JP2005190964A - Metal separator for fuel cell, its manufacturing method, and fuel cell - Google Patents

Metal separator for fuel cell, its manufacturing method, and fuel cell Download PDF

Info

Publication number
JP2005190964A
JP2005190964A JP2003434450A JP2003434450A JP2005190964A JP 2005190964 A JP2005190964 A JP 2005190964A JP 2003434450 A JP2003434450 A JP 2003434450A JP 2003434450 A JP2003434450 A JP 2003434450A JP 2005190964 A JP2005190964 A JP 2005190964A
Authority
JP
Japan
Prior art keywords
mass
metal
fuel cell
separator
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003434450A
Other languages
Japanese (ja)
Inventor
Masafumi Sakata
雅史 坂田
Takeo Hisada
建男 久田
Shinobu Takagi
忍 高木
Shinichi Yagi
伸一 八木
Toru Kato
徹 加藤
Masayoshi Futo
正義 布藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003434450A priority Critical patent/JP2005190964A/en
Publication of JP2005190964A publication Critical patent/JP2005190964A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal separator capable of effectively preventing corrosion of a base body part with a thin coating of Au or the like, and having proper workability for a body part. <P>SOLUTION: This separator 10 for a fuel cell is formed of a metal material board and forms a gas passage between an electrode layer and itself, by stacking one-side plate surface on the electrode layer covering a solid polymer electrolyte membrane. The metal material board contains 30-82 mass% of Ni, 15-30 mass% of Cr, 2-4 mass% of Mo, 1-4 mass% of Cu, 0.1-3 mass% of Ti, 51.9 mass% or less (including 0 mass%) of Fe, and inevitable impurities, having a total content of 0.001-1 mass% and containing 0.0001 mass% or higher of at least either of C and S in total; and has a body alloy of not higher than an alloy remaining part wherein the total content of Ni, Cr, Mo, Cu and Ti is higher than 48.1 mass%, and a metal coating part covering the surface of the body part, formed of a metal more precious than the body alloy and having a thickness of 1-500 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池用金属セパレータとその製造方法及びそれを用いた燃料電池に関する。 The present invention relates to a metal separator for a fuel cell, a method for producing the same, and a fuel cell using the same.

特開2001−68129号公報JP 2001-68129 A 特開2000−021418号公報JP 2000-021418 A 特開平10−228914号公報JP-A-10-228914

従来、固体高分子形燃料電池、リン酸形燃料電池、固体電解質形燃料電池及び溶融炭酸塩形燃料電池等、種々の燃料電池が提案されている。これらのうち固体高分子形燃料電池は固体高分子電解質膜を使用するものであり、低温動作が可能であり、小型化及び軽量化も容易なので、燃料電池自動車等への搭載用として検討されている。具体的には、プロトンを輸送するための固体高分子電解質膜を一対の電極層により挟んで単位電池を形成するとともに、該電極層の表面に燃料ガス(水素)あるいは酸化剤ガス(空気)の流路層を形成するためのセパレータを積層配置する。該セパレータの板面には、電極層との間にガス流路を形成する凹部が形成される。また、セパレータは、単位電池の電極層から出力を取り出す導電経路を兼ねるため、全体が導電性の材料で構成される必要がある。   Conventionally, various fuel cells such as a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a solid electrolyte fuel cell, and a molten carbonate fuel cell have been proposed. Among these, solid polymer fuel cells use solid polymer electrolyte membranes, can be operated at low temperatures, and can be easily reduced in size and weight. Yes. Specifically, a unit cell is formed by sandwiching a polymer electrolyte membrane for transporting protons between a pair of electrode layers, and a fuel gas (hydrogen) or an oxidant gas (air) is formed on the surface of the electrode layer. A separator for forming the flow path layer is laminated and disposed. On the plate surface of the separator, a recess that forms a gas flow path is formed between the separator and the electrode layer. Further, since the separator also serves as a conductive path for taking out the output from the electrode layer of the unit cell, the separator needs to be entirely made of a conductive material.

従来、該セパレータの材質としては、カーボンを主体とするものが用いられてきた。上記のごとく、燃料電池用のセパレータは、ガス流路形成用に複雑な凹凸を板面に形成する必要がある。従って、その形状加工を固体カーボン素材からの削り出しで行なうのは、製造効率を考慮すれば全く現実的でない。従って、従来は、カーボン粉末に熱可塑性樹脂などの高分子材料からなるバインダーを配合し、射出成形等で望みの形状を得るようにしていた。しかし、このようにして得られるカーボン製のセパレータは、絶縁性のバインダーを相当量含有するため導電性に乏しく、内部抵抗が増大しやすいため、多数(例えば100個以上)の単位電池を積層して用いる場合には、電流取出効率が著しく低下する問題がある。また、燃料電池の小型化薄型化を図る場合、セパレータの厚さもなるべく小さくすることが望ましいが、上記のカーボンセパレータは強度に乏しく、1〜2mm程度が厚さ縮小の限界であった。   Conventionally, as the material of the separator, a material mainly composed of carbon has been used. As described above, it is necessary for the separator for a fuel cell to form complex irregularities on the plate surface for forming a gas flow path. Therefore, it is not practical to perform the shape processing by cutting out from the solid carbon material in consideration of manufacturing efficiency. Therefore, conventionally, a binder made of a polymer material such as a thermoplastic resin is blended with carbon powder to obtain a desired shape by injection molding or the like. However, since the carbon separator obtained in this way contains a considerable amount of an insulating binder, it has poor conductivity and the internal resistance tends to increase, so a large number (for example, 100 or more) unit cells are laminated. The current extraction efficiency is significantly reduced. Further, when the fuel cell is reduced in size and thickness, it is desirable to reduce the thickness of the separator as much as possible. However, the carbon separator described above has poor strength, and the thickness reduction is about 1 to 2 mm.

そこで、加工性と導電性及び強度を両立させるために、セパレータを金属にて形成する燃料電池構造が種々提案されている(例えば特許文献1〜3)。固体高分子電解質膜を用いる燃料電池においては、プロトン導電性を示す固体高分子電解質として、スルホン酸基など強酸性を示す官能基を有した高分子材料が使用されており、高分子材料に含浸されている水分とともに酸性成分が染み出して、セパレータを腐食する問題がある。カーボンセパレータは耐食性の観点においては非常に良好であるが、上記のごとく導電性や強度の点で問題がある。   Therefore, various fuel cell structures in which the separator is made of metal have been proposed in order to achieve both workability, conductivity, and strength (for example, Patent Documents 1 to 3). In a fuel cell using a solid polymer electrolyte membrane, a polymer material having a functional group exhibiting strong acidity such as a sulfonic acid group is used as a solid polymer electrolyte exhibiting proton conductivity, and the polymer material is impregnated. There is a problem that an acidic component oozes out together with the moisture, and corrodes the separator. Carbon separators are very good in terms of corrosion resistance, but have problems in terms of conductivity and strength as described above.

他方、特許文献1〜3には、導電性や強度の観点で、より良好な金属セパレータが開示されている。具体的には、SUS316等のステンレス鋼板材を本体部として、該本体部にさらにAu等の貴金属メッキが施されてなる。ステンレス鋼は、Cr、Ni及びMoの添加により不動態形成を促進して耐食性を付与したFe系材料であるが、貴金属メッキが必要となる理由は2つある。まず、ステンレス鋼は、不動態形成により本来的には一般のFe系材料より良好な耐食性を有するが、燃料電池特有の強酸性環境、特に硫酸酸性環境での耐食性が必ずしも十分でなく、ステンレス鋼単独でセパレータを構成すると、腐食進行に伴い内部抵抗が経時的に増加しやすい問題がある。この場合、セパレータとセル本体との接触抵抗増加のほか、溶出した金属の拡散による固体高分子電解質膜の劣化も内部抵抗増加の要因となる。そこで、貴金属メッキ膜の形成により耐食性を補うのである。他方、ステンレス鋼の表面に形成される不動態被膜は酸化物を主体とする絶縁性の被膜であり、セパレータの耐食性は向上させる半面、セル本体との接触抵抗ひいては電池の内部抵抗を増加させる要因ともなる。しかし、導電性が高く、かつ酸化劣化しにくい貴金属メッキ層を形成すれば、セパレータとセル本体との接触抵抗を軽減することができる。   On the other hand, Patent Documents 1 to 3 disclose better metal separators in terms of conductivity and strength. Specifically, a stainless steel plate material such as SUS316 is used as a main body, and the main body is further plated with a noble metal such as Au. Stainless steel is an Fe-based material that imparts corrosion resistance by promoting the formation of passive state by adding Cr, Ni, and Mo. There are two reasons why noble metal plating is required. First, stainless steel has better corrosion resistance than ordinary Fe-based materials by virtue of passive formation, but the corrosion resistance in a strongly acidic environment unique to fuel cells, particularly sulfuric acid environment, is not always sufficient. If the separator is constituted alone, there is a problem that the internal resistance tends to increase with time as corrosion progresses. In this case, in addition to an increase in contact resistance between the separator and the cell body, deterioration of the solid polymer electrolyte membrane due to diffusion of the eluted metal also causes an increase in internal resistance. Therefore, the corrosion resistance is compensated by forming a noble metal plating film. On the other hand, the passive film formed on the surface of stainless steel is an insulating film mainly composed of oxide, which improves the corrosion resistance of the separator, while increasing the contact resistance with the cell body and thus the internal resistance of the battery. It also becomes. However, the contact resistance between the separator and the cell body can be reduced by forming a noble metal plating layer that is highly conductive and hardly oxidatively deteriorates.

ところで、燃料電池は、将来的にはガソリン車を置き換える燃料電池自動車用としての大きな潜在需要が見込まれているが、各構成部品の性能及び耐久性の改善のほか、製造コストの削減も本格的な普及の鍵を握っている。金属セパレータの耐食性と接触抵抗とをともに向上させる最も簡便な方法は、セパレータ表面に形成する貴金属メッキ膜の厚さを増加させることである。しかし、製造コスト削減を前提とすれば貴金属メッキ膜をむやみに厚くできないことは自明であり、Auなどの高価な材料を採用する場合には、貴金属メッキ膜の厚さはむしろ可及的に小さくしたい要請がある(例えば、厚くとも500nmまで)。従って、貴金属メッキ膜を最小限の厚さに留めつつ、セパレータとして必要な耐食性は十分に確保しなければならないため、本体部に対しても一定以上の耐食性を有した材質を採用することが必須である。   By the way, fuel cells are expected to have great potential demand for fuel cell vehicles that will replace gasoline vehicles in the future. However, in addition to improving the performance and durability of each component, production costs will also be fully reduced. Is the key to a widespread use. The simplest method for improving both the corrosion resistance and the contact resistance of the metal separator is to increase the thickness of the noble metal plating film formed on the separator surface. However, it is self-evident that the precious metal plating film cannot be made excessively thick if the manufacturing cost is reduced. When using an expensive material such as Au, the thickness of the precious metal plating film is rather small as much as possible. There is a request to do (for example, up to 500 nm). Therefore, it is essential to use a material with a certain level of corrosion resistance for the main body because the corrosion resistance necessary for the separator must be sufficiently secured while keeping the precious metal plating film to a minimum thickness. It is.

ところが、特許文献1〜3にて使用されているSUS316等のステンレス鋼には、以下のような欠点がある。
(1)貴金属メッキ層(金属被覆)を薄く形成した場合、図12に示すように、メッキ層が不連続(例えばアイランド状)となって本体部の露出を生じやすくなる。また、ある程度メッキ層を厚く形成した場合も、図13に示すごとく、エッチピットや異物残留等のさまざまな要因により、メッキ層にはピンホールが生じやすく、該ピンホール部においても本体部の露出部を生じる。本体部がステンレス鋼の場合、硫酸酸性雰囲気下での不動態形成が不十分なため、露出部が形成されると、該露出部での本体部の腐食進行が避け難くなる。
However, stainless steel such as SUS316 used in Patent Documents 1 to 3 has the following drawbacks.
(1) When the noble metal plating layer (metal coating) is thinly formed, the plating layer becomes discontinuous (for example, in an island shape), and the main body is likely to be exposed as shown in FIG. In addition, even when the plating layer is formed to be thick to some extent, as shown in FIG. 13, pinholes are likely to be generated in the plating layer due to various factors such as etch pits and residual foreign matter, and the body portion is exposed even in the pinhole portion. Produce part. In the case where the main body is made of stainless steel, the formation of a passive state under an acidic sulfuric acid atmosphere is insufficient. Therefore, when the exposed portion is formed, it is difficult to avoid the corrosion of the main body at the exposed portion.

(2)(1)と関連するが、セパレータには通常、ガス流路を形成するための凹部が金型プレス等の塑性加工により形成される。この場合、図14に示すように、本体部に凹部形成の塑性加工を行なった後、メッキ層を形成する方法と、図15に示すように、本体部にメッキ層を形成した後、メッキ層とともに凹部形成の加工を行なう方法との2通りが考えられる。図15の工程では、加工時点で既にメッキ層が形成されているため、凹部外側のコーナー(あるいはエッジ)部ではメッキ層に強い引張曲げ応力が作用し、メッキ層にクラックを生じて本体部が露出しやすい。他方、図14の工程では、メッキ前に凹部が形成されるため、凹部内側のコーナー(あるいはエッジ)部において本体部の表面に異物や汚れが残留しやすく、メッキ層のつき回りが悪化して本体部の露出が生じやすくなる。いずれの場合も、本体部がステンレス鋼の場合、図16に示すように、露出部での本体部の腐食進行が避け難くなる。
(3)また、一般的な組成のステンレス鋼は加工性に難があり、薄板に深い凹部を形成する強加工を行なうと、図15に示すように、凹部のコーナー(あるいはエッジ)部にクラックが発生しやすく、該クラックに基づく本体部の露出も問題になりやすい。
(4)上記ステンレス鋼の耐食性は、例えばCrやMoの添加量を増加させればより向上するが、これらの元素を過度に増加させた場合、溝加工性が更に難しくなり、加工コストもアップする。また、不動態被膜が過度に強固となり、メッキ被膜の密着性低下にもつながる。
(2) Although related to (1), the separator is usually formed with a recess for forming a gas flow path by plastic working such as a die press. In this case, as shown in FIG. 14, a method of forming a plating layer after performing plastic forming for forming a recess in the main body, and a plating layer after forming a plating layer on the main body as shown in FIG. 15. At the same time, two methods are conceivable: a method of forming recesses. In the process of FIG. 15, since a plating layer has already been formed at the time of processing, a strong tensile bending stress acts on the plating layer at the corner (or edge) portion outside the recess, causing cracks in the plating layer and the main body portion Easy to be exposed. On the other hand, in the process of FIG. 14, since the recess is formed before plating, foreign matter and dirt are likely to remain on the surface of the main body at the corner (or edge) inside the recess, and the contact of the plating layer deteriorates. Exposure of the main body is likely to occur. In either case, when the main body is made of stainless steel, it is difficult to avoid the progress of corrosion of the main body at the exposed portion, as shown in FIG.
(3) In addition, stainless steel with a general composition has difficulty in workability, and when strong processing is performed to form deep recesses in a thin plate, cracks are formed at the corners (or edges) of the recesses as shown in FIG. Is likely to occur, and exposure of the main body based on the cracks is likely to be a problem.
(4) The corrosion resistance of the stainless steel is improved by increasing the amount of Cr and Mo, for example. However, if these elements are excessively increased, the groove workability becomes more difficult and the processing cost also increases. To do. In addition, the passive film becomes excessively strong, leading to a decrease in the adhesion of the plating film.

本発明の課題は、Au等の被覆厚さを小さくしても下地となる本体部の腐食を効果的に防止でき、しかも本体部の加工性が良好で製造が容易な燃料電池用金属セパレータとその製造方法、及びそれを用いた燃料電池を提供することにある。   An object of the present invention is to provide a metal separator for a fuel cell that can effectively prevent corrosion of the main body portion as a base even if the coating thickness of Au or the like is reduced, and has good workability of the main body portion and is easy to manufacture. An object of the present invention is to provide a manufacturing method thereof and a fuel cell using the same.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の燃料電池用金属セパレータは、
金属材料板材により形成され、燃料電池の固体高分子電解質膜を覆う電極層上に片側の板面を積層することにより、電極層との間にガス流路を形成するとともに、
金属材料板材が、
30質量%以上82質量%以下のNiと、
15質量%以上30質量%以下のCrと、
2質量%以上4質量%以下のMoと、
1質量%以上4質量%以下のCuと、
0.1質量%以上3質量%以下のTiと、
51.9質量%以下(ゼロ質量%含む)のFeと、
合計含有量が0.001質量%以上1質量%以下であり、かつ、C及びSの少なくともいずれかを合計にて0.0001%以上含む不可避不純物と、を含有し、かつ、Ni、Cr、Mo、Cu及びTiの合計含有量が48.1質量%以上である本体合金からなる本体部と、
該本体部の表面を覆うとともに本体合金よりも電気化学的に貴な金属からなる厚さ1nm以上500nm以下の金属被覆部とを有することを特徴とする。
In order to solve the above problems, the metal separator for a fuel cell of the present invention comprises:
By laminating a plate surface on one side on an electrode layer formed of a metal material plate and covering the solid polymer electrolyte membrane of the fuel cell, a gas flow path is formed between the electrode layer,
Metal material plate
30 mass% or more and 82 mass% or less of Ni;
15 mass% or more and 30 mass% or less of Cr,
2 to 4% by mass of Mo,
1 mass% or more and 4 mass% or less of Cu,
0.1 mass% or more and 3 mass% or less of Ti,
Fe of 51.9% by mass or less (including zero% by mass);
A total content of 0.001% by mass or more and 1% by mass or less, and unavoidable impurities including at least one of C and S in total of 0.0001% or more, and Ni, Cr, A main body made of a main alloy having a total content of Mo, Cu and Ti of 48.1% by mass or more;
It has a metal coating portion that covers the surface of the main body and has a thickness of 1 nm to 500 nm made of a metal that is electrochemically more noble than the main alloy.

また、本発明の燃料電池は、
固体高分子電解質膜と、その第一主表面を覆う第一電極層と、同じく第二主表面を覆う第二電極層と、上記本発明の燃料電池用金属セパレータとして第一電極層上に積層されるとともに、凹部により燃料ガス用のガス流路層を形成する第一セパレータと、上記本発明の燃料電池用金属セパレータとして第二電極層上に積層されるとともに、凹部により酸化剤ガス用のガス流路層を形成する第二セパレータと、
を有することを特徴とする。
The fuel cell of the present invention is
A solid polymer electrolyte membrane, a first electrode layer covering the first main surface, a second electrode layer also covering the second main surface, and the metal separator for a fuel cell according to the present invention laminated on the first electrode layer In addition, the first separator for forming the gas flow path layer for the fuel gas by the recess and the metal separator for the fuel cell of the present invention are stacked on the second electrode layer, and the recess for the oxidant gas. A second separator forming a gas flow path layer;
It is characterized by having.

さらに、本発明の燃料電池用金属セパレータの製造方法は、上記本発明の燃料電池用金属セパレータの製造方法であって、
本体合金からなる本体合金板材により本体部を形成する本体部形成工程と、
本体合金板材の表面に金属被覆部を形成する被覆工程とを有することを特徴とする。
Furthermore, the method for producing a metal separator for a fuel cell of the present invention is a method for producing the metal separator for a fuel cell of the present invention,
A body part forming step of forming a body part from a body alloy plate made of a body alloy;
And a coating step of forming a metal coating portion on the surface of the main body alloy sheet.

本発明の燃料電池用金属セパレータは、本体部の組成として、上記組成範囲のCr及びMoに加え、Ni含有量が30質量%以上に高められて、さらに上記組成範囲のCuとTiとを含有する。これにより、本体部の耐食性が大幅に高められ、金属被覆の厚さを500nm以下に留めらることにより、例えば図12、図14及び図15のような露出部が形成されたり、あるいは図13のようなピンホールが形成されている場合においても、露出表面からの腐食による本体合金の溶出等が生じにくくなり、ひいては燃料電池に組み込んだときの、セパレータ腐食進行による、電池内部抵抗の経時的な増加を効果的に抑制できる。また、上記本体合金は、耐食性が良好であり、薄い金属被覆の形成によりセル本体との接触抵抗を十分に軽減できる。   The metal separator for a fuel cell according to the present invention includes, as the composition of the main body, in addition to Cr and Mo in the above composition range, the Ni content is increased to 30% by mass or more, and further contains Cu and Ti in the above composition range. To do. Thereby, the corrosion resistance of the main body is greatly enhanced, and the exposed portion as shown in FIGS. 12, 14 and 15 is formed, for example, by keeping the thickness of the metal coating to 500 nm or less, or FIG. Even when pinholes such as these are formed, elution of the main body alloy due to corrosion from the exposed surface is less likely to occur, and as a result, the battery internal resistance over time due to the progress of separator corrosion when incorporated in a fuel cell Increase can be effectively suppressed. Moreover, the said main body alloy has favorable corrosion resistance, and contact resistance with a cell main body can fully be reduced by formation of a thin metal coating.

また、本体合金の必須成分として上記組成範囲のCuを添加することにより、本体部の耐食性だけでなく、必要なセパレータ形状に加工する際の加工性(特に冷間加工性)が大幅に向上する。その結果、加工時において本体部にクラックが発生しにくくなり、ひいてはクラックにより露出した本体部の腐食進行や、ガス流路にクラックが連通することによるガスの流出といった不具合を生じにくい。   Moreover, by adding Cu in the above composition range as an essential component of the main alloy, not only the corrosion resistance of the main body but also the workability (particularly cold workability) when processing into the required separator shape is greatly improved. . As a result, cracks are unlikely to occur in the main body during processing, and as a result, problems such as the progress of corrosion of the main body exposed by the cracks and the outflow of gas due to the cracks communicating with the gas flow path are unlikely to occur.

ところで、本体合金は、上記のごとく耐食性及び加工性付与の基本元素として、30質量%以上82質量%以下の比較的多量のNiを含有する。この場合、精錬により直接得られる単体のNi金属のほか、フェロニッケルやNiを主体とするスクラップなどが、Ni系原料として使用される。これらのNi系原料には、SやCなどの不純物が常に含有されており、これを用いて製造される本体合金もS及びCの少なくともいずれかを不可避不純物として含有することとなる。Ni系原料にS及びCが不純物として含有されている要因は種々あるが、一つには代表的なNi精錬法であるマット電解法が、Ni硫化鉱を原料として使用していること、他方、炭素還元法で製造されるフェロニッケルや、ニッケルカルボニル化合物を原料として使用するモンドニッケルにはCが比較的多く含有されていることなどが主なものである。また、ニッケルは比較的高価な金属なので、スクラップの再利用がほぼ例外なく行なわれているが、スクラップ中のNi系原料の由来は雑多であり、CとSとが混在することはもとより、Cの絶対含有量も多くなる傾向にある。   By the way, the main body alloy contains a relatively large amount of Ni of 30% by mass or more and 82% by mass or less as a basic element for imparting corrosion resistance and workability as described above. In this case, in addition to a single Ni metal obtained directly by refining, ferronickel and scraps mainly composed of Ni are used as Ni-based raw materials. These Ni-based raw materials always contain impurities such as S and C, and the main body alloy manufactured using these Ni-based raw materials also contains at least one of S and C as an inevitable impurity. There are various factors in which S and C are contained as impurities in the Ni-based raw material. One of them is that the mat electrolysis method, which is a typical Ni refining method, uses Ni sulfide ore as a raw material. In addition, ferronickel produced by the carbon reduction method and mondo nickel using a nickel carbonyl compound as a raw material mainly contain a relatively large amount of C. In addition, since nickel is a relatively expensive metal, scrap reuse is almost without exception. However, the origin of Ni-based raw materials in the scrap is miscellaneous, and C and S are mixed and C There is also a tendency for the absolute content of to increase.

このようなNi系原料を用いて本体合金を溶製する場合は、溶解と並行して酸素吹き込み等による脱炭や脱硫が行なわれるが、該処理にてC及びSを完全に除去することはもちろん不可能であり、C及びSの少なくともいずれかが合計にて0.0001質量%以上、不可避不純物として残留する。不可避不純物としてのC残留量は、種々の要因により変動はあるが、一般には0.001質量%以上0.05質量%以下(多くの場合、質量0.005%以上0.02質量%以下)の範囲に収まるものとなり、同様に、不可避不純物としてのS残留量は、0.0001質量%以上0.015質量%以下(多くの場合、0.0005質量%以上0.005質量%以下)の範囲に収まるものとなる。   When melting the main body alloy using such a Ni-based raw material, decarburization or desulfurization by oxygen blowing or the like is performed in parallel with melting, but C and S are completely removed by the treatment. Of course, this is impossible, and at least one of C and S remains as an inevitable impurity in a total of 0.0001% by mass or more. The amount of residual C as an inevitable impurity varies depending on various factors, but generally 0.001% to 0.05% by mass (in many cases, 0.005% to 0.02% by mass) Similarly, the residual amount of S as an inevitable impurity is 0.0001% by mass or more and 0.015% by mass or less (in many cases, 0.0005% by mass or more and 0.005% by mass or less). It will be within the range.

本発明において採用する本体合金においては、Cの残留により次のような弊害を生ずる。すなわち、本体合金は、耐食性付与のため15質量%以上30質量%以下のCrを含有しているが、熱間圧延や焼鈍などの際に、特定温度域(例えば500℃以上900℃以下)にて保持したり、あるいは該温度域を徐冷通過させたりすると、Cr炭化物が粒界に析出することがある。このようなCr炭化物が粒界析出すると、粒界近傍のCrは枯渇して耐粒界腐食性が著しく低下することにつながる。一方、Sは本体合金の粒界に偏析しやすく、熱間加工性及び耐食性を低下させる弊害を生ずる。   In the main body alloy employed in the present invention, the following adverse effects are caused by the residual C. That is, the main body alloy contains 15% by mass or more and 30% by mass or less of Cr for imparting corrosion resistance, but in a specific temperature range (for example, 500 ° C. or more and 900 ° C. or less) during hot rolling or annealing. If this is maintained, or if the temperature range is gradually cooled, Cr carbide may precipitate at the grain boundaries. When such Cr carbide precipitates at the grain boundary, Cr near the grain boundary is depleted and the intergranular corrosion resistance is significantly lowered. On the other hand, S is easily segregated at the grain boundaries of the main alloy, causing a problem of reducing hot workability and corrosion resistance.

そこで、本発明においては、本体合金中に残留するCないしSによる上記の弊害を抑制するために、0.1質量%以上3質量%以下のTiを含有させる。TiはCrよりも炭化物をより形成しやすく、かつ合金の結晶粒内に炭化物を分散形成する傾向がある。その結果、適量のTiの添加により、Cr炭化物の粒界析出ひいては粒界部でのCrの枯渇が効果的に抑制され、耐粒界腐食性を大幅に高めることができる。また、Tiの添加によりSの粒界偏析も軽減され、熱間加工性及び耐食性が向上する。また、Cr炭化物は熱間加工時に粒界析出することもあり得、これが熱間加工時の粒界割れを助長する可能性もある。しかし、Ti添加によりこのようなCr炭化物の粒界析出が抑制されることで、本体合金の熱間加工性を一層向上することができる。上記の効果は、本体合金の板材を熱間圧延により製造する際に特に顕著に発揮される。   Therefore, in the present invention, in order to suppress the above-described adverse effects due to C or S remaining in the main alloy, 0.1 mass% or more and 3 mass% or less of Ti is contained. Ti tends to form carbides more easily than Cr, and tends to form carbides dispersed in the crystal grains of the alloy. As a result, the addition of an appropriate amount of Ti can effectively suppress the precipitation of Cr carbide at the grain boundaries and thus the depletion of Cr at the grain boundary portions, and can greatly enhance the intergranular corrosion resistance. Moreover, the addition of Ti also reduces S grain boundary segregation, thereby improving hot workability and corrosion resistance. In addition, Cr carbide may precipitate at grain boundaries during hot working, which may promote grain boundary cracking during hot working. However, the addition of Ti suppresses such grain boundary precipitation of Cr carbide, thereby further improving the hot workability of the main body alloy. The above-described effects are particularly prominent when the main alloy plate is manufactured by hot rolling.

以下、本発明における組成及び組成以外の数値限定要件について、その臨界的意味につき説明する。本体合金の組成限定理由は、以下の通りである。
(1)Ni:30質量%以上82質量%以下
Ni含有量が30質量%未満では本体部の耐食性、特に強酸性雰囲気下での耐食性を十分に確保できない。他方、Ni含有量が82質量%を超えると、他の必須元素の必要な添加量を確保できなくなり、本体部に耐食性や加工性を十分に付与できなくなる。Ni含有量は、より望ましくは30質量%以上60質量%以下とするのがよい。
(2)Cr:15質量%以上30質量%以下
Cr含有量が15質量%未満では本体部の耐食性、特に強酸性雰囲気下での耐食性を十分に確保できない。他方、Cr含有量が30質量%を超えると、溝加工性能が悪くなる。Cr含有量は、より望ましくは15質量%以上25質量%以下とするのがよい。
Hereinafter, the critical meaning of the composition and numerical limitation requirements other than the composition in the present invention will be described. The reason for limiting the composition of the main alloy is as follows.
(1) Ni: 30% by mass or more and 82% by mass or less If the Ni content is less than 30% by mass, the corrosion resistance of the main body, particularly corrosion resistance in a strongly acidic atmosphere cannot be secured sufficiently. On the other hand, if the Ni content exceeds 82% by mass, the necessary addition amount of other essential elements cannot be secured, and sufficient corrosion resistance and workability cannot be imparted to the main body. The Ni content is more preferably 30% by mass or more and 60% by mass or less.
(2) Cr: 15% by mass or more and 30% by mass or less If the Cr content is less than 15% by mass, the corrosion resistance of the main body, particularly corrosion resistance in a strongly acidic atmosphere cannot be secured sufficiently. On the other hand, when the Cr content exceeds 30% by mass, the groove processing performance deteriorates. The Cr content is more preferably 15% by mass or more and 25% by mass or less.

(3)Mo:2質量%以上4質量%以下
Mo含有量が2質量%未満では本体部の耐食性、特に強酸性雰囲気下での耐食性を十分に確保できない。他方、4質量%を超えるMoを添加しても耐食性向上の効果が飽和するとともに、高価な元素のため製造コストの高騰を招く。また溝加工性も悪くなる。Mo含有量は、より望ましくは2質量%以上3質量%以下とするのがよい。
(3) Mo: 2% by mass or more and 4% by mass or less If the Mo content is less than 2% by mass, the corrosion resistance of the main body, particularly corrosion resistance in a strongly acidic atmosphere cannot be secured sufficiently. On the other hand, even if Mo exceeding 4 mass% is added, the effect of improving the corrosion resistance is saturated and the manufacturing cost is increased due to the expensive elements. Further, the groove workability is also deteriorated. The Mo content is more preferably 2% by mass or more and 3% by mass or less.

(4)Cu:1質量%以上4質量%以下
Cu含有量が1質量%未満になると材料の加工性が悪化し、例えば加工時に本体部にクラックを生じやすくなる。また、Cuの添加は耐食性向上にも効果があるが、含有量が1質量%未満では顕著な効果が期待できない。他方、4質量%を超えるCuを添加しても加工性改善の効果が飽和するとともに、逆に耐食性は低下する。Cu含有量は、より望ましくは1質量%以上3質量%以下とするのがよい。CuをMoと共添加すると、それら成分の相乗効果により耐食性をさらに向上できる。
(4) Cu: 1% by mass or more and 4% by mass or less When the Cu content is less than 1% by mass, the workability of the material deteriorates, and for example, cracks are likely to occur in the main body during processing. Addition of Cu is also effective for improving corrosion resistance, but a significant effect cannot be expected when the content is less than 1% by mass. On the other hand, the addition of Cu exceeding 4% by mass saturates the effect of improving workability and conversely reduces the corrosion resistance. The Cu content is more preferably 1% by mass or more and 3% by mass or less. When Cu is added together with Mo, the corrosion resistance can be further improved by the synergistic effect of these components.

(5)Ti:0.1質量%以上3質量%以下
Ti含有量が0.1質量%未満になると、CないしSによる悪影響を抑制する効果が薄れ、材料の耐粒界腐食性や熱間加工性が悪化することにつながる。他方、3質量%を超えるTiを添加すると、TiNi系の金属間化合物が多量に形成され、冷間加工性の低下を招くことにつながり、例えば後述のように、ガス流路となる凹部を冷間プレス加工にて形成した際にクラックの発生等を招くことにつながる。Ti含有量は、より望ましくは0.6質量%以上1.2質量%以下とするのがよい。
(5) Ti: 0.1% by mass or more and 3% by mass or less When the Ti content is less than 0.1% by mass, the effect of suppressing adverse effects due to C or S is weakened, and the intergranular corrosion resistance and hot of the material This leads to deterioration of workability. On the other hand, addition of Ti exceeding 3% by mass results in the formation of a large amount of TiNi-based intermetallic compounds, leading to a decrease in cold workability. For example, as described later, the recesses serving as gas channels are cooled. This leads to the occurrence of cracks and the like when formed by hot pressing. The Ti content is more preferably 0.6% by mass or more and 1.2% by mass or less.

(6)Fe:51.9質量%以下(ゼロ質量%を含む)
上記5元素(以下、必須5元素という)の残部を構成する元素としてFeを採用すると、該必須5元素の含有量が上記の範囲内に確保されている限り、耐食性と加工性との双方を極度に損ねることなく、材料組成を安価なFeによって希釈することができ、材料コストの削減に寄与する。ただし、例えば上記必須5元素のみで材料を構成する場合や、後述のような副元素をこれに配合した組成を採用する場合など、本体合金の組成からFeの含有を排除することも可能である。
(6) Fe: 51.9 mass% or less (including zero mass%)
When Fe is adopted as the element constituting the balance of the above five elements (hereinafter referred to as essential five elements), as long as the content of the essential five elements is ensured within the above range, both corrosion resistance and workability are achieved. It is possible to dilute the material composition with cheap Fe without significantly impairing it, which contributes to the reduction of the material cost. However, it is also possible to exclude the inclusion of Fe from the composition of the main alloy, for example, when the material is composed of only the five essential elements described above, or when a composition in which subelements as described below are blended is adopted. .

(7)Mn:10質量%以下(ゼロ質量%含む)
Feと同様の合金希釈成分としてMnを10質量%程度まで添加することが可能である。より好ましくはMnの添加量は2質量%以下である。ただし、Mn添加量が10質量%を超えると、本体合金の耐食性の劣化、あるいは加工性の悪化といった不具合につながる。
(7) Mn: 10 mass% or less (including zero mass%)
It is possible to add up to about 10% by mass of Mn as an alloy dilution component similar to Fe. More preferably, the amount of Mn added is 2% by mass or less. However, if the amount of Mn added exceeds 10% by mass, it leads to problems such as deterioration of the corrosion resistance of the main body alloy or deterioration of workability.

必須5元素の合計含有量は、各々の下限値を合わせた48.1質量%が下限値となる。他方、上限値は、不可避不純物を除いた合金残部の全体にまで拡張できる。不可避不純物は、本体合金の性能確保上、それらの合計含有量の上限は1質量%に定める。また、経済性の観点から、不可避不純物の合計含有量の下限は0.001質量%であり、必須5元素の合計含有量は、100質量%から不可避不純物の合計含有量の下限値を差し引いた99.999質量%まで可能である。   The total content of the five essential elements is 48.1% by mass, which is the sum of the lower limit values, and the lower limit value. On the other hand, the upper limit value can be extended to the entire remaining alloy part excluding inevitable impurities. The upper limit of the total content of inevitable impurities is set to 1% by mass in order to ensure the performance of the main alloy. From the economical viewpoint, the lower limit of the total content of inevitable impurities is 0.001% by mass, and the total content of the five essential elements is 100% by mass minus the lower limit of the total content of inevitable impurities. Up to 99.999 mass% is possible.

また、Ni、Cr、Mo、Cu、Ti、Fe及びMnの合計含有量が95質量%未満では、本体合金の耐食性の劣化や、加工性の悪化を招くことにつながる場合がある。なお、本体合金には、必須5元素以外の副成分として、さらなる耐食性向上を図るためNbないしTaを添加することもできる。ただし、効果飽和のため、その添加量の上限値を2質量%に定めることが望ましい。また、添加量が0.1質量%未満では、NbないしTaを敢えて添加することによる効果の顕著性がなくなる。   Moreover, if the total content of Ni, Cr, Mo, Cu, Ti, Fe and Mn is less than 95% by mass, the corrosion resistance of the main alloy may be deteriorated or the workability may be deteriorated. In addition, Nb thru | or Ta can also be added to a main body alloy as an auxiliary component other than five essential elements in order to further improve corrosion resistance. However, in order to saturate the effect, it is desirable to set the upper limit of the amount added to 2 mass%. Further, when the addition amount is less than 0.1% by mass, the remarkable effect of adding Nb or Ta is lost.

一方、積極添加される上記成分以外にも、一定量までであれば、以下のような不可避不純物が合金に含有されていても問題はない(既に説明済みのCとSとを除いてある)。以下、主要な不純物元素の許容上限値は以下の通りである。
(A)P:0.05質量%以下
Pが上記許容上限値を超えて含有されていると、本体合金の加工性が悪化しやすくなる。
(B)O:0.08質量%以下
Oが上記許容上限値を超えて含有されていると、本体合金の加工性が悪化しやすくなる。
(C)Al:0.2質量%以下、Si:0.5質量%以下
AlないしSiが上記許容上限値を超えて含有されていると、本体合金の加工性が悪化しやすくなるほか、不動態被膜の形成が不均一となり、耐食性も悪影響を及ぼす場合がある。
On the other hand, there is no problem even if the following inevitable impurities are contained in the alloy as long as it is up to a certain amount in addition to the above-mentioned components that are positively added (excluding already explained C and S). . Hereinafter, the allowable upper limit values of main impurity elements are as follows.
(A) P: 0.05 mass% or less When P exceeds the allowable upper limit, the workability of the main body alloy is likely to deteriorate.
(B) O: 0.08 mass% or less When O is contained exceeding the allowable upper limit, the workability of the main body alloy is likely to deteriorate.
(C) Al: 0.2% by mass or less, Si: 0.5% by mass or less If Al or Si is contained in excess of the allowable upper limit, the workability of the main body alloy is likely to be deteriorated. The formation of the dynamic film becomes non-uniform and the corrosion resistance may be adversely affected.

金属被覆部は、例えばAu、Ag、Pt、Ru及びPdのいずれかを主成分(50質量%以上)に構成することができる。Au、Ag、Pt、Ru及びPdはいずれも導電性と耐食性の双方に優れ、かつ、メッキ(特に、電解メッキあるいは無電解メッキなどの化学メッキ法)や、蒸着、スパッタリングあるいはイオンプレーティング(特に、プラズマを用いた物理的方法)などの気相成膜法による被覆形成も容易である。金属被覆部の厚さが1nm未満になると、金属被覆部による接触抵抗低減効果あるいは耐食性改善効果が不十分となる。他方、金属被覆部を、500nmを超える厚さに形成することは材料コストの高騰につながる。   The metal coating part can be composed of, for example, any one of Au, Ag, Pt, Ru, and Pd as a main component (50% by mass or more). Au, Ag, Pt, Ru and Pd are all excellent in conductivity and corrosion resistance, and are plated (especially chemical plating methods such as electrolytic plating or electroless plating), vapor deposition, sputtering or ion plating (especially Further, it is easy to form a coating by a vapor phase film forming method such as a physical method using plasma. When the thickness of the metal coating portion is less than 1 nm, the contact resistance reduction effect or the corrosion resistance improvement effect by the metal coating portion becomes insufficient. On the other hand, forming the metal cover to a thickness exceeding 500 nm leads to a rise in material cost.

本体合金として上記本発明特有の組成を採用することにより、被覆の下地をなす本体部の耐食性自体が大幅に向上するので、金属被覆部の厚さを、5nm以上50nm以下、さらには5nm以上20nm以下と小さくしても、燃料電池用金属セパレータとして必要な耐食性は十分確保でき、かつ、セル本体との接触抵抗も十分に低減できる。この場合、金属被覆部は、図12に示すごとく、本体部の主表面を部分的に露出させる形態で被覆するものとなっていてもよい。当然、金属被覆部の厚さをこのように小さくできることで、製造コストの大幅な削減を図ることができる。   By adopting the composition specific to the present invention as the main body alloy, the corrosion resistance itself of the main body part that forms the base of the coating is greatly improved. Even if it is small, the corrosion resistance required as a fuel cell metal separator can be sufficiently secured, and the contact resistance with the cell body can be sufficiently reduced. In this case, as shown in FIG. 12, the metal coating portion may be coated in a form in which the main surface of the main body portion is partially exposed. Naturally, the thickness of the metal cover can be reduced in this way, so that the manufacturing cost can be greatly reduced.

また、金属材料板材の固体高分子電解質膜に積層される側の主表面には、ガス流路を形成するための凹部を形成することができる。この凹部を加工により形成する際に、上記組成の本体合金を採用していることで、特に屈曲の大きくなる凹部底のコーナーないしエッジ部分にクラック等を生じにくくなる。該効果は、凹部が板金プレス加工により形成される場合に著しい。   Moreover, the recessed part for forming a gas flow path can be formed in the main surface by the side of laminating | stacking on the solid polymer electrolyte membrane of a metal material board | plate material. When the recess is formed by processing, the use of the main body alloy having the above composition makes it difficult to cause cracks or the like in the corner or edge portion of the recess bottom, which is particularly bent. This effect is remarkable when the concave portion is formed by sheet metal pressing.

凹部を板金プレス加工により形成する場合、図14に示すように、本体合金板材に該凹部形成のための板金プレス加工を行なった後、該本体合金板材に被覆工程を実施することができる。この工程では、メッキ前に凹部が形成されるため、凹部内側のコーナー(あるいはエッジ)部において本体部の表面に異物や汚れが残留しやすく、メッキ層のつき回りが悪化し、本体部の露出が生じやすいが、本発明においては上記のごとく特有の組成の本体合金を用いることで、このような露出を生じても本体部の腐食の進行が十分に抑制される。   When the recess is formed by sheet metal pressing, as shown in FIG. 14, the body alloy sheet can be subjected to a coating process after being subjected to sheet metal pressing for forming the recess. In this process, since the recess is formed before plating, foreign matter and dirt are likely to remain on the surface of the main body at the corner (or edge) inside the recess, and the contact of the plating layer deteriorates, exposing the main body. However, in the present invention, by using the main body alloy having a specific composition as described above, the progress of the corrosion of the main body is sufficiently suppressed even if such exposure occurs.

他方、図15に示すように、本体合金板材に被覆工程を実施した後、該本体合金板材に該凹部形成のための板金プレス加工を行なうこともできる。この工程を採用した場合、加工時点で既にメッキ層が形成されているため、凹部外側のコーナー(あるいはエッジ)部ではメッキ層に強い引張曲げ応力が作用し、メッキ層にクラックを生じて本体部が露出しやすいが、本発明においては上記のごとく特有の組成の本体合金を用いることで、このようなクラックによる露出を生じても本体部の腐食の進行が十分に抑制される。   On the other hand, as shown in FIG. 15, after the main alloy plate material is subjected to the coating process, the main alloy plate material can be subjected to sheet metal pressing for forming the recess. When this process is adopted, since the plating layer is already formed at the time of processing, a strong tensile bending stress acts on the plating layer at the corner (or edge) outside the recess, causing cracks in the plating layer and the main body portion. However, in the present invention, by using the main body alloy having a specific composition as described above, the progress of corrosion of the main body can be sufficiently suppressed even if such exposure due to cracks occurs.

なお、上記組成の本体合金により本体部を形成した場合、その本体部の表面に金属被覆部の形成部分と非形成部分とが混在していても、非形成部分の腐食が過度に進行する心配がない。ただし、金属被覆部の形成を完全に省略してしまうと、金属セパレータとセル本体との接触抵抗が増加しやすくなるほか、本体部表面のある程度の部分(面積率にて例えば90%以上)に金属被覆部を形成した方が、非形成部分の耐食性自体を向上させることができる。その原因として、金属被覆部と本体部露出面との間に形成される局部電池起電力が、本体部露出面の電極電位を不動態域側に変化させ、金属被覆部が共存しない場合よりも、露出した本体部表面の不動態化が促進されることが考えられる。この場合、逆にいえば、本体部表面の50%程度までが露出面となっていても、耐食性は問題なく確保できることを意味する。   In addition, when the main body part is formed of the main body alloy having the above composition, the corrosion of the non-formed part may proceed excessively even if the metal coating part forming part and the non-forming part are mixed on the surface of the main body part. There is no. However, if the formation of the metal covering portion is completely omitted, the contact resistance between the metal separator and the cell body is likely to increase, and a certain portion of the surface of the main body portion (for example, 90% or more in area ratio) The formation of the metal coating portion can improve the corrosion resistance itself of the non-formed portion. The cause is that the local battery electromotive force formed between the metal cover and the main body exposed surface changes the electrode potential of the main body exposed surface to the passive region side, so that the metal cover does not coexist. It is considered that passivation of the exposed body surface is promoted. In this case, on the contrary, it means that the corrosion resistance can be ensured without any problem even if about 50% of the surface of the main body is an exposed surface.

部分的な金属被覆により、露出部の不動態化が促進されることは、例えば、以下のような簡便なセパレータの製法及び構成を合理的に採用しうることを意味する。すなわち、セパレータを1枚の本体合金板に複数個形成し、それら複数個のセパレータを一括して覆う金属被覆をメッキにより形成し、その後、個々のセパレータに切断分離する。この場合、セパレータ側面は切断面となるため、金属被覆が少なくとも部分的に欠落し、本体部の露出面を形成する。しかし、セパレータの主表面に金属被覆が形成されていれば、側面の露出面の不動態化が促進され、耐食性の低下を生じにくくなる。この場合、分離後のセパレータの本体部に個別にメッキを施す必要がなくなり、分離前の大判の本体合金板に一括してメッキを施せばよいので、工程の大幅な簡略化に寄与する。ただし、側面の露出面の耐食性を十分確保するためには、該側面露出面の幅を1mm以下に留めることが望ましい。   The fact that the passivation of the exposed portion is promoted by the partial metal coating means that, for example, the following simple separator manufacturing method and configuration can be rationally adopted. That is, a plurality of separators are formed on a single main body alloy plate, a metal coating covering the plurality of separators is formed by plating, and then cut and separated into individual separators. In this case, since the side surface of the separator becomes a cut surface, the metal coating is at least partially lost, and the exposed surface of the main body is formed. However, if the metal coating is formed on the main surface of the separator, the passivation of the exposed surface of the side surface is promoted, and the corrosion resistance is hardly reduced. In this case, it is not necessary to individually plate the main body portion of the separator after separation, and it is only necessary to collectively plate the large body alloy plate before separation, which contributes to a significant simplification of the process. However, in order to sufficiently secure the corrosion resistance of the exposed side surface, it is desirable to keep the width of the exposed side surface to 1 mm or less.

以下、図面を参照して、本発明の実施の形態について説明する。図1は、燃料電池の一例を積層形態にて模式的に説明するものである。該燃料電池1は、固体高分子電解質膜3を採用した固体高分子形燃料電池である。具体的に、固体高分子電解質膜3はスルホン酸基を含むフッ素樹脂にて形成され、これを挟む形で一対の電極層2,4を有し、該固体高分子電解質膜3と電極2,4とによりなる単位電池本体5を有する。具体的には、固体高分子電解質膜3の第一主表面3aを覆う第一電極層2と、同じく第二主表面3bを覆う第二電極層4と、本発明の燃料電池用金属セパレータとして構成され、第一電極層2上に積層されるとともに、凹部21により燃料ガス用のガス流路を形成する第一セパレータ10aと、本発明の燃料電池用金属セパレータとして構成され、第二電極層4上に積層されるとともに、凹部21により酸化剤ガス用のガス流路を形成する第二セパレータ10bとを有する。なお、単位電池本体5とセパレータ10との間に、燃料ガス及び酸化剤ガスのリークを防止するために、ガスケットが配置されるが、図1では省略している。     Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically illustrates an example of a fuel cell in a stacked form. The fuel cell 1 is a solid polymer fuel cell employing a solid polymer electrolyte membrane 3. Specifically, the solid polymer electrolyte membrane 3 is formed of a fluororesin containing a sulfonic acid group, and has a pair of electrode layers 2 and 4 sandwiching this, and the solid polymer electrolyte membrane 3 and the electrodes 2, 4 has a unit battery body 5. Specifically, the first electrode layer 2 that covers the first main surface 3a of the solid polymer electrolyte membrane 3, the second electrode layer 4 that also covers the second main surface 3b, and the metal separator for a fuel cell of the present invention. And a first separator 10a that is stacked on the first electrode layer 2 and forms a gas flow path for the fuel gas by the recess 21; and a metal separator for a fuel cell of the present invention, and the second electrode layer 4, and a second separator 10 b that forms a gas flow path for the oxidant gas by the recess 21. A gasket is disposed between the unit cell main body 5 and the separator 10 in order to prevent leakage of fuel gas and oxidant gas, but is omitted in FIG.

図2及び図3は、セパレータ10a,10b(以下、両者を総称する場合、「セパレータ10」と記載する)の概略を示す平面図及び側面拡大断面図である。図2に示すように、セパレータ10は金属板材にて形成され、図3に示すように、その主表面には、凸凹が形成されている。図1に示すように凸部20の先端にて電極2,4と接触する。他方、凹部21は電極層2,4との間にガス流路を形成する。本実施形態では、図2に示すように、凹部21は、凸部20に挟まれた蛇行溝形態で形成され、その両端がガス入口22及びガス出口23とされる。   2 and 3 are a plan view and an enlarged side sectional view showing an outline of separators 10a and 10b (hereinafter, collectively referred to as "separator 10"). As shown in FIG. 2, the separator 10 is formed of a metal plate material, and as shown in FIG. 3, irregularities are formed on the main surface thereof. As shown in FIG. 1, the tip of the convex portion 20 contacts the electrodes 2 and 4. On the other hand, the recess 21 forms a gas flow path between the electrode layers 2 and 4. In the present embodiment, as shown in FIG. 2, the concave portion 21 is formed in a meandering groove shape sandwiched between the convex portions 20, and both ends thereof serve as a gas inlet 22 and a gas outlet 23.

図1に戻り、単位電池本体5とセパレータ10とを単位セルUとして、この単位セルUが、カーボン等の導電体からなる冷却水流通基板11を介して、複数積層されて燃料電池スタック1とされる。単位セルUは例えば20〜400個程度積層され、その積層体の両端に、単位セルUと接触する側から、導電性シート9、集電板8、絶縁シート7及び締め付け板6がそれぞれ配置されて、燃料電池スタック1とされる。集電板8と複数のセパレータ10とは直列に接続され、複数の単位電池本体5からの電流が集められることになる。   Returning to FIG. 1, a unit cell body 5 and a separator 10 are used as a unit cell U, and a plurality of unit cells U are stacked via a cooling water circulation substrate 11 made of a conductor such as carbon. Is done. About 20 to 400 unit cells U are stacked, for example, and conductive sheets 9, current collector plates 8, insulating sheets 7 and clamping plates 6 are arranged on both ends of the stacked body from the side in contact with the unit cells U, respectively. Thus, the fuel cell stack 1 is obtained. The current collector plate 8 and the plurality of separators 10 are connected in series, and currents from the plurality of unit battery bodies 5 are collected.

セパレータ10を構成する金属材料板材は、30質量%以上82質量%以下のNiと、15質量%以上30質量%以下のCrと、2質量%以上4質量%以下のMoと、1質量%以上4質量%以下のCuと、0.1質量%以上3質量%以下のTiと、51.9質量%以下(ゼロ質量%含む)のFeと、合計含有量が0.001質量%以上1質量%以下であり、かつ、C及びSの少なくともいずれかを合計にて0.0001質量%以上含む不可避不純物と、を含有し、Ni、Cr、Mo、Cu及びTiの合計含有量が48.1質量%以上である本体合金からなる本体部13と、該本体部13の表面を覆うとともに本体合金よりも貴な金属からなる厚さ1nm以上500nm以下(望ましくは5nm50nm以下、より望ましくは5nm以上20nm以下)の金属被覆部12とを有する。金属被覆部は、本実施形態ではAuメッキ層である。また、本体部13の厚さは0.01mm以上1mm以下である。   The metal material plate material constituting the separator 10 is Ni of 30% by mass to 82% by mass, Cr of 15% by mass to 30% by mass, Mo of 2% by mass to 4% by mass, and 1% by mass or more. 4% by mass or less of Cu, 0.1% by mass or more and 3% by mass or less of Ti, 51.9% by mass or less (including zero% by mass) of Fe, and a total content of 0.001% by mass or more and 1% by mass And an inevitable impurity containing at least one of C and S in total of 0.0001% by mass or more, and the total content of Ni, Cr, Mo, Cu and Ti is 48.1 A main body portion 13 made of a main body alloy having a mass% or more, and a thickness of 1 nm to 500 nm (preferably 5 nm to 50 nm, more preferably 5 nm to 20 nm) made of a metal that covers the surface of the main body portion 13 and is noble than the main body alloy. And the metal coating portion 12 of the following). In the present embodiment, the metal coating portion is an Au plating layer. Moreover, the thickness of the main-body part 13 is 0.01 mm or more and 1 mm or less.

セパレータの主表面10aの50%以上、望ましくは90%以上が金属被覆部12で覆われていれば、例えば、燃料ガスあるいは酸化剤ガスが流通する凹部においても、該酸化剤ガスや、固体高分子膜3から溶出する硫酸イオンに基づく腐食を抑制することができる。また、セパレータ10は、図4に示すように、主表面10aに続く端面16(側面)が切断面16とされ、その切断面16の一部において金属被覆部12が形成されておらず、本体部13が露出する領域が存在するが、その露出している面の幅を1mm以下とすることで、露出面での腐食の進行を大幅に抑制できる。なお、本体部13を構成する本体合金は、pH1の条件でアノード分極曲線を測定したとき、該アノード分極曲線において、活性態電位域と不動態電位域とを識別することができるものである。   If 50% or more, desirably 90% or more, of the main surface 10a of the separator is covered with the metal coating part 12, for example, the oxidant gas or the solid content is increased even in the recess in which the fuel gas or oxidant gas flows. Corrosion based on sulfate ions eluted from the molecular film 3 can be suppressed. Further, as shown in FIG. 4, the separator 10 has an end face 16 (side face) following the main surface 10 a as a cut face 16, and the metal covering portion 12 is not formed on a part of the cut face 16. Although there is a region where the portion 13 is exposed, the progress of corrosion on the exposed surface can be significantly suppressed by setting the width of the exposed surface to 1 mm or less. In addition, when the anodic polarization curve is measured under the pH 1 condition, the main body alloy constituting the main body portion 13 can distinguish between the active potential region and the passive potential region in the anodic polarization curve.

以下、セパレータ10の製造方法の一例について説明する。まず、本体合金を上記所期の組成となるように溶解し、熱間鍛造、熱間圧延、冷間圧延さらに熱処理を経て板材(本体部)13にする。次に、該板材13の主表面にAuメッキを施し金属被覆部12を形成する。図5は、板材13に電解Auメッキを施す装置の概略を示すものである。メッキ槽B内には、例えばシアン化金カリウムを含有したメッキ浴SLが建浴されている。メッキ浴SL内にて板材13の両面にカソード電極55,55が対向配置され、メッキ電源120により板材13側がアノードとなるように通電することにより、Auメッキ層からなる金属被覆部12を形成できる。   Hereinafter, an example of the manufacturing method of the separator 10 will be described. First, the main body alloy is melted so as to have the desired composition, and is subjected to hot forging, hot rolling, cold rolling, and heat treatment to obtain a plate material (main body portion) 13. Next, Au plating is applied to the main surface of the plate material 13 to form the metal coating portion 12. FIG. 5 shows an outline of an apparatus for performing electrolytic Au plating on the plate material 13. In the plating tank B, for example, a plating bath SL containing potassium cyanide cyanide is erected. In the plating bath SL, the cathode electrodes 55, 55 are opposed to both surfaces of the plate material 13, and the metal coating portion 12 made of an Au plating layer can be formed by energizing the plating power source 120 so that the plate material 13 side becomes the anode. .

次に、メッキ後の板材13に、凹凸形成のための金型プレス加工を冷間加工により行なう。まず、図6の工程1に示すように、転写すべき凹凸パターン51aを有するプレス用金型51,51の間に板材13を配置する。そして、工程2に示すように、金型51,51を相対的に接近させ、板材13を両金型51,51間にて加圧することにより、凹凸パターンが転写される。その後、工程3に示すようにプレス用金型51,51を離間させる。なお、凹凸転写のための金型プレス加工と、金属被覆部12を形成するための被覆工程とは順序を逆転させてもよい。   Next, die pressing for forming irregularities is performed on the plate 13 after plating by cold working. First, as shown in step 1 of FIG. 6, the plate 13 is placed between the press dies 51, 51 having the uneven pattern 51a to be transferred. Then, as shown in step 2, the concavo-convex pattern is transferred by relatively bringing the molds 51, 51 closer together and pressurizing the plate 13 between both the molds 51, 51. Thereafter, as shown in step 3, the press dies 51 are separated. In addition, you may reverse the order of the metal mold | die press work for uneven | corrugated transfer, and the coating | coated process for forming the metal coating | coated part 12. FIG.

例えば、図7に示すように、板材13に複数個のセパレータの凹凸パターンを転写しておき、また、それら複数個のセパレータの凹凸パターンを一括して金属被覆部12で覆うことができる。この場合、メッキ済み板材17を切断予定線CLに沿って切断することにより、個別の燃料電池用セパレータ10を得ることができる。なお、メッキ済み板材17の切断は、図8に示すように、該メッキ済み板材17を台座20上に載置してメッキ済み板材17の表面に切断刃19を当接させ、この切断刃19をメッキ済み板材17に対して押しつけながら切断することができる。メッキ済み板材17において、切断面となる側面16に沿って金属被覆部12が伸び、該側面16の一部を覆う延長被覆部12eが形成される。これにより、側面16のうち本体部13の露出面を縮小でき、ひいては該露出面の幅を1mm以下とすることができる。なお、メッキ済み板材17を切断する場合は、図9に示すように、メッキ済み板材17の両主表面にそれぞれ切断刃19を当接させ、これらの対向する切断刃19を互いに接近させるようにして切断するようにしてもよい。この方法によると、本体部13の厚さ方向両側から延長被覆部12e,12eが伸び、側面の被覆率を一層高めることができる。   For example, as shown in FIG. 7, the uneven pattern of the plurality of separators can be transferred to the plate 13 and the uneven pattern of the plurality of separators can be collectively covered with the metal covering portion 12. In this case, the individual fuel cell separator 10 can be obtained by cutting the plated plate member 17 along the planned cutting line CL. As shown in FIG. 8, the plated plate material 17 is cut by placing the plated plate material 17 on a pedestal 20 and bringing the cutting blade 19 into contact with the surface of the plated plate material 17. Can be cut while being pressed against the plated plate member 17. In the plated plate member 17, the metal covering portion 12 extends along the side surface 16 serving as a cut surface, and an extended covering portion 12 e that covers a part of the side surface 16 is formed. Thereby, the exposed surface of the main-body part 13 can be reduced among the side surfaces 16, and the width | variety of this exposed surface can be 1 mm or less by extension. When cutting the plated plate material 17, as shown in FIG. 9, the cutting blades 19 are brought into contact with both main surfaces of the plated plate material 17, and the opposed cutting blades 19 are brought close to each other. You may make it cut. According to this method, the extension covering portions 12e and 12e extend from both sides of the main body portion 13 in the thickness direction, and the side surface coverage can be further increased.

図10に示すように、板材13において切断予定線に沿う薄肉部13t(例えば圧縮部材25にて板材13を加圧することにより形成できる)を形成し、この薄肉部13tにおいて切断刃19により切断することもできる。また、燃料電池用セパレータには、ガス流通口23(図2)や、積層アセンブリ時に使用するアライメントホール等の開口部が形成される。このような開口部においては、図11のように、開口部予定領域を包含する領域に薄肉部13tを形成し、該薄肉部13tにおいてパンチ26により開口部27を打ち抜くことができる。薄肉部13tの形成により、側面あるいは開口内周面の露出部幅をより縮小することができる。なお、打抜後の開口部27の内周面をしごき部材29により板材厚さ方向にしごくことにより、開口内周面の延長被覆部12eによる被覆状態をさらに向上することができる。   As shown in FIG. 10, a thin portion 13t (which can be formed by, for example, pressing the plate member 13 with a compression member 25) along the planned cutting line is formed in the plate member 13, and the thin blade portion 13t is cut by the cutting blade 19. You can also. In addition, the fuel cell separator is formed with an opening such as a gas distribution port 23 (FIG. 2) and an alignment hole used during the lamination assembly. In such an opening, as shown in FIG. 11, a thin portion 13t can be formed in a region including the planned opening portion region, and the opening 27 can be punched out by the punch 26 in the thin portion 13t. By forming the thin portion 13t, the exposed portion width of the side surface or the inner peripheral surface of the opening can be further reduced. In addition, by covering the inner peripheral surface of the opening 27 after punching in the plate material thickness direction by the squeezing member 29, the covering state of the opening inner peripheral surface by the extended covering portion 12e can be further improved.

本発明の効果を確認するために、以下の実験を行った。まず、表1に示す種々の組成の合金インゴットを、高周波誘導溶解炉を用いて溶製し、次いで、熱間鍛造後、熱間圧延、冷間圧延及び熱処理を繰り返して、本体部となるべき厚さ0.10mmの板とした。次に、該板の両面に、周知の電解Auメッキにより種々の厚さにてAuメッキ層(金属被覆部)を形成した。該板材はその後、図2に示す溝状形態の凹部を金型プレス加工にて形成した。なお、凹部の幅は1.0mm、深さは0.6mmとした。その後、剪断式カッターにてメッキ後の板材を個々のセパレータに切断分離した(平面形状:50mm×40mmの長方形状)。切断面において、金属基材の露出している面の幅は1mm以下となっていた。   In order to confirm the effect of the present invention, the following experiment was conducted. First, alloy ingots having various compositions shown in Table 1 are melted using a high-frequency induction melting furnace, then, after hot forging, hot rolling, cold rolling and heat treatment are repeated to form a main body portion. The plate was 0.10 mm thick. Next, Au plating layers (metal coating portions) were formed on the both surfaces of the plate at various thicknesses by well-known electrolytic Au plating. The plate material was then formed with a groove-shaped recess shown in FIG. 2 by die pressing. In addition, the width | variety of the recessed part was 1.0 mm and the depth was 0.6 mm. Thereafter, the plate material after plating was cut and separated into individual separators with a shearing cutter (planar shape: rectangular shape of 50 mm × 40 mm). In the cut surface, the width of the exposed surface of the metal substrate was 1 mm or less.

Figure 2005190964
Figure 2005190964

切断後の各セパレータ試料は、拡大鏡にて凹部底のエッジなどにクラックを生じていないかどうかを目視確認し、クラックが認められなかったものを成形性良好(○)、クラックが認められたものを成形性不良(×)として判定した。また、各セパレータ試料に対し、硫酸溶液中にて腐食試験を行った。硫酸溶液はpH1、温度100℃であり、浸漬時間を168時間として、腐食前後の重量変化を測定し、単位面積当たりの重量消耗率に換算して腐食度を評価した。以上の結果を表1に示す。これによると、本発明の実施例に該当する番号1〜番号5の組成の本体部を有する試料は、加工性も耐食性もいずれも良好であることがわかる。他方、番号6〜番号15は、必須5元素の少なくともいずれかが、既に詳述した組成の範囲外となる比較例である。番号6の組成はCuが非添加であるため、成形性(加工性)と耐食性に劣っている。さらに、Moも非添加とした番号7は、耐食性がさらに悪化している。他方、Cuを非添加とし、Moのみ添加した番号11も耐食性は不十分である。また、番号8〜番号10も同様にモリブデン非添加であり、耐食性に劣る。一方、Ti添加の効果については、実施例の番号4を基準組成としたとき、該基準組成からTiを排除した番号13の組成では、耐食性が大幅に悪化していることがわかる。一方、Tiが上限値を超えて過剰添加された番号12では、耐食性は良好であるが加工性が悪化していることがわかる。   Each separator sample after cutting was visually checked with a magnifying glass for cracks at the bottom of the recess, etc., and no cracks were observed. Good moldability (◯), cracks were observed. The product was determined as a formability defect (x). Each separator sample was subjected to a corrosion test in a sulfuric acid solution. The sulfuric acid solution had a pH of 1, a temperature of 100 ° C., an immersion time of 168 hours, a change in weight before and after corrosion was measured, and the degree of corrosion was evaluated in terms of a weight consumption rate per unit area. The results are shown in Table 1. According to this, it turns out that the sample which has a main-body part of the composition of No. 1-No. 5 applicable to the Example of this invention has both favorable workability and corrosion resistance. On the other hand, numbers 6 to 15 are comparative examples in which at least one of the five essential elements is outside the range of the composition already described in detail. The composition of No. 6 is inferior in formability (workability) and corrosion resistance because Cu is not added. Furthermore, the corrosion resistance of No. 7 with no addition of Mo is further deteriorated. On the other hand, No. 11 in which Cu is not added and only Mo is added has insufficient corrosion resistance. Similarly, Nos. 8 to 10 are not added with molybdenum and are inferior in corrosion resistance. On the other hand, regarding the effect of addition of Ti, when the reference number 4 is used as the reference composition, it can be seen that the corrosion resistance is greatly deteriorated in the number 13 composition in which Ti is excluded from the reference composition. On the other hand, in No. 12 where Ti was excessively added exceeding the upper limit value, it was found that the corrosion resistance was good but the workability was deteriorated.

また、参考実験として、表2に示した番号1〜9の合金組成の各試料につき、凹部非形成にて腐食試験を行った結果を表2に示す(成形性の評価は行なっていない)。   In addition, as a reference experiment, Table 2 shows the results of a corrosion test performed on the samples having the alloy compositions of Nos. 1 to 9 shown in Table 2 without forming recesses (formability is not evaluated).

Figure 2005190964
Figure 2005190964

まず、Auメッキ層非形成(Au厚:0nm)にて耐食性を比較した場合、本発明に相当する番号1〜3は、一般的なステンレス鋼(SUS316:番号4〜6)、Ni−Cr合金(番号7〜9)と比較して、腐食度が1桁以上小さく、本体合金が本来的に良好な耐食性を有していることがわかる。また、50nmのAuメッキ層を形成した状態での比較では、番号5のステンレス鋼はAuメッキ層の形成により耐食性はある程度改善されているが、Auメッキなしの本発明の番号3程度の値に過ぎない。また、番号6のステンレス鋼及び番号8のNi−Cr合金は、Auメッキ層を100nmまで増加させたものであるが、本発明の合金では、表1の番号1〜5の結果と比較すれば明らかな通り、Auメッキ層50nm程度でこれらをしのぐ耐食性が実現する。   First, when comparing corrosion resistance with no Au plating layer formed (Au thickness: 0 nm), numbers 1 to 3 corresponding to the present invention are general stainless steel (SUS316: numbers 4 to 6), Ni—Cr alloy. Compared with (Nos. 7 to 9), the corrosion degree is smaller by one digit or more, and it can be seen that the main body alloy has inherently good corrosion resistance. In comparison with a 50 nm Au plated layer, the corrosion resistance of the stainless steel No. 5 has been improved to some extent by the formation of the Au plated layer. Not too much. In addition, the number 6 stainless steel and the number 8 Ni—Cr alloy are obtained by increasing the Au plating layer to 100 nm, but in the alloy of the present invention, the results of numbers 1 to 5 in Table 1 are compared. As is apparent, corrosion resistance that surpasses these is achieved with an Au plating layer of about 50 nm.

本発明の燃料電池の積層形態の一例を示す側面図。The side view which shows an example of the lamination | stacking form of the fuel cell of this invention. 図1の燃料電池に使用する本発明の燃料電池用金属セパレータの一例を示す平面図。The top view which shows an example of the metal separator for fuel cells of this invention used for the fuel cell of FIG. 図2のセパレータの一部断面を拡大して示す図。The figure which expands and shows the partial cross section of the separator of FIG. その切断面の状態を拡大して示す模式図。The schematic diagram which expands and shows the state of the cut surface. 金属被覆部をメッキ形成するための装置の模式図。The schematic diagram of the apparatus for plating and forming a metal coating | coated part. 凹部形成の金型プレス加工の工程説明図。Process explanatory drawing of the die press processing of a recessed part formation. 複数個のセパレータを1枚の板材から切断分離する形で製造する工程の概念説明図。The conceptual explanatory drawing of the process of manufacturing in the form which cuts and isolate | separates a some separator from one board | plate material. 切断工程の第一例を示す模式図。The schematic diagram which shows the 1st example of a cutting process. 同じく第二例を示す模式図。The schematic diagram which similarly shows a 2nd example. 同じく第三例を示す模式図。The schematic diagram which similarly shows a 3rd example. 同じく第四例を示す模式図。The schematic diagram which similarly shows a 4th example. 金属被覆部を薄く形成した場合に形成される露出部の概念を示す図。The figure which shows the concept of the exposed part formed when a metal coating | coated part is formed thinly. 金属被覆部に形成されるピンホールの概念を示す図。The figure which shows the concept of the pinhole formed in a metal coating | coated part. 凹部形成後に金属被覆部を形成したときの、従来の問題点を説明する図。The figure explaining the conventional problem when a metal coating | coated part is formed after recessed part formation. 凹部形成前に金属被覆部を形成したときの、従来の問題点を説明する図。The figure explaining the conventional problem when a metal coating | coated part is formed before recessed part formation. 露出部から本体部の腐食が進行する概念を説明する図。The figure explaining the concept that corrosion of a main-body part advances from an exposed part.

符号の説明Explanation of symbols

1 燃料電池
2,4 電極層
3 固体高分子電解質膜
10a、10b 燃料電池用金属セパレータ
12 金属被覆部
13 本体部
21 凹部
DESCRIPTION OF SYMBOLS 1 Fuel cell 2, 4 Electrode layer 3 Solid polymer electrolyte membrane 10a, 10b Metal separator for fuel cells 12 Metal coating | cover part 13 Main-body part 21 Recessed part

Claims (13)

金属材料板材により形成され、燃料電池の固体高分子電解質膜を覆う電極層上に片側の板面を積層することにより、前記電極層との間にガス流路を形成するとともに、
前記金属材料板材が、
30質量%以上82質量%以下のNiと、
15質量%以上30質量%以下のCrと、
2質量%以上4質量%以下のMoと、
1質量%以上4質量%以下のCuと、
0.1質量%以上3質量%以下のTiと、
51.9質量%以下(ゼロ質量%含む)のFeと、
合計含有量が0.001質量%以上1質量%以下であり、C及びSの少なくともいずれかを合計にて0.0001質量%以上含む不可避不純物と、を含有し、かつ、Ni、Cr、Mo、Cu及びTiの合計含有量が48.1質量%以上である本体合金からなる本体部と、
該本体部の表面を覆うとともに前記本体合金よりも電気化学的に貴な金属からなる厚さ1nm以上500nm以下の金属被覆部とを有することを特徴とする燃料電池用金属セパレータ。
Forming a gas flow path between the electrode layer by laminating a plate surface on one side on an electrode layer that is formed of a metal material plate and covers the solid polymer electrolyte membrane of the fuel cell,
The metal material plate is
30 mass% or more and 82 mass% or less of Ni;
15 mass% or more and 30 mass% or less of Cr,
2 to 4% by mass of Mo,
1 mass% or more and 4 mass% or less of Cu,
0.1 mass% or more and 3 mass% or less of Ti,
Fe of 51.9% by mass or less (including zero% by mass);
A total content of 0.001% by mass or more and 1% by mass or less, an inevitable impurity containing at least one of C and S in total of 0.0001% by mass or more, and Ni, Cr, Mo , A main body portion made of a main body alloy having a total content of Cu and Ti of 48.1% by mass or more;
A metal separator for a fuel cell, characterized by having a metal coating portion that covers the surface of the main body and has a thickness of 1 nm or more and 500 nm or less made of a metal that is electrochemically more noble than the main body alloy.
前記不可避不純物としてのCが0.001質量%以上0.05質量%以下の範囲で含有されている請求項1記載の燃料電池用金属セパレータ。   The metal separator for a fuel cell according to claim 1, wherein C as the inevitable impurity is contained in a range of 0.001% by mass to 0.05% by mass. 前記不可避不純物としてのSが0.0001質量%以上0.015質量%以下の範囲で含有されている請求項1又は請求項2記載の燃料電池用金属セパレータ。   The metal separator for a fuel cell according to claim 1 or 2, wherein S as the inevitable impurity is contained in a range of 0.0001 mass% to 0.015 mass%. 前記金属被覆部がAu、Ag、Pt、Ru及びPdのいずれかを主成分に構成される請求項1ないし請求項3のいずれか1項に記載の燃料電池用金属セパレータ。   The metal separator for a fuel cell according to any one of claims 1 to 3, wherein the metal coating portion is composed mainly of any one of Au, Ag, Pt, Ru, and Pd. 前記金属被覆部の厚さが5nm以上50nm以下である請求項4記載の燃料電池用金属セパレータ。   The metal separator for a fuel cell according to claim 4, wherein the thickness of the metal coating portion is 5 nm or more and 50 nm or less. 前記金属被覆部の厚さが5nm以上20nm以下である請求項4記載の燃料電池用金属セパレータ。   The metal separator for a fuel cell according to claim 4, wherein the thickness of the metal coating portion is 5 nm or more and 20 nm or less. 前記金属被覆部は、前記本体部の主表面を部分的に露出させる形態で被覆するものである請求項1ないし請求項6のいずれか1項に記載の燃料電池用金属セパレータ。   The metal separator for a fuel cell according to any one of claims 1 to 6, wherein the metal coating portion covers the main surface of the main body portion so as to be partially exposed. 前記金属材料板材の前記固体高分子電解質膜に積層される側の主表面に、前記ガス流路を形成するための凹部が形成されてなる請求項1ないし請求項7のいずれか1項に記載の燃料電池用金属セパレータ。   The concave part for forming the said gas flow path is formed in the main surface of the side laminated | stacked on the said solid polymer electrolyte membrane of the said metal material board | plate material, The any one of Claim 1 thru | or 7 formed. Metal separator for fuel cells. 前記凹部が板金プレス加工により形成されたものである請求項8記載の燃料電池用金属セパレータ。   The metal separator for a fuel cell according to claim 8, wherein the concave portion is formed by sheet metal pressing. 請求項1ないし請求項9のいずれか1項に記載の燃料電池用金属セパレータの製造方法であって、
前記本体合金からなる本体合金板材により前記本体部を形成する本体部形成工程と、
前記本体合金板材の表面に前記金属被覆部を形成する被覆工程とを有することを特徴とする燃料電池用金属セパレータの製造方法。
A method for producing a metal separator for a fuel cell according to any one of claims 1 to 9,
A body part forming step of forming the body part from a body alloy plate made of the body alloy;
And a coating step of forming the metal coating portion on the surface of the main body alloy plate material.
前記凹部が板金プレス加工により形成されるとともに、前記本体合金板材に該凹部形成のための板金プレス加工を行なった後、該本体合金板材に前記被覆工程を実施する請求項10に記載の燃料電池用金属セパレータの製造方法。   11. The fuel cell according to claim 10, wherein the recess is formed by sheet metal pressing, and the covering process is performed on the main body alloy sheet after the main body alloy sheet is subjected to sheet metal pressing for forming the recess. Of manufacturing metal separators for use. 前記凹部が板金プレス加工により形成されるとともに、前記本体合金板材に前記被覆工程を実施した後、該本体合金板材に該凹部形成のための板金プレス加工を行なう請求項10に記載の燃料電池用金属セパレータの製造方法。   11. The fuel cell according to claim 10, wherein the recess is formed by sheet metal pressing, and the body alloy sheet is subjected to sheet metal pressing to form the recess after the covering step is performed on the body alloy sheet. A method for producing a metal separator. 固体高分子電解質膜と、その第一主表面を覆う第一電極層と、同じく第二主表面を覆う第二電極層と、請求項1ないし請求項9のいずれか1項に記載の燃料電池用金属セパレータとして前記第一電極層上に積層されるとともに、燃料ガス用のガス流路を形成する第一セパレータと、請求項1ないし請求項9のいずれか1項に記載の燃料電池用金属セパレータとして前記第二電極層上に積層されるとともに、酸化剤ガス用のガス流路を形成する第二セパレータと、
を有することを特徴とする燃料電池。
10. The fuel cell according to claim 1, a solid polymer electrolyte membrane, a first electrode layer covering the first main surface, a second electrode layer covering the second main surface, and the fuel cell according to claim 1. 10. A fuel cell metal according to claim 1, wherein the first separator is laminated on the first electrode layer as a metal separator for a gas and forms a gas flow path for fuel gas, and the metal for a fuel cell according to claim 1. A second separator that is laminated on the second electrode layer as a separator and forms a gas flow path for an oxidant gas;
A fuel cell comprising:
JP2003434450A 2003-12-26 2003-12-26 Metal separator for fuel cell, its manufacturing method, and fuel cell Pending JP2005190964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003434450A JP2005190964A (en) 2003-12-26 2003-12-26 Metal separator for fuel cell, its manufacturing method, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434450A JP2005190964A (en) 2003-12-26 2003-12-26 Metal separator for fuel cell, its manufacturing method, and fuel cell

Publications (1)

Publication Number Publication Date
JP2005190964A true JP2005190964A (en) 2005-07-14

Family

ID=34791521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003434450A Pending JP2005190964A (en) 2003-12-26 2003-12-26 Metal separator for fuel cell, its manufacturing method, and fuel cell

Country Status (1)

Country Link
JP (1) JP2005190964A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189749A (en) * 2009-02-20 2010-09-02 Neomax Material:Kk Alloy for solid polymer type fuel cell member, clad material thereof, and battery separator thereof formed from the same
CN103746101A (en) * 2013-12-18 2014-04-23 广西科技大学 Carbon-sulfur composite positive pole material and preparation method thereof
CN110462907A (en) * 2017-03-31 2019-11-15 大阪瓦斯株式会社 Electrochemical appliance, energy system and solid oxide fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189749A (en) * 2009-02-20 2010-09-02 Neomax Material:Kk Alloy for solid polymer type fuel cell member, clad material thereof, and battery separator thereof formed from the same
CN103746101A (en) * 2013-12-18 2014-04-23 广西科技大学 Carbon-sulfur composite positive pole material and preparation method thereof
CN110462907A (en) * 2017-03-31 2019-11-15 大阪瓦斯株式会社 Electrochemical appliance, energy system and solid oxide fuel cell

Similar Documents

Publication Publication Date Title
KR101798406B1 (en) Stainless steel for fuel cell separator and method of manufacturing the same
EP1557895A1 (en) Metal member for fuel cell and its manufacturing method, austenitic stainless steel for solid polymer fuel cell and metal member for fuel cell using same, material for solid polymer fuel cell and its manufacturing method, corrosion-resistance conductive member and its manufacturing method, and fuel
WO2016052622A1 (en) Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
KR20160082632A (en) Metal bipolar plate for pemfc and manufacturing method thereof
JP4340448B2 (en) Ferritic stainless steel for fuel cell separator and method for producing the same
JP6057033B1 (en) Ferritic stainless steel material, separator, polymer electrolyte fuel cell, and separator manufacturing method
KR101312861B1 (en) Stainless steel for bipolar plate of PEMFC with excellent corrosion resistance and contact resistance and method of manufacturing the bipolar plate
JP2005190968A (en) Metal separator for fuel cell, its manufacturing method, and fuel cell
JP2005100933A (en) Metal separator for fuel cell, manufacturing method of the same, and fuel cell
US7049022B2 (en) Metal separator for fuel cell and production method therefor
JP4133323B2 (en) Press separator for fuel cell
JP2004124197A (en) Stainless steel for solid high polymer type fuel cell separator, its production method, and solid high polymer type fuel cell
JP2005317479A (en) Metal separator for fuel cell, its manufacturing method, metallic material for fuel cell and fuel cell
JP2005190964A (en) Metal separator for fuel cell, its manufacturing method, and fuel cell
CN110199047B (en) Stainless steel for polymer fuel cell separator having excellent contact resistance and method for manufacturing the same
CN108028395A (en) The battery unit and polymer electrolyte fuel cell of use in solid polymer fuel cell carbon separator, polymer electrolyte fuel cell
EP4135078A1 (en) Stainless steel for fuel cell separator
EP1882756B1 (en) Ferritic chromium steel
JP2004269969A (en) Separator for solid polymer type fuel cell and manufacturing method therefor
JP2005340163A (en) Metallic separator for fuel cell and its manufacturing method, metallic material for fuel cell and fuel cell
JP5217755B2 (en) Stainless steel for fuel cell separator and fuel cell separator
JP2009203502A (en) Surface-roughened stainless steel sheet for separator, manufacturing method therefor, and separator
JP2005002411A (en) Corrosion-resistant metallic clad material for separator, and manufacturing method therefor
JP2007191763A (en) Austenitic stainless steel for separator of polymer-electrolyte fuel cell, and separator of fuel cell
JP4017856B2 (en) Fuel cell separator and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091009