WO2008038611A1 - Gas conveying pump, method of forming heater, and sensor - Google Patents

Gas conveying pump, method of forming heater, and sensor Download PDF

Info

Publication number
WO2008038611A1
WO2008038611A1 PCT/JP2007/068507 JP2007068507W WO2008038611A1 WO 2008038611 A1 WO2008038611 A1 WO 2008038611A1 JP 2007068507 W JP2007068507 W JP 2007068507W WO 2008038611 A1 WO2008038611 A1 WO 2008038611A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
gas
chamber
pump
channel
Prior art date
Application number
PCT/JP2007/068507
Other languages
French (fr)
Japanese (ja)
Inventor
Sven Heisig
Tsuyoshi Ikehara
Takashi Mihara
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Olympus Corporation filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2008038611A1 publication Critical patent/WO2008038611A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to a gas transfer pump, a detection sensor that detects molecules and the like present in an atmosphere, and the like.
  • Patent Document 1 a method of ejecting liquid droplets by generating bubbles by applying thermal energy to ink (liquid) in the ink jet printer technology has been proposed (for example, Patent Document 1). reference.).
  • Patent Document 1 Japanese Patent Publication No. 61-59911
  • the conventional methods as described above are configured to include mechanically movable parts, except for a method of generating bubbles using thermal energy. For this reason, it is difficult to avoid a decrease in reliability due to a failure of the movable part.
  • the operating noise or heat generated by the operation may become a problem.
  • the operating noise, vibration, heat, etc. of the movable part may adversely affect the detection sensitivity of the sensor.
  • the present invention has been made on the basis of such a technical problem, and an object of the present invention is to provide a technology that can transport a gas with high accuracy even in a small amount and is excellent in reliability.
  • the inventors have a chamber part formed in the pump, a first channel formed to communicate the chamber part and the outside of the pump, A second channel formed to communicate with a part of the chamber and the outside of the pump at a position different from the channel, and formed between the part of the chamber and the first channel, from the first channel side. It is formed between the first reduced diameter part where the inner diameter gradually decreases toward a part of the chamber, and between the chamber part and the second channel, and the inner diameter gradually decreases from the part of the chamber toward the second channel side. It has already been found that the above problem can be solved by realizing a gas transport pump having a configuration including the second reduced diameter portion and a temperature changing means for changing the temperature in a part of the chamber.
  • the temperature in the chamber is repeatedly raised and lowered by the temperature changing means. Then, the gas expands and contracts in a part of the chamber, causing a volume change. At the time of expansion, the gas tends to come out of the chamber 1 from the first reduced diameter portion and the second reduced diameter portion formed so as to face a part of the chamber.
  • the first reduced diameter portion is the first
  • the inner diameter gradually decreases from the channel side toward the chamber part, and the inner diameter decreases on the chamber part side, whereas the second diameter-reduced part is the second channel from the chamber part side. The inner diameter gradually decreases toward the side, and the inner diameter increases on the partial chamber side.
  • the gas Due to the difference in pressure loss at this portion, the gas is more likely to flow out of the second reduced diameter portion than the first reduced diameter portion.
  • the gas contracts the gas outside the chamber 1 tries to be drawn into the chamber 1 from the first reduced diameter portion and the second reduced diameter portion. At this time, the gas is more easily drawn from the first reduced diameter portion than the second reduced diameter portion.
  • the first channel, the first reduced diameter portion, the chamber part, the second reduced diameter portion, and the second channel are formed on a silicon substrate, a glass substrate, or the like by a lithographic method. That power S.
  • the gas transfer pump can be made very small, and can be mass-produced at low cost.
  • the gas transfer pump since the gas transfer pump has a very simple structure and has no moving parts, it is possible to obtain high durability and reliability that are unlikely to cause a failure or the like, and there is no operation noise.
  • the temperature changing means a device comprising a heater for causing a temperature change in a part of the chamber and a controller for changing the heat generation temperature of the heater is used.
  • such a heater is generally made of metal.
  • Metals such as Au and Pt, which have high thermal conductivity, are frequently used as heater materials.
  • the main purpose is to reduce the size and the thickness by using a semiconductor process.
  • the thickness of the force gas transfer pump is reduced, there will be no escape from the heat generated by the heater, heat dissipation will not be possible to some extent efficiently, and it will be difficult to increase the heating / cooling response to some extent. We have found that.
  • Silicon is made to have conductivity by diffusing impurities such as boron (B) to function as a heater.
  • the temperature changing means is composed of a heater and a controller that changes the heat generation temperature of the heater, and the heater is a silicon in which impurities are diffused. It is manufactured and arranged so as to penetrate a part of the chamber.
  • the heater by forming the heater with silicon in which impurities are diffused, it is possible to increase the heat generation and heat dissipation efficiency.
  • the heater is disposed so as to penetrate a part of the chamber.
  • the heater may be supported only at both ends, and the heater may be suspended in the space in a part of the chamber.
  • the entire outer peripheral surface of the heater can be brought into contact with the atmosphere in a part of the chamber, so that the heat of the heater can be efficiently transferred to the atmosphere in the part of the chamber.
  • such a heater has a rod-shaped heater member with a plurality of rod-shaped heater members arranged side by side corresponding to the chamber part. It ’s better to do that.
  • the heater is formed of a thin metal
  • metal and its heater electrode Due to the difference in the coefficient of thermal expansion of the glass substrate that supports the metal, the metal is subject to great stress and thermal strain (deformation) each time the heater is heated or cooled, and it breaks down after prolonged use.
  • the inventors have also experienced a force S that generally needs to be relatively thin to achieve a high temperature, in which case the heat conduction is poor and the current concentrated location becomes hot and breaks down.
  • the metal thin film is a microcrystal, it is vulnerable to these deformations and thermal destruction.
  • the surface of the relatively deep chamber is in contact with air on some sides, heat transfer from the heater to the air is poor.
  • a heater that constitutes such a gas transport pump includes a first step of diffusing boron as an impurity in a surface layer portion of a silicon substrate that constitutes the gas transport pump, and forming a boron diffusion layer in the silicon substrate.
  • the boron diffusion layer formed by silicon into which boron has diffused is formed in a state of floating / suspending in the air, and this can be used as a heater.
  • a heater in order to arrange so as to pass through the space part chamber, in a first step, the surface layer portion of the silicon substrate, by diffusing boron in a concentration of 5 X 10 18 cm- 3 or more, the In the third step, it is preferable to perform etching by using KOH having a concentration of 10 to 60%, more preferably 10 to 30% or less.
  • a more preferred range of concentration of boron to diffuse into the surface layer portion of the silicon substrate in the first step is 2 X 10 19 cm_ 3 or more.
  • the etching is performed using 3 to 30%, more preferably 3 to 15% of KOH.
  • Such a gas transport pump of the present invention may further include a flow rate sensor unit that detects the flow rate of the gas passing through the pump.
  • the flow sensor unit is provided in the vicinity of the gas flow path including the first channel, the first reduced diameter part, the chamber part, the second reduced diameter part, and the second channel, It is better to detect the gas flow rate by detecting the temperature change.
  • the flow sensor unit is provided in the vicinity of the first channel and / or the first reduced diameter portion and in the vicinity of the second channel and / or the second reduced diameter portion, respectively. Is preferred. And the difference of the output of each provided flow sensor part The detection is preferable because noise removal and the like can be achieved.
  • the gas transport pump as described above can be used in various applications.
  • a gas containing a substance to be detected is sent to an adsorbent that adsorbs the substance, such as a molecule (gas molecule) recognition material.
  • a gas containing a substance to be detected is sent to an adsorbent that adsorbs the substance, such as a molecule (gas molecule) recognition material.
  • Power S can be.
  • it can be applied to various uses such as cooling various equipment by transporting gas and generating air flow, and the gas transport pump of the present invention particularly limits its use.
  • the present invention is effective when gas is transported at a very small flow rate, and when it is desired to reduce the size and size of the gas transport pump.
  • the present invention includes a detection unit that detects a substance having a mass contained in a gas, and a pump unit that sends the gas to the detection unit.
  • the pump unit sends gas from the outside to the detection unit.
  • a backflow prevention unit that prevents gas from moving in the direction of leaving.
  • the volume change generation unit includes a heater and a controller that changes the heat generation temperature of the heater.
  • the heater is made of silicon in which impurities are diffused and is disposed so as to penetrate a part of the chamber. It is characterized by that.
  • the backflow prevention unit prevents the gas from moving in the direction away from the detection unit in the flow path, so that the gas is detected in the flow path. Move towards In this way, the pump main body can send gas from the outside to the detection section through the flow path.
  • the pump body has a part of the chamber, the volume change generation part causes a volume change in the gas in the part of the chamber, and the inner diameter of the flow path gradually decreases in the gas moving direction as a backflow prevention part. It is preferable to form the reduced diameter portion to be formed before and after a part of the chamber. By the way, if a fine diameter-reduced portion is used for the backflow preventing portion, the flow path resistance against the gas increases. For this reason, a plurality of flow paths each having a backflow prevention unit can be provided in parallel. The In this case, the flow paths may be provided radially from the volume change generation unit or may be provided in parallel.
  • the present invention it is possible to transport gas with high accuracy even to a small amount of gas to a gas transport pump or a detection sensor, and to reduce the force and the size of the sensor. Can do. Furthermore, since it has a very simple structure and has no moving parts, it is unlikely to break down, and high durability and reliability can be obtained. In such a gas transfer pump and detection sensor, it is possible to increase the heat generation and heat dissipation efficiency by forming the heater with silicon diffused with boron, and the heating and cooling cycle in the chamber by the heater. As a result, the performance of the gas transfer pump can be improved.
  • FIG. 1 is a diagram showing a schematic configuration of a gas transfer pump in the present embodiment, where (a) is an overall view, and (b) is an enlarged view of a main part.
  • FIG. 2 is a diagram showing a configuration of a gas transfer pump.
  • FIG. 3 is a cross-sectional view of a gas transfer pump.
  • FIG. 4 is a cross-sectional view showing another example of the gas transfer pump.
  • FIG. 5 is a perspective view showing a configuration of a heater in the present invention.
  • FIG. 6 is a diagram showing a heater forming method, (a) is a cross-sectional view and a plan view of the silicon substrate with the oxide film removed, and (b) is a cross-sectional view of the state after spin-coating and diffusing boron. It is a figure.
  • FIG. 7A is a cross-sectional view and a plan view of a state in which a silicon substrate is etched according to a heater pattern, and FIG. FIG.
  • FIG. 8 is a diagram showing the relationship between the concentration of KOH used for etching and the etching rate.
  • FIG. 9 is a diagram showing temperature rise performance data and temperature distribution in a metal heater.
  • FIG. 10 is a diagram showing temperature rise performance data and temperature distribution in a silicon heater.
  • FIG. 11 is a diagram showing an analysis result of a temperature distribution by a finite difference method.
  • FIG. 12 is a diagram showing an example of a process for forming an inlet side channel, an outlet side channel, an inlet side diffuser portion, an outlet side diffuser portion, and a heater on the other substrate, (a) is an inlet side channel.
  • the perspective view of the state formed by etching the outlet side channel, the inlet side diffuser part, and the outlet side diffuser part on the silicon substrate, (b) is the process following step (a)! /,
  • the inlet side channel, the outlet It is a perspective view of the state which formed the side channel to the predetermined depth.
  • FIG. 13 (a) is a perspective view showing a state in which boron is diffused in a predetermined region following the step of FIG. 12 (b), and FIG. 13 (b) is a sectional view of FIG. 13 (a).
  • FIG. 14 (a) is a cross-sectional view showing a state in which etching is performed to form a heater following the step of FIG. 13, and (b) is a diagram showing a chamber integrated under the heater following the step of (a).
  • FIG. 6 is a cross-sectional view showing a state etched to form a portion.
  • FIG. 15 is a view showing a state in which a cavity is formed on the other substrate and bonded to one substrate.
  • FIG. 1 is a diagram for explaining a functional configuration of the gas transport pump (pump unit) 10 in the present embodiment
  • FIG. 2 is a diagram showing an actual configuration of the gas transport pump 10.
  • a gas transfer pump 10 includes a chamber part 12 having a predetermined volume in a main body 11, and an inlet side channel (introducing gas from the outside into the chamber part 12).
  • (First channel) 13 outlet side channel (second channel) for delivering gas from chamber part 12, inlet side diffuser section (first channel) provided between chamber part 12 and inlet side channel 13 Diameter reduction part, backflow prevention part) 15, chamber part 12 and out
  • An outlet side diffuser portion (second reduced diameter portion, backflow prevention portion) 16 provided between the mouth side channels 14 is formed, and a heater 20 is provided in the chamber part 12. .
  • the main body 11 is formed by bonding, for example, two substrates l la and l ib made of a Si-based material. Further, by forming a concave portion of a predetermined shape on one or both of the substrates l la and l ib, a chamber part 12, an inlet side channel 13, an outlet side channel 14, an inlet side diffuser part 15 An outlet side diffuser portion 16 is formed.
  • the body 11 is formed with ports 17 and 18 communicating with the inlet side channel 13 and the outlet side channel 14 and the outside, and pipes and the like can be connected thereto. Has become possible.
  • the main body 11 can be integrated together with a sensor or a capillary for performing gas chromatography.
  • the chamber portion 12 has, for example, a circular cross section.
  • An inlet side diffuser portion 15 is formed on one side of the chamber portion 12, and an outlet side diffuser portion 16 is formed on the other side.
  • One side of the inlet side channel 13 opens to the port 17, and the other end is the inlet side diffuser portion.
  • the inlet-side diffuser section 15 is formed so as to communicate the inlet-side channel 13 and the chamber part 12, and its cross-sectional area (inner diameter) gradually decreases from the inlet-side channel 13 side toward the chamber section 12 side. It has a tapered nozzle shape.
  • the outlet side channel 14 is formed so that one end opens to the side surface of the port 18 and the other end communicates with the outlet side diffuser portion 16.
  • the outlet side diffuser portion 16 communicates with the chamber portion 12 and the outlet side channel 14, and is formed so as to open to the chamber portion 12 at a position different from the inlet side diffuser portion 15, and the outlet side diffuser portion 16 exits from the chamber portion 12 side.
  • a tapered nozzle is formed with a cross-sectional area that gradually decreases toward the side channel 14 side.
  • the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are also formed from the inlet side channel 13, the chamber part 12, and the outlet side channel 14 in the thickness direction of the main body 11. Also, it is preferable to form such that the cross section is small.
  • the main body 11 has an inlet side diffuser portion 15 from the inlet side channel 13.
  • a gas flow path is formed through the chamber part 12 and the outlet side diffuser 16 to the outlet side channel 14.
  • ports 17 and 18 are formed in the inlet side channel 13 and the outlet side channel 14 so that piping or the like can be connected thereto.
  • the heater 20 provided in the chamber part 12 is formed on one surface side of the substrate 11a or l ib, and is a power source (external to the body 11) ( (Not shown), it is electrically connected via the connecting part 20j.
  • the heater 20 is provided in a portion corresponding to the chamber portion 12.
  • the heater 20 is formed by diffusing a conductive material such as boron into a p-type silicon material.
  • such a heater 20 has a so-called comb-like configuration in which a plurality of rod-shaped heater members 20a are arranged in parallel with each other in the radial direction of the chamber portion 12. .
  • This is to increase the surface area of the heater 20, and therefore the heater member 20a has a thickness direction intermediate portion in the chamber portion 12 so that the entire outer periphery of the heater member 20a contacts the atmosphere in the chamber portion 12. It is preferable to provide it in a state where it penetrates and floats in the air in part 12 of the chamber.
  • the heater 20 When a voltage is applied from the power source under the control of the controller 21, the heater 20 generates heat, which raises the temperature in the chamber part 12 and expands the gas. When the application of voltage to the heater 20 is stopped, the heat generation of the heater 20 is stopped, the temperature in the chamber part 12 is lowered, and the gas contracts.
  • the heater 20 and the controller 21 function as a temperature change means and a volume change generation unit, and supply gas by utilizing expansion and contraction of gas. This will be described in detail below.
  • the gas transfer pump 10 external gas is introduced from the inlet side diffuser portion 15 into the chamber portion 12 and discharged from the outlet side diffuser portion 16.
  • the heater 20 When the heater 20 generates heat while the gas is introduced into the chamber part 12, the temperature in the chamber part 12 rises and the gas expands. The expanded gas then enters the inlet side diffuser 15 and the outlet side diffuser. It tries to flow out of the fuser part 16 to the outside of the chamber part 12.
  • the inlet-side diffuser portion 15 has a tapered nozzle shape in which the cross-sectional area gradually decreases from the inlet-side channel 13 side toward the chamber portion 12 side.
  • the outlet side diffuser portion 16 has a tapered nozzle shape in which the cross-sectional area gradually decreases from the chamber part 12 side toward the outlet side channel 14 side. Therefore, in the inlet side diffuser portion 15 and the outlet side diffuser portion 16, when the gas flows in a direction in which the cross-sectional area gradually decreases (hereinafter, this direction is referred to as the forward direction), the reverse direction, that is, the disconnection.
  • the pressure loss is different from the case where the gas flows in a direction in which the area gradually increases (direct force from the outlet side channel 14 side to the inlet side channel 13 side, this direction is hereinafter referred to as the reverse direction). That is, in the inlet side diffuser portion 15 and the outlet side diffuser portion 16, the pressure loss when the gas flows in the reverse direction is larger than the pressure loss when the gas flows in the forward direction. This is because turbulent vortices are generated by the viscosity of the gas at the edges 15a and 16a of the inlet side diffuser part 15 and the outlet side diffuser part 16, thereby impairing the kinetic energy of the fluid, and as a result, the inlet side diffuser part. This is because the gas flow force at the outlet side diffuser section 16 is smoother in the forward direction than in the reverse direction.
  • the gas in the chamber part 12 expands and flows out to the outside, the gas flows out from the outlet side diffuser part 16 having a smaller resistance (pressure loss) to the outside of the chamber part 12.
  • the pressure loss varies depending on the gas flow direction as described above.
  • the gas is introduced into the interior of the chamber part 12 from the diffuser section 15 having a smaller resistance (pressure loss).
  • the gas transport pump 10 by repeatedly heating and stopping the heater 20, the gas can be sucked from the inlet side channel 13 and can be discharged from the outlet side channel 14, thereby functioning as a pump.
  • the heater 20 is alternately switched on / off in a predetermined cycle.
  • the controller 21 can be controlled to repeat ON / OFF of the heater 20 in a cycle of 100 microseconds to 1 millisecond.
  • the controller 21 is preferably controlled so that the temperature change occurs in the range of room temperature to 1000 ° C., preferably room temperature to 500 ° C., when the heater 20 is turned on / off.
  • the temperature difference at ON / OFF increases, and the flow rate in the gas transfer pump 10 increases. Also, increasing the ON / OFF switching frequency decreases the flow rate.
  • the temperature difference and the switching frequency at the time of ON / OFF may be set as appropriate according to the application target and application of the gas transfer pump 10. For example, when used in applications where gas decomposes at high temperatures, it is necessary to lower the temperature.
  • the gas transport pump 10 can also include a flow rate sensor unit 30 for measuring the flow rate of the discharged gas.
  • the flow sensor unit 30 is disposed in the vicinity of at least one of the inlet side diffuser unit 15 and the outlet side diffuser unit 16.
  • the flow rate sensor unit 30 is constantly applied with a constant voltage so as to be maintained at a predetermined temperature.
  • the temperatures of the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are lowered.
  • the temperature of the flow sensor unit 30 also decreases, and by monitoring the change in electrical resistance at that time with the controller 21, it is possible to detect a decrease in the temperature of the inlet side diffuser unit 15 and the outlet side diffuser unit 16.
  • the flow sensor unit 30 detects the flow rate of the gas discharged from the gas transfer pump 10 by grasping the relationship between the temperature drop and the flow rate at the inlet-side diffuser user unit 15 and outlet-side diffuser unit 16 in advance. It can be done.
  • the flow rate sensor unit 30 is provided on each of the inlet side diffuser unit 15 side and the outlet side diffuser unit 16 side, and by taking the difference between them, the absolute value of the flow rate can be detected or the noise component can be removed. It is also possible to remove noise components and draft components by taking response characteristics.
  • a pattern is formed by a lithography method on a substrate 11 a configured by laminating an oxide layer and a photoresist layer, whereby a chamber is formed.
  • a part 12 an inlet side channel 13, an outlet side channel 14, an inlet side diffuser portion 15, an outlet side diffuser portion 16 and the like are formed.
  • a pattern of the chamber part 12, the inlet side channel 13, the outlet side channel 14, the inlet side diffuser part 15, and the outlet side diffuser part 16 is formed on the oxide layer of the substrate 11a by lithography.
  • the chamber part 12 the inlet side channel 13, and the outlet side channel 14 are formed to a predetermined depth by etching.
  • the masks of the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are removed, and the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are formed to a predetermined depth by etching.
  • a film is formed on the other substrate l ib using a predetermined material. Then, a predetermined pattern corresponding to the heater 20, the connection portion 20j, and the flow rate sensor portion 30 is formed on these films by lithography and etching.
  • the oxide film 1 lo is removed in a predetermined region 24 of the substrate 1 lb by etching using 4 2.
  • This region 24 is a portion corresponding to the heater 20 and the connection portion 20j for connecting the heater 20 to the power source.
  • a solution containing boron is spin-coated on the surface of the substrate rib in the region 24.
  • the substrate l ib is heat-treated to diffuse boron to the surface of the substrate l ib, and the boron concentration is 5 ⁇ 10 18 cnT 3 or more, more preferably 2 ⁇ 10 19 cnT 3 or more, for example, 10 2 ° cm.
  • the heat treatment of 3 is described in detail.
  • the surface layer portion 5 between m of boron substrate l ib can be a boron concentration of about 10 2 ° cm_ 3 .
  • a boron diffusion layer 25 in which boron is diffused is formed in the surface layer portion of the substrate ib.
  • the mask 20 is used and the heater 20 is attached by a D-RIE (Deep Reactive Ion Etching) method or the like.
  • the portion other than the rod-shaped heater member 20a and the connecting portion 20j constituting the structure is etched to a predetermined depth (for example, 25 Hm) below the boron diffusion layer 25 of the substrate ib.
  • a boron diffusion layer is formed at a portion corresponding to the heater member 20a of the substrate rib.
  • Etch 25 lower substrate l ib.
  • the substrate Lib below the surface boron diffusion layer 25 is removed, leaving only the boron diffusion layer 25, thereby forming the heater member 20a.
  • the heater member 20a is formed in a state of floating in the air.
  • the concentration of KOH is preferably 3 to 30%, more preferably 3 to 15%.
  • the concentration of KOH by adjusting, as described above, as shown in FIG. 8, at a concentration of boron and 10 19 CM_ 3 or more parts and density 10 19 CM_ 3 following part, the etching rate (etching speed) The difference is more than 200 times. Then, the boron diffusion layer 25 in which boron is diffused and the other portions increase the selectivity during etching, and the portion below the concentration of 10 19 cm- 3 , that is, the substrate under the boron diffusion layer 25 l ib only is removed, the portion of the concentration of boron 10 19 CM_ 3 on than, i.e. the remaining boron diffusion layer 25 can be satisfactorily formed a heater member 20a.
  • the concentration of KOH 3 to 30% and more preferably may be 3 to 15% boron 5 X when diffused in a concentration range of less than 10 18 CM_ 3 or 2 X 10 19 cm- 3 is 10% to 60% to ensure obtained because the etching effect, more preferably 10 to 30% strength KOH It is preferable to use it for etching.
  • the oxide film remaining on the substrate l ib is preferably removed in order to bond the substrate l ib by anodically bonding. And these substrates 11a , L ib can be bonded to form the gas transfer pump 10.
  • the heater 20 By configuring the heater 20 with silicon in which boron is diffused in this manner, the heat transfer coefficient can be increased as compared with metal heaters so far. At this time, the heater 20 is excellent in heat dissipation compared to a metal heater, and even if the heater member 20a is formed by a thin surface layer portion in which boron is diffused in the substrate rib, the heating / cooling rate is greatly increased. It is possible to improve it. Further, by forming the heater member 20a with silicon, the heater member 20a can be brought into a state of being suspended in the air, so that the entire outer periphery thereof can be brought into contact with the atmosphere in the chamber portion 12. Also in this respect, the heating / cooling cycle of the atmosphere in the chamber part 12 can be shortened. In this way, it is possible to increase the flow rate of the gas transfer pump 10 by increasing the ON / OFF switching frequency of the heater 20.
  • Such a gas transport pump 10 can be applied to various uses for transporting a small amount of gas.
  • a detection sensor for detecting gas such as gas
  • flow control for supplying gas to the detection sensor part semiconductor process process
  • minute adjustment of gas concentration in gas combustion equipment for example, CPU cooling in mopile equipment
  • supply of refrigerant for example, supply of refrigerant.
  • a detection sensor for detecting a gas such as a gas can be used to detect the presence or quantitative concentration of an explosive or harmful gas.
  • This detection sensor adsorbs specific molecules contained in the gas and detects the presence or concentration of the gas or the like by detecting the presence or absence or amount of the adsorption.
  • detection sensors are installed in facilities, equipment, and equipment that handle gas, etc., and are used to control gas leakage and gas volume.
  • the detection sensor is also applicable to monitoring hydrogen leaks in hydrogen stations for fuel cells, vehicles, devices and equipment that use fuel cells, which have been actively developed in recent years. it can.
  • detection sensors that detect the presence or absence of adsorption by adsorbing specific molecules, or multiple types of molecules with specific characteristics or characteristics, include, for example, food freshness and component analysis. Providing a comfortable space, 'environmental control to maintain, and even It can be used for detecting the state of a living body such as a human body. In addition, by detecting various substances from the human body, exhaled breath and metabolic components of intestinal flora, etc. with high sensitivity, it is possible to monitor health conditions, perform simple screening for diseases, diagnose lifestyle-related diseases, and monitor infectious diseases. It will be possible to do things such as
  • Such detection sensors are roughly classified into two types.
  • a molecular adsorption film sensitivity film
  • the mass of the molecular adsorption film increases.
  • the amount of deflection of the cantilever changes, so that the amount of change and the adsorption of specific molecules can be detected.
  • the resonance frequency of the system composed of the cantilever and the molecular adsorption film changes, so that adsorption of a specific molecule can be detected from the change.
  • a molecular adsorption film is provided on the crystal unit, and the adsorption of specific molecules is detected from the change in the resonance frequency of the crystal unit when molecules are adsorbed on the molecular adsorption layer.
  • the gas conveyance pump 10 collects the gas to be detected, and supplies it to the detection sensor portion, thereby detecting the detection sensor. Can be performed with high accuracy.
  • the gas transport pump 10 uses the thermal expansion of the gas to reliably cause a change in volume, and can reliably transport the gas even at a very small flow rate. Moreover, in order to transport the gas, only the flow path including the chamber part 12, the inlet side channel 13, the outlet side channel 14, the inlet side diffuser part 15, the outlet side diffuser part 16 and the heater 20 are provided. High mechanical reliability can be obtained because no mechanical moving parts are required. It is also possible to avoid problems such as operating noise and heat generation due to operation as in the case of having movable parts.
  • the gas transport pump 10 can be very small in size because of its configuration. As a result, the detection sensor and the like configured by combining the gas transport pump 10 However, it is possible to reduce the size.
  • the operation of the gas transport pump 10 having the above-described configuration was verified by simulation.
  • the inner diameter of the chamber part 12 is 100 m
  • the width of the inlet channel 13 is 10 ⁇ m
  • the height is 20 ⁇ m
  • the width of the outlet ⁇ J channel 14 is 10 ⁇ m
  • the height is 20 ⁇ m
  • the length of the inlet side diffuser portion 15 is 5 m
  • the width of the diffuser portion is 1 to 4 111
  • the height is 2 to 5 111
  • the outlet side diffuser portion 16 has the same shape as the inlet side diffuser portion 15.
  • the heater 20 was repeatedly cycled by flowing a 100 mA current for 100 ms and stopping it for 100 ms.
  • the temperature periodically fluctuates from room temperature to 500 ° C. From the outlet side channel 14, the gas is heated once for the volume of the chamber portion 12 once. It was discharged at a rate of 3% per nozzle.
  • a heater was formed by depositing Pt on a substrate made of Nolex (registered trademark) glass.
  • the heater was 160 ⁇ m long, 26 ⁇ m wide, and lOOnm thick.
  • the heater is integrally connected to a trapezoidal connecting part with a length of 2mm, which extends from 160m to lmm.
  • the heater temperature rises over a range of 80 m or more on both sides across the center of the heater, totaling 160 m or more.
  • a heater was formed of silicon by the method of the present invention.
  • This heater is a rod with a length of 200 Hm, ⁇ 5 ⁇ m, and a thickness of 5 m.
  • a constant current of 100 mA is passed through this heater, the temperature rises to 1000 K as shown in Fig. 10 (a). It took only 1 ⁇ s to rise, and the temperature rose more than 10 times faster than the heater using Pt. This is because the thermal conductivity S of silicon is more than 150 times the thermal conductivity of Pyrex.
  • the heater temperature rises over a wide range of 100 m or more on both sides and a total of 200 m or more across the center of the heater. This is Siri This is because the heater made by CON has high efficiency because it has a very large surface area in contact with the surrounding atmosphere.
  • Figure 11 shows the temperature distribution using a finite difference method (ANSYS) in a state where a constant current of 600 mA flows through lms when a heater is configured by arranging 12 rod-shaped heater members with the dimensions described above. Analyzed. As shown in FIG. 11, when lms passed, it was confirmed that the temperature of the heater had risen to 2000K or more and that it had sufficient heating performance.
  • ANSYS finite difference method
  • a heater by constructing a heater from rod-shaped heater members made of silicon, a surface area 12 times larger than that of a conventional metal heater can be secured for a chamber of the same size. It is possible to realize a heater about 10 times faster.
  • a chamber part 12, an inlet side channel 13, an outlet side channel 14, an inlet side diffuser part 15, an outlet side diffuser part 16 and the like are formed on the substrate l ib, and the other substrate l ib
  • the wiring pattern of the heater 20 and the flow rate sensor unit 30 is formed and the substrates 1 la and ib are joined to each other, the present invention is not limited to this.
  • the heater 20 and the flow rate sensor unit 30 may be separate members.
  • the heater 20 is formed on the upper substrate LIB and the wafer is bonded, but the heater 20 may be formed on the lower substrate 11a.
  • the substrate 11a can be formed of silicon
  • the substrate l ib can be formed of a glass substrate. Only the recess for forming the chamber part 12 may be formed in the substrate 1 lb. The production method is shown below.
  • the inlet side channel 13, the outlet side channel 14, and the inlet side diffuser portion 15 are formed by D-RIE until the substrate 11a reaches the Balta layer through the oxide layer of the substrate 11a.
  • the pattern of the outlet side diffuser portion 16 is formed.
  • the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are formed to a predetermined depth (design value).
  • the inlet side channel 13 and the outlet side channel 14 are set to a predetermined depth by lithography.
  • a solution containing boron is used in a predetermined region 26 corresponding to the heater 20, the connection portion 20j, and the flow rate sensor portion 30 on the substrate 1 la, and the lithography method and A pattern is formed by etching.
  • a BHF solution NH F / HF / HO
  • the oxide film is removed from the predetermined region 26 of the substrate 11a by etching. Then, a solution containing boron is spin-coated on the surface of the substrate 11a. Thereafter, the substrate 11a is heat-treated to diffuse boron into a predetermined region 26 on the surface of the substrate 11a, and the boron concentration is 5 ⁇ 10 18 cm ⁇ 3 or more, more preferably 2 ⁇ 10 19 cm ⁇ 3. For example, it is about 10 2 ° cm.
  • PBF trade name
  • boron is applied to the surface layer part of the substrate 11a 5 m by heat treatment at 1100 ° C for 3.5 hours.
  • a boron diffusion layer 25 in which boron is diffused is formed in a predetermined region 26 of the surface layer portion of the substrate 11a.
  • the portions other than the rod-shaped heater member 20a and the connection portion 20j constituting the heater 20 are diffused by boron in the substrate 11a by lithography and D-RIE. Etch to a predetermined depth below layer 25.
  • the boron diffusion layer 25 is formed at the portion corresponding to the heater member 20a of the substrate 11a.
  • the lower substrate 11a is etched.
  • the substrate 11a below the surface boron diffusion layer 25 is removed, leaving only the boron diffusion layer 25, thereby forming the heater member 20a, A chamber part 12 is formed below. Thereby, the heater member 20a is formed in a state of floating in the air.
  • the concentration of KOH is preferably 3 to 30%, more preferably 3 to 15%.
  • the concentration of KOH by adjusting, as described above, as shown in FIG. 8, at a concentration of boron and 10 19 CM_ 3 or more parts and density 10 19 CM_ 3 following part, the etching rate (etching speed) The difference is more than 200 times. Then, the boron diffusion layer 25 in which boron is diffused and the other portions increase the selectivity during etching, and the substrate 11a below the boron diffusion layer 25 has a concentration of 10 19 cm- 3 or less. only is removed, the concentration of boron 10 19 CM_ 3 or more The upper portion, that is, the boron diffusion layer 25 remains, and the heater member 20a can be formed satisfactorily. Note here, when the boron is diffused at a concentration of 2 X 10 19 cm_ 3 or more, the concentration of KOH 3 to 30% and more preferably may be 3 to 15% boron 5 X 10 18 cm_ 3 or more
  • etching is performed using KOH at a concentration of 10 to 60%, more preferably 10 to 30% in order to ensure an etching effect. It is preferable to do so.
  • the substrate l ib is formed of a glass substrate such as Pyrex (registered trademark). As shown in FIG. 15, a cavity 27 slightly larger than the chamber part 12 is formed on the substrate ib. The depth of the cavity 27 is, for example, 10 m, and etching using a BHF solution can be used for the formation.
  • the gas transfer pump 10 can be formed by bonding such a substrate ib to the substrate 11a by ananodic bonding.
  • the force p-type silicon using a p-type silicon diffused with boron as a heater is not limited to ease of the production process.
  • N-type silicon diffused with P or As may be used.
  • RIE reactive ion etching
  • the force in which the inlet side channel 13 and the outlet side channel 14 are arranged in a straight line is not limited to this.
  • the inlet side channel 13 and the outlet side channel 14 are connected to each other at a predetermined angle.
  • Various arrangements can be made such as arrangement at a shifted position or arrangement so as to be adjacent to each other.
  • silicon is used as the base material for forming the gas transfer pump 10. Silicon has excellent features such as high thermal conductivity, easy processing, and low cost.
  • a glass-based material, a plastic-based material, a ceramic-based material, or the like may be used for portions other than the heater 20.
  • the gas transfer pump 10 may be formed using a molding technique, an imprint technique, etc. in addition to the lithography technique.
  • a silicon oxide layer is provided on the surface of the member such as the chamber part 12, the inlet side channel 13, the outlet side channel 14, the inlet side diffuser portion 15, the outlet side diffuser portion 16 and so on, and SiN is laminated.
  • a coating layer may be formed by performing nitriding treatment, and the flow path resistance between the member surface and the gas may be reduced.
  • the material of the coating layer on the surface can be made different depending on the type of gas used.
  • the flow path resistance against the gas is relatively large.
  • a plurality of sets of flow paths each including the inlet side channel 13 and the inlet side diffuser portion 15, the outlet side diffuser portion 16 and the outlet side channel 14 are provided on the inlet side and the outlet side, It is also possible to expand the total flow area.
  • the flow paths may be provided radially from the chamber part 12 or may be provided in parallel. Further, by stacking a plurality of such gas transfer pumps 10, the total flow area may be expanded.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A technique capable of highly accurately conveying even a slight amount of gas and highly reliable. A gas conveying pump (10) has a flow channel and a heater (20). The flow channel is composed of a chamber (12), an entrance side channel (13), an exit side channel (14), and a tapered inlet side diffuser section (15), and a tapered outlet side diffuser section (16). The heater (20) causes gas inside the chamber (12) to expand and contract, changing the volume of the chamber (12) to reliably convey the gas from the entrance side channel (13) to the exit side channel (14). The heater (20) provided in the chamber (12) is formed from silicon with boron diffused in it. Preferably, the heater (20) is made up of heater members (20a) arranged side by side so as to penetrate the inside of the chamber (12).

Description

明 細 書  Specification
気体搬送ポンプ、ヒータの形成方法、検出センサ 技術分野  Gas transfer pump, heater formation method, detection sensor
[0001] 本発明は、気体搬送ポンプ、および雰囲気中に存在する分子等を検出する検出セ ンサ等に関する。 背景技術  The present invention relates to a gas transfer pump, a detection sensor that detects molecules and the like present in an atmosphere, and the like. Background art
[0002] 従来、各種の気体を搬送する場合、一般には、ファン等により気体に流れを生じさ せる手法、ポンプ等により気体を圧送する手法、真空ポンプ等で圧力差を生じさせる ことで気体を吸引する手法等が用いられる。  [0002] Conventionally, when various gases are transported, generally, a method of generating a flow of gas by a fan or the like, a method of pumping a gas by a pump or the like, or a pressure difference by a vacuum pump or the like is generally used to generate the gas. A suction method or the like is used.
しかし、このような手法では、微量の気体を搬送することや、気体の流量を高精度に 制御するのは困難となっている。  However, with such a method, it is difficult to carry a very small amount of gas and to control the gas flow rate with high accuracy.
[0003] 一方、液体の搬送におレ、ては、ダイヤフラムを圧電素子や静電ァクチユエ一タで駆 動する方式のポンプがある。 [0003] On the other hand, there is a pump of a system that drives a diaphragm with a piezoelectric element or an electrostatic actuator for transporting a liquid.
また、液体の搬送においては、例えばインクジェット方式のプリンタ技術において、 熱エネルギーをインク(液体)に与えて気泡を発生させることにより液滴を吐出させる 方式等が提案されている(例えば、特許文献 1参照。)。  In addition, for example, a method of ejecting liquid droplets by generating bubbles by applying thermal energy to ink (liquid) in the ink jet printer technology has been proposed (for example, Patent Document 1). reference.).
これらの技術では、液体の流量を微量に制御して搬送することが可能となってレ、る With these technologies, it is possible to control the flow rate of the liquid to a very small amount and transfer it.
Yes
[0004] 特許文献 1 :特公昭 61— 59911号公報  [0004] Patent Document 1: Japanese Patent Publication No. 61-59911
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、上記したようなダイヤフラムを用いたポンプや、熱エネルギーを用い て気泡を発生させる方式の技術は、液体を対象としたものであり、気体を対象として 微量流量で搬送を行う技術は未だ提案されて!/、なレ、。 [0005] However, the pumps using the diaphragm as described above and the technology of the method of generating bubbles using thermal energy are for liquids, and are technologies for transporting gases at a small flow rate. Hasn't been proposed yet!
前記の技術は、いずれも液体に圧力変化を生じさせることで、液体の移動を生じさ せるものである。このような技術を単純に気体に適用しても、気体の場合液体よりも密 度が低いため、液体と同程度の圧力変化を生じさせたとしても体積変化が生じるまで に至らない。その結果、単に気体の密度が上昇するだけに留まり、気体の移動を生じ ること力 S困難となるのである。気体を移動させるに足る圧力変化を生じさせようとすると 、ダイヤフラム等の変化量を大きくしなければならない。これでは、間欠的動作ならと もかぐ連続的動作を実現するのは難しい。また、上記したような技術では、微量な流 量での気体の搬送は、さらに困難である。 All of the above-described techniques cause the movement of the liquid by causing a pressure change in the liquid. Even if such a technology is simply applied to a gas, the density of the gas is lower than that of the liquid, so even if a pressure change similar to that of the liquid is caused, the volume change will occur. Not reached. As a result, the density of the gas is merely increased, and it becomes difficult to cause the movement of the gas. If an attempt is made to change the pressure sufficient to move the gas, the amount of change in the diaphragm or the like must be increased. In this case, it is difficult to realize continuous operation as well as intermittent operation. In addition, with the technology as described above, it is more difficult to transport a gas with a very small flow rate.
[0006] また、上記のような従来の手法では、熱エネルギーを用いて気泡を発生させる方式 を除き、いずれも機械的な可動部分を備える構成となっている。このため、可動部分 の故障等による信頼性の低下を免れることは困難となっている。この他にも、可動部 分を備える場合、その作動音や作動による発熱等が問題になることもある。また、この ような機構をセンサ等に適用しょうとした場合、可動部分の作動音や振動、熱等が、 センサの検出感度に悪影響を与えることも考えられる。 [0006] In addition, the conventional methods as described above are configured to include mechanically movable parts, except for a method of generating bubbles using thermal energy. For this reason, it is difficult to avoid a decrease in reliability due to a failure of the movable part. In addition to this, when a movable part is provided, the operating noise or heat generated by the operation may become a problem. In addition, when trying to apply such a mechanism to a sensor or the like, the operating noise, vibration, heat, etc. of the movable part may adversely affect the detection sensitivity of the sensor.
本発明は、このような技術的課題に基づいてなされたもので、気体を微量であって も高い精度で搬送することができ、しかも信頼性に優れる技術を提供することを目的 とする。  The present invention has been made on the basis of such a technical problem, and an object of the present invention is to provide a technology that can transport a gas with high accuracy even in a small amount and is excellent in reliability.
課題を解決するための手段  Means for solving the problem
[0007] かかる目的のもと、本発明者らは、ポンプ内に形成されたチャンバ一部と、チャンバ 一部とポンプの外部とを連通するよう形成された第一のチャンネルと、第一のチャン ネルとは異なる位置にてチャンバ一部とポンプの外部とを連通するよう形成された第 二のチャンネルと、チャンバ一部と第一のチャンネルの間に形成され、第一のチャン ネル側からチャンバ一部に向けて内径が漸次縮小する第一の縮径部と、チャンバ一 部と第二のチャンネルの間に形成され、チャンバ一部側から第二のチャンネル側に 向けて内径が漸次縮小する第二の縮径部と、チャンバ一部内の温度を変化させる温 度変化手段と、を備える構成の気体搬送ポンプを実現することにより、上記課題を解 決できることを既に見出した。 [0007] For this purpose, the inventors have a chamber part formed in the pump, a first channel formed to communicate the chamber part and the outside of the pump, A second channel formed to communicate with a part of the chamber and the outside of the pump at a position different from the channel, and formed between the part of the chamber and the first channel, from the first channel side. It is formed between the first reduced diameter part where the inner diameter gradually decreases toward a part of the chamber, and between the chamber part and the second channel, and the inner diameter gradually decreases from the part of the chamber toward the second channel side. It has already been found that the above problem can be solved by realizing a gas transport pump having a configuration including the second reduced diameter portion and a temperature changing means for changing the temperature in a part of the chamber.
このような気体搬送ポンプにおいては、温度変化手段でチャンバ一部内の温度の 上昇 ·下降を繰り返す。すると、チャンバ一部内で気体が膨張 ·収縮し、体積変化を 生じる。膨張時、気体は、チャンバ一部に臨むように形成された第一の縮径部と第二 の縮径部からチャンバ一の外部に出ようとする。ここで、第一の縮径部は第一のチヤ ンネル側からチャンバ一部に向けて内径が漸次縮小し、チャンバ一部側においてそ の内径が小さくなつているのに対し、第二の縮径部は、チャンバ一部側から第二のチ ヤンネル側に向けて内径が漸次縮小し、チャンバ一部側においてその内径が大きく なっている。この部分における圧力損失の違いにより、気体は第一の縮径部よりも第 二の縮径部からの方が外部に流出しやすい。一方、気体が収縮すると、第一の縮径 部と第二の縮径部からチャンバ一の外部の気体をチャンバ一内に引き込もうとする。 このとき、気体は、第二の縮径部よりも第一の縮径部からの方が、外部の気体を引き 込みやすい。 In such a gas transfer pump, the temperature in the chamber is repeatedly raised and lowered by the temperature changing means. Then, the gas expands and contracts in a part of the chamber, causing a volume change. At the time of expansion, the gas tends to come out of the chamber 1 from the first reduced diameter portion and the second reduced diameter portion formed so as to face a part of the chamber. Here, the first reduced diameter portion is the first The inner diameter gradually decreases from the channel side toward the chamber part, and the inner diameter decreases on the chamber part side, whereas the second diameter-reduced part is the second channel from the chamber part side. The inner diameter gradually decreases toward the side, and the inner diameter increases on the partial chamber side. Due to the difference in pressure loss at this portion, the gas is more likely to flow out of the second reduced diameter portion than the first reduced diameter portion. On the other hand, when the gas contracts, the gas outside the chamber 1 tries to be drawn into the chamber 1 from the first reduced diameter portion and the second reduced diameter portion. At this time, the gas is more easily drawn from the first reduced diameter portion than the second reduced diameter portion.
つまりこれにより、チャンバ一部内の温度を上昇させるとチャンバ一内の気体が第 二のチャンネル側に流出し、チャンバ一部温度を下降させると第一のチャンネルから チャンバ一内に気体が流入する。チャンバ一部内の温度の上昇'下降を繰り返すこと で、第一のチャンネル側から第二のチャンネル側に気体を搬送することができるので ある。このとき、ポンプ内で、気体は相変化せず、気体状態のまま搬送される。温度変 化を用いることで、ダイヤフラム等を用いる場合に比較し、気体に圧力変化を容易に 生じさせること力 Sでき、これにより、微量流量であっても、気体を確実に搬送することが 可能となる。  In other words, when the temperature in the chamber part is raised, the gas in the chamber 1 flows out to the second channel side, and when the temperature in the chamber part is lowered, the gas flows into the chamber 1 from the first channel. By repeatedly raising and lowering the temperature in a part of the chamber, gas can be conveyed from the first channel side to the second channel side. At this time, in the pump, the gas is not changed in phase and is conveyed in a gaseous state. By using temperature change, it is possible to easily generate a pressure change in the gas compared to when using a diaphragm, etc., which makes it possible to reliably transport the gas even at a very small flow rate. It becomes.
このような気体搬送ポンプにおいて、第一のチャンネル、第一の縮径部、チャンバ 一部、第二の縮径部、第二のチャンネルは、シリコン基板やガラス基板等にリソグラフ ィ法によって形成すること力 Sできる。これにより、気体搬送ポンプを、非常に微小なも のとすることができ、し力、も安価に大量生産することも可能である。  In such a gas transport pump, the first channel, the first reduced diameter portion, the chamber part, the second reduced diameter portion, and the second channel are formed on a silicon substrate, a glass substrate, or the like by a lithographic method. That power S. As a result, the gas transfer pump can be made very small, and can be mass-produced at low cost.
さらに、気体搬送ポンプは、非常にシンプルな構造であり、可動部分も有さないた め、故障等も生じにくぐ高い耐久性 ·信頼性を得ることができ、また作動音等も生じ ない。  Furthermore, since the gas transfer pump has a very simple structure and has no moving parts, it is possible to obtain high durability and reliability that are unlikely to cause a failure or the like, and there is no operation noise.
温度変化手段としては、チャンバ一部内に温度変化を生じさせるためのヒータと、ヒ ータの発熱温度を変化させるコントローラとからなるものを用いる。  As the temperature changing means, a device comprising a heater for causing a temperature change in a part of the chamber and a controller for changing the heat generation temperature of the heater is used.
ポンプとしての性能向上を図るには、単位時間当たりの吐出流量を増大させる必要 がある。これには様々なアプローチがあるが、その一つには、ヒータによるチャンバ一 内の加熱 ·冷却サイクルを早める、というものがある。このためには、ヒータの発熱効 率を高める必要がある。 In order to improve the performance as a pump, it is necessary to increase the discharge flow rate per unit time. There are various approaches to this, one of which is to accelerate the heating / cooling cycle in the chamber by the heater. For this purpose, the heating effect of the heater It is necessary to increase the rate.
このようなヒータは、金属によって形成されるのが一般的であることは周知の通りで ある。金属は熱伝導率が高ぐ Au、 Pt等の金属がヒータ材料として多用されている。 ところで、上記したようなシリコン基板によって形成するような気体搬送ポンプにおい ては、半導体プロセスを用いることで、小型化、薄肉化を図ることを大きな目的として いる。ところ力 気体搬送ポンプを薄肉化すると、ヒータで発生する熱の逃げ場がなく なり、放熱をある程度以上効率よく行うことができなくなって、加熱 ·冷却レスポンスを ある程度以上高めることが困難になるという問題があるのを本発明者らは見出した。  As is well known, such a heater is generally made of metal. Metals such as Au and Pt, which have high thermal conductivity, are frequently used as heater materials. By the way, in the gas transfer pump formed by the silicon substrate as described above, the main purpose is to reduce the size and the thickness by using a semiconductor process. However, if the thickness of the force gas transfer pump is reduced, there will be no escape from the heat generated by the heater, heat dissipation will not be possible to some extent efficiently, and it will be difficult to increase the heating / cooling response to some extent. We have found that.
[0009] そこで、本発明者らは、ヒータの材料としてシリコンに着目した。シリコンに、ホウ素( B)等の不純物を拡散させることで導電性を持たせ、ヒータとして機能させるのである[0009] Therefore, the present inventors paid attention to silicon as a heater material. Silicon is made to have conductivity by diffusing impurities such as boron (B) to function as a heater.
Yes
このようにしてなされた本発明の気体搬送ポンプにおいては、前記の温度変化手 段を、ヒータと、ヒータの発熱温度を変化させるコントローラとから構成し、ヒータは、不 純物を拡散させたシリコン製で、チャンバ一部の空間を貫通するように配置されてい ることを特徴とする。  In the gas transfer pump of the present invention thus made, the temperature changing means is composed of a heater and a controller that changes the heat generation temperature of the heater, and the heater is a silicon in which impurities are diffused. It is manufactured and arranged so as to penetrate a part of the chamber.
このように、不純物を拡散させたシリコンでヒータを形成することで、発熱'放熱効率 を高めることが可能となる。  Thus, by forming the heater with silicon in which impurities are diffused, it is possible to increase the heat generation and heat dissipation efficiency.
[0010] また、チャンバ一内の加熱 ·冷却サイクルを早めるには、チャンバ一内の雰囲気に 対するヒータの接触面積をなるベく大きくするのが好ましい。 [0010] In order to accelerate the heating / cooling cycle in the chamber 1, it is preferable to increase the contact area of the heater to the atmosphere in the chamber as much as possible.
そこで、本発明においては、ヒータを、チャンバ一部の空間を貫通するように配置す る。これには、ヒータを両端のみで支持し、チャンバ一部内の空間でヒータが宙に浮 いたような状態とすればよい。このようにすることで、ヒータの外周面全体をチャンバ 一部の空間の雰囲気に接触させることができるので、ヒータの熱をチャンバ一部内の 雰囲気に効率よく伝達できる。ヒータのチャンバ一部内の雰囲気へのヒータの接触面 積を高めるため、このようなヒータは、棒状のヒータ部材を、チャンバ一部に対応した 部分に複数本を並べて配置し、クシ歯状の構成とするのが好ましレ、。  Therefore, in the present invention, the heater is disposed so as to penetrate a part of the chamber. For this purpose, the heater may be supported only at both ends, and the heater may be suspended in the space in a part of the chamber. By doing so, the entire outer peripheral surface of the heater can be brought into contact with the atmosphere in a part of the chamber, so that the heat of the heater can be efficiently transferred to the atmosphere in the part of the chamber. In order to increase the contact area of the heater with the atmosphere inside the heater chamber, such a heater has a rod-shaped heater member with a plurality of rod-shaped heater members arranged side by side corresponding to the chamber part. It ’s better to do that.
なお、薄膜状の金属でヒータを形成する場合には、これをチャンバ一内で空中に保 持するような形態とするのは作成プロセス的に困難である。また金属とそのヒータ電極 を支えるガラス基板の熱膨張率の差によって、金属はヒータの加熱 '冷却の度に大き な応力や熱歪(変形)を受け、長時間の使用で破壊に至る。さらに、一般的に高温に するために比較的薄くする必要がある力 S、この場合は熱伝導が悪くなつて電流集中 場所が高温になって熱破壊することも発明者らは経験している。また、金属薄膜は微 結晶であるので、これらの変形や熱破壊に弱い。加えて、比較的深いチャンバ一の 表面部分に一部の面で空気と接触するので、ヒータから空気への熱伝達が悪レ、。 In the case where the heater is formed of a thin metal, it is difficult in terms of the production process to keep it in the air in the chamber. Also metal and its heater electrode Due to the difference in the coefficient of thermal expansion of the glass substrate that supports the metal, the metal is subject to great stress and thermal strain (deformation) each time the heater is heated or cooled, and it breaks down after prolonged use. In addition, the inventors have also experienced a force S that generally needs to be relatively thin to achieve a high temperature, in which case the heat conduction is poor and the current concentrated location becomes hot and breaks down. . Also, since the metal thin film is a microcrystal, it is vulnerable to these deformations and thermal destruction. In addition, because the surface of the relatively deep chamber is in contact with air on some sides, heat transfer from the heater to the air is poor.
[0011] このような気体搬送ポンプを構成するヒータは、気体搬送ポンプを構成するシリコン 基板の表層部に、不純物としてホウ素を拡散させてホウ素拡散層を形成する第一の 工程と、シリコン基板において、ヒータを構成する部分以外を、ホウ素拡散層の下方 までエッチングする第二の工程と、ヒータを構成する部分において、ホウ素拡散層の 下方のシリコン基板をエッチングする第三の工程と、を含むことを特徴とするヒータの 形成方法によって形成するのが好ましレ、。 [0011] A heater that constitutes such a gas transport pump includes a first step of diffusing boron as an impurity in a surface layer portion of a silicon substrate that constitutes the gas transport pump, and forming a boron diffusion layer in the silicon substrate. A second step of etching the portion other than the portion constituting the heater to the lower part of the boron diffusion layer, and a third step of etching the silicon substrate below the boron diffusion layer in the portion constituting the heater. It is preferably formed by a heater forming method characterized by
このようにして、ホウ素が拡散したシリコンによって形成されたホウ素拡散層が宙に 浮!/、たような状態で形成され、これをヒータとすること力 Sできる。  In this way, the boron diffusion layer formed by silicon into which boron has diffused is formed in a state of floating / suspending in the air, and this can be used as a heater.
ヒータを、チャンバ一部の空間を貫通するように配置するためには、第一の工程で は、シリコン基板の表層部に、ホウ素を 5 X 1018cm— 3以上の濃度で拡散させ、第三 の工程では、濃度 10〜60%、より好ましくは濃度 10〜30%以下の KOHを用いるこ とで、エッチングを行うようにするのが好ましい。第一の工程でリコン基板の表層部に 拡散させるホウ素の濃度のより好ましい範囲は 2 X 1019cm_3以上である。この場合、 第三の工程では、 3〜30%、より好ましくは 3〜; 15%の濃度の KOHを用いてエッチ ングを fiう。 A heater, in order to arrange so as to pass through the space part chamber, in a first step, the surface layer portion of the silicon substrate, by diffusing boron in a concentration of 5 X 10 18 cm- 3 or more, the In the third step, it is preferable to perform etching by using KOH having a concentration of 10 to 60%, more preferably 10 to 30% or less. A more preferred range of concentration of boron to diffuse into the surface layer portion of the silicon substrate in the first step is 2 X 10 19 cm_ 3 or more. In this case, in the third step, the etching is performed using 3 to 30%, more preferably 3 to 15% of KOH.
[0012] このような本発明の気体搬送ポンプは、ポンプを通る気体の流量を検出する流量セ ンサ部をさらに備えることもできる。その場合、流量センサ部は、第一のチャンネル、 第一の縮径部、チャンバ一部、第二の縮径部、第二のチャンネルからなる気体の流 路の近傍に設け、流路内の温度変化を検出することで気体の流量を検出するのが 良い。さらに言えば、この流量センサ部は、第一のチャンネルおよび/または第一の 縮径部の近傍と、第二のチャンネルおよび/または第二の縮径部の近傍とに、それ ぞれ備えるのが好ましい。そして、それぞれ備えられた流量センサ部の出力の差分を 検出するのが、ノイズ除去等を図ることができるために好ましい。 [0012] Such a gas transport pump of the present invention may further include a flow rate sensor unit that detects the flow rate of the gas passing through the pump. In that case, the flow sensor unit is provided in the vicinity of the gas flow path including the first channel, the first reduced diameter part, the chamber part, the second reduced diameter part, and the second channel, It is better to detect the gas flow rate by detecting the temperature change. Furthermore, the flow sensor unit is provided in the vicinity of the first channel and / or the first reduced diameter portion and in the vicinity of the second channel and / or the second reduced diameter portion, respectively. Is preferred. And the difference of the output of each provided flow sensor part The detection is preferable because noise removal and the like can be achieved.
[0013] 上記したような気体搬送ポンプは、様々な用途に用いることができる。例えば、特定 の種類の物質を検出するための検出センサにおいて、検出対象の物質を含んだ気 体を、物質を吸着する吸着材ゃ分子 (気体分子)認識材料等に送り込む用途がある 。このように、物質を含んだ気体を吸着材に強制的に送り込むことで、吸着材におけ る特定の物質の吸着量を増大させて検出感度を向上させたり、測定時間を短縮した りすること力 Sできる。これ以外にも、気体を搬送して気流を起こすことで、各種の機器 を冷却する等、様々な用途への適用が可能であり、本発明の気体搬送ポンプは、そ の用途を特に限定する意図はない。いずれの場合においても、微量な流量で気体を 搬送する場合、気体搬送ポンプの小型化、マイクロ化を図りたい場合に本発明は有 効となる。 [0013] The gas transport pump as described above can be used in various applications. For example, in a detection sensor for detecting a specific type of substance, there is an application in which a gas containing a substance to be detected is sent to an adsorbent that adsorbs the substance, such as a molecule (gas molecule) recognition material. In this way, by forcibly sending a gas containing a substance to the adsorbent, the amount of adsorption of a specific substance on the adsorbent can be increased to improve the detection sensitivity or shorten the measurement time. Power S can be. In addition to this, it can be applied to various uses such as cooling various equipment by transporting gas and generating air flow, and the gas transport pump of the present invention particularly limits its use. There is no intention. In any case, the present invention is effective when gas is transported at a very small flow rate, and when it is desired to reduce the size and size of the gas transport pump.
[0014] 本発明は、気体中に含まれる質量を有した物質を検出する検出部と、検出部に気 体を送り込むポンプ部とを備え、ポンプ部は、外部から検出部に気体を送り込むため の流路が形成されたポンプ本体と、流路内で気体に体積変化を生じさせる体積変化 発生部と、体積変化発生部により気体に体積変化が生じたとき、流路内で検出部か ら離れる方向に気体が移動するのを阻止する逆流防止部と、を備える。そして、体積 変化発生部は、ヒータと、ヒータの発熱温度を変化させるコントローラとからなり、ヒー タは、不純物を拡散させたシリコン製で、チャンバ一部の空間を貫通するように配置 されていることを特徴とする。  The present invention includes a detection unit that detects a substance having a mass contained in a gas, and a pump unit that sends the gas to the detection unit. The pump unit sends gas from the outside to the detection unit. The main body of the pump in which the flow path is formed, the volume change generation section that causes a volume change in the gas in the flow path, and the volume change generation section when the volume change occurs in the gas, from the detection section in the flow path. A backflow prevention unit that prevents gas from moving in the direction of leaving. The volume change generation unit includes a heater and a controller that changes the heat generation temperature of the heater. The heater is made of silicon in which impurities are diffused and is disposed so as to penetrate a part of the chamber. It is characterized by that.
[0015] 体積変化発生部により気体に体積変化が生じたとき、逆流防止部により流路内で 検出部から離れる方向に気体が移動するのを阻止することで、気体は流路内で検出 部に向けて移動する。このようにして、ポンプ本体は、流路を通して、外部から検出部 に気体を送り込むことが可能となる。  [0015] When a volume change occurs in the gas by the volume change generation unit, the backflow prevention unit prevents the gas from moving in the direction away from the detection unit in the flow path, so that the gas is detected in the flow path. Move towards In this way, the pump main body can send gas from the outside to the detection section through the flow path.
このとき、ポンプ本体はチャンバ一部を有し、体積変化発生部はチャンバ一部内で 気体に体積変化を生じさせ、逆流防止部として、気体の移動方向に向けて流路の内 径が漸次縮小する縮径部を、チャンバ一部の前後にそれぞれ形成するのが好ましい 。ところで、逆流防止部に微細な縮径部を用いると、気体に対する流路抵抗が大きく なる。このため、逆流防止部をそれぞれ備えた流路を複数、並列に備えることができ る。この場合、流路を体積変化発生部から放射状に設けても良いし、並行するように 設けても良い。 At this time, the pump body has a part of the chamber, the volume change generation part causes a volume change in the gas in the part of the chamber, and the inner diameter of the flow path gradually decreases in the gas moving direction as a backflow prevention part. It is preferable to form the reduced diameter portion to be formed before and after a part of the chamber. By the way, if a fine diameter-reduced portion is used for the backflow preventing portion, the flow path resistance against the gas increases. For this reason, a plurality of flow paths each having a backflow prevention unit can be provided in parallel. The In this case, the flow paths may be provided radially from the volume change generation unit or may be provided in parallel.
発明の効果  The invention's effect
[0016] 本発明によれば、気体搬送ポンプや検出センサにお!/、て、気体を微量であっても 高い精度で搬送することが可能となり、し力、も非常に小さなサイズとすることができる。 さらに、非常にシンプルな構造であり、可動部分も有さないため、故障等も生じにくく 、高い耐久性 ·信頼性を得ることができる。このような気体搬送ポンプや検出センサに おいて、ホウ素を拡散させたシリコンでヒータを形成することで、発熱'放熱効率を高 めることが可能となり、ヒータによるチャンバ一内の加熱.冷却サイクルを早め、気体 搬送ポンプの性能を高めることが可能となる。  [0016] According to the present invention, it is possible to transport gas with high accuracy even to a small amount of gas to a gas transport pump or a detection sensor, and to reduce the force and the size of the sensor. Can do. Furthermore, since it has a very simple structure and has no moving parts, it is unlikely to break down, and high durability and reliability can be obtained. In such a gas transfer pump and detection sensor, it is possible to increase the heat generation and heat dissipation efficiency by forming the heater with silicon diffused with boron, and the heating and cooling cycle in the chamber by the heater. As a result, the performance of the gas transfer pump can be improved.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本実施の形態における気体搬送ポンプの概略的な構成を示す図であり、(a)は 全体図、(b)は要部の拡大図である。  FIG. 1 is a diagram showing a schematic configuration of a gas transfer pump in the present embodiment, where (a) is an overall view, and (b) is an enlarged view of a main part.
[図 2]気体搬送ポンプの構成を示す図である。  FIG. 2 is a diagram showing a configuration of a gas transfer pump.
[図 3]気体搬送ポンプの断面図である。  FIG. 3 is a cross-sectional view of a gas transfer pump.
[図 4]気体搬送ポンプの他の例を示す断面図である。  FIG. 4 is a cross-sectional view showing another example of the gas transfer pump.
[図 5]本発明におけるヒータの構成を示す斜視図である。  FIG. 5 is a perspective view showing a configuration of a heater in the present invention.
[図 6]ヒータの形成方法を示す図であり、 (a)はシリコン基板の酸化膜を除去した状態 の断面図および平面図、(b)はホウ素をスピンコートして拡散させた状態の断面図で ある。  FIG. 6 is a diagram showing a heater forming method, (a) is a cross-sectional view and a plan view of the silicon substrate with the oxide film removed, and (b) is a cross-sectional view of the state after spin-coating and diffusing boron. It is a figure.
[図 7]同、(a)はヒータのパターンに応じてシリコン基板をエッチングした状態の断面 図および平面図、(b)はホウ素拡散層の下方をエッチングしてヒータ部材を形成した 状態の断面図である。  [FIG. 7] FIG. 7A is a cross-sectional view and a plan view of a state in which a silicon substrate is etched according to a heater pattern, and FIG. FIG.
[図 8]エッチングに用いる KOHの濃度と、エッチングレートの関係を示す図である。  FIG. 8 is a diagram showing the relationship between the concentration of KOH used for etching and the etching rate.
[図 9]金属製のヒータにおける温度上昇性能データおよび温度分布を示す図である。  FIG. 9 is a diagram showing temperature rise performance data and temperature distribution in a metal heater.
[図 10]シリコン製のヒータにおける温度上昇性能データおよび温度分布を示す図で ある。  FIG. 10 is a diagram showing temperature rise performance data and temperature distribution in a silicon heater.
[図 11]有限差分法による温度分布の解析結果を示す図である。 [図 12]—方の基板に入口側チャンネル、出口側チャンネル、入口側ディフューザ部、 出口側ディフューザ部、ヒータを形成する場合の工程の例を示す図であり、(a)は入 口側チャンネル、出口側チャンネル、入口側ディフューザ部、出口側ディフューザ部 をシリコン基板にエッチングすることで形成した状態の斜視図、(b)は、(a)の工程に 続!/、て入口側チャンネル、出口側チャンネルを所定の深さまで形成した状態の斜視 図である。 FIG. 11 is a diagram showing an analysis result of a temperature distribution by a finite difference method. FIG. 12 is a diagram showing an example of a process for forming an inlet side channel, an outlet side channel, an inlet side diffuser portion, an outlet side diffuser portion, and a heater on the other substrate, (a) is an inlet side channel. The perspective view of the state formed by etching the outlet side channel, the inlet side diffuser part, and the outlet side diffuser part on the silicon substrate, (b) is the process following step (a)! /, The inlet side channel, the outlet It is a perspective view of the state which formed the side channel to the predetermined depth.
[図 13] (a)は、図 12(b)の工程に続いて、所定の領域にホウ素を拡散させた状態を 示す斜視図、(b)は(a)の断面図である。  FIG. 13 (a) is a perspective view showing a state in which boron is diffused in a predetermined region following the step of FIG. 12 (b), and FIG. 13 (b) is a sectional view of FIG. 13 (a).
[図 14] (a)は、図 13の工程に続いて、ヒータを形成するためにエッチングした状態を 示す断面図、(b)は(a)の工程に続いて、ヒータの下部にチャンバ一部を形成するた めにエッチングした状態を示す断面図である。  [FIG. 14] (a) is a cross-sectional view showing a state in which etching is performed to form a heater following the step of FIG. 13, and (b) is a diagram showing a chamber integrated under the heater following the step of (a). FIG. 6 is a cross-sectional view showing a state etched to form a portion.
[図 15]他方の基板にキヤビティを形成し、一方の基板に貼り合わせた状態を示す図 である。  FIG. 15 is a view showing a state in which a cavity is formed on the other substrate and bonded to one substrate.
符号の説明  Explanation of symbols
[0018] 10···気体搬送ポンプ (ポンプ部)、 11···本体、 12···チャンバ一部、 13···入口側チ ヤンネル(第一のチャンネル)、 14···出口側チャンネル(第二のチャンネル)、 15·· '入 口側ディフューザ部(第一の縮径部、逆流防止部)、 16···出口側ディフューザ部(第 二の縮径 ^逆流防止 、 20···ヒータ、 20&···ヒータ 才、 21···=ιントローラ、 25··· ホウ素拡散層  [0018] 10 ··· Gas transfer pump (pump part), 11 ··· Main body, 12 ··· Part of chamber, 13 ··· Inlet channel (first channel), 14 ··· Exit side Channel (second channel), 15 '' Inlet side diffuser part (first reduced diameter part, backflow prevention part), 16 ·· Outlet side diffuser part (second diameter reduction ^ backflow prevention, 20 · ··· Heater, 20 & ··· Heater age, 21 ·· = ιTorolla, 25 ····· Boron diffusion layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
図 1は、本実施の形態における気体搬送ポンプ (ポンプ部) 10の機能的構成を説 明するための図、図 2は気体搬送ポンプ 10の実際的な構成を示す図である。  FIG. 1 is a diagram for explaining a functional configuration of the gas transport pump (pump unit) 10 in the present embodiment, and FIG. 2 is a diagram showing an actual configuration of the gas transport pump 10.
この図 1および図 2に示すように、気体搬送ポンプ 10は、本体 11内に、所定の容積 を有したチャンバ一部 12、このチャンバ一部 12に外部から気体を導入する入口側チ ヤンネル(第一のチャンネル) 13、チャンバ一部 12から気体を送り出す出口側チャン ネル(第二のチャンネル) 14、チャンバ一部 12と入口側チャンネル 13の間に設けら れた入口側ディフューザ部(第一の縮径部、逆流防止部) 15、チャンバ一部 12と出 口側チャンネル 14の間に設けられた出口側ディフューザ部(第二の縮径部、逆流防 止部) 16が形成され、チャンバ一部 12に、ヒータ 20が設けられた構成を有している。 As shown in FIG. 1 and FIG. 2, a gas transfer pump 10 includes a chamber part 12 having a predetermined volume in a main body 11, and an inlet side channel (introducing gas from the outside into the chamber part 12). (First channel) 13, outlet side channel (second channel) for delivering gas from chamber part 12, inlet side diffuser section (first channel) provided between chamber part 12 and inlet side channel 13 Diameter reduction part, backflow prevention part) 15, chamber part 12 and out An outlet side diffuser portion (second reduced diameter portion, backflow prevention portion) 16 provided between the mouth side channels 14 is formed, and a heater 20 is provided in the chamber part 12. .
[0020] 図 3に示すように、本体 11は、例えば 2枚の Si系材料からなる基板 l la、 l ibを貼り 合せることで形成されている。また、これら基板 l la、 l ibのいずれか一方または双方 の合わせ面に所定形状の凹部を形成することで、チャンバ一部 12、入口側チャンネ ノレ 13、出口側チャンネル 14、入口側ディフューザ部 15、出口側ディフューザ部 16が 形成されている。 As shown in FIG. 3, the main body 11 is formed by bonding, for example, two substrates l la and l ib made of a Si-based material. Further, by forming a concave portion of a predetermined shape on one or both of the substrates l la and l ib, a chamber part 12, an inlet side channel 13, an outlet side channel 14, an inlet side diffuser part 15 An outlet side diffuser portion 16 is formed.
そして、図 2および図 3に示したように、本体 11には、入口側チャンネル 13、出口側 チャンネル 14と外部とに連通するポート 17、 18が形成され、ここに配管等を接続す ることができるようになつている。また、この本体 11は、センサーやガスクロマトグラフィ 一を行うキヤビラリ一と一緒に集積化することもできる。  As shown in FIGS. 2 and 3, the body 11 is formed with ports 17 and 18 communicating with the inlet side channel 13 and the outlet side channel 14 and the outside, and pipes and the like can be connected thereto. Has become possible. In addition, the main body 11 can be integrated together with a sensor or a capillary for performing gas chromatography.
[0021] チャンバ一部 12は、例えば円形状断面を有している。このチャンバ一部 12の一方 の側には、入口側ディフューザ部 15が形成され、他方の側に出口側ディフューザ部 16が形成されている。 [0021] The chamber portion 12 has, for example, a circular cross section. An inlet side diffuser portion 15 is formed on one side of the chamber portion 12, and an outlet side diffuser portion 16 is formed on the other side.
[0022] 入口側チャンネル 13は、一端がポート 17に開口し、他端が入口側ディフューザ部  [0022] One side of the inlet side channel 13 opens to the port 17, and the other end is the inlet side diffuser portion.
15に連通するよう形成されている。入口側ディフューザ部 15は、入口側チャンネル 1 3とチャンバ一部 12とを連通するように形成され、入口側チャンネル 13側からチャン バー部 12側に向けて、その断面積(内径)が漸次小さくなるテーパノズル状とされて いる。  15 to communicate with. The inlet-side diffuser section 15 is formed so as to communicate the inlet-side channel 13 and the chamber part 12, and its cross-sectional area (inner diameter) gradually decreases from the inlet-side channel 13 side toward the chamber section 12 side. It has a tapered nozzle shape.
[0023] 出口側チャンネル 14は、一端がポート 18の側面に開口し、他端が出口側ディフユ 一ザ部 16に連通するよう形成されている。出口側ディフューザ部 16は、チャンバ一 部 12と出口側チャンネル 14とを連通し、入口側ディフューザ部 15とは異なる位置で チャンバ一部 12に開口するように形成され、チャンバ一部 12側から出口側チャンネ ル 14側に向けて、その断面積が漸次小さくなるテーパノズル状とされている。  The outlet side channel 14 is formed so that one end opens to the side surface of the port 18 and the other end communicates with the outlet side diffuser portion 16. The outlet side diffuser portion 16 communicates with the chamber portion 12 and the outlet side channel 14, and is formed so as to open to the chamber portion 12 at a position different from the inlet side diffuser portion 15, and the outlet side diffuser portion 16 exits from the chamber portion 12 side. A tapered nozzle is formed with a cross-sectional area that gradually decreases toward the side channel 14 side.
[0024] なお、図 4に示すように、入口側ディフューザ部 15、出口側ディフューザ部 16は、 本体 11の厚さ方向においても、入口側チャンネル 13、チャンバ一部 12、出口側チヤ ンネル 14よりも断面が小さくなるように形成するのが好ましい。  As shown in FIG. 4, the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are also formed from the inlet side channel 13, the chamber part 12, and the outlet side channel 14 in the thickness direction of the main body 11. Also, it is preferable to form such that the cross section is small.
[0025] このようにして、本体 11には、入口側チャンネル 13から、入口側ディフューザ部 15 、チャンバ一部 12、出口側ディフューザ部 16を経て、出口側チャンネル 14までが連 通した気体流路が形成されて!/、る。 In this way, the main body 11 has an inlet side diffuser portion 15 from the inlet side channel 13. A gas flow path is formed through the chamber part 12 and the outlet side diffuser 16 to the outlet side channel 14.
そして、図 2および図 3に示したように、入口側チャンネル 13、出口側チャンネル 14 にポート 17、 18が形成され、ここに配管等を接続することができるようになつている。  As shown in FIGS. 2 and 3, ports 17 and 18 are formed in the inlet side channel 13 and the outlet side channel 14 so that piping or the like can be connected thereto.
[0026] さて、図 3に示したように、チャンバ一部 12に設けられたヒータ 20は、基板 11aまた は l ibの一面側に形成されており、本体 11の外部に配置される電源(図示無し)に、 接続部 20jを介して電気的に接続される。 Now, as shown in FIG. 3, the heater 20 provided in the chamber part 12 is formed on one surface side of the substrate 11a or l ib, and is a power source (external to the body 11) ( (Not shown), it is electrically connected via the connecting part 20j.
ヒータ 20は、図 3に示すように、チャンバ一部 12に対応した部分に設けられている。 ヒータ 20は、 p型のシリコン材料に、ホウ素等の導電性材料を拡散させることで形成さ れている。  As shown in FIG. 3, the heater 20 is provided in a portion corresponding to the chamber portion 12. The heater 20 is formed by diffusing a conductive material such as boron into a p-type silicon material.
図 5に示すように、このようなヒータ 20は、棒状のヒータ部材 20aが複数本、互いに 平行にチャンバ一部 12の径方向に並べて配置された、いわゆるクシ歯状の構成とさ れている。これは、ヒータ 20の表面積を稼ぐためであり、したがってヒータ部材 20aの 外周全面がチャンバ一部 12内の雰囲気に接触するよう、ヒータ部材 20aは、チャン バー部 12内の厚さ方向中間部を貫通して、チャンバ一部 12内で宙に浮いたような 状態で支持して設けるのが好ましレ、。  As shown in FIG. 5, such a heater 20 has a so-called comb-like configuration in which a plurality of rod-shaped heater members 20a are arranged in parallel with each other in the radial direction of the chamber portion 12. . This is to increase the surface area of the heater 20, and therefore the heater member 20a has a thickness direction intermediate portion in the chamber portion 12 so that the entire outer periphery of the heater member 20a contacts the atmosphere in the chamber portion 12. It is preferable to provide it in a state where it penetrates and floats in the air in part 12 of the chamber.
[0027] 上記のようなヒータ 20への、電源(図示無し)における電圧の印加は、図 1に示した コントローラ 21によって制御されるようになって!/、る。  [0027] Application of a voltage from a power source (not shown) to the heater 20 as described above is controlled by the controller 21 shown in FIG.
コントローラ 21の制御により電源から電圧が印加されるとヒータ 20が発熱し、これに よってチャンバ一部 12内の温度が上昇して気体が膨張する。ヒータ 20への電圧の印 加を停止するとヒータ 20の発熱が中止され、チャンバ一部 12内の温度が低下して気 体が収縮する。気体搬送ポンプ 10では、ヒータ 20、コントローラ 21が、温度変化手段 、体積変化発生部として機能し、気体の膨張'収縮を利用することで、気体の送給を 行うようになっている。以下、これについて詳述する。  When a voltage is applied from the power source under the control of the controller 21, the heater 20 generates heat, which raises the temperature in the chamber part 12 and expands the gas. When the application of voltage to the heater 20 is stopped, the heat generation of the heater 20 is stopped, the temperature in the chamber part 12 is lowered, and the gas contracts. In the gas transfer pump 10, the heater 20 and the controller 21 function as a temperature change means and a volume change generation unit, and supply gas by utilizing expansion and contraction of gas. This will be described in detail below.
[0028] 気体搬送ポンプ 10においては、外部の気体を入口側ディフューザ部 15からチャン バー部 12に導入し、出口側ディフューザ部 16から吐出する。チャンバ一部 12に気 体が導入された状態で、ヒータ 20が発熱すると、チャンバ一部 12内の温度が上昇し て気体が膨張する。すると、膨張した気体は、入口側ディフューザ部 15、出口側ディ フューザ部 16からチャンバ一部 12の外部に流出しょうとする。 In the gas transfer pump 10, external gas is introduced from the inlet side diffuser portion 15 into the chamber portion 12 and discharged from the outlet side diffuser portion 16. When the heater 20 generates heat while the gas is introduced into the chamber part 12, the temperature in the chamber part 12 rises and the gas expands. The expanded gas then enters the inlet side diffuser 15 and the outlet side diffuser. It tries to flow out of the fuser part 16 to the outside of the chamber part 12.
このとき、図 1 (b)に示すように、入口側ディフューザ部 15は、入口側チャンネル 13 側からチャンバ一部 12側に向けて、その断面積が漸次小さくなるテーパノズル状とさ れている。また出口側ディフューザ部 16は、チャンバ一部 12側から出口側チャンネ ル 14側に向けて、その断面積が漸次小さくなるテーパノズル状とされている。このた め、入口側ディフューザ部 15、出口側ディフューザ部 16においては、その断面積が 漸次小さくなる方向(以下、この方向を順方向と称する)に気体が流れる場合と、逆方 向、つまり断面積が漸次大きくなる方向(出口側チャンネル 14側から入口側チャンネ ル 13側に向力、う方向:以下、この方向を逆方向と称する)に気体が流れる場合とでは 、圧力損失が異なる。すなわち、入口側ディフューザ部 15、出口側ディフューザ部 1 6では、気体が順方向に流れるときの圧力損失よりも、気体が逆方向に流れるときの 圧力損失の方が大きくなる。これは、入口側ディフューザ部 15、出口側ディフューザ 部 16のエッジ 15a、 16aの部分において、気体の粘性によって乱れ渦が生じ、これに よって流体の運動エネルギーが損なわれ、その結果、入口側ディフューザ部 15、出 口側ディフューザ部 16における気体の流れ力 順方向の方が逆方向よりもスムーズ になるからである。  At this time, as shown in FIG. 1 (b), the inlet-side diffuser portion 15 has a tapered nozzle shape in which the cross-sectional area gradually decreases from the inlet-side channel 13 side toward the chamber portion 12 side. Further, the outlet side diffuser portion 16 has a tapered nozzle shape in which the cross-sectional area gradually decreases from the chamber part 12 side toward the outlet side channel 14 side. Therefore, in the inlet side diffuser portion 15 and the outlet side diffuser portion 16, when the gas flows in a direction in which the cross-sectional area gradually decreases (hereinafter, this direction is referred to as the forward direction), the reverse direction, that is, the disconnection. The pressure loss is different from the case where the gas flows in a direction in which the area gradually increases (direct force from the outlet side channel 14 side to the inlet side channel 13 side, this direction is hereinafter referred to as the reverse direction). That is, in the inlet side diffuser portion 15 and the outlet side diffuser portion 16, the pressure loss when the gas flows in the reverse direction is larger than the pressure loss when the gas flows in the forward direction. This is because turbulent vortices are generated by the viscosity of the gas at the edges 15a and 16a of the inlet side diffuser part 15 and the outlet side diffuser part 16, thereby impairing the kinetic energy of the fluid, and as a result, the inlet side diffuser part. This is because the gas flow force at the outlet side diffuser section 16 is smoother in the forward direction than in the reverse direction.
これにより、チャンバ一部 12内の気体が膨張し、外部に流出しょうとした場合、気体 は、より抵抗(圧力損失)の小さい出口側ディフューザ部 16からチャンバ一部 12の外 部に流出する。  Accordingly, when the gas in the chamber part 12 expands and flows out to the outside, the gas flows out from the outlet side diffuser part 16 having a smaller resistance (pressure loss) to the outside of the chamber part 12.
[0029] この後、ヒータ 20への電圧の印加を停止するとヒータ 20の発熱が中止され、チャン バー部 12内の温度が低下して気体が収縮する。すると、気体の収縮に伴い、入口側 ディフューザ部 15、出口側ディフューザ部 16からチャンバ一部 12内に気体を導入し ようとする。  [0029] Thereafter, when the application of voltage to the heater 20 is stopped, the heat generation of the heater 20 is stopped, the temperature in the chamber portion 12 is lowered, and the gas contracts. Then, as the gas contracts, the gas tries to be introduced into the chamber part 12 from the inlet side diffuser portion 15 and the outlet side diffuser portion 16.
このとき、テーパノズル状の入口側ディフューザ部 15、出口側ディフューザ部 16に おいて、前述したような、気体の流れる方向に応じて圧力損失が異なるため、チャン バー部 12内の気体が収縮した場合、気体は、より抵抗 (圧力損失)の小さい入口側 ディフューザ部 15からチャンバ一部 12の内部に導入される。  At this time, in the tapered nozzle-shaped inlet-side diffuser portion 15 and outlet-side diffuser portion 16, the pressure loss varies depending on the gas flow direction as described above. The gas is introduced into the interior of the chamber part 12 from the diffuser section 15 having a smaller resistance (pressure loss).
[0030] このようにして、ヒータ 20の加熱時にはチャンバ一部 12内の気体が膨張して出口 側ディフューザ部 16から出口側チャンネル 14に流出する。また、ヒータ 20の停止時 にはチャンバ一部 12内の気体が収縮して入口側チャンネル 13から入口側ディフユ 一ザ部 15を介してチャンバ一部 12内に気体が導入されるようになっている。 [0030] In this way, when the heater 20 is heated, the gas in the chamber part 12 expands and exits. Outflow from side diffuser section 16 to outlet side channel 14. Further, when the heater 20 is stopped, the gas in the chamber part 12 contracts and gas is introduced into the chamber part 12 from the inlet side channel 13 through the inlet side diffuser part 15. Yes.
したがって、気体搬送ポンプ 10では、このヒータ 20の加熱 ·停止を繰り返すことで 入口側チャンネル 13から気体を吸い込むとともに、出口側チャンネル 14から気体を 吐出することができ、ポンプとして機能することになる。  Therefore, in the gas transport pump 10, by repeatedly heating and stopping the heater 20, the gas can be sucked from the inlet side channel 13 and can be discharged from the outlet side channel 14, thereby functioning as a pump.
このため、コントローラ 21では、所定のサイクルで、ヒータ 20の ON/OFFを交互に 切り替えるようになつている。例えば、コントローラ 21では、ヒータ 20の ON/OFFを 1 00マイクロ秒〜 1ミリ秒のサイクルで繰り返すように制御することができる。また、コント ローラ 21では、ヒータ 20を ON/OFFさせたときに、室温〜 1000°C、好ましくは室温 〜500°Cの幅で温度変化が生じるように制御するのが好ましい。  For this reason, in the controller 21, the heater 20 is alternately switched on / off in a predetermined cycle. For example, the controller 21 can be controlled to repeat ON / OFF of the heater 20 in a cycle of 100 microseconds to 1 millisecond. Further, the controller 21 is preferably controlled so that the temperature change occurs in the range of room temperature to 1000 ° C., preferably room temperature to 500 ° C., when the heater 20 is turned on / off.
[0031] このとき、ヒータ 20のパワーを高めれば、 ON/OFF時の温度差が大きくなり、気体 搬送ポンプ 10における流量が増大する。また、 ON/OFFの切り替え周波数を高め れば流量が減少する。これら ON/OFF時の温度差と切り替え周波数は、気体搬送 ポンプ 10の適用対象、用途等に応じて適宜設定すればよい。例えば、高温でガスが 分解するような用途に用いる場合には、温度を下げて使うことが必要である。  At this time, if the power of the heater 20 is increased, the temperature difference at ON / OFF increases, and the flow rate in the gas transfer pump 10 increases. Also, increasing the ON / OFF switching frequency decreases the flow rate. The temperature difference and the switching frequency at the time of ON / OFF may be set as appropriate according to the application target and application of the gas transfer pump 10. For example, when used in applications where gas decomposes at high temperatures, it is necessary to lower the temperature.
[0032] さらに、気体搬送ポンプ 10には、吐出する気体の流量を計測するための流量セン サ部 30を備えることもできる。流量センサ部 30は、入口側ディフューザ部 15および 出口側ディフューザ部 16の少なくとも一方の近傍に配置される。この流量センサ部 3 0は、常時一定の電圧を印加し、所定の温度に維持されるようにしておく。  Furthermore, the gas transport pump 10 can also include a flow rate sensor unit 30 for measuring the flow rate of the discharged gas. The flow sensor unit 30 is disposed in the vicinity of at least one of the inlet side diffuser unit 15 and the outlet side diffuser unit 16. The flow rate sensor unit 30 is constantly applied with a constant voltage so as to be maintained at a predetermined temperature.
流路内を気体が流れると、入口側ディフューザ部 15および出口側ディフューザ部 1 6の温度が低下する。これに伴い流量センサ部 30の温度も低下するので、そのとき の電気抵抗の変化をコントローラ 21でモニタリングすることで、入口側ディフューザ部 15および出口側ディフューザ部 16の温度の低下を検出できる。予め、入口側ディフ ユーザ部 15および出口側ディフューザ部 16における温度の低下量と流量との関係 を把握しておくことで、流量センサ部 30では、気体搬送ポンプ 10で吐出する気体の 流量を検出することができるのである。  When the gas flows in the flow path, the temperatures of the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are lowered. Along with this, the temperature of the flow sensor unit 30 also decreases, and by monitoring the change in electrical resistance at that time with the controller 21, it is possible to detect a decrease in the temperature of the inlet side diffuser unit 15 and the outlet side diffuser unit 16. The flow sensor unit 30 detects the flow rate of the gas discharged from the gas transfer pump 10 by grasping the relationship between the temperature drop and the flow rate at the inlet-side diffuser user unit 15 and outlet-side diffuser unit 16 in advance. It can be done.
[0033] 流量センサ部 30の配置や、その出力信号の処理に関しては、感度を向上させるた めに様々な構成が考えられる。例えば、入口側ディフューザ部 15側および出口側デ ィフューザ部 16側のそれぞれに流量センサ部 30を設け、その差分を取ることで流量 の絶対値を検出したり、ノイズ成分を除去することができる。また、応答特性を取ること で、ノイズ成分やドラフト成分を除去することも可能である。 [0033] Concerning the arrangement of the flow sensor unit 30 and the processing of its output signal, the sensitivity is improved. Various configurations are possible for this purpose. For example, the flow rate sensor unit 30 is provided on each of the inlet side diffuser unit 15 side and the outlet side diffuser unit 16 side, and by taking the difference between them, the absolute value of the flow rate can be detected or the noise component can be removed. It is also possible to remove noise components and draft components by taking response characteristics.
[0034] このような気体搬送ポンプ 10を形成するには、例えば、酸化層とフォトレジスト層と が積層されることで構成された基板 11aに、リソグラフィ法によりパターンを形成するこ とで、チャンバ一部 12、入口側チャンネル 13、出口側チャンネル 14、入口側ディフユ 一ザ部 15、出口側ディフューザ部 16等を形成する。 In order to form such a gas transport pump 10, for example, a pattern is formed by a lithography method on a substrate 11 a configured by laminating an oxide layer and a photoresist layer, whereby a chamber is formed. A part 12, an inlet side channel 13, an outlet side channel 14, an inlet side diffuser portion 15, an outlet side diffuser portion 16 and the like are formed.
これにはまず、基板 11aの酸化層に、リソグラフィ法により、チャンバ一部 12、入口 側チャンネル 13、出口側チャンネル 14、入口側ディフューザ部 15、出口側ディフユ 一ザ部 16のパターンを形成する。  For this, first, a pattern of the chamber part 12, the inlet side channel 13, the outlet side channel 14, the inlet side diffuser part 15, and the outlet side diffuser part 16 is formed on the oxide layer of the substrate 11a by lithography.
続いて、入口側ディフューザ部 15、出口側ディフューザ部 16をマスクした状態で、 エッチングにより、チャンバ一部 12、入口側チャンネル 13、出口側チャンネル 14を、 所定の深さに形成する。  Subsequently, in a state where the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are masked, the chamber part 12, the inlet side channel 13, and the outlet side channel 14 are formed to a predetermined depth by etching.
さらに、入口側ディフューザ部 15、出口側ディフューザ部 16のマスクを外し、エッチ ングにより、入口側ディフューザ部 15、出口側ディフューザ部 16を所定の深さに形 成する。  Further, the masks of the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are removed, and the inlet side diffuser portion 15 and the outlet side diffuser portion 16 are formed to a predetermined depth by etching.
[0035] 他方の基板 l ibには、所定の材料を用いて膜を成膜する。そして、これらの膜に、リ ソグラフィ法およびエッチングによりヒータ 20、接続部 20j、流量センサ部 30に応じた 所定のパターンを形成する。  [0035] A film is formed on the other substrate l ib using a predetermined material. Then, a predetermined pattern corresponding to the heater 20, the connection portion 20j, and the flow rate sensor portion 30 is formed on these films by lithography and etching.
[0036] ヒータ 20を形成するには、図 6 (a)に示すように、 BHF溶液(NH F/HF/H 0)  [0036] To form the heater 20, as shown in Fig. 6 (a), a BHF solution (NH F / HF / H 0)
4 2 を用いたエッチングにより、基板 1 lbの所定の領域 24にお!/、て酸化膜 1 loを除去す る。この領域 24は、ヒータ 20および、このヒータ 20を電源に接続するための接続部 2 0jに対応した部分である。  The oxide film 1 lo is removed in a predetermined region 24 of the substrate 1 lb by etching using 4 2. This region 24 is a portion corresponding to the heater 20 and the connection portion 20j for connecting the heater 20 to the power source.
そして、ホウ素を含んだ溶液を、領域 24内の基板 l ibの表面上にスピンコートする 。その後、基板 l ibを熱処理することで、ホウ素を基板 l ibの表面に拡散させ、その ホウ素濃度を 5 X 1018cnT3以上、より好ましくは 2 X 1019cnT3以上、例えば 102°cm — 3程度とする。例えば、ホウ素を含んだ溶液として、東京応化工業株式会社の PBF ( 商品名)を用いた場合、 1100°C、 3. 5hrの熱処理を行うことで、ホウ素を基板 l ibの 表層部 5 mの範囲において、 102°cm_3程度のホウ素濃度とすることができる。これ により、図 6 (b)に示すように、基板 l ibの表層部には、ホウ素が拡散されたホウ素拡 散層 25が形成されたことになる。 Then, a solution containing boron is spin-coated on the surface of the substrate rib in the region 24. Thereafter, the substrate l ib is heat-treated to diffuse boron to the surface of the substrate l ib, and the boron concentration is 5 × 10 18 cnT 3 or more, more preferably 2 × 10 19 cnT 3 or more, for example, 10 2 ° cm. — About 3 For example, as a solution containing boron, Tokyo Ohka Kogyo Co., Ltd.'s PBF ( When using a trade name), and in 1100 ° C, the heat treatment of 3. 5 hr, the surface layer portion 5 between m of boron substrate l ib, can be a boron concentration of about 10 2 ° cm_ 3 . As a result, as shown in FIG. 6B, a boron diffusion layer 25 in which boron is diffused is formed in the surface layer portion of the substrate ib.
[0037] 続いて、図 7 (a)に示すように、領域 24の部分において、マスクを用い、 D— RIE (D eep Reactive Ion Etching :深堀り反応性イオンエッチング)法等により、ヒータ 20を構 成する棒状のヒータ部材 20aと接続部 20j以外の部分を、基板 l ibのホウ素拡散層 2 5の下方の所定深さ(例えば 25 H m)までエッチングする。  Subsequently, as shown in FIG. 7 (a), in the region 24, the mask 20 is used and the heater 20 is attached by a D-RIE (Deep Reactive Ion Etching) method or the like. The portion other than the rod-shaped heater member 20a and the connecting portion 20j constituting the structure is etched to a predetermined depth (for example, 25 Hm) below the boron diffusion layer 25 of the substrate ib.
そして、図 7 (b)に示すように、 KOH (60°Cにてイソプロパロールに溶解させた 10 %飽和溶液)を用い、基板 l ibのヒータ部材 20aに対応した部分において、ホウ素拡 散層 25の下側の基板 l ibをエッチングする。すると、ヒータ部材 20aに対応した部分 において、表層部のホウ素拡散層 25の下方の基板 l ibは除去され、ホウ素拡散層 2 5のみが残り、これによつてヒータ部材 20aが形成される。これにより、ヒータ部材 20a は、宙に浮いたような状態で形成される。  Then, as shown in FIG. 7 (b), using KOH (10% saturated solution dissolved in isopropanol at 60 ° C.), a boron diffusion layer is formed at a portion corresponding to the heater member 20a of the substrate rib. Etch 25 lower substrate l ib. As a result, in the portion corresponding to the heater member 20a, the substrate Lib below the surface boron diffusion layer 25 is removed, leaving only the boron diffusion layer 25, thereby forming the heater member 20a. Thereby, the heater member 20a is formed in a state of floating in the air.
このとき、 KOHの濃度は、 3〜30%、より好ましくは 3〜; 15%とするのが好ましい。  At this time, the concentration of KOH is preferably 3 to 30%, more preferably 3 to 15%.
KOHの濃度を上記のように調整することで、図 8に示すように、ホウ素の濃度が 1019 cm_3以上の部分と濃度 1019cm_3以下の部分とで、エッチングレート(エッチング速 度)に 200倍以上の差が付く。すると、ホウ素が拡散したホウ素拡散層 25と、それ以 外の部分とで、エッチング時の選択性が高まり、濃度 1019cm— 3以下の部分、すなわ ちホウ素拡散層 25の下方の基板 l ibのみが除去され、ホウ素の濃度が 1019cm_3以 上の部分、すなわちホウ素拡散層 25が残り、ヒータ部材 20aを良好に形成できる。 なおここで、ホウ素を 2 X 1019cm_3以上の濃度で拡散させた場合には、 KOHの濃 度を 3〜30%、より好ましくは 3〜15%とすればよいが、ホウ素を 5 X 1018cm_3以上 2 X 1019cm— 3未満の濃度範囲で拡散させた場合には、エッチング効果を確実に得 るために 10〜60%、より好ましくは 10〜30%の濃度の KOHを用いてエッチングを 行うようにするのが好ましい。 The concentration of KOH by adjusting, as described above, as shown in FIG. 8, at a concentration of boron and 10 19 CM_ 3 or more parts and density 10 19 CM_ 3 following part, the etching rate (etching speed) The difference is more than 200 times. Then, the boron diffusion layer 25 in which boron is diffused and the other portions increase the selectivity during etching, and the portion below the concentration of 10 19 cm- 3 , that is, the substrate under the boron diffusion layer 25 l ib only is removed, the portion of the concentration of boron 10 19 CM_ 3 on than, i.e. the remaining boron diffusion layer 25 can be satisfactorily formed a heater member 20a. Note here, when the boron is diffused at a concentration of 2 X 10 19 cm_ 3 or more, the concentration of KOH 3 to 30% and more preferably may be 3 to 15% boron 5 X when diffused in a concentration range of less than 10 18 CM_ 3 or 2 X 10 19 cm- 3 is 10% to 60% to ensure obtained because the etching effect, more preferably 10 to 30% strength KOH It is preferable to use it for etching.
[0038] このような工程の後、基板 l ibに残っている酸化膜は、基板 l ibをァノディック 'ボン デイングによって貼り合わせるために除去するのが好ましい。そして、これら基板 11a 、 l ibを貼り合わせることで、気体搬送ポンプ 10を形成することができる。 [0038] After such a step, the oxide film remaining on the substrate l ib is preferably removed in order to bond the substrate l ib by anodically bonding. And these substrates 11a , L ib can be bonded to form the gas transfer pump 10.
[0039] このようにしてホウ素を拡散させたシリコンによってヒータ 20を構成することで、それ までの金属製のヒータに比較し熱伝達率を大きくすることができる。このとき、ヒータ 2 0は、金属製のヒータに比較し、放熱性にも優れ、基板 l ibにおいてホウ素が拡散し た薄い表層部によってヒータ部材 20aを形成しても、加熱 ·冷却速度を大幅に向上さ せることが可能である。また、シリコンによってヒータ部材 20aを形成することで、これら ヒータ部材 20aを宙に浮かせたような状態とすることができるので、その外周全面をチ ヤンバー部 12内の雰囲気に接触させることができる。この点においてもチャンバ一部 12内の雰囲気の加熱 ·冷却サイクルを短縮することができる。このようにして、ヒータ 2 0の ON/OFFの切り替え周波数を高めて気体搬送ポンプ 10の流量を増大させるこ とが可能となるのである。 [0039] By configuring the heater 20 with silicon in which boron is diffused in this manner, the heat transfer coefficient can be increased as compared with metal heaters so far. At this time, the heater 20 is excellent in heat dissipation compared to a metal heater, and even if the heater member 20a is formed by a thin surface layer portion in which boron is diffused in the substrate rib, the heating / cooling rate is greatly increased. It is possible to improve it. Further, by forming the heater member 20a with silicon, the heater member 20a can be brought into a state of being suspended in the air, so that the entire outer periphery thereof can be brought into contact with the atmosphere in the chamber portion 12. Also in this respect, the heating / cooling cycle of the atmosphere in the chamber part 12 can be shortened. In this way, it is possible to increase the flow rate of the gas transfer pump 10 by increasing the ON / OFF switching frequency of the heater 20.
[0040] このような気体搬送ポンプ 10は、微量な気体を搬送する様々な用途に適用すること ができる。例えば、ガス等の気体検知用の検出センサにおいて、検出センサ部分に 気体を供給するための流量制御、半導体プロセス工程や、ガス燃焼機器におけるガ ス濃度の微量な調整、例えばモパイル用機器における CPU冷却のため等における 冷媒の供給等である。 [0040] Such a gas transport pump 10 can be applied to various uses for transporting a small amount of gas. For example, in a detection sensor for detecting gas such as gas, flow control for supplying gas to the detection sensor part, semiconductor process process, minute adjustment of gas concentration in gas combustion equipment, for example, CPU cooling in mopile equipment For example, supply of refrigerant.
例えば、ガス等の気体検知用の検出センサは、爆発危険性や有害性のあるガス等 の存在、あるいはその定量的な濃度を検出するためのものとすることができる。この検 出センサでは、ガスに含まれる特定の分子を吸着し、その吸着の有無あるいは吸着 量を検出することで、ガス等の存在の有無あるいはその濃度を検出する。このような 検出センサは、ガス等を取り扱う施設、設備、装置等に設置され、ガスの漏れやガス 量のコントロールに用いられる。  For example, a detection sensor for detecting a gas such as a gas can be used to detect the presence or quantitative concentration of an explosive or harmful gas. This detection sensor adsorbs specific molecules contained in the gas and detects the presence or concentration of the gas or the like by detecting the presence or absence or amount of the adsorption. Such detection sensors are installed in facilities, equipment, and equipment that handle gas, etc., and are used to control gas leakage and gas volume.
また近年開発が盛んに行われている、燃料電池用の水素ステーションや、燃料電 池を使用する車両や装置、機器等において、水素の漏れが無いか監視する用途に も、上記検出センサは適用できる。  The detection sensor is also applicable to monitoring hydrogen leaks in hydrogen stations for fuel cells, vehicles, devices and equipment that use fuel cells, which have been actively developed in recent years. it can.
これ以外にも、特定の分子、あるいは特定の特性または特徴を有する複数種の分 子を吸着することで、その吸着の有無あるいは吸着量を検出する検出センサは、例 えば食物の鮮度や成分分析、快適空間を提供'維持するための環境制御、さらには 、人体等、生体の状態検知等に用いることが考えられる。また、人体から出る様々な 物質、呼気や腸内フローラの代謝成分等を高感度に検出することで、健康状態のモ ユタリング、疾患の簡易なスクリーニング、生活習慣性疾患の診断、感染症のモニタリ ング等といったことを行うことが可能になると考えられる。 In addition to this, detection sensors that detect the presence or absence of adsorption by adsorbing specific molecules, or multiple types of molecules with specific characteristics or characteristics, include, for example, food freshness and component analysis. Providing a comfortable space, 'environmental control to maintain, and even It can be used for detecting the state of a living body such as a human body. In addition, by detecting various substances from the human body, exhaled breath and metabolic components of intestinal flora, etc. with high sensitivity, it is possible to monitor health conditions, perform simple screening for diseases, diagnose lifestyle-related diseases, and monitor infectious diseases. It will be possible to do things such as
[0041] このような検出センサとしては、大きく分けて 2種類の方式のものがある。 [0041] Such detection sensors are roughly classified into two types.
一つは、カンチレバーや微小共振器上に、特定の分子を吸着する分子吸着膜 (感 応膜)を設け、分子吸着膜に分子が吸着されたときのカンチレバーの状態変化から、 分子の吸着を検出するものである。分子吸着膜に分子が吸着されると、分子吸着膜 の質量が増加する。これにより、カンチレバーのたわみ量が変化するので、その変化 量力、ら特定の分子の吸着を検出できる。また、分子の吸着により分子吸着膜の質量 が増加すると、カンチレバーと分子吸着膜とからなる系の共振周波数が変化するの で、その変化から特定の分子の吸着を検出することもできる。  One is to provide a molecular adsorption film (sensitivity film) that adsorbs specific molecules on the cantilever or microresonator. It is to detect. When molecules are adsorbed on the molecular adsorption film, the mass of the molecular adsorption film increases. As a result, the amount of deflection of the cantilever changes, so that the amount of change and the adsorption of specific molecules can be detected. In addition, when the mass of the molecular adsorption film increases due to molecular adsorption, the resonance frequency of the system composed of the cantilever and the molecular adsorption film changes, so that adsorption of a specific molecule can be detected from the change.
もう一つの方式は、水晶振動子に分子吸着膜を設け、分子吸着膜に分子が吸着さ れたときの水晶振動子の共振周波数変化から特定の分子の吸着を検出するもので ある。  In the other method, a molecular adsorption film is provided on the crystal unit, and the adsorption of specific molecules is detected from the change in the resonance frequency of the crystal unit when molecules are adsorbed on the molecular adsorption layer.
これ以外にも、適宜他の方式の検出センサを採用することは、もちろん可能である。  In addition to this, it is of course possible to employ other types of detection sensors as appropriate.
[0042] このような検出センサに、上記気体搬送ポンプ 10を組み合わせることで、気体搬送 ポンプ 10で検出対象となるガスを採集し、これを検出センサの部分に供給することで 、検出センサにおいて検出を高精度で行うことが可能となる。 [0042] By combining the gas conveyance pump 10 with such a detection sensor, the gas conveyance pump 10 collects the gas to be detected, and supplies it to the detection sensor portion, thereby detecting the detection sensor. Can be performed with high accuracy.
[0043] 上述したように、気体搬送ポンプ 10は、気体の熱膨張を利用することで、確実に体 積変化を生じさせ、微量な流量であっても気体を確実に搬送することができる。しかも 、気体を搬送させるためには、チャンバ一部 12、入口側チャンネル 13、出口側チヤ ンネル 14、入口側ディフューザ部 15、出口側ディフューザ部 16からなる流路と、ヒー タ 20とを備えるのみでよぐ機械的な可動部分が不要であるため、高い信頼性を得る ことができる。また可動部分を備える場合のように作動音や作動による発熱等が問題 になるのも回避できる。 [0043] As described above, the gas transport pump 10 uses the thermal expansion of the gas to reliably cause a change in volume, and can reliably transport the gas even at a very small flow rate. Moreover, in order to transport the gas, only the flow path including the chamber part 12, the inlet side channel 13, the outlet side channel 14, the inlet side diffuser part 15, the outlet side diffuser part 16 and the heater 20 are provided. High mechanical reliability can be obtained because no mechanical moving parts are required. It is also possible to avoid problems such as operating noise and heat generation due to operation as in the case of having movable parts.
[0044] また、気体搬送ポンプ 10は、その構成からして非常に小型のものとすることができる 。これにより、この気体搬送ポンプ 10を組み合わせて構成する検出センサ等につい ても小型化することが可能となる。 [0044] In addition, the gas transport pump 10 can be very small in size because of its configuration. As a result, the detection sensor and the like configured by combining the gas transport pump 10 However, it is possible to reduce the size.
実施例  Example
[0045] 上記のような構成の気体搬送ポンプ 10について、その動作をシミュレーションによ つて検証した。ここで、チャンバ一部 12の内径は 100 m、入口側チャンネル 13の 幅は 10 μ m、高さは 20 μ m、出口佃 Jチャンネノレ 14の幅は 10 μ m、高さは 20 μ m、 入口側ディフューザ部 15の長さは 5 m、ディフューザ部分の幅は 1〜4 111、高さ は 2〜5 111、出口側ディフューザ部 16は入口側ディフューザ部 15と同形状とした。 また、ヒータ 20には、 100mAの電流を 100ms流し、 100ms停止させるというサイク ルを繰り返した。  [0045] The operation of the gas transport pump 10 having the above-described configuration was verified by simulation. Here, the inner diameter of the chamber part 12 is 100 m, the width of the inlet channel 13 is 10 μm, the height is 20 μm, the width of the outlet 佃 J channel 14 is 10 μm, the height is 20 μm, The length of the inlet side diffuser portion 15 is 5 m, the width of the diffuser portion is 1 to 4 111, the height is 2 to 5 111, and the outlet side diffuser portion 16 has the same shape as the inlet side diffuser portion 15. In addition, the heater 20 was repeatedly cycled by flowing a 100 mA current for 100 ms and stopping it for 100 ms.
[0046] チャンバ一部 12の部分においては、温度が室温〜 500°Cに周期的に変動し、出 口側チャンネル 14からは、気体がチャンバ一部 12の体積に対して 1回の温度サイク ノレ当たり 3 %の割合で吐出された。  [0046] In the chamber portion 12 portion, the temperature periodically fluctuates from room temperature to 500 ° C. From the outlet side channel 14, the gas is heated once for the volume of the chamber portion 12 once. It was discharged at a rate of 3% per nozzle.
[0047] ここで、ヒータの構成についての比較検討を行った。  [0047] Here, a comparative study was made on the configuration of the heater.
まず、比較のため、ノ ィレックス(登録商標)ガラス製の基板上に Ptを製膜し、ヒータ を形成した。このヒータは、長さ 160 ^ m、幅 26 μ m、厚さ lOOnmとした。ヒータは、 幅が 160 mから lmmに広がる、長さ 2mmの台形の接続部に一体に接続されてい このヒータに、 100mAの定電流を流すと、図 9 (a)に示すように、 1100Kまで温度 が上昇するのに 10〃 sを要した。  For comparison, a heater was formed by depositing Pt on a substrate made of Nolex (registered trademark) glass. The heater was 160 ^ m long, 26 μm wide, and lOOnm thick. The heater is integrally connected to a trapezoidal connecting part with a length of 2mm, which extends from 160m to lmm. When a constant current of 100mA is passed through this heater, as shown in Fig. 9 (a), it reaches 1100K. It took 10 〃s for the temperature to rise.
また、ヒータの温度分布は、図 9 (b)に示すように、ヒータの中心を挟んで両側 80 m以上、トータルで 160 m以上の範囲で温度が上昇している。  As shown in Fig. 9 (b), the heater temperature rises over a range of 80 m or more on both sides across the center of the heater, totaling 160 m or more.
[0048] 一方、本発明の手法により、シリコンでヒータを形成した。このヒータは、長さ 200 H m、 ψ§5 μ m,厚さ 5 mの棒状で、このヒータに、 100mAの定電流を流すと、図 10 ( a)に示すように、 1000Kまで温度が上昇するのに 1 μ sを要したのみであり、前記の Ptを用いたヒータに比較すると、 10倍以上の速度で温度上昇した。これはシリコンの 熱伝導率力 S、パイレックスの熱伝導率の 150倍以上であるからである。 On the other hand, a heater was formed of silicon by the method of the present invention. This heater is a rod with a length of 200 Hm, ψ§5 μm, and a thickness of 5 m. When a constant current of 100 mA is passed through this heater, the temperature rises to 1000 K as shown in Fig. 10 (a). It took only 1 μs to rise, and the temperature rose more than 10 times faster than the heater using Pt. This is because the thermal conductivity S of silicon is more than 150 times the thermal conductivity of Pyrex.
また、ヒータの温度分布は、図 10 (b)に示すように、ヒータの中心を挟んで両側 100 〃 m以上、トータルで 200 m以上の広い範囲で温度が上昇している。これは、シリ コン製のヒータの場合、周囲の雰囲気に接触する表面積が非常に大きぐヒータとし ての効率が高!/、ためである。 As shown in Fig. 10 (b), the heater temperature rises over a wide range of 100 m or more on both sides and a total of 200 m or more across the center of the heater. This is Siri This is because the heater made by CON has high efficiency because it has a very large surface area in contact with the surrounding atmosphere.
図 11は、上記したような寸法の棒状のヒータ部材を 12本並べてヒータを構成した場 合において、 600mAの定電流を lms流した状態における温度分布を、有限差分法 (ANSYS)を用いて数値解析したものである。この図 11に示すように、 lms経過時 には、ヒータが 2000K以上に確実に温度上昇しており、十分な加熱性能を有してい ることが確認された。  Figure 11 shows the temperature distribution using a finite difference method (ANSYS) in a state where a constant current of 600 mA flows through lms when a heater is configured by arranging 12 rod-shaped heater members with the dimensions described above. Analyzed. As shown in FIG. 11, when lms passed, it was confirmed that the temperature of the heater had risen to 2000K or more and that it had sufficient heating performance.
このように、シリコンで形成した棒状のヒータ部材からヒータを構成することで、従来 の金属製のヒータに比較し、同じ大きさのチャンバ一に対し、 12倍以上大きな表面積 を確保することができ、およそ 10倍早いヒータを実現することが可能となっている。 本実施の形態では、基板 l ibに、チャンバ一部 12、入口側チャンネル 13、出口側 チャンネル 14、入口側ディフューザ部 15、出口側ディフューザ部 16等を形成し、他 方の基板 l ibに、ヒータ 20と流量センサ部 30の配線パターンを形成し、これら基板 1 la、 l ibを互いに接合する構成としたが、これに限るものではない。例えば、ヒータ 2 0と流量センサ部 30とを、別体の部材としても良い。  In this way, by constructing a heater from rod-shaped heater members made of silicon, a surface area 12 times larger than that of a conventional metal heater can be secured for a chamber of the same size. It is possible to realize a heater about 10 times faster. In the present embodiment, a chamber part 12, an inlet side channel 13, an outlet side channel 14, an inlet side diffuser part 15, an outlet side diffuser part 16 and the like are formed on the substrate l ib, and the other substrate l ib Although the wiring pattern of the heater 20 and the flow rate sensor unit 30 is formed and the substrates 1 la and ib are joined to each other, the present invention is not limited to this. For example, the heater 20 and the flow rate sensor unit 30 may be separate members.
上記実施の形態では、上部側の基板 l ibにヒータ 20を形成して、ウェハーを貼り合 わせる構成としたが、下部側の基板 11aにヒータ 20を形成しても良い。その場合、基 板 11 aをシリコンで形成し、基板 l ibはガラス基板により形成することもできる。基板 1 lbには、チャンバ一部 12を形成するための凹部のみを形成すればよい。以下、その 製法を示す。  In the above embodiment, the heater 20 is formed on the upper substrate LIB and the wafer is bonded, but the heater 20 may be formed on the lower substrate 11a. In that case, the substrate 11a can be formed of silicon, and the substrate l ib can be formed of a glass substrate. Only the recess for forming the chamber part 12 may be formed in the substrate 1 lb. The production method is shown below.
まず、図 12 (a)に示すように、基板 11aに、基板 11aの酸化層を通してバルタ層に 到達するまで、 D— RIE法により、入口側チャンネル 13、出口側チャンネル 14、入口 側ディフューザ部 15、出口側ディフューザ部 16のパターンを形成する。入口側ディ フューザ部 15、出口側ディフューザ部 16は、所定の深さ(設計値)に形成する。 さらに、図 12 (b)に示すように、入口側ディフューザ部 15、出口側ディフューザ部 1 6をマスクした状態で、リソグラフィ法により、入口側チャンネル 13、出口側チャンネル 14を、所定の深さに形成する。この後、基板 11aの表面全体に lOOnmの酸化膜が 形成され、基板 1 laを形成するシリコンが保護される。 [0050] 図 13 (a)に示すように、基板 1 laに、ヒータ 20、接続部 20j、流量センサ部 30に応 じた所定の領域 26に、ホウ素を含んだ溶液を用い、リソグラフィ法およびエッチング によりパターンを形成する。これには、予め、 BHF溶液(NH F/HF/H O)を用い First, as shown in FIG. 12 (a), the inlet side channel 13, the outlet side channel 14, and the inlet side diffuser portion 15 are formed by D-RIE until the substrate 11a reaches the Balta layer through the oxide layer of the substrate 11a. The pattern of the outlet side diffuser portion 16 is formed. The inlet side diffuser portion 15 and the outlet side diffuser portion 16 are formed to a predetermined depth (design value). Further, as shown in FIG. 12 (b), with the inlet side diffuser portion 15 and the outlet side diffuser portion 16 masked, the inlet side channel 13 and the outlet side channel 14 are set to a predetermined depth by lithography. Form. Thereafter, an oxide film of lOOnm is formed on the entire surface of the substrate 11a, and the silicon forming the substrate 1la is protected. [0050] As shown in FIG. 13 (a), a solution containing boron is used in a predetermined region 26 corresponding to the heater 20, the connection portion 20j, and the flow rate sensor portion 30 on the substrate 1 la, and the lithography method and A pattern is formed by etching. For this purpose, use a BHF solution (NH F / HF / HO) in advance.
4 2 たエッチングにより、基板 11aの所定の領域 26において酸化膜を除去しておく。そし て、ホウ素を含んだ溶液を、基板 11aの表面上にスピンコートする。その後、基板 11a を熱処理することで、ホウ素を基板 11aの表面の所定の領域 26に拡散させ、そのホ ゥ素濃度を 5 X 1018cm— 3以上、より好ましくは 2 X 1019cm— 3以上、例えば 102°cm 程度とする。例えば、ホウ素を含んだ溶液として、東京応化工業株式会社の PBF (商 品名)を用いた場合、 1100°C、 3. 5hrの熱処理を行うことで、ホウ素を基板 11aの表 層部 5 mの範囲において、 102°cm_3程度のホウ素濃度とすることができる。これに より、図 13 (b)に示すように、基板 11aの表層部の所定の領域 26には、ホウ素が拡散 されたホウ素拡散層 25が形成されたことになる。 The oxide film is removed from the predetermined region 26 of the substrate 11a by etching. Then, a solution containing boron is spin-coated on the surface of the substrate 11a. Thereafter, the substrate 11a is heat-treated to diffuse boron into a predetermined region 26 on the surface of the substrate 11a, and the boron concentration is 5 × 10 18 cm− 3 or more, more preferably 2 × 10 19 cm− 3. For example, it is about 10 2 ° cm. For example, when PBF (trade name) of Tokyo Ohka Kogyo Co., Ltd. is used as a solution containing boron, boron is applied to the surface layer part of the substrate 11a 5 m by heat treatment at 1100 ° C for 3.5 hours. in the range, it may be boron concentration of about 10 2 ° cm_ 3. As a result, as shown in FIG. 13B, a boron diffusion layer 25 in which boron is diffused is formed in a predetermined region 26 of the surface layer portion of the substrate 11a.
[0051] 続いて、図 14 (a)に示すように、リソグラフィ法、 D— RIE法により、ヒータ 20を構成 する棒状のヒータ部材 20aと接続部 20j以外の部分を、基板 11 aのホウ素拡散層 25 の下方の所定深さまでエッチングする。 Subsequently, as shown in FIG. 14 (a), the portions other than the rod-shaped heater member 20a and the connection portion 20j constituting the heater 20 are diffused by boron in the substrate 11a by lithography and D-RIE. Etch to a predetermined depth below layer 25.
そして、図 14 (b)に示すように、 KOH (60°Cにてイソプロパロールに溶解させた 10 %飽和溶液)を用い、基板 11aのヒータ部材 20aに対応した部分において、ホウ素拡 散層 25の下側の基板 11 aをエッチングする。すると、ヒータ部材 20aに対応した部分 において、表層部のホウ素拡散層 25の下方の基板 11aは除去され、ホウ素拡散層 2 5のみが残り、これによつてヒータ部材 20aが形成されるとともに、その下方にチャンバ 一部 12が形成される。これにより、ヒータ部材 20aは、宙に浮いたような状態で形成さ れる。  Then, as shown in FIG. 14 (b), using KOH (10% saturated solution dissolved in isopropanol at 60 ° C.), the boron diffusion layer 25 is formed at the portion corresponding to the heater member 20a of the substrate 11a. The lower substrate 11a is etched. Then, in the portion corresponding to the heater member 20a, the substrate 11a below the surface boron diffusion layer 25 is removed, leaving only the boron diffusion layer 25, thereby forming the heater member 20a, A chamber part 12 is formed below. Thereby, the heater member 20a is formed in a state of floating in the air.
このとき、 KOHの濃度は、 3〜30%、より好ましくは 3〜; 15%とするのが好ましい。  At this time, the concentration of KOH is preferably 3 to 30%, more preferably 3 to 15%.
KOHの濃度を上記のように調整することで、図 8に示すように、ホウ素の濃度が 1019 cm_3以上の部分と濃度 1019cm_3以下の部分とで、エッチングレート(エッチング速 度)に 200倍以上の差が付く。すると、ホウ素が拡散したホウ素拡散層 25と、それ以 外の部分とで、エッチング時の選択性が高まり、濃度 1019cm— 3以下の部分、すなわ ちホウ素拡散層 25の下方の基板 11aのみが除去され、ホウ素の濃度が 1019cm_3以 上の部分、すなわちホウ素拡散層 25が残り、ヒータ部材 20aを良好に形成できる。 なおここで、ホウ素を 2 X 1019cm_3以上の濃度で拡散させた場合には、 KOHの濃 度を 3〜30%、より好ましくは 3〜15%とすればよいが、ホウ素を 5 X 1018cm_3以上The concentration of KOH by adjusting, as described above, as shown in FIG. 8, at a concentration of boron and 10 19 CM_ 3 or more parts and density 10 19 CM_ 3 following part, the etching rate (etching speed) The difference is more than 200 times. Then, the boron diffusion layer 25 in which boron is diffused and the other portions increase the selectivity during etching, and the substrate 11a below the boron diffusion layer 25 has a concentration of 10 19 cm- 3 or less. only is removed, the concentration of boron 10 19 CM_ 3 or more The upper portion, that is, the boron diffusion layer 25 remains, and the heater member 20a can be formed satisfactorily. Note here, when the boron is diffused at a concentration of 2 X 10 19 cm_ 3 or more, the concentration of KOH 3 to 30% and more preferably may be 3 to 15% boron 5 X 10 18 cm_ 3 or more
2 X 1019cm— 3未満の濃度範囲で拡散させた場合には、エッチング効果を確実に得 るために 10〜60%、より好ましくは 10〜30%の濃度の KOHを用いてエッチングを 行うようにするのが好ましい。 When diffused in a concentration range of less than 2 X 10 19 cm— 3 , etching is performed using KOH at a concentration of 10 to 60%, more preferably 10 to 30% in order to ensure an etching effect. It is preferable to do so.
[0052] このような工程の後、基板 11aに残っている酸化膜は、基板 l ibをァノディック 'ボン デイングによって貼り合わせるために除去するのが好ましい。 [0052] After such a step, it is preferable to remove the oxide film remaining on the substrate 11a in order to bond the substrate l ib together by ananodic bonding.
[0053] 基板 l ibは、パイレックス(登録商標)等のガラス基板により形成する。図 15に示す ように、この基板 l ibには、チャンバ一部 12よりもわずかに大きいキヤビティ 27を形成 しておく。キヤビティ 27の深さは例えば 10 mとし、その形成には、 BHF溶液を用い たエッチングを用いることができる。 [0053] The substrate l ib is formed of a glass substrate such as Pyrex (registered trademark). As shown in FIG. 15, a cavity 27 slightly larger than the chamber part 12 is formed on the substrate ib. The depth of the cavity 27 is, for example, 10 m, and etching using a BHF solution can be used for the formation.
このような基板 l ibを、基板 11aにァノディック 'ボンディングによって貼り合わせるこ とで、気体搬送ポンプ 10を形成することができる。  The gas transfer pump 10 can be formed by bonding such a substrate ib to the substrate 11a by ananodic bonding.
[0054] なお、上記実施の形態では、気体搬送ポンプ 10の寸法例、材質例、製法等を示し た力 同様の機能を有するものを実現できるのであれば、上記に示した範疇のものに 限るものではない。また、気体搬送ポンプ 10の用途についても、上記した以外とする ことあでさる。 [0054] In the above-described embodiment, if the one having the same function as the force indicating the dimension example, the material example, the manufacturing method, etc. of the gas transfer pump 10 can be realized, it is limited to the category shown above. It is not a thing. In addition, the usage of the gas transfer pump 10 is not limited to the above.
[0055] また、上記実施の形態では、作成プロセスの容易さから、ホウ素を拡散した p型シリ コンをヒータとして用いた力 p型シリコンに限定するものではない。 Pや Asを拡散した n型シリコンを用いても良い。この場合は、櫛型ヒータの作成、チャンバ一部の作成に 別の工夫が必要である。例えば最初にシリコンヒータを作成する為に、垂直加工が出 来る RIE (反応性イオンエッチング)を用い、次に等方性エッチングが可能なプラズマ エッチングに切り替える様な手法を用いる。  [0055] Further, in the above-described embodiment, the force p-type silicon using a p-type silicon diffused with boron as a heater is not limited to ease of the production process. N-type silicon diffused with P or As may be used. In this case, it is necessary to devise another method for creating the comb heater and part of the chamber. For example, to create a silicon heater first, use a technique that uses RIE (reactive ion etching), which allows vertical processing, and then switches to plasma etching, which allows isotropic etching.
[0056] また、気体搬送ポンプ 10において、入口側チャンネル 13、出口側チャンネル 14を 一直線状に配置した構成とした力 これに限るものではなぐ入口側チャンネル 13と 出口側チャンネル 14を、互いに所定角度ずれた位置に配置したり、隣接して並ぶよ うに配置する等、様々な配置とすることができる。 [0057] また、上記実施の形態において、気体搬送ポンプ 10を形成するのにシリコンを基 板材料として用いた。シリコンは、熱伝導率が高いこと、加工が容易であること、安価 であること等の優れた特徴を持っている。しかし、気体搬送ポンプ 10を形成するのに 、ヒータ 20以外の部分については、ガラス系材料、プラスチック系材料、セラミックス 系材料等を用いても良い。ガラス系材料やプラスチック系材料を用いる場合には、リ ソグラフィ技術のほか、モールド技術、インプリント技術等を用いて気体搬送ポンプ 1 0を形成しても良い。 [0056] Further, in the gas transport pump 10, the force in which the inlet side channel 13 and the outlet side channel 14 are arranged in a straight line is not limited to this. The inlet side channel 13 and the outlet side channel 14 are connected to each other at a predetermined angle. Various arrangements can be made such as arrangement at a shifted position or arrangement so as to be adjacent to each other. In the above embodiment, silicon is used as the base material for forming the gas transfer pump 10. Silicon has excellent features such as high thermal conductivity, easy processing, and low cost. However, in order to form the gas transfer pump 10, a glass-based material, a plastic-based material, a ceramic-based material, or the like may be used for portions other than the heater 20. In the case of using a glass-based material or a plastic-based material, the gas transfer pump 10 may be formed using a molding technique, an imprint technique, etc. in addition to the lithography technique.
さらに、チャンバ一部 12、入口側チャンネル 13、出口側チャンネル 14、入口側ディ フューザ部 15、出口側ディフューザ部 16等の部材表面には、シリコン酸化層を設け て緻密化したり、 SiNを積層したり、あるいは窒化処理を行ったりしてコーティング層 を形成し、部材表面と気体との流路抵抗を小さくしても良い。さらには、扱う気体の種 類によって、表面のコーティング層の材料を異ならせることもできる。  Furthermore, a silicon oxide layer is provided on the surface of the member such as the chamber part 12, the inlet side channel 13, the outlet side channel 14, the inlet side diffuser portion 15, the outlet side diffuser portion 16 and so on, and SiN is laminated. Alternatively, a coating layer may be formed by performing nitriding treatment, and the flow path resistance between the member surface and the gas may be reduced. Furthermore, the material of the coating layer on the surface can be made different depending on the type of gas used.
[0058] ところで、上記実施の形態における気体搬送ポンプ 10においては、微細な入口側 ディフューザ部 15、出口側ディフューザ部 16を用いているため、気体に対する流路 抵抗が比較的大きい。このため、流量を増大させるために、入口側チャンネル 13お よび入口側ディフューザ部 15、出口側ディフューザ部 16および出口側チャンネル 1 4からなる流路を、入口側、出口側にそれぞれ複数組設け、トータルでの流路面積を 拡大することも可能である。この場合、流路をチャンバ一部 12から放射状に設けても 良いし、並行するように設けても良い。また、このような気体搬送ポンプ 10を複数積層 することで、トータルでの流路面積を拡大するようにしても良い。 By the way, in the gas transport pump 10 in the above embodiment, since the fine inlet side diffuser portion 15 and the outlet side diffuser portion 16 are used, the flow path resistance against the gas is relatively large. For this reason, in order to increase the flow rate, a plurality of sets of flow paths each including the inlet side channel 13 and the inlet side diffuser portion 15, the outlet side diffuser portion 16 and the outlet side channel 14 are provided on the inlet side and the outlet side, It is also possible to expand the total flow area. In this case, the flow paths may be provided radially from the chamber part 12 or may be provided in parallel. Further, by stacking a plurality of such gas transfer pumps 10, the total flow area may be expanded.
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を 取捨選択したり、他の構成に適宜変更することが可能である。  In addition to the above, the configurations described in the above embodiments can be selected or changed to other configurations as appropriate without departing from the gist of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 気体を搬送するポンプであって、 [1] A pump for conveying gas,
前記ポンプ内に形成されたチャンバ一部と、  A chamber portion formed in the pump;
前記チャンバ一部と前記ポンプの外部とを連通するよう形成された第一のチャンネ ノレと、  A first channel formed to communicate between a portion of the chamber and the outside of the pump;
前記第一のチャンネルとは異なる位置にて前記チャンバ一部と前記ポンプの外部 とを連通するよう形成された第二のチャンネルと、  A second channel formed to communicate a part of the chamber and the outside of the pump at a position different from the first channel;
前記チャンバ一部と前記第一のチャンネルの間に形成され、前記第一のチャンネ ノレ側から前記チャンバ一部に向けて内径が漸次縮小する第一の縮径部と、 前記チャンバ一部と前記第二のチャンネルの間に形成され、前記チャンバ一部側 力、ら前記第二のチャンネル側に向けて内径が漸次縮小する第二の縮径部と、 前記チャンバ一部内の温度を変化させる温度変化手段と、  A first reduced diameter portion formed between the chamber portion and the first channel and having an inner diameter that gradually decreases from the first channel side toward the chamber portion; A second diameter-reduced portion formed between the second channels and gradually reducing the inner diameter toward the second channel side, and a temperature that changes the temperature in the chamber portion. Change means,
を備え、  With
前記温度変化手段は、ヒータと、前記ヒータの発熱温度を変化させるコントローラと からなり、  The temperature changing means includes a heater and a controller that changes the heat generation temperature of the heater,
前記ヒータは、不純物を拡散させたシリコン製で、前記チャンバ一部の空間を貫通 するように配置されて!/、ることを特徴とする気体搬送ポンプ。  The gas transfer pump according to claim 1, wherein the heater is made of silicon in which impurities are diffused, and is disposed so as to penetrate a space in a part of the chamber.
[2] 前記ヒータは、棒状のヒータ部材を、前記チャンバ一部に対応した部分に複数本を 並べて配置することで構成されて!/、ることを特徴とする請求項 1に記載の気体搬送ポ ンプ。 [2] The gas transport according to claim 1, wherein the heater is configured by arranging a plurality of rod-shaped heater members side by side in a portion corresponding to a part of the chamber! Pump.
[3] 請求項 1または 2に記載の気体搬送ポンプを構成するヒータの形成方法であって、 前記気体搬送ポンプを構成するシリコン基板の表層部に、不純物としてホウ素を拡 散させることでホウ素拡散層を形成する第一の工程と、  [3] A method for forming a heater constituting the gas conveyance pump according to claim 1 or 2, wherein boron is diffused by diffusing boron as an impurity in a surface layer portion of a silicon substrate constituting the gas conveyance pump. A first step of forming a layer;
前記シリコン基板のチャンバ一部に対応した領域において、前記ヒータを構成する 部分以外を、前記ホウ素拡散層の下方までエッチングする第二の工程と、  A second step of etching a portion of the silicon substrate corresponding to a portion of the chamber except for a portion constituting the heater to a position below the boron diffusion layer;
前記ヒータを構成する部分において、前記ホウ素拡散層の下方の前記シリコン基 板をエッチングする第三の工程と、を含むことを特徴とするヒータの形成方法。  And a third step of etching the silicon substrate below the boron diffusion layer in a portion constituting the heater.
[4] 前記第一の工程では、前記シリコン基板の前記表層部に、ホウ素を 5 X 1018cm_3 以上の濃度で拡散させ、 [4] In the first step, boron is added to the surface layer portion of the silicon substrate at 5 × 10 18 cm_ 3. Diffuse at the above concentration,
前記第三の工程では、濃度 10〜60%の KOHを用いることで、エッチングを行うこ とを特徴とする請求項 3に記載のヒータの形成方法。  4. The method of forming a heater according to claim 3, wherein in the third step, etching is performed using KOH having a concentration of 10 to 60%.
[5] 気体中に含まれる質量を有した物質を検出する検出部と、 [5] a detection unit for detecting a substance having a mass contained in the gas;
前記検出部に前記気体を送り込むポンプ部とを備え、  A pump unit for feeding the gas to the detection unit;
前記ポンプ部は、外部から前記検出部に前記気体を送り込むための流路が形成さ れたポンプ本体と、  The pump unit includes a pump body in which a flow path for sending the gas to the detection unit from the outside is formed,
前記流路内で前記気体に体積変化を生じさせる体積変化発生部と、  A volume change generating section for causing a volume change in the gas in the flow path;
前記体積変化発生部により前記気体に体積変化が生じたとき、前記流路内で前記 検出部から離れる方向に前記気体が移動するのを阻止する逆流防止部と、 を備え、  A backflow prevention unit that prevents the gas from moving in a direction away from the detection unit in the flow path when a volume change occurs in the gas by the volume change generation unit;
前記体積変化発生部は、ヒータと、前記ヒータの発熱温度を変化させるコントローラ とからなり、  The volume change generation unit includes a heater and a controller that changes the heat generation temperature of the heater,
前記ヒータは、不純物を拡散させたシリコン製で、前記体積変化発生部の空間を貫 通するように配置されて!/、ることを特徴とする検出センサ。  The detection sensor according to claim 1, wherein the heater is made of silicon in which impurities are diffused, and is arranged to pass through the space of the volume change generation unit! /.
[6] 前記ヒータは、棒状のヒータ部材を、前記体積変化発生部に対応した部分に複数 本を並べて配置することで構成されていることを特徴とする請求項 5に記載の検出セ ンサ。 6. The detection sensor according to claim 5, wherein the heater is configured by arranging a plurality of rod-shaped heater members in a portion corresponding to the volume change generation portion.
PCT/JP2007/068507 2006-09-28 2007-09-25 Gas conveying pump, method of forming heater, and sensor WO2008038611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006264388 2006-09-28
JP2006-264388 2006-09-28

Publications (1)

Publication Number Publication Date
WO2008038611A1 true WO2008038611A1 (en) 2008-04-03

Family

ID=39230047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068507 WO2008038611A1 (en) 2006-09-28 2007-09-25 Gas conveying pump, method of forming heater, and sensor

Country Status (1)

Country Link
WO (1) WO2008038611A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119381A (en) * 1979-03-08 1980-09-13 Mitsuteru Kimura Electric heater
JPS5710482U (en) * 1980-06-19 1982-01-20
JPH0476285A (en) * 1990-07-16 1992-03-11 Mitsubishi Heavy Ind Ltd Scroll type compressor
JP2005163784A (en) * 2003-11-04 2005-06-23 Alcatel Pumping device using thermal transpiration micropump
JP2005189146A (en) * 2003-12-26 2005-07-14 Nippon Telegr & Teleph Corp <Ntt> Volatile sulfide sensor and detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119381A (en) * 1979-03-08 1980-09-13 Mitsuteru Kimura Electric heater
JPS5710482U (en) * 1980-06-19 1982-01-20
JPH0476285A (en) * 1990-07-16 1992-03-11 Mitsubishi Heavy Ind Ltd Scroll type compressor
JP2005163784A (en) * 2003-11-04 2005-06-23 Alcatel Pumping device using thermal transpiration micropump
JP2005189146A (en) * 2003-12-26 2005-07-14 Nippon Telegr & Teleph Corp <Ntt> Volatile sulfide sensor and detection method

Similar Documents

Publication Publication Date Title
JP4136969B2 (en) Fluid transfer device
EP2090781B1 (en) Piezoelectric micro-blower
JP4568763B2 (en) Bypass integrated fluid sensor device and manufacturing method thereof
KR101664201B1 (en) Micro fluid device
US8215944B2 (en) Imprinting device and imprinting method
US20040013536A1 (en) Micro-fluidic pump
JP5320462B2 (en) Pneumatic dispenser
US20120207625A1 (en) Thermally driven knudsen pump
WO2007013287A1 (en) Valveless micropump
WO2008038611A1 (en) Gas conveying pump, method of forming heater, and sensor
CN101122286A (en) Mini self-priming pump
JP2009216141A (en) Fluid diode, pump, and molecule detecting sensor
JP2007023970A (en) Gas conveying pump and detection sensor
JP2005238540A (en) Fluid driving device, manufacturing method for fluid driving device, electrostatically driven fluid discharging apparatus, and manufacturing method for electrostatically driven fluid discharging apparatus
US20050052502A1 (en) Thermal bubble membrane microfluidic actuator
TW201014977A (en) Thermo-pneumatic peristaltic pump
Kazemi et al. Effect of electrode asymmetry on performance of electrohydrodynamic micropumps
US20050072147A1 (en) Micro-fluidic actuator
JP2007327403A (en) Gas transferring pump and detection sensor
JP2011027057A (en) Piezoelectric pump and method for driving the same
JP4442885B2 (en) Fluid transfer device
KR100989582B1 (en) Micro pump and method for manufacturing the same
JP2013054948A (en) Heat generation device
US20120147097A1 (en) Micro-ejector and method of manufacturing the same
US20110316939A1 (en) Micro-ejector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP