JP2005189146A - Volatile sulfide sensor and detection method - Google Patents

Volatile sulfide sensor and detection method Download PDF

Info

Publication number
JP2005189146A
JP2005189146A JP2003432129A JP2003432129A JP2005189146A JP 2005189146 A JP2005189146 A JP 2005189146A JP 2003432129 A JP2003432129 A JP 2003432129A JP 2003432129 A JP2003432129 A JP 2003432129A JP 2005189146 A JP2005189146 A JP 2005189146A
Authority
JP
Japan
Prior art keywords
sensor
gas
temperature
sample
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003432129A
Other languages
Japanese (ja)
Other versions
JP4275523B2 (en
Inventor
Tomoko Seyama
倫子 瀬山
Gen Iwasaki
弦 岩崎
Akiyuki Tate
彰之 館
Osamu Niwa
修 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003432129A priority Critical patent/JP4275523B2/en
Publication of JP2005189146A publication Critical patent/JP2005189146A/en
Application granted granted Critical
Publication of JP4275523B2 publication Critical patent/JP4275523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simplified sensor system for detecting and discriminating a volatile sulfide (VSC) having a low concentration under the ppm order. <P>SOLUTION: This volatile sulfide sensor is equipped with a steam saturation vessel 3 into which a gas sample is introduced and wherein a saturated vapor pressure is maintained at a prescribed temperature, a measuring system 9 maintained at a higher temperature than the prescribed temperature, a sensor cell 6 provided in the measuring system and formed by arraying sensor elements 5 equipped respectively with an organic adsorption film, and a means for guiding the gas sample acquiring the saturated vapor pressure from the steam saturation vessel into the measuring system, to thereby impart thereto a relative humidity, and thereafter measuring a resonance frequency of the sensor elements. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は揮発性硫化物センサおよび検知方法、さらに詳細にはガスの組成変動を監視するセンサにおいて、湿度が一定でない空気中のサブppmレベルの揮発性硫化物を検出して判別することを目的とした改良と、歯周病診断に重要な指標となる揮発性硫化物の混合割合を識別する応用に関するものである。   It is an object of the present invention to detect and discriminate sub-ppm level volatile sulfides in air with non-constant humidity in a volatile sulfide sensor and detection method, and more particularly a sensor for monitoring gas composition fluctuations. And the application to identify the mixing ratio of volatile sulfide, which is an important indicator for periodontal disease diagnosis.

揮発性硫化物(Volatile sulfur compound;VSC)は、バイオガスプロセス、汚泥処理、埋め立て工事、パルプ工業、畜産業において大量に発生する成分であり、また、人の発生する生体ガスに含まれ健康指標となる成分である。   Volatile sulfur compound (VSC) is a component that is generated in large quantities in biogas processes, sludge treatment, landfill work, pulp industry, and livestock industry. Is a component.

従来、ppm以上の揮発性硫化物に対しては、電気化学式センサによって検知が可能であり、利用されてきた。しかし、VSCはppm以下の濃度レベルであっても、悪臭と感じられる物質が多く、施設等から漏れ出るVSCによる周辺住民への悪臭被害の報告が増えてきている。また、呼気中には、口腔内粘膜が脱落した細胞や唾液中タンパク、および食物残渣に含まれるアミノ酸である、メチオニンやシステインが口腔定在菌およびプラーク中の嫌気性細菌によって分解され生成するVSCが存在する。   Conventionally, volatile sulfides of ppm or more can be detected by an electrochemical sensor and used. However, even if the concentration level of VSC is less than or equal to ppm, there are many substances that feel bad odor, and reports of bad odor damage to surrounding residents due to VSC leaking from facilities and the like are increasing. In exhaled breath, VSC is produced by degradation of methionine and cysteine, which are amino acids contained in cells and saliva proteins removed from the oral mucosa, and food residues, and by anaerobic bacteria in the oral cavity and plaque. Exists.

近年のエチケット意識の向上により、口臭に敏感な人が増加しており、VSC濃度で200〜500ppbレベルで口臭と感じられることから、サブppmレベルのVSCをモニタリングする技術への要求がある。さらに、普通の人間や歯科医が「口臭無し」と判断するレベルであっても、自分が口臭を保有していると思い込む自臭症患者も増加している。重度の自臭症患者は精神的にも深刻であり、客観的かつ日常的に自分の口臭を測定し結果を確認することで、心理的に緩和していく治療が有効とされている。このように、サブppmレベルの低濃度のVSCについて、簡易に検知するセンサ技術への要求がある。   Due to the recent increase in etiquette awareness, the number of people who are sensitive to bad breath has increased, and it is felt that bad breath is seen at a VSC concentration of 200 to 500 ppb. Therefore, there is a need for a technique for monitoring sub-ppm level VSC. Furthermore, even at the level that ordinary humans and dentists judge “no bad breath”, the number of self-odor patients who think that they have bad breath is increasing. Severe self-odor patients are mentally serious, and treatment that is psychologically alleviated by measuring their bad breath objectively and on a daily basis is effective. Thus, there is a need for a sensor technology that can easily detect a low concentration VSC at a sub-ppm level.

さらに、呼気に含まれる低濃度のVSC成分やその含有割合は、歯周病(Periodontitis)との関連がある。歯周病は進行すると歯を失う恐れがある深刻な疾病であり、「健康な歯」の維持は、Quality of Lifeと密接な関係を持つ。遺伝性の歯周病も存在し、最近では日本人の食生活の変化に伴い、高齢者だけではなく若年層の歯周病患者の増加という問題が出てきている。しかしながら、歯周病は自覚症状が無いまま慢性的に進行するため、現状では早期発見が難しい疾病である。   Furthermore, the low-concentration VSC component contained in exhaled breath and the content ratio thereof are related to periodontitis. Periodontal disease is a serious disease that can cause loss of teeth as it progresses, and the maintenance of "healthy teeth" is closely related to Quality of Life. Hereditary periodontal disease also exists, and recently, with the change in Japanese dietary habits, the problem of an increase in the number of young periodontal disease patients as well as the elderly has emerged. However, periodontal disease is a disease that is difficult to detect at an early stage because it progresses chronically without subjective symptoms.

一方で、口腔内の細菌により生成されるVSCの成分が、歯周病の進行度合いと関連することが知られている。呼気中のサブppmレベルのVSC成分を識別検知する装置としては、従来、分析装置であるガスクロマトグラフが用いられてきた。湿度の高いサンプルである呼気中の成分測定においては、一般に、呼気を一度吸着材に保持、あるいは冷却濃縮し、ドライガスパージにより水分を放出するといった手間暇を掛けた前処理を行なった後、加熱追い出しを行なって測定対象成分をクロマトカラムに導入し、分離してから検出器で検知することで定性・定量される。   On the other hand, it is known that the component of VSC produced by bacteria in the oral cavity is related to the progress of periodontal disease. As an apparatus for discriminating and detecting a sub-ppm level VSC component in exhaled breath, a gas chromatograph which is an analyzer has been conventionally used. In the measurement of components in exhaled breath, which is a sample with high humidity, in general, the exhaled air is once held in an adsorbent or cooled and concentrated, and after pre-treatment that takes time and effort, such as releasing moisture by dry gas purging, heating is performed. It is qualitatively and quantitatively determined by introducing the component to be measured into the chromatographic column after separation and detecting it with a detector.

このように、呼気中低濃度のVSC成分は、高価で大型なガスクロマトグラフを使い、専門的な知識を有する人間が測定時間を要しながら測定するため、臨床的にも応用が難しかった。そこで、半導体型センサ素子をアレイ化し、センサシグナルのニューラルネットワークによるデータ処理を組み合わせた口臭診断装置(特許文献1:特願平13−52602号「歯周病診断装置」)も提案されている。半導体型センサ素子はVSC種類の識別能力を有していないことから、上記の装置は、人の呼気へのセンサ応答を指標に、人間を歯周病患者集団、あるいは健康な集団へと統計的に分類する。したがって、装置の性能は予めサンプリングしておく人間の集団の質と数により大きく左右され、歯周病進行指標であるVSC成分の含有割合と直接関係していない。
特願平13−52602号「歯周病診断装置」
As described above, since the VSC component having a low expiratory concentration is measured using an expensive and large gas chromatograph and a person having specialized knowledge requires measurement time, it is difficult to apply clinically. Therefore, a bad breath diagnosis device (Patent Document 1: Japanese Patent Application No. 13-52602 “Periodontal Diagnosis Device”) in which semiconductor sensor elements are arrayed and data processing by sensor signal neural network is combined has been proposed. Since the semiconductor-type sensor element does not have VSC type discrimination capability, the above-mentioned apparatus is statistically classified into a periodontal disease patient group or a healthy group using the sensor response to human breath as an index. Classify into: Therefore, the performance of the apparatus greatly depends on the quality and number of human groups sampled in advance, and is not directly related to the content ratio of the VSC component which is a periodontal disease progression index.
Japanese Patent Application No. 13-52602 "Diagnosis device for periodontal disease"

本発明の目的は、ppm以下の低濃度のVSCを検知かつ識別する簡易センサシステムを提供するものである。湿度調整機構を組み込んでいるため、相対湿度が90%程度と高い呼気サンプルをそのまま測定可能である点と、ガス選択性を有するセンサ素子をアレイ化した構成を持つため、サブppmレベルの濃度のVSC成分を識別する機能を有する揮発性硫化物センサおよび揮発性硫化物の検知方法を提供できる。   An object of the present invention is to provide a simple sensor system that detects and identifies VSC having a low concentration of ppm or less. Since the humidity adjustment mechanism is incorporated, it is possible to measure a breath sample with a relative humidity as high as about 90% as it is, and since it has a configuration in which sensor elements having gas selectivity are arrayed, the concentration of sub ppm level A volatile sulfide sensor having a function of identifying a VSC component and a volatile sulfide detection method can be provided.

上記課題を解決するため、本発明による揮発性硫化物センサは、ガス試料が導入される、所定温度で飽和蒸気圧に保持された水蒸気飽和槽と、前記所定温度より高い温度に保持された測定系と、前記測定系内に設けられ、有機吸着膜を備えたセンサ素子をアレイ化したセンサセルと、前記水蒸気飽和槽で飽和蒸気圧となった前記ガス試料を前記測定系内に導き、所定の相対湿度にさせた後前記センサ素子の共振周波数を測定する手段とを備えたことを特徴とする。   In order to solve the above problems, a volatile sulfide sensor according to the present invention includes a water vapor saturation tank in which a gas sample is introduced and maintained at a saturated vapor pressure at a predetermined temperature, and a measurement maintained at a temperature higher than the predetermined temperature. System, a sensor cell provided in the measurement system and arrayed with a sensor element having an organic adsorption film, and the gas sample having a saturated vapor pressure in the water vapor saturation tank is introduced into the measurement system, And a means for measuring the resonance frequency of the sensor element after the relative humidity is reached.

また本発明による揮発性硫化物の検知方法は、有機吸着膜を利用したアレイ化されたセンサ素子を温度および相対湿度を一定化した雰囲気に保持させ、試料ガスを前記温度および相対湿度とし、前記有機吸着膜の膜分子と吸着水成分との2つの相からなる吸着層への試料ガス成分の溶解度の差を利用してガス分子を識別することを特徴とする。   In the volatile sulfide detection method according to the present invention, an arrayed sensor element using an organic adsorption film is held in an atmosphere in which temperature and relative humidity are fixed, a sample gas is set to the temperature and relative humidity, The gas molecules are identified by using the difference in solubility of the sample gas component in the adsorption layer composed of two phases of the film molecules of the organic adsorption film and the adsorbed water component.

有機系ガスの濃縮機能に優れた有機固体材料を出発物質とするスパッタ法により形成されるプラズマ有機薄膜を吸着膜として作製したセンサ素子と二温度法に基づく湿度調整機構を組み合わせた揮発性硫化物センサを開発した。さらに、前記の揮発性硫化物センサに組み込むセンサ素子アレイとして、VSCに属するガス分子への選択性の異なるプラズマ有機薄膜を形成したセンサ素子を組み合わせたセンサアレイを開発し、これを用いた識別方法を開発した。   Volatile sulfide that combines a sensor element made with a plasma organic thin film formed by sputtering using an organic solid material with an excellent organic gas concentrating function as a starting material and a humidity control mechanism based on the two-temperature method A sensor was developed. Further, as a sensor element array to be incorporated into the volatile sulfide sensor, a sensor array in which a plasma organic thin film having different selectivity to gas molecules belonging to VSC is combined is developed, and an identification method using the same Developed.

従来の技術とは、前処理工程や複雑な装置操作等なしでガス試料をセンサに導入する操作だけでppm以下のVSCを検知および識別できる点が異なる。さらに、従来の有機吸着膜を用いたセンサとは、有機吸着膜の表面の吸着水成分の濃度を制御し、ガス吸着層として有機膜と吸着水成分との二相からなる系を利用している点が異なる。   It differs from the prior art in that VSC of ppm or less can be detected and identified only by an operation of introducing a gas sample into the sensor without a pretreatment process or complicated apparatus operation. Furthermore, a conventional sensor using an organic adsorption film controls the concentration of the adsorbed water component on the surface of the organic adsorbent film, and uses a system consisting of two phases of an organic film and an adsorbed water component as a gas adsorption layer. Is different.

口腔起源の口臭の主要原因であるVSCをppm以下の濃度から検出可能で、さらに歯周病の進行度と相関する、メチルメルカプタンと硫化水素濃度比を示すことができるセンサを作製した。本発明品は湿度調整機能を有していることから、呼気や他の環境試料のように湿度の高い状態にあるサンプルをそのまま導入して測定することができる。   A sensor capable of detecting VSC, which is the main cause of bad breath of oral origin, from a concentration of ppm or less and correlating with the degree of progression of periodontal disease and producing a concentration ratio of methyl mercaptan and hydrogen sulfide was prepared. Since the product of the present invention has a humidity adjusting function, a sample in a high humidity state such as exhaled breath or other environmental samples can be introduced as it is and measured.

本発明品を用いることで、呼気から簡単に歯周病の進行度および呼気中の悪臭濃度を測定することができるようになる。さらに人間の嗅覚による判断が難しいレベルの低濃度のVSCについても識別できることから、初期の歯周病患者を見出すことが可能となると期待される。また、呼気を袋にサンプリングして導入あるいは吹き込むだけで測定が可能な装置であることから、歯周病遺伝子を持つ人の日常的なチェックや、入院患者のように体全体の抵抗力が弱まるために歯周病を併発しやすい人について、ベッドサイドで簡単にチェックすることが可能となる。   By using the product of the present invention, the progress of periodontal disease and the malodor concentration in exhaled breath can be easily measured from the exhaled breath. Furthermore, since it is possible to identify a low-concentration VSC that is difficult to judge by human olfaction, it is expected that it will be possible to find an early periodontal disease patient. In addition, since it is a device that can be measured simply by sampling the breath into a bag and introducing or blowing it in, a daily check of a person with a periodontal disease gene, or the resistance of the whole body weakens like an inpatient Therefore, it is possible to easily check at the bedside about a person who is likely to have periodontal disease.

有機吸着膜は、膜の分子構造の制御により、分子レベルでの溶解度を変化させることが可能である。そのため、ガスセンサ材料として用いられる半導体や金属添加半導体材料に比べ、精度の高い有機ガス識別に適しているセンサ材料である。有機吸着膜の中で、有機固体材料を出発物質として合成されるプラズマ有機薄膜は、吸着面積が大きく、かつポリマー主鎖の運動性があるため、低分子量の揮発性物質を濃縮し識別する能力に優れている。そのため高感度なガスセンサ素子を作製できる材料である。   The organic adsorption film can change the solubility at the molecular level by controlling the molecular structure of the film. Therefore, it is a sensor material suitable for organic gas identification with higher accuracy than a semiconductor or a metal-added semiconductor material used as a gas sensor material. Among organic adsorption films, plasma organic thin films synthesized with organic solid materials as starting materials have a large adsorption area and the mobility of the polymer main chain, so the ability to concentrate and distinguish low molecular weight volatile substances Is excellent. Therefore, it is a material capable of producing a highly sensitive gas sensor element.

多種の異なる分子構造を持つ原材料から作製されるプラズマ有機薄膜は、原材料を選択することにより異なる分子選択性を持たせることができる。一方で、実環境中のように湿度が変動する試料や、呼気のような湿度が高い試料を測定する際には、プラズマ有機薄膜が大気中の水もあわせて吸着し、水分子の吸着に対応するセンサ応答がノイズ成分となる問題があった。そこで、大気中の水成分によるノイズを除去する手法として、従来方法としては、ガスクロマトグラフを用いた分析において用いられてきた、吸着材とドライパージを使った方法が一般的であった。   Plasma organic thin films produced from raw materials having a variety of different molecular structures can have different molecular selectivity by selecting the raw materials. On the other hand, when measuring samples with varying humidity, such as in an actual environment, or samples with high humidity, such as exhaled air, the plasma organic thin film also adsorbs water in the atmosphere, which is used to adsorb water molecules. There is a problem that the corresponding sensor response becomes a noise component. Therefore, as a conventional method for removing noise due to water components in the atmosphere, a method using an adsorbent and a dry purge, which has been used in an analysis using a gas chromatograph, is generally used.

しかしながら、このような、試料中の水成分除去方法は、分析対象ガス成分まで除去したり、変質させる恐れがあった。そこで、本発明では、センサ素子を備えたセンサセル内における湿度環境を一定化し、有機膜表面の吸着水成分の状態を定常化させ、ガスセンシングにおける吸着層をプラズマ有機薄膜と吸着水成分という2相系として利用する手法を用いた。   However, such a method for removing a water component in a sample has a risk of removing even a gas component to be analyzed or altering it. Therefore, in the present invention, the humidity environment in the sensor cell equipped with the sensor element is made constant, the state of the adsorbed water component on the surface of the organic film is made steady, and the adsorbing layer in gas sensing is a two-phase of the plasma organic thin film and the adsorbed water component The method used as a system was used.

プラズマ有機薄膜を吸着膜とするセンサ素子を備えたセンサセル内およびセンサセルに導入される試料は、二温度法により温度および相対湿度が調整される。二温度法は、一定温度Tの水蒸気飽和槽内で水蒸気を飽和させた空気を、T>Tとなる温度で維持させた恒温槽内に導入すると、相対湿度Uが次のEq1で表されることを利用している。 The temperature and relative humidity of the sample introduced into the sensor cell including the sensor element having the plasma organic thin film as an adsorption film and the sensor cell are adjusted by the two-temperature method. In the two-temperature method, when air saturated with water vapor in a water vapor saturation tank having a constant temperature T 0 is introduced into a thermostatic tank maintained at a temperature satisfying T> T 0 , the relative humidity U is expressed by the following Eq1. Is being used.

U=(eT0/eT1)×100・・・Eq1
ただし、eT0、eはそれぞれ温度TおよびTの飽和水蒸気圧である。また、温度に依存する飽和水蒸気圧e、は、一般に次式のGoff−Gratch式(Eq2)で求めることができる。
U = (e T0 / e T1 ) × 100... Eq1
However, e T0, e T is the saturation vapor pressure of the temperature T 0 and T 1, respectively. Further, the saturated water vapor pressure e s depending on the temperature can be generally obtained by the following Goff-Gratch equation (Eq2).

Log(e/1013.25)=1.089830×10(1−Ttr/T)−5.25937(T/Ttr)+7.34872×10−5[1−10(−9.16193)(1−T/Ttr)]+1.10955×10−3[104.00990(1−T/Ttr)−1]−2.2195034・・・Eq2
ただし、Ttrは水の3重点温度(273.16K)、Tがガスの温度である。なお、Eq2はITS−90に対応する係数を用いたものである。
Log (e s /1013.25) w = 1.089830 × 10 (1-T tr /T)-5.25937(T/T tr) + 7.34872 × 10 -5 [1-10 (-9.16193 ) (1-T / Ttr) ] + 1.10955 × 10 −3 [10 4.00990 (1-T / Ttr) −1] −2.2195034... Eq2
However, T tr is the triple point temperature of water (273.16 K), and T is the gas temperature. Eq2 uses a coefficient corresponding to ITS-90.

ガス試料は、水蒸気飽和槽および熱交換コイルを通過することで、センサセル内の空気と同じ温度および相対湿度となり、センサセルに導入される。よって、センサ外部の試料の湿度変動は、センサセル内の湿度やプラズマ有機薄膜への吸着水成分の状態へ影響を与えない。   The gas sample passes through the water vapor saturation tank and the heat exchange coil, so that it has the same temperature and relative humidity as the air in the sensor cell, and is introduced into the sensor cell. Therefore, the humidity fluctuation of the sample outside the sensor does not affect the humidity in the sensor cell and the state of the adsorbed water component on the plasma organic thin film.

センサセル内のセンサ素子における吸着層は、プラズマ有機薄膜と吸着水成分との二つの相からなっており、その二相は温湿度が一定であることから、定常状態となっている。次に、ガス試料を導入すると、このガス成分は、有機膜+吸着水成分の二つの相からなる系へ溶解し、この時、ガス分子と吸着層との分子間相互作用の差によって、吸着層へ吸着するガス分子と吸着しづらいガス分子が存在することとなり、それぞれ分析対象のガス分子が選別される。このようなVSC成分の種類に対し選択性を持つプラズマ有機薄膜を形成したセンサ素子を複数組み合わせたセンサアレイを作製し、センサアレイからのそれぞれのセンサ応答信号から混合ガス成分を判別するセンサシステムを構築する。   The adsorption layer in the sensor element in the sensor cell is composed of two phases of a plasma organic thin film and an adsorbed water component, and the two phases are in a steady state because the temperature and humidity are constant. Next, when a gas sample is introduced, this gas component dissolves into a system consisting of two phases of an organic film and an adsorbed water component. There are gas molecules adsorbed on the layer and gas molecules that are difficult to adsorb, and the gas molecules to be analyzed are each selected. A sensor system in which a sensor array in which a plurality of sensor elements having a plasma organic thin film having selectivity with respect to the type of VSC component is combined is manufactured, and a mixed gas component is discriminated from each sensor response signal from the sensor array. To construct.

本発明品である揮発性硫化物センサの一例を図1を参照し説明する。二温度法による湿度調整機構を有する本発明品のガス試料の流れは図1中の矢印15により示してある。ガス試料、試料ガス導入口1より、ペルチェ素子付温度制御手段7によって温度Tに恒温された水蒸気飽和槽3に導入される。前記水蒸気飽和槽3内には水(液体)2が設けられており、この水はペルチェ素子付温度制御手段7によって温度Tに恒温されている。 An example of the volatile sulfide sensor which is the product of the present invention will be described with reference to FIG. The flow of the gas sample of the present invention having a humidity adjustment mechanism by the two-temperature method is indicated by an arrow 15 in FIG. The gas sample is introduced from the sample gas inlet 1 into the water vapor saturation tank 3 which is kept at a temperature T 0 by the temperature control means 7 with a Peltier element. Water (liquid) 2 is provided in the water vapor saturation tank 3, and this water is kept at a temperature T 0 by a temperature control means 7 with a Peltier element.

次に試料ガスは前記水蒸気飽和槽3より高温の恒温に保持された恒温槽9内に導かれ、前記恒温槽(測定系)9内の熱交換コイル4を通過し、恒温槽9内の温度(測定温度)Tに加熱される。センサ素子5を備え、ペルチェ素子付温度制御手段7より前記測定温度Tに保持されたセンサセル6に到達するときにはガス試料の温度がTにまで温められ、Eq1により求められる相対湿度のガス試料となる。ガス試料はセンサセル6下流に取り付けられたポンプ11により吸引されており、流量制御弁8によって試料ガスの流量は制御され、排気12される。 Next, the sample gas is introduced into a thermostat 9 held at a constant temperature higher than that of the water vapor saturation tank 3, passes through the heat exchange coil 4 in the thermostat (measurement system) 9, and the temperature in the thermostat 9. It is heated to (measurement temperature) T 1. A sensor element 5, the temperature of the gas sample when it reaches the sensor cell 6 which is held in the measurement temperature T 1 of Peltier element with a temperature controller 7 is allowed to warm to T 1, the gas sample relative humidity as determined by Eq1 It becomes. The gas sample is sucked by the pump 11 attached downstream of the sensor cell 6, and the flow rate of the sample gas is controlled by the flow rate control valve 8 and exhausted 12.

前記ガス試料は周波数測定回路17によって周波数が測定され、パーソナルコンピュータ19によって解析される。なお、図中、13は水蒸気飽和槽3および恒温槽9内の温度を測定するためのとするための熱伝対、16は湿度センサであり、10は熱伝対13などの情報により、前記熱交換コイル4、温度制御手段7を制御するための制御ボード、18は電源である。   The frequency of the gas sample is measured by a frequency measuring circuit 17 and analyzed by a personal computer 19. In the figure, 13 is a thermocouple for measuring the temperature in the water vapor saturation tank 3 and the thermostat 9, 9 is a humidity sensor, 10 is information on the thermocouple 13, etc. A control board 18 for controlling the heat exchange coil 4 and the temperature control means 7 is a power source.

を50℃、Tを20℃としたとき、センサセル6のポンプ11の後に設置した相対湿度センサ16の出力をモニタすると、ガス試料として呼気と同レベルに加湿した室内空気(相対湿度97%)を本発明による揮発性硫化物センサに導入しても、プラズマ有機薄膜センサ素子5に明確なノイズ応答は見られなかった。 When the output of the relative humidity sensor 16 installed after the pump 11 of the sensor cell 6 is monitored when T 0 is set to 50 ° C. and T 1 is set to 20 ° C., the room air (relative humidity 97 %) Was introduced into the volatile sulfide sensor according to the present invention, no clear noise response was observed in the plasma organic thin film sensor element 5.

また、本発明では、ガス試料がセンサセル6に到達する前に、水蒸気飽和槽3を通過する。この部分に存在する飽和水蒸気がガス試料そのものに影響を与えるか調べるため、同じ人の呼気試料について、センサに導入する前と後の試料(すなわち排気12から再回収した呼気サンプル)を用意し、含まれる硫化水素、メチルメルカプタン濃度を、ガスクロマトグラフィー法により分析した。その結果、オリジナルの呼気試料、揮発性硫化物センサ(ただしセンサをセンサセル内に備えていない)導入後に回収した呼気試料ともに、90ppbの硫化水素、2ppb以下のメチルメルカプタンを含むことが確認され、水への溶解性を有する硫化水素について、本発明による揮発性硫化物センサによって測定可能であることが示された。   In the present invention, the gas sample passes through the water vapor saturation tank 3 before reaching the sensor cell 6. In order to investigate whether the saturated water vapor present in this part affects the gas sample itself, for the same person's exhalation sample, prepare samples before and after introduction to the sensor (that is, the exhalation sample recollected from the exhaust 12), The hydrogen sulfide and methyl mercaptan concentrations contained were analyzed by gas chromatography. As a result, it was confirmed that both the original breath sample and the breath sample collected after the introduction of the volatile sulfide sensor (the sensor is not provided in the sensor cell) contain 90 ppb hydrogen sulfide and 2 ppb or less methyl mercaptan. It was shown that hydrogen sulfide having solubility in water can be measured by the volatile sulfide sensor according to the present invention.

プラズマ有機薄膜は、D−フェニルアラニン(D−Phe)、ポリエチレン(PE)、ポリクロロトリフルオロエチレン(PCTFE)をターゲット材料として、水晶振動子(ATカット、基本振動周波数9MHz)を基板とし、高周波スパッタ法により作製した。プラズマ有機薄膜を用いたセンサ素子アレイは、サブppmレベルのVSCに対し応答を示し、また種類ごとに異なる応答を示す。   The plasma organic thin film uses D-phenylalanine (D-Phe), polyethylene (PE), and polychlorotrifluoroethylene (PCTFE) as target materials, and a quartz resonator (AT cut, fundamental vibration frequency 9 MHz) as a substrate, and high-frequency sputtering. It was produced by the method. The sensor element array using the plasma organic thin film shows a response to VSC at a sub ppm level and shows a different response for each type.

乾燥空気で希釈した100ppbの硫化水素および30ppbのメチルメルカプタン試料を流量180〜200mLmin−1でセンサに導入し、基本応答特性を求めた。D−Phe膜センサおよびPE膜センサの応答の時間変化(図2)では、↑(上向き矢印)の時間にVSC試料が導入されてから時間が経過するにつれ、D−Phe膜センサおよびPE膜センサの単位時間あたりの共振周波数変化応答が増加していく傾向が示されている。   A 100 ppb hydrogen sulfide diluted with dry air and a 30 ppb methyl mercaptan sample were introduced into the sensor at a flow rate of 180 to 200 mL min-1 to determine basic response characteristics. In the time change of the response of the D-Phe membrane sensor and the PE membrane sensor (FIG. 2), as the time elapses after the VSC sample is introduced at the time of ↑ (upward arrow), the D-Phe membrane sensor and the PE membrane sensor The tendency that the resonance frequency change response per unit time increases is shown.

このことは、硫化水素、メチルメルカプタンがD−Phe膜およびPE膜に吸着する際、多層吸着が起こることを示す。さらに、吸着測定開始後、同じ時間におけるセンサ応答の大きさΔfは、硫化水素に対し、Δf(D−Phe膜センサ)>Δf(PE膜センサ)であるのに対し、メチルメルカプタンの測定時にはΔf(D−Phe膜センサ)<Δf(PE膜センサ)となる。   This indicates that multilayer adsorption occurs when hydrogen sulfide and methyl mercaptan are adsorbed on the D-Phe film and the PE film. Further, the magnitude Δf of the sensor response at the same time after the start of the adsorption measurement is Δf (D-Phe membrane sensor)> Δf (PE membrane sensor) for hydrogen sulfide, whereas Δf when measuring methyl mercaptan. (D-Phe film sensor) <Δf (PE film sensor).

このように、プラズマプロセスで作製したD−Phe膜センサとPE膜センサでは、分子構造において水素一個とメチル基一個の差がある硫化水素とメチルメルカプタンに対する親和性が異なり、したがってこれらVSCの分子識別能力を持っている。   Thus, the D-Phe film sensor and PE film sensor produced by the plasma process have different affinity for hydrogen sulfide and methyl mercaptan, which have a difference of one hydrogen and one methyl group in the molecular structure. Have the ability.

また、センサ素子からガス成分を脱着させる復帰プロセスを行なうことで、センサ素子を繰り返し利用することができる。図2中↓(下向き矢印)の時間に、リファレンスガスすなわちVSCを含まない空気をセンサシステムに導入を開始している。硫化水素およびメチルメルカプタンのガス成分のプラズマ有機薄膜やセンサ構成部品への吸着力が強いことから、リファレンスガスを流しても、センサ応答の増加傾向はなくなるものの、D−Phe膜およびPE膜からの脱着による急激なセンサ応答の減少は確認されない。そこで、恒温槽9の温度を上昇させ、吸着した硫化水素あるいはメチルメルカプタンの膜からの脱着を促進させることで、センサの復帰プロセスを短縮させることができる。   Further, the sensor element can be repeatedly used by performing a return process for desorbing the gas component from the sensor element. At time ↓ (downward arrow) in FIG. 2, introduction of the reference gas, that is, air not containing VSC, into the sensor system is started. Although the hydrogen sulfide and methyl mercaptan gas components are strongly adsorbed to the plasma organic thin film and sensor components, the sensor response does not tend to increase even when a reference gas is flowed, but from the D-Phe film and PE film. No sudden decrease in sensor response due to desorption is confirmed. Therefore, by increasing the temperature of the thermostatic chamber 9 and promoting the desorption of the adsorbed hydrogen sulfide or methyl mercaptan from the film, the sensor recovery process can be shortened.

次に、センサセル内の相対湿度を30%に制御したときのセンサ応答特性を示す。湿度制御下において、D−Phe膜、PE膜表面は水が一定量吸着した安定した系である。図3、図4の硫化水素、メチルメルカプタン混合ガスへの応答では、D−Phe膜センサ、PE膜センサともに、乾燥空気下で測定した図2(a)と異なる、Langmuir型吸着を基本とするセンサ応答曲線が得られている。   Next, sensor response characteristics when the relative humidity in the sensor cell is controlled to 30% are shown. Under humidity control, the surface of the D-Phe film and PE film is a stable system in which a certain amount of water is adsorbed. The response to the hydrogen sulfide and methyl mercaptan mixed gas in FIGS. 3 and 4 is based on Langmuir type adsorption, which is different from FIG. 2A measured in dry air for both the D-Phe membrane sensor and the PE membrane sensor. A sensor response curve is obtained.

しかしながら、センサ応答幅の大小関係は、硫化水素濃度が高い時(図3、[メチルメルカプタン濃度]/[硫化水素濃度]=0.16)はΔf(D−Phe膜センサ)>Δf(PE膜センサ)、メチルメルカプタン濃度が高い時(図4、[メチルメルカプタン濃度]/[硫化水素濃度]=6)にはΔf(D−Phe膜センサ)<Δf(PE膜センサ)であり、図2の結果に準じたものである。したがって、プラズマ有機薄膜を用いた水晶振動子型センサは、吸着水成分を保持した状態においてもVSCのガス分子を濃縮し、分子レベルで識別する機能を有している。   However, when the hydrogen sulfide concentration is high (FIG. 3, [methyl mercaptan concentration] / [hydrogen sulfide concentration] = 0.16), Δf (D-Phe film sensor)> Δf (PE film) Sensor), when the methyl mercaptan concentration is high (FIG. 4, [methyl mercaptan concentration] / [hydrogen sulfide concentration] = 6), Δf (D-Phe film sensor) <Δf (PE film sensor). According to the results. Therefore, the crystal oscillator type sensor using the plasma organic thin film has a function of concentrating VSC gas molecules and discriminating them at the molecular level even in a state where the adsorbed water component is retained.

呼気中VSCである硫化水素とメチルメルカプタンの濃度比には、歯周病の進行度合いの診断指標である歯周ポケットの深さと相関がある。メチルメルカプタンの濃度が硫化水素濃度の1/6以下の場合、歯周病診断において、歯周ポケット深度は3mm以下で軽度の歯周病と判断される。一方、メチルメルカプタンが硫化水素濃度の3倍以上になると、中程度の進行した歯周病に罹患している可能性があり、6倍以上となると重度の可能性がある。このため、硫化水素とメチルメルカプタンの濃度比を求められるセンサシステムが望まれる。   The concentration ratio of hydrogen sulfide and methyl mercaptan, which are VSCs during expiration, has a correlation with the depth of the periodontal pocket, which is a diagnostic indicator of the degree of progression of periodontal disease. When the concentration of methyl mercaptan is 1/6 or less of the hydrogen sulfide concentration, in periodontal disease diagnosis, the periodontal pocket depth is 3 mm or less, and it is judged as mild periodontal disease. On the other hand, when methyl mercaptan is 3 times or more of the hydrogen sulfide concentration, there is a possibility of suffering from moderately advanced periodontal disease, and when it is 6 times or more, it may be severe. For this reason, a sensor system that can determine the concentration ratio of hydrogen sulfide and methyl mercaptan is desired.

そこで、メチルメルカプタンと硫化水素の濃度の割合を1:6(すなわち、[メチルメルカプタン濃度]/[硫化水素濃度]〜0.16)とした混合ガス試料に対する応答を測定した結果を図4に示す。VSCの総濃度は、図3の硫化水素濃度と同等の300ppb程度で、「口臭あり」と判断される濃度に匹敵するものである。共振周波数応答の大きさが、硫化水素に対する応答に比べ非常に小さくなり、D−Phe膜センサの応答については1/10程度となっている。また、混合サンプルに対する応答曲線の傾向は、硫化水素のみのサンプルを測定した場合とは異なっており、乾燥空気環境下にて硫化水素およびメチルメルカプタンを測定したときと同様の、多層吸着型の吸着による応答曲線が得られている。   Therefore, FIG. 4 shows the result of measuring the response to the mixed gas sample in which the ratio of the concentration of methyl mercaptan and hydrogen sulfide was 1: 6 (that is, [methyl mercaptan concentration] / [hydrogen sulfide concentration] to 0.16). . The total concentration of VSC is about 300 ppb, which is equivalent to the hydrogen sulfide concentration in FIG. 3, and is comparable to the concentration judged to be “with bad breath”. The magnitude of the resonance frequency response is much smaller than the response to hydrogen sulfide, and the response of the D-Phe film sensor is about 1/10. The response curve trend for the mixed sample is different from that for the sample containing only hydrogen sulfide, and is similar to that for measuring hydrogen sulfide and methyl mercaptan in a dry air environment. A response curve is obtained.

この結果から、メチルメルカプタンは水分子と競合的にPE膜およびD−Phe膜に吸着している。異なるセンサ素子の応答の大きさに着目すると、メチルメルカプタンと硫化水素とを1:6の割合で混合したサンプルに対する同じ時間におけるセンサ応答の大きさΔfは、Δf(D−Phe膜センサ)<Δf(PE膜センサ)となっており、乾燥空気下の測定におけるメチルメルカプタンへの応答と類似した傾向である。このように、吸着水成分を保持した状態において、プラズマ有機薄膜を用いたセンサ素子は分子選択性を有していることが示されている。   From this result, methyl mercaptan is adsorbed on the PE film and D-Phe film in a competitive manner with water molecules. Focusing on the magnitude of the response of the different sensor elements, the magnitude of the sensor response Δf at the same time for a sample in which methyl mercaptan and hydrogen sulfide are mixed at a ratio of 1: 6 is Δf (D-Phe film sensor) <Δf This is a tendency similar to the response to methyl mercaptan in measurement under dry air. Thus, it is shown that the sensor element using the plasma organic thin film has molecular selectivity in the state where the adsorbed water component is retained.

そこで、メチルメルカプタンと硫化水素の混合割合を変化させたときのセンサ応答の大きさを比較した。ここで吸着測定開始後、15分および30分における応答幅を比較している。呼気をサンプリングしてセンサシステムに導入する際、利用される簡易サンプリング器具として、におい袋あるいはテドラーバッグと呼ばれる袋類がある。これら容量は3〜10Lが一般的であり、本センサシステムにおけるフロー流量が180〜200mLmin−1であることから、サンプリングによる測定時間として15分から30分が対応する。そこで、15分と30分における応答の大きさを図5で比較した。VSCの総濃度は300ppbである。メチルメルカプタンと硫化水素の混合比が異なると、センサアレイの応答パターンが異なっていることが確認される。   Therefore, the magnitude of the sensor response when the mixing ratio of methyl mercaptan and hydrogen sulfide was changed was compared. Here, after the start of the adsorption measurement, the response widths at 15 minutes and 30 minutes are compared. When sampling exhalation and introducing it into a sensor system, there are bags called odor bags or Tedlar bags as a simple sampling device to be used. These capacities are generally 3 to 10 L, and the flow rate in this sensor system is 180 to 200 mL min-1, so that the measurement time by sampling corresponds to 15 to 30 minutes. Therefore, the magnitudes of responses at 15 minutes and 30 minutes were compared in FIG. The total concentration of VSC is 300 ppb. When the mixing ratio of methyl mercaptan and hydrogen sulfide is different, it is confirmed that the response pattern of the sensor array is different.

歯周病診断において軽度と重度となる[メチルメルカプタン濃度]/[硫化水素濃度]が0.16と6の場合を比較すると、D−Phe膜センサとPE膜センサ応答の大きさの比が異なる。さらに、[メチルメルカプタン濃度]/[硫化水素濃度]が1の時と6の時を比較するとPE膜センサ応答と、撥水性の特性を持つPCTFE膜センサの応答を比較すると、PCTFE膜センサの負の応答との大きさの比が異なっている。ただし、乾燥空気環境下においてメチルメルカプタンに対してPCTFE膜センサはほとんど応答を示していなかった。PCTFE膜センサの負の応答幅は、メチルメルカプタンの混合比が高くなるほど小さくなる傾向にあり、サンプルガス成分の特徴を示している。   Comparing the cases where [methyl mercaptan concentration] / [hydrogen sulfide concentration], which are mild and severe in periodontal disease diagnosis, are 0.16 and 6, the ratio of the magnitude of the response of the D-Phe film sensor and the PE film sensor is different. . Further, when the [methyl mercaptan concentration] / [hydrogen sulfide concentration] is compared between 1 and 6, the response of the PE film sensor and the response of the PCTFE film sensor having water repellency characteristics are compared. The ratio of magnitude to the response is different. However, the PCTFE membrane sensor hardly responded to methyl mercaptan in a dry air environment. The negative response width of the PCTFE membrane sensor tends to decrease as the mixing ratio of methyl mercaptan increases, indicating the characteristics of the sample gas component.

このように、D−Phe膜センサ、PE膜センサ、PCTFE膜センサから成るセンサアレイにより、歯周病診断の指標となるメチルメルカプタンと硫化水素の混合比に応じた応答を得られることが確認された。   As described above, it was confirmed that a sensor array composed of a D-Phe film sensor, a PE film sensor, and a PCTFE film sensor can obtain a response corresponding to the mixing ratio of methyl mercaptan and hydrogen sulfide, which is an index for periodontal disease diagnosis. It was.

センサ応答曲線から応答特徴量を抽出して、メチルメルカプタンと硫化水素の混合比を識別用のデータベースを作成した。総濃度および混合比の異なる硫化水素、メチルメルカプタン混合サンプルに対するセンサ応答を測定し、それぞれのセンサ応答の時間変化率(すなわち応答曲線の傾き)を応答特徴量として抽出し、その応答特徴量に基づく主成分分析を行った。   Response features were extracted from the sensor response curve, and a database for identifying the mixture ratio of methyl mercaptan and hydrogen sulfide was created. Measure the sensor response to mixed samples of hydrogen sulfide and methyl mercaptan with different total concentrations and mixing ratios, extract the time change rate of each sensor response (that is, the slope of the response curve) as a response feature, and based on the response feature Principal component analysis was performed.

上記のようなセンサ応答の曲線、違いを数値的に取り扱うことで、センサ応答から異なる総濃度の混合ガスの混合比を識別する。そこで、総濃度および混合比の異なる硫化水素、メチルメルカプタン混合サンプルに対するセンサ応答を測定し、それら混合サンプルを測定して得られたセンサ応答において、D−Phe膜センサ、PE膜センサ、PCTFE膜センサそれぞれの応答の時間変化率(すなわち応答曲線の傾き)を応答特徴の数値とした。   By treating the curve and difference of the sensor response as described above numerically, the mixture ratio of the mixed gases having different total concentrations is identified from the sensor response. Therefore, the sensor response to the mixed sample of hydrogen sulfide and methyl mercaptan having different total concentrations and mixing ratios is measured, and in the sensor responses obtained by measuring these mixed samples, the D-Phe film sensor, PE film sensor, PCTFE film sensor The time change rate of each response (that is, the slope of the response curve) was used as the numerical value of the response characteristic.

すなわち、混合比m1で総濃度がc1に対する、D−Phe膜センサ、PE膜センサ、PCTFE膜センサの応答の時間変化率を、τD−Phe (m1c1)、τ PE (m1c1)、τPCTFE(m1c1)とすると、総濃度c1で混合比m1の硫化水素とメチルメルカプタンの混合サンプルは、これら3つの数値でもって特徴づけられるセンサ応答に相当する。混合比m2で総濃度がc2の別の混合サンプルについては、τD−Phe (m2c2)、τ PE (m2c2)、τPCTFE(m2c2)、と別の数値の組み合わせで表される応答ということになる。これら数値の組み合わせに、混合比m1、m2、との間にある一定の関係が存在する場合、これらの関係をあらかじめ規定する。これが、ニオイセンサにおけるデータベースである。そして、混合比および総濃度が未知の混合サンプルを測定した場合に、その未知サンプルに対するセンサ応答から抽出した特徴である数値セットと、データベースとを照らし合わせ、未知サンプルがどの混合比のサンプルに近い値を持っているかを判定する。 That is, the time change rate of the response of the D-Phe film sensor, the PE film sensor, and the PCTFE film sensor with respect to the total concentration c1 at the mixing ratio m1 is expressed as τ D-Phe (m1c1), τ PE (m1c1), τ PCTFE ( m1c1), a mixed sample of hydrogen sulfide and methyl mercaptan with a total concentration c1 and a mixing ratio m1 corresponds to a sensor response characterized by these three numerical values. For another mixed sample with a mixing ratio of m2 and a total concentration of c2, the response is expressed as a combination of τ D-Phe (m2c2), τ PE (m2c2), τ PCTFE (m2c2), and other numerical values. Become. When a certain relationship exists between the combination of these numerical values and the mixing ratios m1 and m2, these relationships are defined in advance. This is a database in the odor sensor. When a mixed sample with an unknown mixing ratio and total concentration is measured, the numerical set that is a feature extracted from the sensor response to the unknown sample is compared with the database, and the unknown sample is close to the sample at which mixing ratio. Determine if it has a value.

したがって、データベースに保管されるべき数値セットは、混合比の相違を表現するものでなければならない。すなわち、数値セットの混合比との相関が、ニオイセンサの識別性能をあらわすものである。   Therefore, the numerical set to be stored in the database must represent the mixing ratio difference. That is, the correlation with the mixing ratio of the numerical value set represents the discrimination performance of the odor sensor.

そこで、混合サンプルを実測し、そのときのセンサ応答から得られる応答特徴量である数値セットを求め、次に数値セットと混合比との関係を求めた。実測したサンプルの混合比と濃度は以下のとおりである。[メチルメルカプタン濃度]/[硫化水素濃度]が6で、総濃度が72 ppb、110 ppb、140 ppb、[メチルメルカプタン濃度]/[硫化水素濃度]が1で総濃度が44 ppb、88 ppb、[メチルメルカプタン濃度]/[硫化水素濃度]が0.16の時で総濃度が52 ppb、98 ppb、140 ppb。この総濃度レベルは、人間の嗅覚によって「口臭なし」から、敏感な人が少し「口臭あり」と感じる程度の範囲である。   Therefore, the mixed sample was actually measured, a numerical set that is a response feature amount obtained from the sensor response at that time was obtained, and then the relationship between the numerical set and the mixing ratio was obtained. The mixing ratio and concentration of the measured samples are as follows. [Methyl mercaptan concentration] / [hydrogen sulfide concentration] is 6, the total concentration is 72 ppb, 110 ppb, 140 ppb, [methyl mercaptan concentration] / [hydrogen sulfide concentration] is 1, and the total concentration is 44 ppb, 88 ppb, When [methyl mercaptan concentration] / [hydrogen sulfide concentration] is 0.16, the total concentration is 52 ppb, 98 ppb, 140 ppb. This total concentration level ranges from “no bad breath” to a sensitive person who feels “a bad breath” a little according to the human sense of smell.

実測により得られた数値セットの混合比との関係は、数値セット間のユークリッド距離を求め、それらの分散から位置付けることができる。それを視覚的にあらわす方法が、主成分分析である。   The relationship with the mixing ratio of the numerical sets obtained by actual measurement can be determined from the dispersion of the Euclidean distance between the numerical sets. A method for visually expressing this is principal component analysis.

主成分分析は、数値セット間のユークリッド距離による分散をもっとも大きくする数値上の軸を求める一般的な数値解析法である。もっとも分散が大きくなる軸を主成分1とし、次に分散が大きくなる軸を主成分2とし、それぞれを軸として実測値から得られた数値セットをプロットしたのが図6である。図6中で、プロットの形状は混合ガス試料の[メチルメルカプタン濃度]/[硫化水素濃度]の値を表しており、またメチルメルカプタンと硫化水素の総濃度毎のプロットを示している。○のプロットは[メチルメルカプタン濃度]/[硫化水素濃度]が6で、総濃度が72 ppb、110 ppb、140 ppb、□は[メチルメルカプタン濃度]/[硫化水素濃度]が1で総濃度が44 ppb、88 ppb、●は[メチルメルカプタン濃度]/[硫化水素濃度]が0.16の時で総濃度が52 ppb、98 ppb、140 ppbを示している。それぞれの形状の違うプロットを円で囲むと、別の領域に存在する。このように、センサ応答から得られた数値セットと、 [メチルメルカプタン濃度]/[硫化水素濃度]比との関係を、主成分分析により得られるマップ上で形成可能であることから、本発明品であるセンサアレイがVSC濃度がサブppmレベルの口臭から、歯周病診断の指標を求めることが可能な感度と機能を有することが示された。   Principal component analysis is a general numerical analysis method for obtaining a numerical axis that maximizes the variance due to the Euclidean distance between numerical sets. FIG. 6 shows a set of numerical values obtained from actual measurement values, with the axis having the largest variance as the principal component 1 and the axis with the next largest variance as the principal component 2, each axis serving as an axis. In FIG. 6, the shape of the plot represents the value of [methyl mercaptan concentration] / [hydrogen sulfide concentration] of the mixed gas sample, and also shows a plot for each total concentration of methyl mercaptan and hydrogen sulfide. The plot of ○ is [methyl mercaptan concentration] / [hydrogen sulfide concentration] is 6, the total concentration is 72 ppb, 110 ppb, 140 ppb, and □ is [methyl mercaptan concentration] / [hydrogen sulfide concentration] is 1 and the total concentration is 44 ppb, 88 ppb, and ● indicate the total concentrations of 52 ppb, 98 ppb, and 140 ppb when [methyl mercaptan concentration] / [hydrogen sulfide concentration] is 0.16. Plots with different shapes are circled and exist in different areas. Thus, the relationship between the numerical set obtained from the sensor response and the [methyl mercaptan concentration] / [hydrogen sulfide concentration] ratio can be formed on the map obtained by principal component analysis. It was shown that the sensor array has a sensitivity and a function capable of obtaining an index for periodontal disease diagnosis from bad breath having a VSC concentration of sub ppm level.

なお、上記実施例においては、前記センサ素子のガス分子吸着量を測定する手段として水晶振動子を使用したが、他にマイクロカンチレバー、表面弾性波導波デバイス等も使用可能である。   In the above embodiment, a quartz crystal resonator is used as means for measuring the gas molecule adsorption amount of the sensor element. However, a micro cantilever, a surface acoustic wave waveguide device, or the like can also be used.

湿度調整機構を組み込み、水晶振動子の表面にプラズマ有機膜を形成したガス選択性を有するセンサ素子をアレイ化したことを特徴とする。ppm以下の低濃度のVSC(揮発性硫化物)の検知・識別が可能となる。   A sensor element having a gas selectivity in which a humidity adjustment mechanism is incorporated and a plasma organic film is formed on the surface of a crystal resonator is arrayed. Detection and identification of low concentration VSC (volatile sulfide) of ppm or less is possible.

センサシステム構成を示す図。The figure which shows a sensor system structure. ドライ環境下でのセンサ応答を示す図。(a)は硫化水素、(b)はメチルメルカプタンである。The figure which shows the sensor response in a dry environment. (A) is hydrogen sulfide and (b) is methyl mercaptan. 相対湿度30%(20℃)環境下での硫化水素へのセンサ応答を示す図。The figure which shows the sensor response to hydrogen sulfide in relative humidity 30% (20 degreeC) environment. 相対湿度30%(20℃)環境下での[メチルメルカプタン濃度]/[硫化水素濃度]=0.16としたガス試料への応答を示す図。The figure which shows the response to the gas sample made into [methyl mercaptan density | concentration] / [hydrogen sulfide density] = 0.16 in relative humidity 30% (20 degreeC) environment. 混合ガスに対するセンサ応答の比較。Comparison of sensor response to mixed gas. 混合ガスの主成分分析結果を示す図。The figure which shows the principal component analysis result of mixed gas.

符号の説明Explanation of symbols

1 試料ガス導入口
2 水(液体)
3 水蒸気飽和槽
4 熱交換コイル
5 センサ素子
6 センサセル
7 温度制御手段
8 流量制御弁
9 恒温槽
10 制御ボード
11 ポンプ
12 排気
13 熱伝対
14 電気配線
15 ガス流経路
16 湿度センサ
17 周波数測定回路
18 電源
19 パーソナルコンピュータ
1 Sample gas inlet 2 Water (liquid)
DESCRIPTION OF SYMBOLS 3 Steam saturation tank 4 Heat exchange coil 5 Sensor element 6 Sensor cell 7 Temperature control means 8 Flow control valve 9 Thermostatic chamber 10 Control board 11 Pump 12 Exhaust 13 Thermocouple 14 Electrical wiring 15 Gas flow path 16 Humidity sensor 17 Frequency measurement circuit 18 Power supply 19 Personal computer

Claims (11)

ガス試料が導入される、所定温度の飽和蒸気圧に保持された水蒸気飽和槽と、前記所定温度より高い測定温度に保持された恒温槽と、前記恒温槽内に設けられ、有機吸着膜を備えたセンサ素子をアレイ化したセンサセルと、前記水蒸気飽和槽で飽和蒸気圧となった前記ガス試料を前記恒温槽内に導き、前記測定温度に加熱し所定の相対湿度にさせた後、前記センサセル内のセンサ素子に接触させ、前記センサ素子のガス分子吸着量を測定する手段とを備えたことを特徴とする揮発性硫化物センサ。 A water vapor saturation tank maintained at a saturated vapor pressure at a predetermined temperature, a gas sample is introduced, a thermostatic tank maintained at a measurement temperature higher than the predetermined temperature, and an organic adsorption film provided in the thermostatic tank. The sensor cell in which the sensor elements are arrayed and the gas sample having a saturated vapor pressure in the water vapor saturation tank are introduced into the thermostatic bath, heated to the measurement temperature to a predetermined relative humidity, And a means for measuring the amount of gas molecule adsorbed on the sensor element. 前記水蒸気飽和槽は前記水蒸気飽和槽内の水を所定温度に保持するための温度制御手段を備えていることを特徴とする請求項1記載の揮発性硫化物センサ。 2. The volatile sulfide sensor according to claim 1, wherein the water vapor saturation tank includes a temperature control means for maintaining the water in the water vapor saturation tank at a predetermined temperature. 前記恒温槽は、水蒸気飽和槽より導入された試料ガスを恒温槽内の前記センサ素子と同じ温度とし、同じ相対湿度にするために加熱する熱交換コイルを備えていることを特徴とする請求項1または2記載の揮発性硫化物センサ。 The thermostat is provided with a heat exchange coil for heating the sample gas introduced from the water vapor saturation tank to have the same temperature as the sensor element in the thermostat and the same relative humidity. The volatile sulfide sensor according to 1 or 2. 前記恒温槽は、前記センサ素子を所定温度に保持するための温度制御手段を備えていることを特徴とする請求項1から3のいずれか1項記載の揮発性硫化物センサ。 The volatile sulfide sensor according to any one of claims 1 to 3, wherein the thermostatic chamber includes a temperature control means for maintaining the sensor element at a predetermined temperature. 前記試料ガスは外部に備えられたポンプにより、流量制御されながら、前記水蒸気飽和槽、恒温槽を通過するようになっていることを特徴とする請求項1から4のいずれか1項記載の揮発性硫化物センサ。 The volatilization according to any one of claims 1 to 4, wherein the sample gas passes through the water vapor saturation bath and the thermostatic bath while being controlled in flow rate by a pump provided outside. Sulfide sensor. 前記有機吸着膜に有機固形材料を用いたプラズマプロセスにより形成されたプラズマ有機薄膜を用いることを特徴とする請求項1から5のいずれか1項記載の揮発性硫化物センサ。 6. The volatile sulfide sensor according to claim 1, wherein a plasma organic thin film formed by a plasma process using an organic solid material is used for the organic adsorption film. 前記有機吸着膜は、D−フェニルアラニン、ポリエチレン、ポリクロロトリフルオロエチレンのいずれかである請求項1から6のいずれか1項記載の揮発性硫化物センサ。 The volatile sulfide sensor according to claim 1, wherein the organic adsorption film is any one of D-phenylalanine, polyethylene, and polychlorotrifluoroethylene. 前記ガス分子吸着量を測定する手段は、水晶振動子、マイクロカンチレバー、表面弾性波導波デバイスであることを特徴とする請求項1から7のいずれか1項記載の揮発性硫化物センサ。 The volatile sulfide sensor according to any one of claims 1 to 7, wherein the means for measuring the amount of adsorbed gas molecules is a crystal resonator, a microcantilever, or a surface acoustic wave waveguide device. 有機吸着膜を利用したアレイ化されたセンサ素子を温度および相対湿度を一定化した雰囲気に保持させ、試料ガスを前記温度および相対湿度とし、前記有機吸着膜の膜分子と吸着水成分との2つの相からなる吸着層への前記試料ガス成分の溶解度の差を利用してガス分子を識別することを特徴とする揮発性硫化物の検知方法。 The arrayed sensor elements using the organic adsorption film are held in an atmosphere in which the temperature and relative humidity are fixed, the sample gas is set to the temperature and relative humidity, and 2 of the molecules of the organic adsorption film and the adsorbed water component. A method for detecting volatile sulfides, wherein gas molecules are identified using a difference in solubility of the sample gas component in an adsorption layer composed of two phases. 前記試料ガスを所定温度に保持された水蒸気飽和槽を通過させることにより、前記温度における水飽和状態にする過程、前記試料ガスを加熱し、センサ素子の保持された温度および相対湿度にする過程、前記センサ素子のガス分子吸着量を測定する過程を含むことを特徴とする請求項9記載の揮発性硫化物の検知方法。 Passing the sample gas through a water vapor saturation tank maintained at a predetermined temperature, thereby bringing the sample gas into a water saturated state, heating the sample gas, and maintaining the temperature and relative humidity of the sensor element; The volatile sulfide detection method according to claim 9, comprising a step of measuring a gas molecule adsorption amount of the sensor element. 前記センサ素子は水晶振動子に前記有機吸着膜を形成したものであり、前記センサ素子の共振周波数応答を測定することによってガス吸着量を検知することを特徴とする請求項9または10記載の揮発性硫化物の検知方法。 11. The volatilization according to claim 9, wherein the sensor element is formed by forming the organic adsorption film on a crystal resonator, and the gas adsorption amount is detected by measuring a resonance frequency response of the sensor element. To detect functional sulfide.
JP2003432129A 2003-12-26 2003-12-26 Volatile sulfide sensor and detection method Expired - Fee Related JP4275523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003432129A JP4275523B2 (en) 2003-12-26 2003-12-26 Volatile sulfide sensor and detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432129A JP4275523B2 (en) 2003-12-26 2003-12-26 Volatile sulfide sensor and detection method

Publications (2)

Publication Number Publication Date
JP2005189146A true JP2005189146A (en) 2005-07-14
JP4275523B2 JP4275523B2 (en) 2009-06-10

Family

ID=34789929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432129A Expired - Fee Related JP4275523B2 (en) 2003-12-26 2003-12-26 Volatile sulfide sensor and detection method

Country Status (1)

Country Link
JP (1) JP4275523B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032607A (en) * 2006-07-31 2008-02-14 Kyushu Univ Sensor for detecting foul odor of sulphide with high sensitivity
WO2008038611A1 (en) * 2006-09-28 2008-04-03 National Institute Of Advanced Industrial Science And Technology Gas conveying pump, method of forming heater, and sensor
JP2010216851A (en) * 2009-03-13 2010-09-30 Olympus Corp Substance detecting system
JP2011102747A (en) * 2009-11-10 2011-05-26 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for exhalation analysis, and exhalation analyzer
JPWO2012165182A1 (en) * 2011-05-27 2015-02-23 株式会社Nttドコモ Biogas detection device and biogas detection method
JP2015507201A (en) * 2012-02-09 2015-03-05 コーニンクレッカ フィリップス エヌ ヴェ Gas sampling apparatus and method
KR101550290B1 (en) * 2014-05-19 2015-09-07 한국표준과학연구원 Hydrogen leakage inspection System and method using Quartz crystal microbalance
KR101814666B1 (en) 2016-04-18 2018-01-04 주식회사 그린솔루스 Malodorous material sensing apparatus and malodorous material sensing instrument having the same
JP2020016078A (en) * 2018-07-25 2020-01-30 ジャパンパイル株式会社 Constant temperature curing device and vehicle
WO2021153566A1 (en) * 2020-01-30 2021-08-05 太陽誘電株式会社 Smell decision device, smell decision method, and smell decision system
WO2022176617A1 (en) * 2021-02-19 2022-08-25 パナソニックIpマネジメント株式会社 Mouth washing instrument, periodontal disease determination device, periodontal disease determination system, periodontal disease determination method, and periodontal disease determination program
WO2023145501A1 (en) * 2022-01-27 2023-08-03 京セラ株式会社 Gas detection device and gas detection system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032607A (en) * 2006-07-31 2008-02-14 Kyushu Univ Sensor for detecting foul odor of sulphide with high sensitivity
WO2008038611A1 (en) * 2006-09-28 2008-04-03 National Institute Of Advanced Industrial Science And Technology Gas conveying pump, method of forming heater, and sensor
JP2010216851A (en) * 2009-03-13 2010-09-30 Olympus Corp Substance detecting system
JP2011102747A (en) * 2009-11-10 2011-05-26 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for exhalation analysis, and exhalation analyzer
JPWO2012165182A1 (en) * 2011-05-27 2015-02-23 株式会社Nttドコモ Biogas detection device and biogas detection method
JP2015507201A (en) * 2012-02-09 2015-03-05 コーニンクレッカ フィリップス エヌ ヴェ Gas sampling apparatus and method
KR101550290B1 (en) * 2014-05-19 2015-09-07 한국표준과학연구원 Hydrogen leakage inspection System and method using Quartz crystal microbalance
KR101814666B1 (en) 2016-04-18 2018-01-04 주식회사 그린솔루스 Malodorous material sensing apparatus and malodorous material sensing instrument having the same
JP2020016078A (en) * 2018-07-25 2020-01-30 ジャパンパイル株式会社 Constant temperature curing device and vehicle
WO2021153566A1 (en) * 2020-01-30 2021-08-05 太陽誘電株式会社 Smell decision device, smell decision method, and smell decision system
WO2022176617A1 (en) * 2021-02-19 2022-08-25 パナソニックIpマネジメント株式会社 Mouth washing instrument, periodontal disease determination device, periodontal disease determination system, periodontal disease determination method, and periodontal disease determination program
WO2023145501A1 (en) * 2022-01-27 2023-08-03 京セラ株式会社 Gas detection device and gas detection system

Also Published As

Publication number Publication date
JP4275523B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
Chen et al. A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method
Gouma et al. Nanosensor and breath analyzer for ammonia detection in exhaled human breath
US5425374A (en) Device and method for expiratory air examination
JP4275523B2 (en) Volatile sulfide sensor and detection method
Adiguzel et al. Breath sensors for lung cancer diagnosis
Di Francesco et al. Breath analysis: trends in techniques and clinical applications
US6439026B2 (en) Odor measuring apparatus
Chen et al. Applications and technology of electronic nose for clinical diagnosis
US5798271A (en) Apparatus for the measurement of dissolved carbon in deionized water
CA2725319A1 (en) Methods and apparatuses for detecting odors
JP3282586B2 (en) Odor measurement device
US6360584B1 (en) Devices for measuring gases with odors
Cho et al. Two-step preconcentration for analysis of exhaled gas of human breath with electronic nose
Jha et al. A novel odor filtering and sensing system combined with regression analysis for chemical vapor quantification
JP2008008788A (en) Smell discrimination system
Ito et al. Discrimination of halitosis substance using QCM sensor array and a preconcentrator
JP4472893B2 (en) Odor measurement method
Ohira et al. Can breath isoprene be measured by ozone chemiluminescence?
Wu et al. Odor-based incontinence sensor
Pennazza et al. Application of a quartz microbalance based gas sensor array for the study of halitosis
Ghazaly et al. Assessment of an e-nose performance for the detection of COVID-19 specific biomarkers
JP2002539429A (en) State detection method
EP1099949B1 (en) Device for measuring gases with odors
Sasaya et al. Study of halitosis-substance sensing at low concentration using an electrochemical sensor array combined with a preconcentrator
Wang et al. A compact breath breathalyzer for identifying the non-alcoholic fatty liver disease biomarker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Ref document number: 4275523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees