JP2014227860A - Exhaust emission control system and its radiation method - Google Patents

Exhaust emission control system and its radiation method Download PDF

Info

Publication number
JP2014227860A
JP2014227860A JP2013106269A JP2013106269A JP2014227860A JP 2014227860 A JP2014227860 A JP 2014227860A JP 2013106269 A JP2013106269 A JP 2013106269A JP 2013106269 A JP2013106269 A JP 2013106269A JP 2014227860 A JP2014227860 A JP 2014227860A
Authority
JP
Japan
Prior art keywords
exhaust gas
surface area
heat radiating
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013106269A
Other languages
Japanese (ja)
Other versions
JP6197364B2 (en
Inventor
伸匡 大橋
Nobumasa Ohashi
伸匡 大橋
弘吉 前川
Kokichi Maekawa
弘吉 前川
竜介 藤野
Ryusuke Fujino
竜介 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013106269A priority Critical patent/JP6197364B2/en
Publication of JP2014227860A publication Critical patent/JP2014227860A/en
Application granted granted Critical
Publication of JP6197364B2 publication Critical patent/JP6197364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control system and an exhaust emission control method capable of preventing a reduction in the NOx eliminating rate of an exhaust emission control device such as a selective reduction type catalyst, and of compatibly improving a fuel consumption rate and exhaust gas performance without reducing the NOx eliminating rate during the light load operation of an engine and during the high load operation of the engine to be good in the fuel consumption rate, as well.SOLUTION: An exhaust gas passage 12 between a turbine 13t and an exhaust emission control device 30 is formed with a radiation exhaust gas pipe 12A. Radiation surface area increasing members 12Ba, 12Bb are provided on the radiation exhaust gas pipe 12A. Thus, when an internal combustion engine 10 continuously operates at a rated output, a radiation surface area S of a portion of the radiation exhaust gas pipe 12A becomes an optimum radiation surface area S1 to keep a temperature Tg of exhaust gas G flowing into the exhaust emission control device 30 to be a preset eliminating rate holding upper limit temperature T2 or lower.

Description

本発明は、ディーゼル車等の内燃機関の排気ガス中の窒素酸化物(NOx)等を浄化する排気ガス浄化システム及びその放熱方法に関する。   The present invention relates to an exhaust gas purification system that purifies nitrogen oxide (NOx) and the like in exhaust gas of an internal combustion engine such as a diesel vehicle, and a heat dissipation method thereof.

車両に搭載したディーゼルエンジン等の排気ガス通路に配置される排気ガスの後処理装置には,NOx(窒素酸化物)を浄化する触媒として尿素水添加式選択還元型触媒装置(以下SCR触媒装置)が使用されている。このSCR触媒装置は、尿素水インジェクタから排気ガス中に噴射した尿素水が、排気ガスと反応して分解して生成されるアンモニアを利用して、SCR触媒の触媒作用によりNOxを還元浄化する装置である。   An exhaust gas aftertreatment device disposed in an exhaust gas passage of a diesel engine or the like mounted on a vehicle has a urea water addition type selective reduction type catalyst device (hereinafter referred to as an SCR catalyst device) as a catalyst for purifying NOx (nitrogen oxide). Is used. This SCR catalyst device is a device that reduces and purifies NOx by the catalytic action of the SCR catalyst by using ammonia that is generated by the urea water injected into the exhaust gas from the urea water injector reacting with the exhaust gas and being decomposed. It is.

このSCR触媒においては、現状では、図12に示すように、エンジンから排出され、SCR触媒に流入する排気ガスの温度が低い場合(例えば、200°C(deg.C))以下)、または、排気ガスの温度が高い場合(例えば、480°C以上)に、NOx浄化率は著しく低下する。このように現状のSCR触媒には、浄化率維持下限温度T1と浄化率維持上限温度T2との間の、活性が良好な温度域(図12では、300°C〜450°C付近)Rtが存在する。そのため、エンジンの負荷が低く排気ガスの温度が低い場合だけでなく、エンジンの負荷が高く排気ガスの温度が高い場合でもNOx浄化率は低下することになる。   In this SCR catalyst, at present, as shown in FIG. 12, when the temperature of the exhaust gas discharged from the engine and flowing into the SCR catalyst is low (for example, 200 ° C. (deg. C) or less), or When the temperature of the exhaust gas is high (for example, 480 ° C. or higher), the NOx purification rate is significantly reduced. As described above, the current SCR catalyst has a temperature range (in the vicinity of 300 ° C. to 450 ° C. in FIG. 12) Rt between the purification rate maintenance lower limit temperature T1 and the purification rate maintenance upper limit temperature T2 with good activity. Exists. Therefore, the NOx purification rate is lowered not only when the engine load is low and the exhaust gas temperature is low, but also when the engine load is high and the exhaust gas temperature is high.

これに関連して、従来技術では、エンジンの暖気時やアイドリング運転時等の排気ガスが低温側の浄化率向上に注目が集まっており、例えば、尿素水から生成される固形物の堆積を抑制すると共に良好な排気ガス浄化率を確保可能にするために、排気通路の尿素水インジェクタとアンモニア還元型触媒の間に設けた屈曲部を二重管構造にして、その間に内部から外部への放熱を抑制する放熱抑制部材を備えた排気浄化装置が提案されている(例えば、特許文献1参照)。   In this regard, in the prior art, attention has been focused on improving the purification rate of the exhaust gas when the engine is warming up or idling, etc., for example, suppressing the accumulation of solid matter generated from urea water In addition, in order to ensure a good exhaust gas purification rate, the bent part provided between the urea water injector and the ammonia reduction catalyst in the exhaust passage is made into a double pipe structure, and heat is radiated from the inside to the outside during that time. There has been proposed an exhaust emission control device provided with a heat dissipation suppressing member that suppresses (see, for example, Patent Document 1).

しかしながら、最近では、エンジンの燃料消費率改善のためにエンジンの負荷が高い領域での運転頻度が多くなっており、エンジンが高負荷運転しているとき、すなわち、排気ガスの温度が高くなるような条件で、NOx浄化率の低下を防ぐ技術の開発が重要となってきている。   However, recently, in order to improve the fuel consumption rate of the engine, the frequency of operation in the region where the engine load is high has increased, and when the engine is operating at a high load, that is, the temperature of the exhaust gas becomes high. Under such conditions, it has become important to develop a technique for preventing a reduction in the NOx purification rate.

例えば、エンジンの運転状態にかかわらずNOx触媒を高NOx浄化率の温度域で使用できるようにするために、排気通路を第1通路と第2通路に分岐した後に合流させて、第1通路の途中に放熱効果を上げるために断面を円弧状にした排気冷却促進部を設ける、第1通路での排気ガス温度の低下を第2通路での排気ガス温度の低下よりも増大させて、排気ガス温度によって第1通路と第2通路を使い分ける内燃機関の排気浄化装置が提案されている(例えば、特許文献2参照)。   For example, in order to be able to use the NOx catalyst in a temperature range with a high NOx purification rate regardless of the operating state of the engine, the exhaust passage is branched into the first passage and the second passage, and then merged, In order to increase the heat dissipation effect, an exhaust cooling promoting portion having an arcuate cross section is provided, and the exhaust gas temperature in the first passage is decreased more than the exhaust gas temperature in the second passage, so that the exhaust gas There has been proposed an exhaust purification device for an internal combustion engine that selectively uses a first passage and a second passage according to temperature (see, for example, Patent Document 2).

しかしながら、この内燃機関の排気浄化装置では、排気通路を分岐する必要がある上に、排気温センサ、第1排気切替弁、第2排気切替弁、及び、それらの制御が必要になるため装置が大型化し易く、制御も複雑化するという問題がある。   However, in this exhaust gas purification apparatus for an internal combustion engine, it is necessary to branch the exhaust passage, and in addition, an exhaust temperature sensor, a first exhaust gas switching valve, a second exhaust gas switching valve, and control thereof are required. There is a problem that the size is easily increased and the control is complicated.

特開2010−31718号公報JP 2010-31718 A 特開2001−214734号公報JP 2001-214734 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、排気ガス配管における放熱量を適正にして排気ガスの温度を浄化率の高い温度範囲の温度にすることにより、エンジンの軽負荷時においてもNOx浄化率を低下させることがなく、また、燃料消費率が良好であるエンジンの高負荷運転時においてもNOx浄化率を低下させることがなくて、燃料消費率の向上と排ガス性能の改善の両方を両立することができる排気ガス浄化システム及びその放熱方法を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to adjust the heat radiation amount in the exhaust gas piping to an exhaust gas temperature within a temperature range having a high purification rate. Even when the load is light, the NOx purification rate is not reduced, and even when the engine has a high fuel consumption rate, the NOx purification rate is not lowered. It is an object of the present invention to provide an exhaust gas purification system and a heat dissipation method thereof that can achieve both improvement in performance.

上記のような目的を達成するための本発明の排気浄化システムは、内燃機関の排気ガス通路でターボ式過給器のタービンの下流側に排気ガスを浄化する排気ガス浄化装置を配置した排気ガス浄化システムにおいて、前記タービンと前記排気ガス浄化装置との間の排気ガス通路を放熱排気ガス配管で形成し、該放熱排気ガス配管に放熱表面積増加部材を設けて、前記内燃機関を定格出力で連続運転しているときに、前記放熱排気ガス配管部分の放熱表面積が、前記排気ガス浄化装置に流入する排気ガスの温度を予め設定された浄化率維持上限温度以下にする最適放熱表面積になるように構成する。   In order to achieve the above object, an exhaust gas purification system according to the present invention is an exhaust gas system in which an exhaust gas purification device for purifying exhaust gas is disposed downstream of a turbine of a turbocharger in an exhaust gas passage of an internal combustion engine. In the purification system, an exhaust gas passage between the turbine and the exhaust gas purification device is formed by a radiating exhaust gas pipe, and a radiating surface area increasing member is provided in the radiating exhaust gas pipe so that the internal combustion engine is continuously operated at a rated output. When operating, the heat radiating surface area of the heat radiating exhaust gas piping portion is set to an optimum heat radiating surface area that keeps the temperature of the exhaust gas flowing into the exhaust gas purifying device below a preset purification rate maintenance upper limit temperature. Configure.

この放熱表面積増加部材としては、例えば、放熱フィンや放熱板や放熱金網などを用いることができる。なお、この放熱排気ガス配管部分の放熱表面積は、常時、最適放熱表面積になっている必要は無く、内燃機関を定格出力で連続運転しているときに、最適放熱表面積になる構成であれば良い。つまり、放熱排気ガス配管部分が低温の時は、排気ガスの温度が低下し過ぎないように放熱表面積が小さく、放熱排気ガス配管部分が高温の時のみ、排気ガスの温度が上昇し過ぎないように放熱表面積が大きくなることが好ましい。   As this heat radiating surface area increasing member, for example, a heat radiating fin, a heat radiating plate, a heat radiating wire mesh or the like can be used. It should be noted that the heat radiation surface area of the heat radiation exhaust gas piping portion does not always need to be the optimum heat radiation surface area, and may be any structure that provides the optimum heat radiation surface area when the internal combustion engine is continuously operated at the rated output. . In other words, the surface area of the heat dissipation is small so that the temperature of the exhaust gas exhaust pipe is not too low so that the temperature of the exhaust gas does not decrease too much, and the temperature of the exhaust gas does not rise too much only when the temperature of the exhaust gas exhaust pipe is high. It is preferable that the heat dissipation surface area be increased.

この構成によれば、放熱表面積増加部材の配置により、内燃機関を定格出力で連続運転しているときに、放熱排気ガス配管部分の放熱表面積が最適放熱表面積になるので、排気ガスの温度が高温になっても、排気ガス浄化装置に流入する排気ガスの温度を予め設定された浄化率維持上限温度以下に維持でき、排気ガスの浄化効率を良好な状態にいじでき、排気ガスを効率よく浄化することができる。   According to this configuration, when the internal combustion engine is continuously operated at the rated output due to the arrangement of the heat radiating surface area increasing member, the heat radiating surface area of the radiating exhaust gas piping portion becomes the optimum heat radiating surface area, so the temperature of the exhaust gas is high. Even if it becomes, the temperature of the exhaust gas flowing into the exhaust gas purification device can be maintained below the preset purification rate maintenance upper limit temperature, the exhaust gas purification efficiency can be tampered with in a good state, and the exhaust gas is purified efficiently can do.

また、上記の排気ガス浄化システムにおいて、前記最適放熱表面積S1(m2)を、前記内燃機関を定格出力で運転したときに排出される排気ガス体積流量V(m3/s)を基にして、前記放熱排気ガス配管の断面積A(m2)を30(m/s)≦V/A≦70(m/s)とすると共に、A=πR2、C=2πRとしたときに、4.5×C≦S1≦7.5×Cとして設定する。なお、この最適放熱表面積S1(m2)は、放熱排気ガス配管の表面積も含む面積である。 In the exhaust gas purification system, the optimum heat radiation surface area S1 (m 2 ) is determined based on the exhaust gas volume flow rate V (m 3 / s) discharged when the internal combustion engine is operated at a rated output. When the cross-sectional area A (m 2 ) of the radiating exhaust gas pipe is 30 (m / s) ≦ V / A ≦ 70 (m / s), and A = πR 2 and C = 2πR, 4 .5 × C ≦ S1 ≦ 7.5 × C. The optimum heat radiation surface area S1 (m 2 ) is an area including the surface area of the heat radiation exhaust gas pipe.

ここで、排気ガス体積流量Vは、エンジン定格運転時に放熱排気ガス配管部分を通過する排気ガス体積流量(m3)であり、30(m/s)はエンジン定格運転時を想定した排気ガスの下限流速(m/s)であり、また、70(m/s)はエンジン定格運転時を想定した排気ガスの上限流速(m/s)である。 Here, the exhaust gas volume flow rate V is the exhaust gas volume flow rate (m 3 ) that passes through the radiating exhaust gas pipe part during engine rated operation, and 30 (m / s) is the exhaust gas volume assumed during engine rated operation. It is a lower limit flow velocity (m / s), and 70 (m / s) is an upper limit flow velocity (m / s) of the exhaust gas assuming the engine rated operation.

この放熱排気ガス配管の断面積A(m2)を元に、排気ガス配管を円管したときの周囲長さC(C2=(2πR)2=4πA、C=2√(πA))と、仮設定した配管長さL(m)とから、円管の表面積C×L(m2)を決定し、この円管の表面積C×L(m2)を基準に、放熱表面積Sをパラメータにして変化させて熱計算を行い、排気ガスの温度に対する選択還元型触媒装置(SCR触媒装置)の選択還元型触媒(SCR触媒)のNOx浄化率を参照して、エンジン負荷に対する排気ガスのNOx浄化率を推定し、このNOx浄化率の推定結果から、この放熱排気ガス配管部分の最適な放熱表面積S1を算出し、4.5×C≦S1≦7.5×Cを得ている。 Based on the cross-sectional area A (m 2 ) of this heat radiation exhaust gas pipe, the perimeter length C (C 2 = (2πR) 2 = 4πA, C = 2√ (πA)) when the exhaust gas pipe is circular. The surface area C × L (m 2 ) of the circular pipe is determined from the temporarily set pipe length L (m), and the heat radiating surface area S is a parameter based on the surface area C × L (m 2 ) of the circular pipe. The exhaust gas NOx with respect to the engine load is calculated with reference to the NOx purification rate of the selective reduction catalyst (SCR catalyst) of the selective reduction catalyst device (SCR catalyst device) with respect to the exhaust gas temperature. The purification rate is estimated, and the optimum heat radiation surface area S1 of the heat radiation exhaust gas piping portion is calculated from the estimation result of the NOx purification rate, and 4.5 × C ≦ S1 ≦ 7.5 × C is obtained.

最適放熱表面積S1(m2)を、「4.5×C」未満とすると、放熱排気ガス配管の部分における放熱量が不足し、選択還元型触媒装置に流入する排気ガスの温度が高くなり過ぎて、選択還元型触媒におけるNOx浄化率が低下する恐れが生じる。また、最適放熱表面積S1(m2)を、「7.5×C」より大きくすると、放熱排気ガス配管の部分における放熱量が過大になり、選択還元型触媒に流入する排気ガスの温度が低くなり過ぎて、選択還元型触媒におけるNOx浄化率が低下する恐れが生じる。 If the optimum heat radiation surface area S1 (m 2 ) is less than “4.5 × C”, the heat radiation amount in the heat radiation exhaust gas pipe is insufficient, and the temperature of the exhaust gas flowing into the selective catalytic reduction device becomes too high. As a result, the NOx purification rate of the selective catalytic reduction catalyst may be reduced. Further, if the optimum heat radiation surface area S1 (m 2 ) is larger than “7.5 × C”, the heat radiation amount in the heat radiation exhaust gas piping becomes excessive, and the temperature of the exhaust gas flowing into the selective catalytic reduction catalyst becomes low. As a result, the NOx purification rate of the selective catalytic reduction catalyst may decrease.

つまり、高負荷運転時のNOx浄化率の低下を防ぐために、排気ガス配管の放熱量を大きくするが、過度な放熱は排気ガスの温度を低下させてしまうため、軽負荷時の浄化率を低下させる恐れがある。そこで、軽負荷時でも、高負荷時でも良好な温度範囲内の温度になって、軽負荷時でも高負荷時でも最適なNOx浄化率を維持できるような、放熱量を算出し、最適放熱表面積を設定した。   In other words, in order to prevent a decrease in the NOx purification rate during high-load operation, the heat dissipation amount of the exhaust gas piping is increased, but excessive heat dissipation reduces the temperature of the exhaust gas, so the purification rate at light loads is reduced. There is a fear. Therefore, calculate the amount of heat radiation so that the optimal NOx purification rate can be maintained even at light loads and at high loads, even when the load is light or high, and the optimum heat dissipation surface area is obtained. It was set.

この構成によれば、放熱表面積増加部材を追加して、内燃機関を定格出力で連続運転しているときの放熱表面積が最適放熱表面積になるようにすることにより、排気ガス温度が高温になっても、排気ガスを放熱排気ガス配管部分の放熱で冷却でき、排気ガス浄化装置に流入する排気ガスの温度を予め設定された浄化率維持上限温度以下に維持できるので、排気ガスの浄化効率が良好な状態で排気ガスを浄化することができる。   According to this structure, the exhaust gas temperature becomes high by adding a heat radiation surface area increasing member so that the heat radiation surface area when the internal combustion engine is continuously operated at the rated output becomes the optimum heat radiation surface area. However, the exhaust gas can be cooled by the heat radiation of the exhaust gas exhaust pipe part, and the exhaust gas temperature flowing into the exhaust gas purification device can be kept below the preset purification rate maintenance upper limit temperature, so the exhaust gas purification efficiency is good The exhaust gas can be purified in a safe state.

また、上記の排気ガス浄化システムにおいて、前記放熱表面積増加部材の一部又は全部を前記放熱排気ガス配管に固定して設けた第1放熱部材で構成する。この構成では、放熱板、放熱フィン等の第1放熱部材を溶接などで、放熱排気ガス配管に固定することで放熱排気ガス配管と第1放熱部材の間の熱伝導率を良好に維持して、効率的な放熱を行うことができる。   In the above exhaust gas purification system, a part or all of the heat radiating surface area increasing member is constituted by a first heat radiating member provided fixed to the heat radiating exhaust gas pipe. In this configuration, the first heat radiating member such as the heat radiating plate and the heat radiating fin is fixed to the heat radiating exhaust gas piping by welding or the like, so that the thermal conductivity between the heat radiating exhaust gas piping and the first heat radiating member is maintained well. Efficient heat dissipation.

また、上記の排気ガス浄化システムにおいて、前記放熱表面積増加部材の一部又は全部を、前記内燃機関を停止している状態では、前記放熱排気ガス配管と離間した状態になり、前記内燃機関を定格出力で連続運転している状態では、前記放熱排気ガス配管に当接している状態になる第2放熱部材で構成する。   In the exhaust gas purification system, a part or all of the heat radiation surface area increasing member is separated from the heat radiation exhaust gas pipe when the internal combustion engine is stopped, and the internal combustion engine is rated. In the state of continuous operation with output, the second heat radiating member is in contact with the heat radiating exhaust gas pipe.

この構成によれば、排気ガス温度が低く、放熱排気ガス配管の温度が低い、内燃機関を停止している状態では、放熱排気ガス配管と第2放熱部材の間が離間している状態であるので、この両者の間の熱伝導が無く、第2放熱部材からの熱放射量を小さくすることができる。従って、排気ガスの温度が低いときには、放熱排気ガス配管からの放熱量を著しく減少できる。これにより、排気ガスが低温の時の放熱量を少なくして、暖機時には早期に浄化率維持下限温度以上にすることができ、また、エンジンの負荷が小さく排気ガスの温度が低い場合でも、少ない燃費で浄化率維持下限温度以上に維持することができる。   According to this configuration, in a state where the exhaust gas temperature is low and the temperature of the radiating exhaust gas pipe is low, or the internal combustion engine is stopped, the radiating exhaust gas pipe and the second heat radiating member are separated from each other. Therefore, there is no heat conduction between the two, and the amount of heat radiation from the second heat radiating member can be reduced. Therefore, when the temperature of the exhaust gas is low, the amount of heat released from the heat radiating exhaust gas pipe can be significantly reduced. As a result, the amount of heat released when the exhaust gas is low can be reduced, and at the time of warm-up, the purification rate maintenance lower limit temperature can be quickly reached, and even when the engine load is small and the exhaust gas temperature is low, It can be maintained above the purification rate maintenance lower limit temperature with less fuel consumption.

一方、排気ガス温度が高く、放熱排気ガス配管の温度が高いときは、放熱排気ガス配管と第2放熱部材が熱膨張し、放熱排気ガス配管と第2放熱部材の間が当接している状態にあるので、この両者の間で熱伝導が生じる。そのため、第2放熱部材からの放熱量を大きくすることができ、排気ガス温度が高いときには、放熱排気ガス配管から放熱量を著しく増加でき、浄化率維持上限温度以下にすることができる。   On the other hand, when the exhaust gas temperature is high and the temperature of the radiating exhaust gas pipe is high, the radiating exhaust gas pipe and the second radiating member are thermally expanded, and the radiating exhaust gas pipe and the second radiating member are in contact with each other Therefore, heat conduction occurs between the two. Therefore, the amount of heat released from the second heat radiating member can be increased, and when the exhaust gas temperature is high, the amount of heat released from the heat radiating exhaust gas piping can be remarkably increased, and the purification rate maintenance upper limit temperature can be reached.

つまり、放熱排気ガス配管と第2放熱部材の熱膨張を利用することにより、放熱排気ガス配管の温度の高低によって、第2放熱部材への熱伝導の有無を自動的に切り換えることができ、放熱排気ガス配管及びこの部分を通過する排気ガスの温度を浄化率が良好な温度範囲内に維持できるので、効率よく排気ガスを浄化できる。   In other words, by utilizing the thermal expansion of the heat radiating exhaust gas pipe and the second heat radiating member, the presence or absence of heat conduction to the second heat radiating member can be automatically switched depending on the temperature of the heat radiating exhaust gas pipe. Since the temperature of the exhaust gas piping and the exhaust gas passing through this portion can be maintained within a temperature range in which the purification rate is good, the exhaust gas can be purified efficiently.

なお、第2放熱部材と放熱排気ガス配管とが当接する面積を第2放熱部材の横断面積よりも大きい形状、例えば、V字形状又は半円形状などに形成すると、接触面が増加して、両者の間の熱伝導が良好に行われ易くなるので、より好ましい。   In addition, if the area where the second heat radiating member and the heat radiating exhaust gas pipe are in contact with each other is formed in a shape larger than the cross-sectional area of the second heat radiating member, for example, a V shape or a semicircular shape, the contact surface increases, It is more preferable because heat conduction between the two is easily performed well.

また、上記の排気ガス浄化システムにおいて、前記第1放熱部材若しくは前記第2放熱部材を、温度によって形状が変化する材料で形成する。例えば、バイメタルや形状記憶合金などで、温度が上昇すると、バイメタルや形状記憶合金で形成した放熱板が開いて、表面積を2倍に増加したり、互いに向かい合っていた放熱板が曲がり、放熱面が互いに向かい合わなくなるようにしたりする。   In the exhaust gas purification system, the first heat radiating member or the second heat radiating member is formed of a material whose shape changes depending on temperature. For example, if the temperature rises with bimetal or shape memory alloy, etc., the heat sink made of bimetal or shape memory alloy will open, the surface area will be doubled, the heat sink facing each other will bend, and the heat dissipation surface will be Or try not to face each other.

この構成によれば、容易に、温度によって放熱表面積が大きく異なる第1放熱部材若しくは第2放熱部材を構成することができ、第1放熱部材若しくは第2放熱部材による放熱効果が温度上昇に従って大きくなるように構成することができる。   According to this structure, the 1st heat radiating member or the 2nd heat radiating member from which a heat radiating surface area changes greatly with temperature can be comprised easily, and the heat radiation effect by a 1st heat radiating member or a 2nd heat radiating member becomes large as a temperature rises. It can be constituted as follows.

そして、上記のような目的を達成するための本発明の排気浄化システムの放熱方法は、内燃機関の排気ガス通路でターボ式過給器のタービンの下流側に排気ガスを浄化する排気ガス浄化装置を配置した排気ガス浄化システムの放熱方法において、前記タービンと前記排気ガス浄化装置との間の排気ガス通路を形成する放熱排気ガス配管の放熱表面積を、前記内燃機関を定格出力で連続運転しているときに、予め設定された最適放熱表面積にして、前記排気ガス浄化装置に流入する排気ガスの温度を予め設定された浄化率維持上限温度以下にすることを特徴とする方法である。   And the heat dissipation method of the exhaust purification system of the present invention for achieving the above object is an exhaust gas purification device for purifying exhaust gas downstream of the turbine of a turbocharger in an exhaust gas passage of an internal combustion engine. In the heat dissipation method of the exhaust gas purification system, the internal combustion engine is continuously operated at a rated output with respect to the heat dissipation surface area of the heat dissipation exhaust gas pipe forming an exhaust gas passage between the turbine and the exhaust gas purification device. The temperature of the exhaust gas flowing into the exhaust gas purification device is set to a preset purification rate maintenance upper limit temperature or less with a preset optimum heat radiating surface area.

この方法によれば、内燃機関を定格出力で連続運転しているときに、放熱排気ガス配管部分の放熱表面積が最適放熱表面積になるので、排気ガス温度が高温になっても、排気ガス浄化装置に流入する排気ガスの温度を予め設定された浄化率維持上限温度以下に維持でき、排気ガスの浄化効率が良好な状態で排気ガスを浄化することができる。   According to this method, when the internal combustion engine is continuously operated at the rated output, the heat radiating surface area of the radiating exhaust gas piping portion becomes the optimum heat radiating surface area, so even if the exhaust gas temperature becomes high, the exhaust gas purification device The exhaust gas flowing into the exhaust gas can be maintained at a temperature equal to or lower than a preset purification rate maintenance upper limit temperature, and the exhaust gas can be purified with a good exhaust gas purification efficiency.

本発明に係る排気ガス浄化システム及びその放熱方法によれば、ターボチャージャのタービンと選択還元型触媒装置等の排気ガス浄化装置の間の排気ガス配管における放熱量を適正にして排気ガスの温度を浄化率の高い温度範囲の温度にすることにより、エンジンの軽負荷時においてもNOx浄化率を低下させることがなく、また、燃料消費率が良好であるエンジンの高負荷運転時においてもNOx浄化率を低下させることがなくて、燃料消費率の向上と排ガス性能の改善の両方を両立することができる。   According to the exhaust gas purification system and the heat dissipation method thereof according to the present invention, the temperature of the exhaust gas is adjusted by optimizing the heat radiation amount in the exhaust gas piping between the turbine of the turbocharger and the exhaust gas purification device such as the selective reduction catalyst device. By setting the temperature within a temperature range with a high purification rate, the NOx purification rate is not lowered even when the engine is lightly loaded, and the NOx purification rate is also obtained during high-load operation of the engine with a good fuel consumption rate. The fuel consumption rate and the exhaust gas performance can be improved at the same time.

本発明の実施の形態の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas purification system of embodiment of this invention. 放熱排気ガス配管の表面積の変化に対しての、エンジンの負荷とNOx浄化率との関係を模式的に示す図である。It is a figure which shows typically the relationship between the load of an engine and a NOx purification rate with respect to the change of the surface area of heat radiation exhaust gas piping. 図2における、放熱排気ガス配管の表面積の倍率1.5と倍率2.5の放熱表面積におけるエンジンの負荷とNOx浄化率との関係を模式的に示す図である。FIG. 3 is a diagram schematically showing the relationship between the engine load and the NOx purification rate at a heat radiation surface area of 1.5 and 2.5 magnifications of the surface area of the radiant exhaust gas pipe in FIG. 2. 放熱板で形成された第1放熱部材の構成の一例を示す図である。It is a figure which shows an example of a structure of the 1st heat radiating member formed with the heat sink. 放熱板と放熱金網で形成された第1放熱部材の構成の一例を示す図である。It is a figure which shows an example of a structure of the 1st heat radiating member formed with the heat sink and the heat radiating wire mesh. 放熱板で形成された第2放熱部材の構成の一例を示す図で、放熱排気ガス配管と離間した状態を示す図である。It is a figure which shows an example of a structure of the 2nd heat radiating member formed with the heat sink, and is a figure which shows the state spaced apart from the thermal radiation exhaust gas piping. 図6の第2放熱部材が放熱排気ガス配管と当接した状態を示す図である。It is a figure which shows the state which the 2nd heat radiating member of FIG. 6 contact | abutted with the thermal radiation exhaust gas piping. バイメタル板で形成された第1放熱部材の構成の一例を示す図で、温度が低い状態を示す図である。It is a figure which shows an example of a structure of the 1st heat radiating member formed with the bimetal plate, and is a figure which shows a state with low temperature. 図8の第1放熱部材の温度が高い状態を示す図である。It is a figure which shows the state with the high temperature of the 1st heat radiating member of FIG. バイメタル板で形成された第1放熱部材の構成の他の例を示す図で、温度が低い状態を示す図である。It is a figure which shows the other example of a structure of the 1st heat radiating member formed with the bimetal plate, and is a figure which shows a state with low temperature. 図10の第1放熱部材の温度が高い状態を示す図である。It is a figure which shows the state with the high temperature of the 1st heat radiating member of FIG. SCR触媒の温度とNOx浄化率の関係を模式的に示す図である。It is a figure which shows typically the relationship between the temperature of a SCR catalyst, and a NOx purification rate.

以下、本発明に係る実施の形態の排気ガス浄化システム及びその放熱方法について、図面を参照しながら説明する。ここでは、選択還元型触媒(SCR触媒)を尿素水添加式選択還元型触媒(尿素SCR触媒)とし、アンモニア系溶液を尿素水とする例で示すが、これに限定されず、炭化水素添加式選択還元型触媒(HC−SCR触媒)等であってもよい。   Hereinafter, an exhaust gas purification system and a heat dissipation method thereof according to embodiments of the present invention will be described with reference to the drawings. Here, the selective reduction type catalyst (SCR catalyst) is a urea water addition type selective reduction type catalyst (urea SCR catalyst) and the ammonia type solution is urea water. However, the present invention is not limited to this, and the hydrocarbon addition type A selective reduction catalyst (HC-SCR catalyst) or the like may be used.

図1に示すように、本発明に係る実施の形態の排気ガス浄化システム1は、ディーゼルエンジン等の内燃機関(以下、エンジンという)10の排気ガスG中のPM(粒子状物質)、NOx(窒素酸化物)を浄化する排気ガス浄化システムであり、エンジン10の排気ガス通路12でターボ式過給器13のタービン13tの下流側に排気ガスGを浄化する排気ガス浄化装置30を配置して構成される。   As shown in FIG. 1, an exhaust gas purification system 1 according to an embodiment of the present invention includes PM (particulate matter), NOx (in the exhaust gas G of an internal combustion engine (hereinafter referred to as an engine) 10 such as a diesel engine. An exhaust gas purification system for purifying exhaust gas G in the exhaust gas passage 12 of the engine 10 on the downstream side of the turbine 13t of the turbocharger 13. Composed.

図1の構成では、エンジン10の排気ガス通路12に、エンジン本体11に接続されている排気マニホールド11a側から順に、ターボチャージャ(ターボ式過給器)13のタービン13t、排気ガス浄化装置30を配置する。この排気ガス浄化装置30には、上流側から、前段酸化触媒(前段DOC)32、PM捕集フィルタ装置33、尿素選択還元型触媒装置(以下、SCR装置という)34、後段酸化触媒(後段DOC)35が配置されている。このSCR装置34の上流側にアンモニア系溶液供給装置である尿素噴射ノズル31が配置される。   In the configuration of FIG. 1, the turbine 13 t of the turbocharger (turbo supercharger) 13 and the exhaust gas purification device 30 are provided in the exhaust gas passage 12 of the engine 10 in order from the exhaust manifold 11 a connected to the engine body 11. Deploy. The exhaust gas purification device 30 includes a upstream oxidation catalyst (front DOC) 32, a PM collection filter device 33, a urea selective reduction catalyst device (hereinafter referred to as SCR device) 34, a rear oxidation catalyst (rear DOC) from the upstream side. ) 35 is arranged. A urea injection nozzle 31 that is an ammonia-based solution supply device is disposed upstream of the SCR device 34.

また、NOx低減のためのEGRを行うためにEGR通路14が設けられ、排気ガスGの一部であるEGRガスGeを吸気マニホールド11bに流して、吸気通路14で吸入した空気Aと共にエンジン10のシリンダに供給する。   Further, an EGR passage 14 is provided to perform EGR for NOx reduction, and the EGR gas Ge, which is a part of the exhaust gas G, flows into the intake manifold 11b, and together with the air A sucked in the intake passage 14, the engine 10 Supply to the cylinder.

更に、この排気ガス浄化システム1には、SCR装置34の入口の排気ガスGの温度Tgを測定する温度センサ41と、SCR装置34の下流側のNOx濃度を測定するNOx濃度センサ42と、PM捕集フィルタ装置33の前後差圧ΔPを測定する差圧センサ43を備える。また、この温度センサ41とNOx濃度センサ42と差圧センサ42の測定値を入力して、排気ガスGの浄化を制御する排気ガス浄化制御装置40が備えられる。   Further, the exhaust gas purification system 1 includes a temperature sensor 41 that measures the temperature Tg of the exhaust gas G at the inlet of the SCR device 34, a NOx concentration sensor 42 that measures the NOx concentration downstream of the SCR device 34, and a PM. A differential pressure sensor 43 that measures the differential pressure ΔP across the collection filter device 33 is provided. In addition, an exhaust gas purification control device 40 that inputs the measurement values of the temperature sensor 41, the NOx concentration sensor 42, and the differential pressure sensor 42 and controls the purification of the exhaust gas G is provided.

この排気ガス浄化制御装置40は、通常、エンジン10の運転全般を制御するECU(エンジンコントロールユニット)と呼ばれるエンジン制御装置(ECU)50で兼用される。即ち、排気ガス浄化制御装置40はエンジン制御装置50に組み込まれる。   The exhaust gas purification control device 40 is commonly used as an engine control device (ECU) 50 called an ECU (engine control unit) that controls the overall operation of the engine 10. That is, the exhaust gas purification control device 40 is incorporated in the engine control device 50.

この図1で例示した排気ガス浄化システム1では、排気ガスGの温度Tgが低温のときは、エンジン10のシリンダ内燃焼噴射等により排気ガスGの温度Tgを高めて前段の酸化触媒装置の温度Tdを活性化温度Tdc以上にし、前段の酸化触媒装置の温度Tdが活性化温度Tdc以上になっていれば、この前段の酸化触媒装置で、排気ガスG中の一酸化炭素(CO)や炭化水素(HC)を酸化して、これらの酸化熱により排気ガスGの温度Tgを上昇させて、SCR装置34の温度TsやPM捕集フィルタ装置33の温度Tpを上昇させる。なお、排気ガスG中の一酸化炭素(CO)や炭化水素(HC)が不足する場合には、ポスト噴射等により排気ガスG中に炭化水素を供給する。   In the exhaust gas purification system 1 illustrated in FIG. 1, when the temperature Tg of the exhaust gas G is low, the temperature Tg of the exhaust gas G is increased by in-cylinder combustion injection of the engine 10 to increase the temperature of the preceding oxidation catalyst device. If Td is set to the activation temperature Tdc or higher, and the temperature Td of the preceding oxidation catalyst device is equal to or higher than the activation temperature Tdc, carbon monoxide (CO) or carbonization in the exhaust gas G is detected by the previous oxidation catalyst device. Hydrogen (HC) is oxidized, and the temperature Tg of the exhaust gas G is increased by these oxidation heats, and the temperature Ts of the SCR device 34 and the temperature Tp of the PM collection filter device 33 are increased. When carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas G are insufficient, hydrocarbons are supplied into the exhaust gas G by post injection or the like.

そして、SCR装置34の温度TsがSCR触媒の活性化温度Tsc以上であれば、NOx濃度センサ42で検出したNOx濃度がゼロになるように、尿素噴射ノズル31から尿素水Fを排気ガス通路12に供給し、この尿素水Fが分解して発生するアンモニアをSCR装置34に供給して、NOxを還元浄化する。   If the temperature Ts of the SCR device 34 is equal to or higher than the activation temperature Tsc of the SCR catalyst, the urea water F is discharged from the urea injection nozzle 31 so that the NOx concentration detected by the NOx concentration sensor 42 becomes zero. The ammonia generated by the decomposition of the urea water F is supplied to the SCR device 34 to reduce and purify NOx.

また、PM捕集フィルタ33では、排気ガスG中のPM(微粒子物質)を捕集し、PM捕集フィルタ33で捕集したPMが予め設定した堆積上限量以上になると、ポスト噴射等により排気ガスG中に炭化水素を供給して、この炭化水素を前段の酸化触媒装置で酸化して、この酸化熱により排気ガスGを昇温し、PM捕集フィルタ33の温度TpをPM燃焼温度Tpc以上に上昇させて、捕集されたPMを燃焼除去してPM捕集フィルタ装置33を再生する。   Further, the PM collection filter 33 collects PM (particulate matter) in the exhaust gas G. When the PM collected by the PM collection filter 33 exceeds a preset accumulation upper limit amount, exhaust is performed by post injection or the like. Hydrocarbon is supplied into the gas G, this hydrocarbon is oxidized by the preceding oxidation catalyst device, the exhaust gas G is heated by this oxidation heat, and the temperature Tp of the PM collection filter 33 is changed to the PM combustion temperature Tpc. The PM collection filter device 33 is regenerated by raising the above and burning and removing the collected PM.

また、後段の酸化触媒装置では、排気ガス浄化装置30から流出してくる排気ガスG中の余剰のアンモニアを酸化して分解してアンモニアスリップを抑制し、また、排気ガスG中の炭化水素(HC)を酸化して、HCスリップを抑制する。   Further, in the subsequent oxidation catalyst device, excess ammonia in the exhaust gas G flowing out from the exhaust gas purification device 30 is oxidized and decomposed to suppress ammonia slip, and hydrocarbons in the exhaust gas G ( HC) is oxidized to suppress HC slip.

そして、本発明においては、ターボチャージャ13のタービン13tと排気ガス浄化装置30との間の排気ガス通路12を放熱排気ガス配管12Aで形成し、この放熱排気ガス配管12Aに放熱表面積増加部材12Ba、12Bbを設ける。   In the present invention, the exhaust gas passage 12 between the turbine 13t of the turbocharger 13 and the exhaust gas purification device 30 is formed by the radiating exhaust gas pipe 12A, and the radiating exhaust gas pipe 12A has a radiating surface area increasing member 12Ba, 12Bb is provided.

そして、エンジン10を定格出力で連続運転しているときに、放熱排気ガス配管12Aの部分の放熱表面積Sが、排気ガス浄化装置30に流入する排気ガスGの温度Tgを予め設定された浄化率維持上限温度T2以下にする最適放熱表面積S1になるように構成する。言い換えれば、放熱排気ガス配管12Aに放熱表面積増加部材12Ba,12Bbを加えた構成において、放熱排気ガス配管12Aの表面積を含む全体の放熱表面積Sを最適放熱表面積S1にする。この放熱表面積増加部材12Ba,12Bbとしては、例えば、放熱フィンや図4に示すような放熱板や図5に示すような放熱金網などを用いることができる。   When the engine 10 is continuously operated at the rated output, the heat radiating surface area S of the portion of the heat radiating exhaust gas pipe 12A has a purification rate in which the temperature Tg of the exhaust gas G flowing into the exhaust gas purifying device 30 is set in advance. The optimum heat radiation surface area S1 is set to the maintenance upper limit temperature T2 or lower. In other words, in the configuration in which the heat radiation surface area increasing members 12Ba and 12Bb are added to the heat radiation exhaust gas pipe 12A, the entire heat radiation surface area S including the surface area of the heat radiation exhaust gas pipe 12A is set to the optimum heat radiation surface area S1. As the heat radiating surface area increasing members 12Ba and 12Bb, for example, heat radiating fins, a heat radiating plate as shown in FIG. 4, a heat radiating wire net as shown in FIG.

この最適放熱表面積S1(m2)は、エンジン10を定格出力で運転したときに排出される排気ガス体積流量V(m3/s)を基にして、エンジン定格運転時を想定した排気ガスの下限流速(m/s)を30(m/s)とし、また、上限流速(m/s)を70(m/s)とする。これにより、放熱排気ガス配管12Aの断面積Aが30(m/s)≦V/A≦70(m/s)になるように設定する。 This optimum heat radiating surface area S1 (m 2 ) is based on the exhaust gas volume flow V (m 3 / s) discharged when the engine 10 is operated at the rated output, and the exhaust gas assumed for the engine rated operation is assumed. The lower limit flow velocity (m / s) is 30 (m / s) and the upper limit flow velocity (m / s) is 70 (m / s). Thus, the cross-sectional area A of the heat radiating exhaust gas pipe 12A is set so as to satisfy 30 (m / s) ≦ V / A ≦ 70 (m / s).

さらに、この放熱排気ガス配管12Aの断面積Aを元に、C(C2=(2πR)2=4πA、C=2√(πA))を算出し、最適放熱表面積S1(m2)を、4.5×C≦S1≦7.5×Cの範囲内に設定する。 Further, C (C 2 = (2πR) 2 = 4πA, C = 2√ (πA)) is calculated based on the cross-sectional area A of the heat radiating exhaust gas pipe 12A, and the optimum heat radiating surface area S1 (m 2 ) is calculated. It is set within the range of 4.5 × C ≦ S1 ≦ 7.5 × C.

この最適放熱表面積S1(m2)の範囲は、以下のような考えで設定している。つまり、放熱排気ガス配管12Aを円管とした場合の半径をRとすると、放熱排気ガス配管12Aの断面積A(m2)は、A=πR2となり、その外周C(m)は、C=2πRとなる。言い換えれば、放熱排気ガス配管12Aの断面積A(m2)を元に、放熱排気ガス配管12Aを円管にしたときの周囲長さC(C2=(2πR)2=4πA、C=2√(πA))(m)を求める。 The range of the optimum heat radiation surface area S1 (m 2 ) is set based on the following idea. That is, assuming that the radius when the radiating exhaust gas pipe 12A is a circular pipe is R, the sectional area A (m 2 ) of the radiating exhaust gas pipe 12A is A = πR 2 , and the outer periphery C (m) is C = 2πR. In other words, based on the cross-sectional area A (m 2 ) of the radiating exhaust gas pipe 12A, the perimeter length C (C 2 = (2πR) 2 = 4πA, C = 2 when the radiating exhaust gas pipe 12A is a circular pipe. √ (πA)) (m) is obtained.

また、仮設定した配管長さL(m)から、円管の表面積C×L(m2)を決定し、この円管の表面積C×L(m2)を基準に、放熱表面積Sをパラメータにして変化させて熱計算を行い、排気ガスGの温度Tを算出し、この排気ガスGの温度TからSCR触媒の浄化率を参照して、図2に示すように、エンジン負荷の変化量に対する排気ガスGの浄化率を算出した。 Further, the surface area C × L (m 2 ) of the circular pipe is determined from the temporarily set pipe length L (m), and the heat radiation surface area S is set as a parameter based on the surface area C × L (m 2 ) of the circular pipe. As shown in FIG. 2, the amount of change in the engine load is calculated by calculating the temperature T of the exhaust gas G by calculating the temperature T of the exhaust gas G and referring to the purification rate of the SCR catalyst from the temperature T of the exhaust gas G. The purification rate of the exhaust gas G was calculated.

図2では、現状の円管とした場合の排気管総面積1に対して、1.0倍〜5.0倍の表面積とした場合のエンジン負荷の変化量(横軸)に対する排気ガスGの浄化率を縦軸に示す。この浄化率の推定結果から、排気管総面積1に対して,1.5〜2.5倍とすることで軽負荷でも高負荷でも良好な浄化率が得られることが分かったので、図3に示すように、この放熱排気ガス配管12A部分の最適な放熱表面積S1の範囲Rsを抽出し、1.5倍〜2.5倍の表面積とした場合を選択して、4.5×C≦S1≦7.5×Cとしている。   In FIG. 2, the exhaust gas G changes with respect to the amount of change in the engine load (horizontal axis) when the surface area is 1.0 to 5.0 times the total exhaust pipe area 1 when the current circular pipe is used. The purification rate is shown on the vertical axis. From the estimation result of this purification rate, it was found that a good purification rate can be obtained at both light and high loads by setting the exhaust pipe total area 1 to 1.5 to 2.5 times. As shown in Fig. 4, the optimum heat radiating surface area S1 range Rs of the heat radiating exhaust gas pipe 12A is extracted, and the case where the surface area is 1.5 times to 2.5 times is selected, and 4.5 × C ≦ S1 ≦ 7.5 × C.

これは、例えば、エンジン10のタービン13tの出口からSCR装置34の入口までの放熱排気ガス配管12Aの長さLを3.00m、放熱排気ガス配管12Aの管直径を0.10m(100mm)とすると、高さ0.03m(30mm)、幅が0.01m(10mm)の第1放熱部材12Baを放熱排気ガス配管12Aの長さLに沿って10枚設置すればよい試算となる。   For example, the length L of the radiant exhaust gas pipe 12A from the outlet of the turbine 13t of the engine 10 to the inlet of the SCR device 34 is 3.00 m, and the pipe diameter of the radiant exhaust gas pipe 12A is 0.10 m (100 mm). Then, it is a trial calculation which should just install ten 1st heat radiating member 12Ba of height 0.03m (30mm) and width 0.01m (10mm) along the length L of 12 A of heat exhaust gas piping.

なお、この放熱排気ガス配管12A部分の放熱表面積Sは、常時、最適放熱表面積S1になっている必要は無く、エンジン10を定格出力で連続運転しているときに、最適放熱表面積S1になる構成であれば良い。また、エンジン10を定格出力で連続運転しているときを、排気ガスGの温度Tgが高温になるときの基準の状態とすることで、最適放熱表面積S1の設定を容易にしている。   The heat radiating surface area S of the heat radiating exhaust gas pipe 12A does not always need to be the optimum heat radiating surface area S1, and is the optimum heat radiating surface area S1 when the engine 10 is continuously operated at the rated output. If it is good. In addition, by setting the time when the engine 10 is continuously operated at the rated output as a reference state when the temperature Tg of the exhaust gas G becomes high, the optimum heat radiation surface area S1 can be easily set.

この放熱排気ガス配管12A部分の放熱表面積Sを、常時、最適放熱表面積S1とする構成としては、放熱表面積増加部材12Ba、12Bbの一部又は全部を放熱排気ガス配管12Aに固定して設けた第1放熱部材12Baで構成する。   As a configuration in which the heat radiation surface area S of the heat radiation exhaust gas pipe 12A is always the optimum heat radiation surface area S1, a part or all of the heat radiation surface area increasing members 12Ba and 12Bb are fixed to the heat radiation exhaust gas pipe 12A. 1 heat dissipating member 12Ba.

この構成では、図4に示すように放熱板若しくは放熱フィンの第1放熱部材12Baを溶接などで、放熱排気ガス配管12Aに固定する。また、図5に示すように放熱金網の第1放熱部材12Baを溶接などで、放熱排気ガス配管12Aに固定する。これにより、放熱排気ガス配管12Aと第1放熱部材12Baの間の熱伝導率を良好に維持して、効率的な放熱を行うことができる。   In this configuration, as shown in FIG. 4, the first heat radiating member 12Ba of the heat radiating plate or the heat radiating fin is fixed to the heat radiating exhaust gas pipe 12A by welding or the like. Further, as shown in FIG. 5, the first heat dissipating member 12Ba of the heat dissipating wire mesh is fixed to the heat dissipating exhaust gas pipe 12A by welding or the like. Thereby, the heat conductivity between the heat radiating exhaust gas pipe 12A and the first heat radiating member 12Ba can be maintained well, and efficient heat radiation can be performed.

また、放熱排気ガス配管12A部分の放熱表面積Sを、常時ではなく、エンジン10を定格出力で連続運転して、放熱排気ガス配管12Aが予め設定した温度以上の高温になっているときに、最適放熱表面積S1になる構成としては、例えば、以下のような構成がある。   Further, the heat radiation surface area S of the heat radiation exhaust gas pipe 12A is optimum when the engine 10 is continuously operated at a rated output, not always, and the heat radiation exhaust gas pipe 12A is at a temperature higher than a preset temperature. As a structure used as the thermal radiation surface area S1, there exist the following structures, for example.

エンジン10を停止している状態では、図6に示すように、放熱排気ガス配管12Aと離間した状態になり、エンジン10を定格出力で連続運転している状態では、図7に示すように、放熱排気ガス配管12Aに当接している状態になる第2放熱部材12Bbで構成する。   In a state where the engine 10 is stopped, as shown in FIG. 6, the engine 10 is separated from the radiating exhaust gas pipe 12A. In a state where the engine 10 is continuously operated at the rated output, as shown in FIG. The second heat radiating member 12Bb is in contact with the heat radiating exhaust gas pipe 12A.

この第2放熱部材12Bbは、排気ガスGの温度が低く、放熱排気ガス配管12Aの温度が低いときは、図6に示すように、放熱排気ガス配管12Aと第2放熱部材12Bbの間が離間している状態であるので、この両者の間の熱伝導が無く、第2放熱部材12Bbからの熱放射量を小さくすることができる。従って、排気ガスGの温度Tが低いときには、放熱排気ガス配管12A部分、即ち、放熱排気ガス配管12Aと第2放熱部材12Bbからの放熱量を著しく減少できる。   When the temperature of the exhaust gas G is low and the temperature of the radiant exhaust gas pipe 12A is low, the second radiating member 12Bb is spaced apart from the radiant exhaust gas pipe 12A and the second radiating member 12Bb as shown in FIG. In this state, there is no heat conduction between the two, and the amount of heat radiation from the second heat radiating member 12Bb can be reduced. Therefore, when the temperature T of the exhaust gas G is low, the amount of heat released from the portion of the heat radiation exhaust gas pipe 12A, that is, the heat radiation exhaust gas pipe 12A and the second heat radiation member 12Bb can be significantly reduced.

一方、排気ガスGの温度Tが高く、放熱排気ガス配管12Aの温度が高いときは、放熱排気ガス配管12Aと第2放熱部材12Bbが熱膨張し、図7に示すように、放熱排気ガス配管12Aと第2放熱部材12Bbの間が当接している状態になるので、この両者の間で熱伝導が生じ、第2放熱部材12Bbからの放熱量を大きくすることができる。従って、排気ガスGの温度Tが高いときには、放熱排気ガス配管12Aからの放熱量を著しく増加できる。   On the other hand, when the temperature T of the exhaust gas G is high and the temperature of the heat radiating exhaust gas pipe 12A is high, the heat radiating exhaust gas pipe 12A and the second heat radiating member 12Bb are thermally expanded, and as shown in FIG. Since 12A and 2nd heat radiating member 12Bb will be in the state contact | abutted, heat conduction will arise between both, and the thermal radiation amount from 2nd heat radiating member 12Bb can be enlarged. Therefore, when the temperature T of the exhaust gas G is high, the heat radiation amount from the heat radiation exhaust gas pipe 12A can be remarkably increased.

つまり、放熱排気ガス配管12Aと第2放熱部材12Bbの熱膨張を利用することにより、放熱排気ガス配管12Aの温度の高低によって、言い換えれば、排気ガスGの温度Tの高低によって、第2放熱部材12Bbへの熱伝導の有無を自動的に切り換えることができる。その結果、放熱排気ガス配管12A及びこの放熱排気ガス配管12A内を通過する排気ガスGの温度Tgを、図12に示すような浄化率が良好な温度範囲Rt内に維持して、効率よく排気ガスGを浄化できる。   That is, by utilizing the thermal expansion of the radiating exhaust gas pipe 12A and the second radiating member 12Bb, the second radiating member depends on the temperature of the radiating exhaust gas pipe 12A, in other words, depending on the temperature T of the exhaust gas G. The presence or absence of heat conduction to 12Bb can be automatically switched. As a result, the heat exhaust gas pipe 12A and the temperature Tg of the exhaust gas G passing through the heat exhaust gas pipe 12A are maintained within a temperature range Rt having a good purification rate as shown in FIG. Gas G can be purified.

なお、図6に示すように、第2放熱部材12Bbが放熱排気ガス配管12Aに当接する部分は、接触面積Acが第2放熱部材12Bbの横断面積Abよりも大きくなる形状、例えば、V字形状や半円形状に形成することで接触面の面積Acを増加させて、両者の間の熱伝導が大きくなるように構成することが、より好ましい。   As shown in FIG. 6, the portion where the second heat radiating member 12Bb contacts the heat radiating exhaust gas pipe 12A has a shape in which the contact area Ac is larger than the transverse area Ab of the second heat radiating member 12Bb, for example, a V shape. It is more preferable that the contact surface area Ac is increased by forming it in a semicircular shape so that the heat conduction between the two increases.

また、放熱排気ガス配管12A部分の放熱表面積Sを、常時ではなく、エンジン10を定格出力で連続運転して、放熱排気ガス配管12Aが予め設定した温度以上の高温になっているときに、最適放熱表面積S1になる別の構成としては、放熱排気ガス配管12Aに固定された第1放熱部材12Ba、若しくは、放熱排気ガス配管12Aが高温時に接触する第2放熱部材12Bbを、温度によって形状が変化する材料で形成する。   Further, the heat radiation surface area S of the heat radiation exhaust gas pipe 12A is optimum when the engine 10 is continuously operated at a rated output, not always, and the heat radiation exhaust gas pipe 12A is at a temperature higher than a preset temperature. As another configuration for the heat radiation surface area S1, the shape of the first heat radiation member 12Ba fixed to the heat radiation exhaust gas pipe 12A or the second heat radiation member 12Bb that the heat radiation exhaust gas pipe 12A contacts at a high temperature changes depending on the temperature. The material to be formed.

例えば、バイメタルや形状記憶合金などで、第1放熱部材12Ba、若しくは、第2放熱部材12Bbを形成し、温度が低いと、図8に示すように、バイメタルや形状記憶合金で形成した放熱部分H1が閉じて一枚となり、温度が上昇すると、図9に示すように、バイメタルや形状記憶合金で形成した放熱部分H1が開いて、二枚形状となり、放熱部分H1の表面積を2倍に増加するように構成する。   For example, when the first heat radiating member 12Ba or the second heat radiating member 12Bb is formed of a bimetal or a shape memory alloy and the temperature is low, as shown in FIG. 8, the heat radiating portion H1 formed of the bimetal or the shape memory alloy is used. When the temperature increases and the temperature rises, as shown in FIG. 9, the heat dissipating part H1 formed of bimetal or shape memory alloy is opened to form a double sheet, and the surface area of the heat dissipating part H1 is doubled. Configure as follows.

あるいは、温度が低いと、図10に示すように、放熱部分H2は互いに向かい合っていて、全体としての熱放射量が小さいが、温度が高いと、図11に示すように、放熱部分H2が曲がって、放熱部分H2の面が互いに向かい合わなくなって全体としての熱放射量が増加するように構成する。   Alternatively, when the temperature is low, as shown in FIG. 10, the heat radiating portions H2 face each other and the heat radiation amount as a whole is small, but when the temperature is high, the heat radiating portion H2 is bent as shown in FIG. Thus, the heat radiation portions H2 are configured such that the surfaces of the heat radiation portions H2 do not face each other and the amount of heat radiation as a whole increases.

これらの構成により、容易に、温度の高低によって放熱表面積S、若しくは、放熱量が大きく異なる第1放熱部材12Ba、若しくは、第2放熱部材12Bbを構成することができ、第1放熱部材12Ba、若しくは、第2放熱部材12Bbによる放熱効果が温度上昇に従って大きくなるように構成することができる。   With these configurations, the heat radiating surface area S or the first heat radiating member 12Ba or the second heat radiating member 12Bb having a greatly different heat radiating amount depending on the temperature can be easily configured. The heat radiation effect by the second heat radiation member 12Bb can be increased as the temperature rises.

上記の構成の排気ガス浄化システム1及びその放熱方法によれば、放熱表面積増加部材12Ba、12Bbの配置により、エンジン10を定格出力で連続運転しているときに、放熱排気ガス配管12A部分の放熱表面積Sが最適放熱表面積S1になるので、排気ガスGの温度Tが高温になっても、排気ガス浄化装置30に流入する排気ガスGの温度Tを予め設定された浄化率維持上限温度T2以下に維持でき、排気ガスGの浄化効率が良好な状態で排気ガスGを浄化することができる。   According to the exhaust gas purification system 1 having the above-described configuration and its heat dissipation method, the heat dissipation of the heat dissipation exhaust gas pipe 12A portion is achieved when the engine 10 is continuously operated at the rated output due to the arrangement of the heat dissipation surface area increasing members 12Ba and 12Bb. Since the surface area S becomes the optimum heat radiation surface area S1, even if the temperature T of the exhaust gas G becomes high, the temperature T of the exhaust gas G flowing into the exhaust gas purification device 30 is equal to or lower than a preset purification rate maintenance upper limit temperature T2. The exhaust gas G can be purified in a state where the exhaust gas G purification efficiency is good.

従って、SCR装置34における、エンジン10の軽負荷時においてもNOx浄化率を低下させることがなく、また、燃料消費率が良好であるエンジン10の高負荷運転時においてもNOx浄化率を低下させることがなくて、これにより燃料消費率が良好であるエンジン10の高負荷運転時においても、NOx浄化率が低下せず、燃料消費率の向上と排ガス性能の改善を両立することができる。   Therefore, in the SCR device 34, the NOx purification rate is not lowered even when the engine 10 is lightly loaded, and the NOx purification rate is lowered even during the high load operation of the engine 10 where the fuel consumption rate is good. Therefore, even when the engine 10 having a good fuel consumption rate is operated at a high load, the NOx purification rate does not decrease, and both the improvement of the fuel consumption rate and the improvement of the exhaust gas performance can be achieved.

本発明の排気ガス浄化システム及びその放熱方法によれば、ターボチャージャのタービンと選択還元型触媒等の排気ガス浄化装置の間の排気ガス配管における放熱量を適正にして排気ガスの温度を浄化率の高い温度範囲の温度にすることにより、エンジンの軽負荷時においてもNOx浄化率を低下させることがなく、また、燃料消費率が良好であるエンジンの高負荷運転時においてもNOx浄化率を低下させることがなくて、燃料消費率の向上と排ガス性能の改善の両方を両立することができるので、自動車等に搭載した内燃機関等の排気ガス浄化システム及びその放熱方法として利用できる。   According to the exhaust gas purification system and the heat dissipation method of the present invention, the heat dissipation amount in the exhaust gas piping between the turbine of the turbocharger and the exhaust gas purification device such as the selective reduction catalyst is made appropriate, and the temperature of the exhaust gas is purified. By setting the temperature within a high temperature range, the NOx purification rate is not reduced even when the engine is lightly loaded, and the NOx purification rate is lowered even during high-load operation of the engine with a good fuel consumption rate. Therefore, it is possible to achieve both improvement of the fuel consumption rate and improvement of the exhaust gas performance, so that it can be used as an exhaust gas purification system such as an internal combustion engine mounted on an automobile or the like and a heat dissipation method thereof.

1 排気ガス浄化システム
10 エンジン(内燃機関)
11 エンジン本体
12 排気ガス通路
12A 放熱排気ガス配管
12Ba 第1放熱部材(放熱表面積増加部材)
12Bb 第2放熱部材(放熱表面積増加部材)
13 ターボ式過給器
13t タービン
14 EGR通路
30 排気ガス浄化装置
31 尿素噴射ノズル
32 前段酸化触媒(前段DOC)
33 PM捕集フィルタ装置
34 尿素選択還元型NOx触媒装置(SCR装置)
35 後段酸化触媒(後段DOC)
40 排気ガス浄化制御装置
41 温度センサ
42 濃度センサ
43 差圧センサ
50 エンジン制御装置(ECU)
A 放熱排気ガス配管の断面積(m2)
C 放熱排気ガス配管を円管とした場合の周囲長さ(C2=(2πR)2=4πA)(m)
L 仮設定した配管長さ(m)
H1、H2 放熱部分
G 排気ガス
R 放熱排気ガス配管を円管とした場合の半径(m)
S エンジンの定格出力での連続運転時の放熱排気ガス配管の部分の放熱表面積
S1 最適放熱表面積
V 排気ガス体積流量(m3/s)
1 Exhaust gas purification system 10 Engine (internal combustion engine)
11 Engine body 12 Exhaust gas passage 12A Heat radiation exhaust gas pipe 12Ba First heat radiation member (heat radiation surface area increasing member)
12Bb second heat radiating member (heat radiating surface area increasing member)
13 Turbo type supercharger 13t Turbine 14 EGR passage 30 Exhaust gas purification device 31 Urea injection nozzle 32 Pre-stage oxidation catalyst (pre-stage DOC)
33 PM collection filter device 34 Urea selective reduction type NOx catalyst device (SCR device)
35 Rear-stage oxidation catalyst (second-stage DOC)
40 exhaust gas purification control device 41 temperature sensor 42 concentration sensor 43 differential pressure sensor 50 engine control device (ECU)
A Cross-sectional area of radiating exhaust gas piping (m 2 )
C Perimeter length when the heat exhaust gas pipe is a circular pipe (C 2 = (2πR) 2 = 4πA) (m)
L Temporarily set piping length (m)
H1, H2 Heat radiation part G Exhaust gas R Radius (m) when heat radiation exhaust gas pipe is a circular pipe
S Heat dissipation surface area of the exhaust heat exhaust gas piping during continuous operation at the rated output of the engine S1 Optimum heat dissipation surface area V Exhaust gas volume flow (m 3 / s)

Claims (6)

内燃機関の排気ガス通路でターボ式過給器のタービンの下流側に排気ガスを浄化する排気ガス浄化装置を配置した排気ガス浄化システムにおいて、前記タービンと前記排気ガス浄化装置との間の排気ガス通路を放熱排気ガス配管で形成し、該放熱排気ガス配管に放熱表面積増加部材を設けて、前記内燃機関を定格出力で連続運転しているときに、前記放熱排気ガス配管部分の放熱表面積が、前記排気ガス浄化装置に流入する排気ガスの温度を予め設定された浄化率維持上限温度以下にする最適放熱表面積になるように構成したことを特徴とする排気ガス浄化システム。   In an exhaust gas purification system in which an exhaust gas purification device for purifying exhaust gas is disposed downstream of a turbine of a turbocharger in an exhaust gas passage of an internal combustion engine, the exhaust gas between the turbine and the exhaust gas purification device When the internal combustion engine is continuously operated at a rated output when the passage is formed by a heat radiation exhaust gas pipe and the heat radiation exhaust gas pipe is provided with a heat radiation surface area increasing member, the heat radiation surface area of the heat radiation exhaust gas pipe portion is: An exhaust gas purification system configured to have an optimum heat radiating surface area that makes the temperature of exhaust gas flowing into the exhaust gas purification device not more than a preset purification rate maintenance upper limit temperature. 前記最適放熱表面積S1(m2)を、前記内燃機関を定格出力で運転したときに排出される排気ガス体積流量V(m3/s)を基にして、前記放熱排気ガス配管の断面積Aを30(m/s)≦V/A≦70(m/s)とすると共に、A=πR2、C=2πRとしたときに、4.5×C≦S1≦7.5×Cとして設定することを特徴とする請求項1記載の排気ガス浄化システム。 The optimum heat radiating surface area S1 (m 2 ) is determined based on the exhaust gas volume flow rate V (m 3 / s) discharged when the internal combustion engine is operated at a rated output. Is 30 (m / s) ≦ V / A ≦ 70 (m / s), and when A = πR 2 and C = 2πR, 4.5 × C ≦ S1 ≦ 7.5 × C is set. The exhaust gas purification system according to claim 1, wherein: 前記放熱表面積増加部材の一部又は全部を前記放熱排気ガス配管に固定して設けた第1放熱部材で構成したことを特徴とする請求項1又は2に記載の排気ガス浄化システム。   3. The exhaust gas purification system according to claim 1, wherein a part or all of the heat radiating surface area increasing member is configured by a first heat radiating member provided fixed to the heat radiating exhaust gas pipe. 前記放熱表面積増加部材の一部又は全部を、前記内燃機関を停止している状態では、前記放熱排気ガス配管と離間した状態になり、前記内燃機関を定格出力で連続運転している状態では、前記放熱排気ガス配管に当接している状態になる第2放熱部材で構成したことを特徴とする請求項1又は2に記載の排気ガス浄化システム。   In a state where the internal combustion engine is stopped, a part or all of the heat radiating surface area increasing member is in a state separated from the heat radiating exhaust gas pipe, and in a state where the internal combustion engine is continuously operated at a rated output, 3. The exhaust gas purification system according to claim 1, wherein the exhaust gas purification system is configured by a second heat radiating member in contact with the heat radiating exhaust gas pipe. 前記第1放熱部材若しくは前記第2放熱部材を、温度によって形状が変化する材料で形成したことを特徴とする請求項3又は4に記載の排気ガス浄化システム。   5. The exhaust gas purification system according to claim 3, wherein the first heat radiating member or the second heat radiating member is formed of a material whose shape changes with temperature. 内燃機関の排気ガス通路でターボ式過給器のタービンの下流側に排気ガスを浄化する排気ガス浄化装置を配置した排気ガス浄化システムの放熱方法において、前記タービンと前記排気ガス浄化装置との間の排気ガス通路を形成する放熱排気ガス配管の放熱表面積を、前記内燃機関を定格出力で連続運転しているときに、予め設定された最適放熱表面積にして、前記排気ガス浄化装置に流入する排気ガスの温度を予め設定された浄化率維持上限温度以下にすることを特徴とする排気ガス浄化システムの放熱方法。   In a heat dissipation method of an exhaust gas purification system in which an exhaust gas purification device for purifying exhaust gas is disposed downstream of a turbine of a turbocharger in an exhaust gas passage of an internal combustion engine, the method is provided between the turbine and the exhaust gas purification device. Exhaust gas flowing into the exhaust gas purification device by setting the heat radiating surface area of the radiating exhaust gas pipe forming the exhaust gas passage to a preset optimum heat radiating surface area when the internal combustion engine is continuously operated at a rated output A heat dissipation method for an exhaust gas purification system, wherein the temperature of the gas is set to a preset purification rate maintenance upper limit temperature or less.
JP2013106269A 2013-05-20 2013-05-20 Exhaust gas purification system and heat dissipation method thereof Active JP6197364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106269A JP6197364B2 (en) 2013-05-20 2013-05-20 Exhaust gas purification system and heat dissipation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106269A JP6197364B2 (en) 2013-05-20 2013-05-20 Exhaust gas purification system and heat dissipation method thereof

Publications (2)

Publication Number Publication Date
JP2014227860A true JP2014227860A (en) 2014-12-08
JP6197364B2 JP6197364B2 (en) 2017-09-20

Family

ID=52127956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106269A Active JP6197364B2 (en) 2013-05-20 2013-05-20 Exhaust gas purification system and heat dissipation method thereof

Country Status (1)

Country Link
JP (1) JP6197364B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112483U (en) * 1980-01-23 1981-08-31
JPH10220302A (en) * 1997-02-07 1998-08-18 Hino Motors Ltd Natural gas engine
JP2000027638A (en) * 1998-07-13 2000-01-25 Calsonic Corp Heat insulation and radiation changeover type exhaust double-pipe and exhaust device using this double-pipe
JP2005194962A (en) * 2004-01-08 2005-07-21 Toyota Motor Corp Exhaust pipe and exhaust device for internal combustion engine
JP2006125280A (en) * 2004-10-28 2006-05-18 Denso Corp Exhaust emission control device for internal combustion engine
US20120159936A1 (en) * 2010-12-27 2012-06-28 Toyota Jidosha Kabushiki Kaisha Exhaust pipe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112483U (en) * 1980-01-23 1981-08-31
JPH10220302A (en) * 1997-02-07 1998-08-18 Hino Motors Ltd Natural gas engine
JP2000027638A (en) * 1998-07-13 2000-01-25 Calsonic Corp Heat insulation and radiation changeover type exhaust double-pipe and exhaust device using this double-pipe
JP2005194962A (en) * 2004-01-08 2005-07-21 Toyota Motor Corp Exhaust pipe and exhaust device for internal combustion engine
JP2006125280A (en) * 2004-10-28 2006-05-18 Denso Corp Exhaust emission control device for internal combustion engine
US20120159936A1 (en) * 2010-12-27 2012-06-28 Toyota Jidosha Kabushiki Kaisha Exhaust pipe
JP2012137052A (en) * 2010-12-27 2012-07-19 Toyota Motor Corp Exhaust passage

Also Published As

Publication number Publication date
JP6197364B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP5763294B2 (en) Exhaust purification equipment
EP3165744B1 (en) Control device for internal combustion engine
JP2014077369A (en) Exhaust emission control system and exhaust emission control method
JP5316041B2 (en) Engine exhaust purification system
US10890090B2 (en) Engine
JP6589365B2 (en) Exhaust gas purification system
JP6851959B2 (en) engine
JP6901963B2 (en) engine
JP6197364B2 (en) Exhaust gas purification system and heat dissipation method thereof
JP7017479B2 (en) engine
JP2018040368A (en) Engine exhaust device
JP6858696B2 (en) engine
JP6817926B2 (en) engine
JP5504719B2 (en) Automotive exhaust purification system
US10794298B2 (en) Engine
JP6682972B2 (en) Exhaust gas purification device for internal combustion engine
JP6252066B2 (en) Engine exhaust system
JP2018040369A (en) Engine exhaust device
JP5858224B2 (en) Exhaust purification device regenerator
JP6508300B2 (en) Engine exhaust system
JP6964046B2 (en) engine
WO2013146462A1 (en) Exhaust gas purification system of internal combustion engine
JP2016173037A (en) Exhaust emission control system
JP2018040370A (en) Engine exhaust device
JP2020002868A (en) engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150