレール27に連結される。このコモンレール27内へは燃料タンク28内の燃料が電気制御式の吐出量可変な燃料ポンプ29を介して供給され、コモンレール27内に供給された燃料が各燃料噴射弁6に供給される。コモンレール27にはコモンレール27内の燃料圧を検出するための燃料圧センサ30が取付けられ、燃料圧センサ30の出力信号に基づいてコモンレール27内の燃料圧が目標燃料圧となるように燃料ポンプ29の吐出量が制御される。
【0022】
一方、図2に示されるように排気弁10の頂部には排気弁駆動用のアクチュエータ31が配置されており、32は排気弁10の頂部に取付けられた円板状鉄片、33,34は鉄片32の両側に配置されたソレノイド、35,36は鉄片32の両側に配置された圧縮ばねを夫々示している。ソレノイド33が付勢されると鉄片32が上昇し、排気弁10が閉弁する。これに対してソレノイド34が付勢されると鉄片32が下降し、排気弁10が開弁する。従って各ソレノイド33,34の付勢タイミングを制御することによって排気弁10を任意の時期に開弁し、閉弁することができる。
【0023】
図1を参照すると、電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45および出力ポート46を具備する。エアフローメータ15は吸入空気量に比例した出力電圧を発生し、この出力電圧は対応するAD変換器47を介して入力ポート45に入力される。機関本体1には機関冷却水温を検出するための水温センサ37が取付けられ、この水温センサ37の出力信号は対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45には燃料圧センサ30の出力信号が対応するAD変換器47を介して入力される。
【0024】
また、アクセルペダル50にはアクセルペダル50の踏込み量Lに比例した出力電圧を発生する負荷センサ51が接続され、負荷センサ51の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。また、入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ52が接続される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁6、点火栓7、スロットル弁制御用ステップモータ17、排気制御弁制御用アクチュエータ23、EGR制御弁26、燃料ポンプ29およびアクチュエータ31(図2)に接続される。
【0025】
図3は燃料噴射量Q1,Q2,Q(=Q1 +Q2 )、噴射開始時期θS1,θS2、噴射完了時期θE1,θE2および燃焼室5内における平均空燃比A/Fを示している。なお、図3において横軸Lはアクセルペダル50の踏込み量、即ち要求負荷を示している。
図3からわかるように要求負荷LがL1 よりも低いときには圧縮行程末期のθS2からθE2の間において燃料噴射Q2が行われる。このときには平均空燃比A/Fはかなりリーンとなっている。要求負荷LがL1 とL2 の間のときには吸気行程初期のθS1からθE1の間において第1回目の燃料噴射Q1が行われ、次いで圧縮行程末期のθS2からθE2の間において第2回目の燃料噴射Q2が行われる。このときにも空燃比A/Fはリーンとなっている。要求負荷LがL2 よりも大きいときには吸気行程初期のθS1からθE1の間において燃料噴射Q1が行われる。このときには要求負荷Lが低い領域では平均空燃比A/Fがリーンとされており、要求負荷Lが高くなると平均空燃比A/Fが理論空燃比とされ、要求負荷Lが更に高くなると平均空燃比A/Fがリッチとされる。なお、圧縮行程末期にのみ燃料噴射Q2が行われる運転領域、二回に亘って燃料噴射Q1およびQ2が行われる運転領域および吸気行程初期にのみ燃料噴射Q1が行われる運転領域は要求負荷Lのみにより定まるのではなく、実際には要求負荷Lおよび機関回転数により定まる。
【0026】
図2は要求負荷LがL1 (図3)よりも小さいとき、即ち圧縮行程末期においてのみ燃料噴射Q2が行われる場合を示している。図2に示されるようにピストン4の頂面上にはキャビティ4aが形成されており、要求負荷LがL1 よりも低いときには燃料噴射弁6からキャビティ4aの底壁面に向けて圧縮行程末期に燃料が噴射される。この燃料はキャビティ4aの周壁面により案内されて点火栓7に向かい、それによって点火栓7の周りに混合気Gが形成される。次いでこの混合気Gは点火栓7により着火せしめられる。
【0027】
一方、前述したように要求負荷LがL1 とL2 との間にあるときには二回に分けて燃料噴射が行われる。この場合、吸気行程初期に行われる第1回目の燃料噴射Q1によって燃焼室5内に稀薄混合気が形成される。次いで圧縮行程末期に行われる第2回目の燃料噴射Q2によって点火栓7周りに最適な濃度の混合気が形成される。この混合気が点火栓7により着火せしめられ、この着火火炎によって稀薄混合気が燃焼せしめられる。
【0028】
一方、要求負荷LがL2 よりも大きいときには図3に示されるように燃焼室5内にはリーン又は理論空燃比又はリッチ空燃比の均一混合気が形成され、この均一混合気が点火栓7により着火せしめられる。
次に図4を参照しつつまず初めに本発明による未燃HCの低減方法について概略的に説明する。なお、図4において横軸はクランク角を示しており、BTDCおよびATDCは夫々上死点前および上死点後を示している。
【0029】
図4(A)は本発明による方法によって特に未燃HCを低減する必要のない場合であって要求負荷LがL1 よりも小さいときの燃料噴射時期を示している。図4(A)に示されるようにこのときには圧縮行程末期に主燃料Qmのみが噴射され、排気制御弁24は全開状態に保持され、排気弁10が図5から図7において実線Xで示される予め定められた開弁時期に亘って開弁せしめられる。
【0030】
これに対し、本発明による方法によって未燃HCを低減する必要がある場合には排気制御弁24がほぼ全閉せしめられ、図4(B)に示されるように機関出力を発生させるための主燃料Qmの噴射に加え、膨張行程中に、図4(B)に示される例では圧縮上死点後(ATDC)60°付近において副燃料Qaが追加噴射され、更に図5から図7において夫々破線Z1,Z2,Z3で示されるように排気弁10の開弁期間が変更せしめられる。即ち、図5に示す例では排気弁10の開弁時期が早められ、図6に示す例では排気弁10の閉弁時期が早められ、図7に示す例では排気弁10の開弁時期および閉弁時期が共に早められる。
【0031】
なおこの場合、主燃料Qmの燃焼後、副燃料Qaを完全に燃焼せしめるのに十分な酸素が燃焼室5内に残存するように主燃料Qmは空気過剰のもとで燃焼せしめられる。また、図4(A)と図4(B)とは機関負荷と機関回転数が同一であるときの燃料噴射期間を示しており、従って機関負荷と機関回転数が同一である場合には図4(B)に示される場合の主燃料Qmの噴射量の方が図4(A)に示される場合の主燃料Qmの噴射量に比べて増量せしめられている。
【0032】
図8は機関排気通路の各位置における排気ガス中の未燃HCの濃度(ppm)の一例を示している。図8に示す例において黒三角は排気制御弁24を全開にした状態で図4(A)に示す如く圧縮行程末期において主燃料Qmを噴射し、排気弁10の開弁期間を図5から図7のXとした場合の排気ポート11出口における排気ガス中の未燃HCの濃度(ppm)を示している。この場合には排気ポート11出口における排気ガス中の未燃HCの濃度は6000ppm 以上の極めて高い値となる。
【0033】
一方、図8に示す例において黒丸および実線は排気制御弁24をほぼ全閉とし、図4(B)に示されるように主燃料Qmおよび副燃料Qaを噴射し、図5に示されるように排気弁10の開弁時期を早めた場合の排気ガス中の未燃HCの濃度(ppm)を示している。この場合には排気ポート11出口における排気ガス中の未燃HCの濃度は2000ppm 以下となり、排気制御弁24の付近においては排気ガス中の未燃HCの濃度は150ppm 以下まで減少する。従ってこの場合には大気中に排出される未燃HCの量が大巾に低減せしめられることがわかる。
【0034】
このように排気制御弁24上流の排気通路内において未燃HCが減少するのは未燃HCの酸化反応が促進されているからである。しかしながら図8の黒三角で示されるように排気ポート11出口における未燃HCの量が多い場合、即ち燃焼室5内での未燃HCの発生量が多い場合にはたとえ排気通路内における未燃HCの酸化反応を促進しても大気中に排出される未燃HCの量はさほど低減しない。即ち、排気通路内における未燃HCの酸化反応を促進することによって大気中に排出される未燃HCの量を大巾に低減しうるのは図8の黒丸で示されるように排気ポート11出口における未燃HCの濃度が低いとき、即ち燃焼室5内での未燃HCの発生量が少ないときである。
【0035】
このように大気中に排出される未燃HCの量を低減させるためには燃焼室5内での未燃HCの発生量を低下させかつ排気通路内における未燃HCの酸化反応を促進させるという二つの要求を同時に満たす必要がある。そこでまず初めに2番目の要求、即ち排気通路内における未燃HCの酸化反応を促進させることから説明する。
【0036】
本発明によれば大気中に排出される未燃HCの量を低減すべきときには排気制御弁24がほぼ全閉とされる。このように排気制御弁24がほぼ全閉にされると排気ポート11内、排気マニホルド19,20内、排気管21内、および排気制御弁24上流の排気管22内の圧力、即ち背圧はかなり高くなる。
背圧が高くなるということは燃焼室5内から排気ポート11内に排気ガスが排出されたときに排気ガスの圧力がさほど低下せず、従って燃焼室5から排出された排気ガス温もさほど低下しないことを意味している。従って排気ポート11内に排出された排気ガス温はかなり高温に維持されている。一方、背圧が高いということは排気ガスの密度が高いことを意味しており、排気ガスの密度が高いということは排気ポート11から排気制御弁24に至る排気通路内における排気ガスの流速が遅いことを意味している。従って排気ポート11内に排出された排気ガスは高温のもとで長時間に亘り排気制御弁24上流の排気通路内に滞留することになる。
【0037】
このように排気ガスが高温のもとで長時間に亘り排気制御弁24上流の排気通路内に滞留せしめられるとその間に未燃HCの酸化反応が促進される。この場合、本発明者による実験によると排気通路内における未燃HCの酸化反応を促進するためには排気ポート11出口における排気ガス温をほぼ750℃以上、好ましくは800℃以上にする必要があることが判明している。
【0038】
また、高温の排気ガスが排気制御弁24上流の排気通路内に滞留している時間が長くなればなるほど未燃HCの低減量は増大する。この滞留時間は排気制御弁24の位置が排気ポート11出口から離れれば離れるほど長くなり、従って排気制御弁24は排気ポート11出口から未燃HCを十分に低減するのに必要な距離を隔てて配置する必要がある。排気制御弁24を排気ポート11出口から未燃HCを十分に低減するのに必要な距離を隔てて配置すると図8の実線に示されるように未燃HCの濃度は大巾に低減する。なお、本発明者による実験によると未燃HCを十分に低減するためには排気ポート11出口から排気制御弁24までの距離を1メートル以上とすることが好ましいことが判明している。
【0039】
ところで前述したように排気通路内における未燃HCの酸化反応を促進するためには排気ポート11出口における排気ガス温をほぼ750℃以上、好ましくは800℃以上にする必要がある。また、大気中に排出される未燃HCの量を低減するためには前述した1番目の要求を満たさなければならない。即ち燃焼室5内での未燃HCの発生量を低下させる必要がある。そのために本発明では機関出力を発生するための主燃料Qmに加え、主燃料Qmの噴射後に副燃料Qaを追加噴射して副燃料Qaを燃焼室5内で燃焼せしめるようにし、更に排気弁10の開弁時期を早めるようにしている。
【0040】
即ち、副燃料Qaを燃焼室5内で燃焼せしめると副燃料Qaの燃焼時に主燃料Qmの燃え残りである多量の未燃HCが燃焼せしめられる。また、この副燃料Qaは高温ガス中に噴射されるので副燃料Qaは良好に燃焼せしめられ、従って副燃料Qaの燃え残りである未燃HCはさほど発生しなくなる。斯くして最終的に燃焼室5内で発生する未燃HCの量はかなり少なくなる。
【0041】
また、副燃料Qaを燃焼室5内で燃焼せしめると主燃料Qm自身および副燃料Qa自身の燃焼による発熱に加え、主燃料Qmの燃え残りである未燃HCの燃焼熱が追加的に発生するので燃焼室5内の既燃ガス温はかなり高くなる。また、排気弁10の開弁時期を早めると排気ポート11内に排出される排気ガス温が高くなる。このように主燃料Qmに加え副燃料Qaを追加噴射して副燃料Qaを燃焼させかつ排気弁10の開弁時期を早めることにより燃焼室5内で発生する未燃HCの量を低減しかつ排気ポート11出口における排気ガス温を750℃以上、好ましくは800℃以上にすることができる。なお、排気弁10の開弁時期を早めると背圧が上昇し、斯くして前述したように排気ポート11から排気制御弁24に至る排気通路の流速が遅くなる。その結果、排気制御弁24上流の排気通路内での排気ガスの滞留時間が更に長くなるので排気通路内における未燃HCの酸化作用が更に促進されることになる。
【0042】
上述したように本発明では副燃料Qaを燃焼室5内で燃焼せしめる必要があり、そのためには副燃料Qaの燃焼時に燃焼室5内に十分な酸素が残存していることが必要であり、しかも噴射された副燃料Qaが燃焼室5内で良好に燃焼せしめられる時期に副燃料Qaを噴射する必要がある。
そこで本発明では副燃料Qaの燃焼時に燃焼室5内に十分な酸素が残存しうるように主燃料Qmは空気過剰のもとで燃焼せしめられる。また、図2に示される成層燃焼式内燃機関において噴射された副燃料Qaが燃焼室5において良好に燃焼せしめられる噴射時期は図4において矢印Zで示される圧縮上死点後(ATDC)ほぼ50°からほぼ90°の膨張行程であり、従って図2に示される成層燃焼式内燃機関においては副燃料Qaは圧縮上死点後(ATDC)ほぼ50°からほぼ90°の膨張行程において噴射される。なお、圧縮上死点後(ATDC)ほぼ50°からほぼ90°の膨張行程において噴射された副燃料Qaは機関の出力の発生には寄与しない。
【0043】
ところで本発明者による実験によると図2に示される成層燃焼式内燃機関では副燃料Qaが圧縮上死点後(ATDC)60°付近において噴射されたときに大気中に排出される未燃HCの量は最も少なくなる。従って本発明による実施例では図4(B)に示されるように副燃料Qaの噴射時期はほぼ圧縮上死点後(ATDC)60°付近とされる。
【0044】
副燃料Qaの最適な噴射時期は機関の型式によって異なり、例えばディーゼル機関では副燃料Qaの最適な噴射時期は膨張行程中か又は排気行程中となる。従って本発明では副燃料Qaの燃料噴射は膨張行程中又は排気行程中に行われる。一方、燃焼室5内の既燃ガス温は主燃料Qmの燃焼熱と副燃料Qaの燃焼熱の双方の影響を受ける。即ち、燃焼室5内の既燃ガス温は主燃料Qmの噴射量が増大するほど高くなり、副燃料Qaの噴射量が増大するほど高くなる。更に、燃焼室5内の既燃ガス温は背圧の影響を受ける。即ち、背圧が高くなるほど燃焼室5から既燃ガスが流出しにくくなるために燃焼室5内に残留する既燃ガス量が多くなり、斯くして排気制御弁24がほぼ全閉せしめられると燃焼室5内の既燃ガス温が上昇せしめられる。
【0045】
ところで排気制御弁24がほぼ閉弁せしめられ、排気弁10の開弁時期が早められ、それによって背圧が高くなると機関の発生トルクが最適な要求発生トルクに対して減少する。そこで本発明では図4(B)に示されるように排気制御弁24がほぼ全閉せしめられかつ排気弁10の開弁時期が早められたときには図4(A)に示されるように同一の機関運転状態のもとで排気制御弁24が全開せしめられた場合の機関の要求発生トルクに近づくように同一の機関運転状態のもとで排気制御弁24が全開せしめられた場合に比べて主燃料Qmの噴射量が増量せしめられる。なお、本発明による実施例では排気制御弁24がほぼ全閉せしめられかつ排気弁10の開弁時期が早められたときにはそのときの機関の発生トルクが同一の機関運転状態のもとで排気制御弁24が全開せしめられた場合の機関の要求発生トルクに一致するように主燃料Qmが増量される。
【0046】
図9は要求負荷Lに対して機関の要求発生トルクを得るのに必要な主燃料Qmの変化を示している。なお、図9において実線X1は排気制御弁24がほぼ全閉せしめられかつ排気弁10の開弁時期が早められた場合を示しており、破線は排気制御弁24が全開せしめられた場合を示している。
一方、図10は排気制御弁24をほぼ全閉せしめかつ排気弁10の開弁時期を早めた場合において排気ポート11出口における排気ガス温をほぼ750℃からほぼ800℃にするのに必要な主燃料Qmと副燃料Qaの関係を示している。前述したように主燃料Qmを増量しても燃焼室5内の既燃ガス温は高くなり、副燃料Qaを増量しても燃焼室5内の既燃ガス温は高くなる。従って排気ポート11出口における排気ガス温をほぼ750℃からほぼ800℃にするのに必要な主燃料Qmと副燃料Qaとの関係は図10に示されるように主燃料Qmを増大すれば副燃料Qaは減少し、主燃料Qmを減少すれば副燃料Qaは増大する関係となる。
【0047】
ただし、主燃料Qmおよび副燃料Qaを同一量増大した場合には副燃料Qaを増量した場合の方が主燃料Qmを増量した場合に比べて燃焼室5内の温度上昇量がはるかに大きくなる。従って燃料消費量の低減という観点からみると副燃料Qaを増大させることによって燃焼室5内の既燃ガス温を上昇させることが好ましいと言える。
【0048】
従って本発明による実施例では排気制御弁24をほぼ全閉せしめかつ排気弁10の開弁時期が早められたときに機関の発生トルクを要求発生トルクまで上昇させるのに必要な分だけ主燃料Qmを増量し、主として副燃料Qaの燃焼熱によって燃焼室5内の既燃ガス温を上昇させるようにしている。
このように排気制御弁24をほぼ全閉せしめ、排気弁10の開弁時期を早め、排気ポート11出口における排気ガスをほぼ750℃以上、好ましくはほぼ800℃以上とするのに必要な量の副燃料Qaを噴射すると排気ポート11から排気制御弁24に至る排気通路内において未燃HCの濃度を大巾に減少することができる。このとき排気ポート11から排気制御弁24に至る排気通路内において図8に示されるように未燃HCの濃度をほぼ150p.p.m 以下まで低下させるには排気制御弁24上流の排気通路内の圧力をゲージ圧でもってほぼ80KPa 以上にする必要がある。このときの排気制御弁24による排気通路断面積の閉鎖割合はほぼ95パーセント以上である。従って図1に示される実施例では大気中への未燃ガスの排出量を大巾に低減すべきときには排気通路内の圧力がほぼ80KPa となるように排気制御弁24がほぼ全閉せしめられる。
【0049】
内燃機関において多量の未燃HCが発生するのは燃焼室5内の温度が低いときである。燃焼室5内の温度が低いときは機関の始動および暖機運転時、および機関低負荷時であり、従って機関の始動および暖機運転時、および機関低負荷時に多量の未燃HCが発生することになる。このように燃焼室5内の温度が低いときにはたとえ排気通路内に酸化機能を有する触媒を配置しておいても触媒温度が低く触媒が活性化していないのでこのときに発生する多量の未燃HCを触媒により酸化させることは困難である。
【0050】
そこで本発明による実施例では機関の始動および暖機運転時、および機関低負荷時には排気制御弁24をほぼ全閉せしめ、排気弁10の開弁時期を早め、主燃料Qmを増量すると共に副燃料Qaを追加噴射し、それによって大気中に排出される未燃HCの量を大巾に低減せしめるようにしている。
図11は機関始動および暖機運転時における主燃料Qmの変化の一例、排気制御弁24の開度および排気弁10の開弁時期を示している。なお、図11において実線Xは排気制御弁24をほぼ全閉にしかつ排気弁10の開弁時期を早めた場合の最適な主燃料Qmの噴射量を示しており、破線Yは排気制御弁24を全開にした場合の最適な主燃料Qmの噴射量を示している。図11からわかるように機関始動および暖機運転時には排気制御弁24がほぼ全閉せしめられ、排気弁10の開弁時期が早められ、同一の機関運転状態のもとで排気制御弁24が全開せしめられた場合の最適な主燃料Qmの噴射量Yよりも主燃料Qmの噴射量Xが増量せしめられ、更に副燃料Qaが追加噴射される。
【0051】
図12は機関低負荷時における主燃料Qmの変化の一例、排気制御弁24の開度および排気弁10の開弁時期を示している。なお、図12において実線X1は排気制御弁24をほぼ全閉にしかつ排気弁10の開弁時期を早めた場合の最適な主燃料Qmの噴射量を示しており、破線Yは排気制御弁24を全開にした場合の最適な主燃料Qmの噴射量を示している。図12からわかるように機関低負荷時には排気制御弁24がほぼ全閉せしめられ、排気弁10の開弁時期が早められ、同一の機関運転状態のもとで排気制御弁24が全開せしめられた場合の最適な主燃料Qmの噴射量Yよりも主燃料Qmの噴射量Xが増量せしめられ、更に副燃料Qaが追加噴射される。
一方、前述したように本発明による方法によって未燃HCを低減する場合には図6に示されるように排気弁10の閉弁時期を早めることもできる。排気弁10の閉弁時期を早めると燃焼室5内に残留する既燃ガス量が増大し、斯くして燃焼室5内の温度が上昇するために排気ガス温が上昇する。また、このように排気弁10の閉弁時期早めると機関出力が低下する。そこで本発明による実施例ではこの出力低下分を補うために主燃料Qmが更に増大せしめられる。このときの主燃料Qmが図9において実線X2で示されている。
【0052】
このように主燃料Qmが増大せしめられると排気ガス温は更に上昇し、斯くして未燃HCの酸化反応を更に促進することができる。
なお、図7に示されるように排気弁10の開弁時期および閉弁時期を共に早めることもでき、このときも主燃料Qmは図9の実線X2で示されるように増量せしめられる。
【0053】
図13は運転制御ルーチンを示している。
図13を参照するとまず初めにステップ100において機関始動および暖機運転時であるか否かが判別される。機関始動および暖機運転時でないときにはステップ102にジャンプして機関低負荷時か否かが判別される。機関低負荷時でないときにはステップ103に進んで排気制御弁24が全開せしめられ、次いでステップ104に進んで主燃料Qmの噴射制御が行われる。このとき副燃料Qaの噴射は行われない。
【0054】
一方、ステップ100において機関始動および暖機運転時であると判断されたときにはステップ101に進んで機関の始動後、予め定められた設定期間が経過したか否かが判別される。設定期間が経過していないときにはステップ105に進み、設定期間が経過したときにはステップ102に進む。一方、ステップ102において機関低負荷時であると判別されたときにもステップ105に進む。ステップ105では排気制御弁24がほぼ全閉せしめられ、次いでステップ106では主燃料Qmの噴射制御が行われる。即ち、主燃料Qmの噴射量が図9に示されるX1又はX2とされる。次いでステップ107では副燃料Qaの噴射制御が行われる。次いでステップ108では排気弁10の開弁時期又は閉弁時期の少なくとも一方が早められる。
【0055】
図14に別の実施例を示す。この実施例では排気制御弁24上流の排気管22内に触媒60が配置される。このように排気制御弁24上流の排気管22内に触媒60が配置されている場合には副燃料Qaが追加噴射され、排気制御弁24がほぼ全閉とされ、排気弁10の開弁時期又は閉弁時期が早められているときに触媒60は高温の排気ガスによって強力に加熱される。従って機関始動および暖機運転時に触媒60を早期に活性化することができる。
【0056】
排気管22内に配置された触媒60としては酸化触媒、三元触媒、NOx 吸収剤又はHC吸着触媒を用いることができる。NOx 吸収剤は燃焼室5内における平均空燃比がリーンのときにNOx を吸収し、燃焼室5内における平均空燃比がリッチになるとNOx を放出する機能を有する。
このNOx 吸収剤は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属とが担持されている。
【0057】
一方、HC吸着触媒では例えばゼオライト、アルミナAl2 3 、シリカアルミナSiO2 ・Al2 3 、活性炭、チタニアTiO2 のような多孔質担体上に白金Pt、パラジウムPd、ロジウムRh、イリジウムIrのような貴金属、または銅Cu、鉄Fe、コバルトCo、ニッケルNiのような遷移金属が担持されている。
【0058】
このようなHC吸着触媒では排気ガス中の未燃HCが触媒内に物理吸着し、未燃HCの吸着量は触媒の温度が低いほど増大し、触媒を流通する排気ガスの圧力が高くなるほど増大する。従って図14に示される実施例では触媒60の温度が低くかつ排気制御弁24の排気絞り作用により背圧が高められているとき、即ち機関始動および暖機運転時、および機関低負荷時に排気ガス中に含まれる未燃HCがHC吸着触媒に吸着できる。従って大気中に放出される未燃HCの量を更に低下させることができる。なお、HC吸着触媒に吸着された未燃HCは背圧が低くなったとき、或いはHC吸着触媒の温度が高くなったときにHC吸着触媒から放出される。
【0059】
図15に更に別の実施例を示す。
この実施例では排気制御弁24上流の排気管22内にNOx 吸収剤又はHC吸着触媒からなる触媒60が配置され、第1排気マニホルド19と排気管21間、および第2排気マニホルド20と排気管21間には夫々酸化触媒や三元触媒のような酸化機能を有する触媒61,62が配置される。
【0060】
【発明の効果】
大気中に排出される未燃HCの量を大巾に低減することができる。
【図面の簡単な説明】
【図1】内燃機関の全体図である。
【図2】燃焼室の側面断面図である。
【図3】噴射量、噴射時期および空燃比を示す図である。
【図4】噴射時期を示す図である。
【図5】排気弁の開弁期間を示す図である。
【図6】排気弁の開弁期間を示す図である。
【図7】排気弁の開弁期間を示す図である。
【図8】未燃HCの濃度を示す図である。
【図9】主燃料の噴射量を示す図である。
【図10】主燃料の噴射量と副燃料の噴射量との関係を示す図である。
【図11】主燃料の噴射量と排気制御弁の開度等を示す図である。
【図12】主燃料の噴射量と排気制御弁の開度等を示す図である。
【図13】運転制御を行うためのフローチャートである。
【図14】内燃機関の別の実施例を示す全体図である。
【図15】内燃機関の更に別の実施例を示す全体図である。
【符号の説明】
6…燃料噴射弁
10…排気弁
24…排気制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine.
[0002]
[Prior art]
In a diesel engine, the temperature in the combustion chamber becomes low during low-speed and low-load operation of the engine, particularly during warm-up of the engine, and as a result, a large amount of unburned HC is generated. Therefore, an exhaust control valve is arranged in the engine exhaust passage, and the exhaust control valve is closed at the time of engine low speed and low load operation, and the fuel injection amount is greatly increased to increase the temperature in the combustion chamber, thereby injecting the injected fuel into the combustion chamber. There is known a diesel engine that is completely burned in order to suppress the amount of unburned HC generated (see Japanese Patent Laid-Open No. 49-80414).
[0003]
Further, when an exhaust purification catalyst is disposed in the engine exhaust passage, a good exhaust purification action by the catalyst is not performed unless the catalyst temperature is sufficiently high. Therefore, in addition to the injection of the main fuel for generating the engine output, the auxiliary fuel is injected during the expansion stroke, and the auxiliary fuel is combusted to raise the exhaust gas temperature, thereby raising the temperature of the catalyst. Internal combustion engines are known (see Japanese Patent Application Laid-Open Nos. 8-303290 and 10-212995).
[0004]
Conventionally, a catalyst capable of adsorbing unburned HC is known. This catalyst has the property of increasing the amount of unburned HC adsorbed as the ambient pressure increases, and releasing the adsorbed unburned HC as the ambient pressure decreases. Therefore, in order to reduce NO x by unburned HC released from the catalyst using this property, this catalyst is arranged in the engine exhaust passage and an exhaust control valve is arranged in the engine exhaust passage downstream of the catalyst, During engine low speed and low load operation with low NO x generation, a small amount of secondary fuel is injected during the expansion stroke or exhaust stroke in addition to the main fuel for generating engine output, and a large amount of unburned HC is discharged from the combustion chamber. Further, at this time, the exhaust control valve is closed to a relatively small opening so that the engine output drop falls within the allowable range, thereby increasing the pressure in the exhaust passage, and a large amount of exhaust gas discharged from the combustion chamber. the combustible HC is adsorbed in the catalyst, is in the event a large amount of engine high speed or high load operation of the NO x reducing the pressure in the exhaust passage in the fully opened exhaust valve, by this time unburnt HC emitted from the catalyst the reduction of NO x Unishi was internal combustion engine is known (see Japanese Patent Laid-Open No. 10-238336).
[0005]
[Problems to be solved by the invention]
Now, not only in diesel engines but also in spark ignition internal combustion engines, how to reduce the amount of unburned HC generated during engine low load operation, particularly during engine warm-up operation, has become a major problem. Therefore, the present inventor has conducted experimental research to solve this problem, and as a result, in order to greatly reduce the amount of unburned HC discharged into the atmosphere during engine warm-up operation, It has been found that it is necessary to reduce the amount of generated fuel HC and at the same time increase the amount of unburned HC in the exhaust passage.
[0006]
Specifically, during the expansion stroke or the exhaust stroke, additional fuel is injected into the combustion chamber to burn the secondary fuel, and the exhaust control valve is placed in the engine exhaust passage that is considerably spaced from the outlet of the engine exhaust port. When the exhaust control valve is substantially fully closed, the amount of unburned HC generated in the combustion chamber is reduced by the synergistic effect of the combustion of these auxiliary fuels and the exhaust throttling action of the exhaust control valve. It has been found that the amount of reduced fuel HC increases, and thus the amount of unburned HC discharged into the atmosphere can be greatly reduced.
[0007]
More specifically, when the auxiliary fuel is injected, not only the auxiliary fuel is combusted but also unburned HC, which is the unburned main fuel, is combusted in the combustion chamber. Accordingly, not only the amount of unburned HC generated in the combustion chamber is greatly reduced, but also the unburned HC and auxiliary fuel, which are unburned main fuel, are burned, and the burnt gas temperature becomes considerably high.
[0008]
On the other hand, when the exhaust control valve is almost fully closed, the pressure in the exhaust passage from the exhaust port of the engine to the exhaust control valve, that is, the back pressure becomes considerably high. A high back pressure means that the temperature of the exhaust gas discharged from the combustion chamber does not decrease so much, and therefore the exhaust gas temperature in the exhaust port is considerably high. On the other hand, a high back pressure means that the flow rate of the exhaust gas discharged into the exhaust port is slow. Therefore, the exhaust gas is in a high temperature state for a long time in the exhaust passage upstream of the exhaust control valve. Will stay. During this time, unburned HC contained in the exhaust gas is oxidized, and thus the amount of unburned HC discharged into the atmosphere is greatly reduced.
[0009]
In this case, if the auxiliary fuel is not injected, the unburned unburned HC of the main fuel remains as it is, so that a large amount of unburned HC is generated in the combustion chamber. Further, when the auxiliary fuel is not injected, the burnt gas temperature in the combustion chamber does not increase so much, so even if the exhaust control valve is almost fully closed at this time, unburned HC in the exhaust passage upstream of the exhaust control valve. It is not possible to expect sufficient oxidizing action. Accordingly, at this time, a large amount of unburned HC is discharged into the atmosphere.
[0010]
On the other hand, even if the exhaust throttle action by the exhaust control valve is not performed, if the auxiliary fuel is injected, the amount of unburned HC generated in the combustion chamber is reduced, and the burnt gas temperature in the combustion chamber is increased. However, when the exhaust throttle action by the exhaust control valve is not performed, the exhaust gas pressure immediately decreases as soon as the exhaust gas is discharged from the combustion chamber, and thus the exhaust gas temperature also decreases immediately. Therefore, in this case, almost no oxidizing action of unburned HC in the exhaust passage can be expected, and thus a large amount of unburned HC is also discharged into the atmosphere at this time.
[0011]
That is, in order to greatly reduce the amount of unburned HC discharged into the atmosphere, it is necessary to inject auxiliary fuel and simultaneously close the exhaust control valve almost completely.
In the diesel engine described in Japanese Patent Laid-Open No. 49-80414, the auxiliary fuel is not injected and the injection amount of the main fuel is greatly increased, so that the exhaust gas temperature rises but an extremely large amount of unburned HC. Is generated in the combustion chamber. As described above, when an extremely large amount of unburned HC is generated in the combustion chamber, even if the unburned HC is oxidized in the exhaust passage, only a part of the unburned HC is oxidized. Will be discharged.
[0012]
On the other hand, in the internal combustion engine described in the above-mentioned Japanese Patent Laid-Open No. 8-303290 or Japanese Patent Laid-Open No. 10-212995, the exhaust throttle action by the exhaust control valve is not performed, so the oxidation action of unburned HC in the exhaust passage is I can hardly expect it. Accordingly, even in this internal combustion engine, a large amount of unburned HC is discharged into the atmosphere.
Moreover, in the internal combustion engine described in the above-mentioned Japanese Patent Application Laid-Open No. 10-238336, the exhaust control valve is closed to a relatively small opening so that the engine output falls within an allowable range. However, the back pressure is not so high when the exhaust control valve is closed so that the engine output falls within the allowable range.
[0013]
In this internal combustion engine, a small amount of auxiliary fuel is injected during the expansion stroke or the exhaust stroke in order to generate unburned HC to be adsorbed by the catalyst. In this case, since the unburned HC is not generated if the auxiliary fuel is combusted satisfactorily, it is considered that the injection control of the auxiliary fuel is performed in this internal combustion engine so that the auxiliary fuel does not burn well. Therefore, in this internal combustion engine, it is considered that a small amount of auxiliary fuel does not contribute much to the temperature increase of the burnt gas temperature.
[0014]
In this way, in this internal combustion engine, a large amount of unburned HC is generated in the combustion chamber, and the back pressure is not so high and the burnt gas temperature does not rise so much. It is thought that it is not oxidized so much. The purpose of this internal combustion engine is to adsorb as much unburned HC as possible to the catalyst, so it can be said that it makes sense to think in this way.
[0015]
An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can greatly reduce the amount of unburned HC discharged into the atmosphere while ensuring stable operation of the engine.
[0016]
[Means for Solving the Problems]
In order to achieve the above object , according to the present invention , an exhaust control valve is disposed in the exhaust passage connected to the outlet of the engine exhaust port at a predetermined distance from the outlet of the exhaust port, and is released into the atmosphere. When it is determined that the amount of unburned HC emissions should be reduced, the exhaust control valve is almost fully closed, and the main fuel injected into the combustion chamber to generate engine output is generated under excess air. In addition to burning, the auxiliary fuel is additionally injected into the combustion chamber at a predetermined timing during the expansion stroke or the exhaust stroke in which the auxiliary fuel can burn, and at least one of the opening timing and closing timing of the exhaust valve is advanced. When the exhaust control valve is almost fully closed, the engine is operated under the same engine operating condition so as to approach the generated torque of the engine when the exhaust control valve is fully opened under the same engine operating condition. Exhaust control valve fully open As compared with the case of swaged so that to increase the injection quantity of the main fuel.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a case where the present invention is applied to a stratified combustion internal combustion engine. However, the present invention can also be applied to a spark ignition type internal combustion engine in which combustion is performed under a uniform lean air-fuel ratio and a diesel engine in which combustion is performed under excess air.
[0019]
Referring to FIG. 1, reference numeral 1 denotes an engine body, and the engine body 1 has four cylinders including a first cylinder # 1, a second cylinder # 2, a third cylinder # 3, and a fourth cylinder # 4. FIG. 2 shows a side sectional view of each cylinder # 1, # 2, # 3, # 4. Referring to FIG. 2, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is a fuel injection valve disposed on the peripheral edge of the inner wall surface of the cylinder head 3, and 7 is an inside of the cylinder head 3. An ignition plug disposed at the center of the wall surface, 8 is an intake valve, 9 is an intake port, 10 is an exhaust valve, and 11 is an exhaust port.
[0020]
Referring to FIGS. 1 and 2, the intake port 9 is connected to a surge tank 13 via a corresponding intake branch pipe 12, and the surge tank 13 is connected to an air cleaner 16 via an intake duct 14 and an air flow meter 15. A throttle valve 18 driven by a step motor 17 is disposed in the intake duct 14. On the other hand, in the embodiment shown in FIG. 1, the ignition order is 1-3-3-4-2, and as shown in FIG. The exhaust ports 11 of the remaining cylinders # 2 and # 3, which are connected to a common first exhaust manifold 19 and have an alternate ignition order, are connected to a common second exhaust manifold 20. The first exhaust manifold 19 and the second exhaust manifold 20 are connected to a common exhaust pipe 21, and the exhaust pipe 21 is further connected to another exhaust pipe 22. An exhaust control valve 24 driven by an actuator 23 comprising a negative pressure diaphragm device or an electric motor is disposed in the exhaust pipe 22.
[0021]
As shown in FIG. 1, the exhaust pipe 21 and the surge tank 13 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 25, and an electric control type EGR control valve 26 is disposed in the EGR passage 25. Is done. The fuel injection valve 6 is connected to a common fuel reservoir, so-called common rail 27. The fuel in the fuel tank 28 is supplied into the common rail 27 via an electrically controlled fuel pump 29 with variable discharge amount, and the fuel supplied in the common rail 27 is supplied to each fuel injection valve 6. A fuel pressure sensor 30 for detecting the fuel pressure in the common rail 27 is attached to the common rail 27, and a fuel pump 29 is used so that the fuel pressure in the common rail 27 becomes the target fuel pressure based on the output signal of the fuel pressure sensor 30. The discharge amount is controlled.
[0022]
On the other hand, as shown in FIG. 2, an exhaust valve driving actuator 31 is disposed at the top of the exhaust valve 10, 32 is a disc-shaped iron piece attached to the top of the exhaust valve 10, and 33 and 34 are iron pieces. Solenoids 35 and 36 arranged on both sides of the numeral 32 indicate compression springs arranged on both sides of the iron piece 32, respectively. When the solenoid 33 is energized, the iron piece 32 rises and the exhaust valve 10 is closed. On the other hand, when the solenoid 34 is energized, the iron piece 32 is lowered and the exhaust valve 10 is opened. Therefore, the exhaust valve 10 can be opened and closed at any time by controlling the urging timing of the solenoids 33 and 34.
[0023]
Referring to FIG. 1, the electronic control unit 40 comprises a digital computer, and is connected to each other by a bidirectional bus 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a CPU (Microprocessor) 44, an input. A port 45 and an output port 46 are provided. The air flow meter 15 generates an output voltage proportional to the amount of intake air, and this output voltage is input to the input port 45 via the corresponding AD converter 47. A water temperature sensor 37 for detecting the engine cooling water temperature is attached to the engine body 1, and an output signal of the water temperature sensor 37 is input to the input port 45 via the corresponding AD converter 47. Further, the output signal of the fuel pressure sensor 30 is input to the input port 45 via the corresponding AD converter 47.
[0024]
A load sensor 51 that generates an output voltage proportional to the depression amount L of the accelerator pedal 50 is connected to the accelerator pedal 50, and the output voltage of the load sensor 51 is input to the input port 45 via the corresponding AD converter 47. Is done. The input port 45 is connected to a crank angle sensor 52 that generates an output pulse every time the crankshaft rotates, for example, 30 °. On the other hand, the output port 46 is connected to the fuel injection valve 6, spark plug 7, throttle valve control step motor 17, exhaust control valve control actuator 23, EGR control valve 26, fuel pump 29 and actuator 31 via the corresponding drive circuit 48. (FIG. 2).
[0025]
Figure 3 is the fuel injection amount Q1, Q2, Q (= Q 1 + Q 2), the injection start timing? S1,? S2, the injection completion timing Shitai1, shows the average air-fuel ratio A / F in θE2 and the combustion chamber 5. In FIG. 3, the horizontal axis L indicates the amount of depression of the accelerator pedal 50, that is, the required load.
When 3 required load L as can be seen from is lower than L 1 is the fuel injection Q2 is performed between θE2 from θS2 of the end of the compression stroke. At this time, the average air-fuel ratio A / F is considerably lean. When the required load L is between L 1 and L 2 , the first fuel injection Q1 is performed between θS1 and θE1 at the beginning of the intake stroke, and then the second fuel is injected between θS2 and θE2 at the end of the compression stroke. Injection Q2 is performed. Also at this time, the air-fuel ratio A / F is lean. When the required load L is greater than L 2 the fuel injection Q1 is performed between θE1 from the beginning of the intake stroke of the? S1. At this time, the average air-fuel ratio A / F is lean in the region where the required load L is low. When the required load L increases, the average air-fuel ratio A / F becomes the stoichiometric air-fuel ratio, and when the required load L becomes higher, The fuel ratio A / F is made rich. Note that only the required load L is the operation region in which the fuel injection Q2 is performed only at the end of the compression stroke, the operation region in which the fuel injections Q1 and Q2 are performed twice, and the operation region in which the fuel injection Q1 is performed only in the early stage of the intake stroke. Is actually determined by the required load L and the engine speed.
[0026]
FIG. 2 shows a case where the fuel injection Q2 is performed only when the required load L is smaller than L 1 (FIG. 3), that is, at the end of the compression stroke. The top surface of the piston 4 as shown in FIG. 2 and cavity 4a is formed, the required load L is the end of the compression stroke toward the fuel injection valve 6 in the bottom wall of the cavity 4a when less than L 1 Fuel is injected. This fuel is guided by the peripheral wall surface of the cavity 4 a and travels toward the spark plug 7, whereby an air-fuel mixture G is formed around the spark plug 7. Next, the air-fuel mixture G is ignited by the spark plug 7.
[0027]
On the other hand, as described above, when the required load L is between L 1 and L 2 , fuel injection is performed twice. In this case, a lean air-fuel mixture is formed in the combustion chamber 5 by the first fuel injection Q1 performed at the beginning of the intake stroke. Next, an air-fuel mixture having an optimum concentration is formed around the spark plug 7 by the second fuel injection Q2 performed at the end of the compression stroke. The air-fuel mixture is ignited by the spark plug 7, and the lean air-fuel mixture is combusted by the ignition flame.
[0028]
On the other hand, when the required load L is larger than L 2 , as shown in FIG. 3, a homogeneous mixture of lean, stoichiometric air-fuel ratio or rich air-fuel ratio is formed in the combustion chamber 5, and this homogeneous mixture becomes the spark plug 7. It can be ignited by.
Next, a method for reducing unburned HC according to the present invention will be schematically described with reference to FIG. In FIG. 4, the horizontal axis indicates the crank angle, and BTDC and ATDC indicate before the top dead center and after the top dead center, respectively.
[0029]
FIG. 4A shows the fuel injection timing when it is not necessary to reduce unburned HC by the method according to the present invention and the required load L is smaller than L 1 . As shown in FIG. 4A, at this time, only the main fuel Qm is injected at the end of the compression stroke, the exhaust control valve 24 is kept fully open, and the exhaust valve 10 is indicated by a solid line X in FIGS. The valve is opened over a predetermined valve opening timing.
[0030]
On the other hand, when it is necessary to reduce unburned HC by the method according to the present invention, the exhaust control valve 24 is almost fully closed, and the main output for generating the engine output as shown in FIG. In addition to the injection of the fuel Qm, during the expansion stroke, in the example shown in FIG. 4B, the auxiliary fuel Qa is additionally injected in the vicinity of 60 ° after compression top dead center (ATDC), and further in FIGS. 5 to 7 respectively. As indicated by broken lines Z1, Z2, and Z3, the valve opening period of the exhaust valve 10 is changed. That is, in the example shown in FIG. 5, the opening timing of the exhaust valve 10 is advanced, in the example shown in FIG. 6, the closing timing of the exhaust valve 10 is advanced, and in the example shown in FIG. Both valve closing times are advanced.
[0031]
In this case, after combustion of the main fuel Qm, the main fuel Qm is burned under excess air so that sufficient oxygen remains in the combustion chamber 5 to completely burn the sub fuel Qa. 4 (A) and 4 (B) show the fuel injection period when the engine load and the engine speed are the same, and accordingly when the engine load and the engine speed are the same, FIG. The injection amount of the main fuel Qm in the case shown in FIG. 4 (B) is increased compared to the injection amount of the main fuel Qm in the case shown in FIG. 4 (A).
[0032]
FIG. 8 shows an example of the concentration (ppm) of unburned HC in the exhaust gas at each position in the engine exhaust passage. In the example shown in FIG. 8, the black triangle injects the main fuel Qm at the end of the compression stroke as shown in FIG. 4A with the exhaust control valve 24 fully opened, and shows the valve opening period of the exhaust valve 10 from FIG. 7 shows the concentration (ppm) of unburned HC in the exhaust gas at the exhaust port 11 outlet when X is 7. In this case, the concentration of unburned HC in the exhaust gas at the outlet of the exhaust port 11 becomes an extremely high value of 6000 ppm or more.
[0033]
On the other hand, in the example shown in FIG. 8, the black circles and solid lines close the exhaust control valve 24 and inject the main fuel Qm and the auxiliary fuel Qa as shown in FIG. 4B, as shown in FIG. The concentration (ppm) of unburned HC in the exhaust gas when the valve opening timing of the exhaust valve 10 is advanced is shown. In this case, the concentration of unburned HC in the exhaust gas at the outlet of the exhaust port 11 is 2000 ppm or less, and in the vicinity of the exhaust control valve 24, the concentration of unburned HC in the exhaust gas is reduced to 150 ppm or less. Therefore, in this case, it can be seen that the amount of unburned HC discharged into the atmosphere is greatly reduced.
[0034]
The reason why the unburned HC is reduced in the exhaust passage upstream of the exhaust control valve 24 is that the oxidation reaction of the unburned HC is promoted. However, as shown by the black triangle in FIG. 8, when the amount of unburned HC at the outlet of the exhaust port 11 is large, that is, when the amount of unburned HC generated in the combustion chamber 5 is large, unburned in the exhaust passage. Even if the oxidation reaction of HC is promoted, the amount of unburned HC discharged into the atmosphere is not reduced so much. That is, it is possible to greatly reduce the amount of unburned HC discharged into the atmosphere by promoting the oxidation reaction of unburned HC in the exhaust passage, as shown by the black circle in FIG. This is when the concentration of unburned HC is low, that is, when the amount of unburned HC generated in the combustion chamber 5 is small.
[0035]
Thus, in order to reduce the amount of unburned HC discharged into the atmosphere, the amount of unburned HC generated in the combustion chamber 5 is reduced and the oxidation reaction of unburned HC in the exhaust passage is promoted. It is necessary to satisfy two requirements at the same time. First, the second requirement, that is, promoting the oxidation reaction of unburned HC in the exhaust passage will be described.
[0036]
According to the present invention, when the amount of unburned HC discharged into the atmosphere is to be reduced, the exhaust control valve 24 is almost fully closed. As described above, when the exhaust control valve 24 is almost fully closed, the pressure in the exhaust port 11, the exhaust manifolds 19 and 20, the exhaust pipe 21, and the exhaust pipe 22 upstream of the exhaust control valve 24, that is, the back pressure is increased. It gets quite expensive.
An increase in the back pressure means that when exhaust gas is discharged from the combustion chamber 5 into the exhaust port 11, the pressure of the exhaust gas does not decrease so much, and therefore the temperature of the exhaust gas discharged from the combustion chamber 5 also decreases significantly. It means not to. Therefore, the temperature of the exhaust gas discharged into the exhaust port 11 is maintained at a considerably high temperature. On the other hand, a high back pressure means a high exhaust gas density, and a high exhaust gas density means that the exhaust gas flow velocity in the exhaust passage from the exhaust port 11 to the exhaust control valve 24 is high. Means slow. Therefore, the exhaust gas discharged into the exhaust port 11 stays in the exhaust passage upstream of the exhaust control valve 24 for a long time at a high temperature.
[0037]
As described above, when the exhaust gas is retained in the exhaust passage upstream of the exhaust control valve 24 for a long time under a high temperature, the oxidation reaction of unburned HC is promoted during that time. In this case, according to experiments by the present inventor, in order to promote the oxidation reaction of unburned HC in the exhaust passage, the exhaust gas temperature at the outlet of the exhaust port 11 needs to be about 750 ° C. or higher, preferably 800 ° C. or higher. It has been found.
[0038]
Further, as the time during which the high-temperature exhaust gas stays in the exhaust passage upstream of the exhaust control valve 24 becomes longer, the reduction amount of unburned HC increases. This residence time becomes longer as the position of the exhaust control valve 24 is further away from the outlet of the exhaust port 11, so that the exhaust control valve 24 is separated from the outlet of the exhaust port 11 by a distance necessary to sufficiently reduce unburned HC. Need to be placed. If the exhaust control valve 24 is arranged at a distance required to sufficiently reduce the unburned HC from the outlet of the exhaust port 11, the concentration of unburned HC is greatly reduced as shown by the solid line in FIG. According to experiments by the present inventors, it has been found that the distance from the outlet of the exhaust port 11 to the exhaust control valve 24 is preferably 1 meter or more in order to sufficiently reduce unburned HC.
[0039]
As described above, in order to promote the oxidation reaction of unburned HC in the exhaust passage, the exhaust gas temperature at the outlet of the exhaust port 11 needs to be about 750 ° C. or higher, preferably 800 ° C. or higher. Further, in order to reduce the amount of unburned HC discharged into the atmosphere, the first requirement described above must be satisfied. That is, it is necessary to reduce the amount of unburned HC generated in the combustion chamber 5. Therefore, in the present invention, in addition to the main fuel Qm for generating the engine output, the auxiliary fuel Qa is additionally injected after the main fuel Qm is injected so that the auxiliary fuel Qa is combusted in the combustion chamber 5. The valve opening time is accelerated.
[0040]
That is, when the auxiliary fuel Qa is burned in the combustion chamber 5, a large amount of unburned HC, which is the unburned main fuel Qm, is burned when the auxiliary fuel Qa is burned. Further, since the auxiliary fuel Qa is injected into the high-temperature gas, the auxiliary fuel Qa is burned well, so that unburned HC which is the unburned residue of the auxiliary fuel Qa is not generated so much. Thus, the amount of unburned HC finally generated in the combustion chamber 5 is considerably reduced.
[0041]
Further, when the auxiliary fuel Qa is burned in the combustion chamber 5, in addition to the heat generated by the combustion of the main fuel Qm and the auxiliary fuel Qa itself, the combustion heat of the unburned HC that is the unburned main fuel Qm is additionally generated. Therefore, the burnt gas temperature in the combustion chamber 5 becomes considerably high. Further, when the opening timing of the exhaust valve 10 is advanced, the temperature of the exhaust gas discharged into the exhaust port 11 becomes higher. In this way, the amount of unburned HC generated in the combustion chamber 5 is reduced by additionally injecting the auxiliary fuel Qa in addition to the main fuel Qm to burn the auxiliary fuel Qa and advance the opening timing of the exhaust valve 10. The exhaust gas temperature at the outlet of the exhaust port 11 can be 750 ° C. or higher, preferably 800 ° C. or higher. If the opening timing of the exhaust valve 10 is advanced, the back pressure increases, and thus the flow velocity of the exhaust passage from the exhaust port 11 to the exhaust control valve 24 is slowed as described above. As a result, the residence time of the exhaust gas in the exhaust passage upstream of the exhaust control valve 24 is further prolonged, so that the oxidation action of unburned HC in the exhaust passage is further promoted.
[0042]
As described above, in the present invention, the auxiliary fuel Qa needs to be burned in the combustion chamber 5, and for that purpose, it is necessary that sufficient oxygen remains in the combustion chamber 5 when the auxiliary fuel Qa is burned. Moreover, it is necessary to inject the auxiliary fuel Qa at a time when the injected auxiliary fuel Qa is burned well in the combustion chamber 5.
Therefore, in the present invention, the main fuel Qm is burned under excess air so that sufficient oxygen can remain in the combustion chamber 5 during the combustion of the auxiliary fuel Qa. Further, the injection timing at which the auxiliary fuel Qa injected in the stratified combustion internal combustion engine shown in FIG. 2 is burned well in the combustion chamber 5 is approximately 50 after compression top dead center (ATDC) indicated by an arrow Z in FIG. Therefore, in the stratified combustion internal combustion engine shown in FIG. 2, the auxiliary fuel Qa is injected after the compression top dead center (ATDC) in the expansion stroke of approximately 50 ° to approximately 90 °. . The secondary fuel Qa injected in the expansion stroke from approximately 50 ° to approximately 90 ° after the compression top dead center (ATDC) does not contribute to the generation of the engine output.
[0043]
By the way, according to an experiment by the present inventor, in the stratified combustion internal combustion engine shown in FIG. 2, the unburned HC discharged into the atmosphere when the auxiliary fuel Qa is injected in the vicinity of 60 ° after compression top dead center (ATDC). The amount is the least. Therefore, in the embodiment according to the present invention, as shown in FIG. 4B, the injection timing of the auxiliary fuel Qa is approximately 60 ° after compression top dead center (ATDC).
[0044]
The optimal injection timing of the auxiliary fuel Qa varies depending on the engine type. For example, in a diesel engine, the optimal injection timing of the auxiliary fuel Qa is in the expansion stroke or in the exhaust stroke. Therefore, in the present invention, the fuel injection of the auxiliary fuel Qa is performed during the expansion stroke or the exhaust stroke. On the other hand, the burnt gas temperature in the combustion chamber 5 is affected by both the combustion heat of the main fuel Qm and the combustion heat of the auxiliary fuel Qa. That is, the burnt gas temperature in the combustion chamber 5 increases as the injection amount of the main fuel Qm increases, and increases as the injection amount of the auxiliary fuel Qa increases. Furthermore, the burnt gas temperature in the combustion chamber 5 is affected by the back pressure. That is, as the back pressure increases, the amount of burned gas remaining in the combustion chamber 5 increases because the burned gas does not easily flow out of the combustion chamber 5, and thus the exhaust control valve 24 is almost fully closed. The burnt gas temperature in the combustion chamber 5 is raised.
[0045]
By the way, the exhaust control valve 24 is almost closed, and the opening timing of the exhaust valve 10 is advanced. As a result, when the back pressure becomes high, the generated torque of the engine decreases with respect to the optimal required generated torque. Therefore, in the present invention, when the exhaust control valve 24 is almost fully closed and the opening timing of the exhaust valve 10 is advanced as shown in FIG. 4B, the same engine as shown in FIG. Compared to the case where the exhaust control valve 24 is fully opened under the same engine operating state so as to approach the required generation torque of the engine when the exhaust control valve 24 is fully opened under the operating state, the main fuel The injection amount of Qm is increased. In the embodiment according to the present invention, when the exhaust control valve 24 is almost fully closed and the opening timing of the exhaust valve 10 is advanced, the generated torque of the engine at that time is controlled under the same engine operating state. The main fuel Qm is increased so as to coincide with the required generation torque of the engine when the valve 24 is fully opened.
[0046]
FIG. 9 shows changes in the main fuel Qm necessary for obtaining the required torque of the engine with respect to the required load L. In FIG. 9, the solid line X1 shows the case where the exhaust control valve 24 is almost fully closed and the opening timing of the exhaust valve 10 is advanced, and the broken line shows the case where the exhaust control valve 24 is fully opened. ing.
On the other hand, FIG. 10 shows the main components required to bring the exhaust gas temperature at the outlet of the exhaust port 11 from about 750 ° C. to about 800 ° C. when the exhaust control valve 24 is almost fully closed and the opening timing of the exhaust valve 10 is advanced. The relationship between the fuel Qm and the auxiliary fuel Qa is shown. As described above, even if the main fuel Qm is increased, the burnt gas temperature in the combustion chamber 5 is increased, and even if the sub fuel Qa is increased, the burnt gas temperature in the combustion chamber 5 is increased. Therefore, the relationship between the main fuel Qm and the sub fuel Qa required to change the exhaust gas temperature at the outlet of the exhaust port 11 from about 750 ° C. to about 800 ° C. is shown in FIG. Qa decreases, and if the main fuel Qm is decreased, the auxiliary fuel Qa increases.
[0047]
However, when the main fuel Qm and the auxiliary fuel Qa are increased by the same amount, the temperature increase in the combustion chamber 5 is much larger when the auxiliary fuel Qa is increased than when the main fuel Qm is increased. . Therefore, it can be said that it is preferable to raise the burnt gas temperature in the combustion chamber 5 by increasing the auxiliary fuel Qa from the viewpoint of reducing the fuel consumption.
[0048]
Therefore, in the embodiment according to the present invention, when the exhaust control valve 24 is almost fully closed and the opening timing of the exhaust valve 10 is advanced, the main fuel Qm is increased by the amount necessary to increase the generated torque of the engine to the required generated torque. The burned gas temperature in the combustion chamber 5 is raised mainly by the combustion heat of the auxiliary fuel Qa.
Thus, the exhaust control valve 24 is almost fully closed, the opening timing of the exhaust valve 10 is advanced, and the amount of exhaust gas at the outlet of the exhaust port 11 is about 750 ° C. or higher, preferably about 800 ° C. or higher. When the auxiliary fuel Qa is injected, the concentration of unburned HC can be greatly reduced in the exhaust passage from the exhaust port 11 to the exhaust control valve 24. At this time, in the exhaust passage from the exhaust port 11 to the exhaust control valve 24, as shown in FIG. 8, the pressure in the exhaust passage upstream of the exhaust control valve 24 is used to reduce the concentration of unburned HC to approximately 150 ppm or less. The gauge pressure must be approximately 80 KPa or higher. At this time, the closing ratio of the exhaust passage sectional area by the exhaust control valve 24 is approximately 95% or more. Accordingly, in the embodiment shown in FIG. 1, when the amount of unburned gas discharged into the atmosphere should be greatly reduced, the exhaust control valve 24 is almost fully closed so that the pressure in the exhaust passage becomes approximately 80 KPa.
[0049]
A large amount of unburned HC is generated in the internal combustion engine when the temperature in the combustion chamber 5 is low. When the temperature in the combustion chamber 5 is low, the engine is started and warmed up, and the engine is under a low load. Therefore, a large amount of unburned HC is generated when the engine is started and warmed up and when the engine is under a low load. It will be. Thus, when the temperature in the combustion chamber 5 is low, even if a catalyst having an oxidizing function is arranged in the exhaust passage, the catalyst temperature is low and the catalyst is not activated, so a large amount of unburned HC generated at this time is generated. It is difficult to oxidize with a catalyst.
[0050]
Therefore, in the embodiment according to the present invention, the exhaust control valve 24 is almost fully closed at the time of engine start and warm-up operation, and at the time of engine low load, the opening timing of the exhaust valve 10 is advanced, the main fuel Qm is increased, and the auxiliary fuel is increased. Qa is additionally injected, thereby greatly reducing the amount of unburned HC discharged into the atmosphere.
FIG. 11 shows an example of changes in the main fuel Qm during engine start-up and warm-up operation, the opening of the exhaust control valve 24 and the opening timing of the exhaust valve 10. In FIG. 11, the solid line X indicates the optimum injection amount of the main fuel Qm when the exhaust control valve 24 is almost fully closed and the opening timing of the exhaust valve 10 is advanced, and the broken line Y indicates the exhaust control valve 24. The optimal injection quantity of the main fuel Qm when is fully opened is shown. As can be seen from FIG. 11, the exhaust control valve 24 is almost fully closed during engine start-up and warm-up operation, the opening timing of the exhaust valve 10 is advanced, and the exhaust control valve 24 is fully opened under the same engine operating state. The injection amount X of the main fuel Qm is increased from the optimum injection amount Y of the main fuel Qm in the case of being damped, and the auxiliary fuel Qa is additionally injected.
[0051]
FIG. 12 shows an example of changes in the main fuel Qm at the time of engine low load, the opening degree of the exhaust control valve 24 and the opening timing of the exhaust valve 10. In FIG. 12, the solid line X1 indicates the optimum injection amount of the main fuel Qm when the exhaust control valve 24 is almost fully closed and the opening timing of the exhaust valve 10 is advanced, and the broken line Y indicates the exhaust control valve 24. The optimal injection quantity of the main fuel Qm when is fully opened is shown. As can be seen from FIG. 12, when the engine is under a low load, the exhaust control valve 24 is almost fully closed, the opening timing of the exhaust valve 10 is advanced, and the exhaust control valve 24 is fully opened under the same engine operating state. In this case, the injection amount X of the main fuel Qm is increased from the optimum injection amount Y of the main fuel Qm, and the auxiliary fuel Qa is additionally injected.
On the other hand, as described above, when unburned HC is reduced by the method according to the present invention, the closing timing of the exhaust valve 10 can be advanced as shown in FIG. If the closing timing of the exhaust valve 10 is advanced, the amount of burned gas remaining in the combustion chamber 5 increases, and thus the temperature in the combustion chamber 5 rises, so that the exhaust gas temperature rises. Further, when the valve closing timing of the exhaust valve 10 is advanced in this way, the engine output decreases. Therefore, in the embodiment according to the present invention, the main fuel Qm is further increased in order to compensate for this output decrease. The main fuel Qm at this time is indicated by a solid line X2 in FIG.
[0052]
When the main fuel Qm is increased in this way, the exhaust gas temperature further increases, and thus the oxidation reaction of unburned HC can be further promoted.
As shown in FIG. 7, both the opening timing and closing timing of the exhaust valve 10 can be advanced. At this time, the main fuel Qm is increased as indicated by the solid line X2 in FIG.
[0053]
FIG. 13 shows an operation control routine.
Referring to FIG. 13, first, at step 100, it is judged if the engine is starting or warming up. When it is not during engine start-up and warm-up operation, the routine jumps to step 102 to determine whether or not the engine is under low load. When the engine load is not low, the routine proceeds to step 103 where the exhaust control valve 24 is fully opened, and then the routine proceeds to step 104 where injection control of the main fuel Qm is performed. At this time, the auxiliary fuel Qa is not injected.
[0054]
On the other hand, when it is determined at step 100 that the engine is being started and the engine is warming up, the routine proceeds to step 101 where it is determined whether or not a predetermined set period has elapsed after the engine is started. When the set period has not elapsed, the routine proceeds to step 105, and when the set period has elapsed, the routine proceeds to step 102. On the other hand, when it is determined in step 102 that the engine is under a low load, the routine also proceeds to step 105. In step 105, the exhaust control valve 24 is almost fully closed, and then in step 106, injection control of the main fuel Qm is performed. That is, the injection amount of the main fuel Qm is set to X1 or X2 shown in FIG. Next, at step 107, injection control of the auxiliary fuel Qa is performed. Next, at step 108, at least one of the opening timing and closing timing of the exhaust valve 10 is advanced.
[0055]
FIG. 14 shows another embodiment. In this embodiment, a catalyst 60 is disposed in the exhaust pipe 22 upstream of the exhaust control valve 24. Thus, when the catalyst 60 is arranged in the exhaust pipe 22 upstream of the exhaust control valve 24, the auxiliary fuel Qa is additionally injected, the exhaust control valve 24 is almost fully closed, and the opening timing of the exhaust valve 10 is opened. Alternatively, when the valve closing timing is advanced, the catalyst 60 is strongly heated by the hot exhaust gas. Therefore, the catalyst 60 can be activated early during engine start-up and warm-up operation.
[0056]
The catalyst 60 disposed in the exhaust pipe 22 can be an oxide catalyst, three-way catalyst, NO x absorbent or the HC adsorption catalyst. The NO x absorbent has a function of absorbing NO x when the average air-fuel ratio in the combustion chamber 5 is lean, and releasing NO x when the average air-fuel ratio in the combustion chamber 5 becomes rich.
This NO x absorbent is, for example, alumina as a carrier, and on this carrier, for example, alkaline metal such as potassium K, sodium Na, lithium Li, cesium Cs, alkaline earth such as barium Ba, calcium Ca, lanthanum La, yttrium. At least one selected from rare earths such as Y and a noble metal such as platinum Pt are supported.
[0057]
On the other hand, in the HC adsorption catalyst, platinum Pt, palladium Pd, rhodium Rh, iridium Ir on a porous carrier such as zeolite, alumina Al 2 O 3 , silica alumina SiO 2 .Al 2 O 3 , activated carbon, titania TiO 2 , for example. Such a noble metal or a transition metal such as copper Cu, iron Fe, cobalt Co, nickel Ni is supported.
[0058]
In such an HC adsorption catalyst, unburned HC in the exhaust gas is physically adsorbed in the catalyst, and the amount of unburned HC adsorbed increases as the temperature of the catalyst decreases, and increases as the pressure of the exhaust gas flowing through the catalyst increases. To do. Therefore, in the embodiment shown in FIG. 14, when the temperature of the catalyst 60 is low and the back pressure is increased by the exhaust throttle action of the exhaust control valve 24, that is, during engine start-up and warm-up operation, and when the engine is under low load, the exhaust gas Unburned HC contained therein can be adsorbed by the HC adsorption catalyst. Therefore, the amount of unburned HC released into the atmosphere can be further reduced. The unburned HC adsorbed on the HC adsorption catalyst is released from the HC adsorption catalyst when the back pressure becomes low or when the temperature of the HC adsorption catalyst becomes high.
[0059]
FIG. 15 shows still another embodiment.
In the example catalyst 60 consisting of the NO x absorbent or the HC adsorbing catalyst disposed in the exhaust control valve 24 upstream of the exhaust pipe 22, between the exhaust pipe 21 and the first exhaust manifold 19, and exhaust and the second exhaust manifold 20 Between the pipes 21, catalysts 61 and 62 having an oxidation function such as an oxidation catalyst and a three-way catalyst are arranged.
[0060]
【The invention's effect】
The amount of unburned HC discharged into the atmosphere can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is an overall view of an internal combustion engine.
FIG. 2 is a side sectional view of a combustion chamber.
FIG. 3 is a diagram showing an injection amount, an injection timing, and an air-fuel ratio.
FIG. 4 is a diagram showing injection timing.
FIG. 5 is a diagram showing a valve opening period of an exhaust valve.
FIG. 6 is a diagram showing a valve opening period of an exhaust valve.
FIG. 7 is a view showing a valve opening period of an exhaust valve.
FIG. 8 is a diagram showing the concentration of unburned HC.
FIG. 9 is a diagram showing an injection amount of main fuel.
FIG. 10 is a diagram showing a relationship between an injection amount of main fuel and an injection amount of sub fuel.
FIG. 11 is a diagram showing an injection amount of main fuel, an opening degree of an exhaust control valve, and the like.
FIG. 12 is a diagram showing an injection amount of main fuel, an opening degree of an exhaust control valve, and the like.
FIG. 13 is a flowchart for performing operation control.
FIG. 14 is an overall view showing another embodiment of the internal combustion engine.
FIG. 15 is an overall view showing still another embodiment of the internal combustion engine.
[Explanation of symbols]
6 ... Fuel injection valve 10 ... Exhaust valve 24 ... Exhaust control valve

Claims (2)

機関排気ポートの出口に接続された排気通路内に排気ポートの出口から予め定められた距離を隔てて排気制御弁を配置し、大気中への未燃HCの排出量を低減すべきであると判断されたときには排気制御弁をほぼ全閉にすると共に、機関出力を発生するために燃焼室内に噴射された主燃料を空気過剰のもとで燃焼させることに加え副燃料を副燃料が燃焼しうる膨張行程中又は排気行程中の予め定められた時期に燃焼室内に追加噴射しかつ排気弁の開弁時期又は閉弁時期の少なくとも一方を早めるようにし、排気制御弁がほぼ全閉せしめられたときには同一の機関運転状態のもとで排気制御弁が全開せしめられた場合の機関の発生トルクに近づくように同一の機関運転状態のもとで排気制御弁が全開せしめられた場合に比べて主燃料の噴射量を増量させるようにした内燃機関の排気浄化装置。An exhaust control valve should be placed in the exhaust passage connected to the outlet of the engine exhaust port at a predetermined distance from the outlet of the exhaust port to reduce the amount of unburned HC discharged into the atmosphere. When judged, the exhaust control valve is almost fully closed, and in addition to burning the main fuel injected into the combustion chamber under excess air to generate engine output, the auxiliary fuel burns the auxiliary fuel. The exhaust control valve was almost fully closed by performing additional injection into the combustion chamber at a predetermined time during the possible expansion stroke or exhaust stroke, and at least one of the opening timing or closing timing of the exhaust valve being advanced. In some cases, the exhaust control valve is fully opened compared to the case where the exhaust control valve is fully opened under the same engine operating state so as to approach the torque generated by the engine when the exhaust control valve is fully opened under the same engine operating state. The amount of fuel injected Exhaust purification system of an internal combustion engine so as to amount. 機関の暖機運転が行われているときには大気中への未燃HCの排出量を低減すべきであると判断される請求項1に記載の内燃機関の排気浄化装置。The exhaust emission control device for an internal combustion engine according to claim 1, wherein it is determined that the amount of unburned HC discharged into the atmosphere should be reduced when the engine is warming up .
JP25176399A 1999-09-06 1999-09-06 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3815140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25176399A JP3815140B2 (en) 1999-09-06 1999-09-06 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25176399A JP3815140B2 (en) 1999-09-06 1999-09-06 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001073811A JP2001073811A (en) 2001-03-21
JP3815140B2 true JP3815140B2 (en) 2006-08-30

Family

ID=17227564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25176399A Expired - Fee Related JP3815140B2 (en) 1999-09-06 1999-09-06 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3815140B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6821944B2 (en) * 2016-04-27 2021-01-27 いすゞ自動車株式会社 Internal combustion engine control device and internal combustion engine system

Also Published As

Publication number Publication date
JP2001073811A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
KR100497829B1 (en) Exhaust emission control device of internal combustion engine
JP3348659B2 (en) In-cylinder injection internal combustion engine
JP3598894B2 (en) Exhaust gas purification device for internal combustion engine
JP3880296B2 (en) Engine control device
JP4560978B2 (en) Spark ignition direct injection engine with turbocharger
JP2007285174A (en) Internal combustion engine
JP3785870B2 (en) Exhaust gas purification device for internal combustion engine
JP3815140B2 (en) Exhaust gas purification device for internal combustion engine
JP3536739B2 (en) Exhaust gas purification device for internal combustion engine
JP3598905B2 (en) Exhaust gas purification device for internal combustion engine
JP3386008B2 (en) Exhaust gas purification device for internal combustion engine
JP3882401B2 (en) Exhaust gas purification device for internal combustion engine
JP3614051B2 (en) Exhaust gas purification device for internal combustion engine
JP3536727B2 (en) Exhaust gas purification device for internal combustion engine
JP3536749B2 (en) Exhaust gas purification device for internal combustion engine
JP4538976B2 (en) Spark ignition direct injection engine with turbocharger
JP3570306B2 (en) Exhaust gas purification device for internal combustion engine
JP2001115883A (en) Exhaust gas temperature raising device for internal combustion engine
JP3960720B2 (en) Exhaust gas purification device for internal combustion engine
JP3617382B2 (en) Exhaust gas purification device for internal combustion engine
JP4292632B2 (en) Exhaust gas purification device for internal combustion engine
JP3551757B2 (en) Compression ignition type internal combustion engine
JP2002021605A (en) Exhaust emission control device of internal combustion engine
JP4134861B2 (en) Control device for premixed compression ignition type internal combustion engine
JPH1047042A (en) Emission control system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees