JP2005188601A - Hydraulic shock absorber - Google Patents

Hydraulic shock absorber Download PDF

Info

Publication number
JP2005188601A
JP2005188601A JP2003429855A JP2003429855A JP2005188601A JP 2005188601 A JP2005188601 A JP 2005188601A JP 2003429855 A JP2003429855 A JP 2003429855A JP 2003429855 A JP2003429855 A JP 2003429855A JP 2005188601 A JP2005188601 A JP 2005188601A
Authority
JP
Japan
Prior art keywords
cylinder
piston
shock absorber
reservoir
hydraulic shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003429855A
Other languages
Japanese (ja)
Inventor
Yohei Katayama
洋平 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003429855A priority Critical patent/JP2005188601A/en
Publication of JP2005188601A publication Critical patent/JP2005188601A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress rising of temperature of oil liquid by enhancing a heat dissipation property in a double cylinder type hydraulic shock absorber. <P>SOLUTION: An outer cylinder 3 is provided on an outer circumference of a cylinder 2, a reservoir 4 is formed in between, oil liquid is sealed in the cylinder 2, and oil liquid and gas is sealed in the reservoir 4. A piston 5 connected to a piston rod 6 is fit in the cylinder 2, and extending side and contracting side damping force generating mechanisms 13 and 14 are provided on the piston 5. A heat transfer member 15 connecting the cylinder 2 and the outer cylinder 3 is provided in the reservoir 4. Heat generated in a piston part can be directly transferred from the cylinder 2 to the outer cylinder 3 and dissipated to the outside, and rising of the oil temperature can be suppressed. By arranging the heat transfer member 15 within a normal stroke range S of the piston 5, the heat of the piston part can be effectively dissipated to the outside without sacrificing volume of the reservoir 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車のサスペンション装置等に装着される複筒式の油圧緩衝器に関するものである。   The present invention relates to a double cylinder type hydraulic shock absorber mounted on a suspension device of an automobile.

自動車のサスペンション装置に装着される複筒式の油圧緩衝器は、シリンダの外周に外筒が設けられた二重筒構造となっており、シリンダ内には油液が封入され、リザーバ内には油液及びガスが封入されている。シリンダ内には、ピストンロッドが連結されたピストンが摺動可能に嵌装されており、このピストンによってシリンダ内が2つのシリンダ室に画成されている。ピストンには、2つのシリンダ室間を連通させる油液通路及び油液通路の油液の流動を制御するオリフィス及びディスクバルブ等からなる減衰力発生機構が設けられている。また、シリンダ室とリザーバの間は、適度な流通抵抗を有するベースバルブによって連通されている。   The double cylinder type hydraulic shock absorber attached to the suspension device of an automobile has a double cylinder structure in which an outer cylinder is provided on the outer periphery of the cylinder. Oil is sealed in the cylinder, and the reservoir is stored in the reservoir. Oil and gas are enclosed. A piston connected to a piston rod is slidably fitted in the cylinder, and the inside of the cylinder is defined by two piston chambers by the piston. The piston is provided with a damping force generating mechanism including an oil passage that communicates between the two cylinder chambers, an orifice that controls the flow of the oil in the oil passage, and a disk valve. Further, the cylinder chamber and the reservoir are communicated by a base valve having an appropriate flow resistance.

この構成により、ピストンロッドのストロークにともなうシリンダ内のピストンの摺動によって油液通路に生じる油液の流れを減衰力発生機構及びベースバルブによって制御して減衰力を発生させる。このとき、ピストンロッドの侵入、退出にともなうシリンダ内の容積変化をリザーバ内のガスの圧縮、膨張によって補償する。   With this configuration, the damping force is generated by controlling the flow of the oil liquid generated in the oil liquid passage by the sliding of the piston in the cylinder accompanying the stroke of the piston rod by the damping force generating mechanism and the base valve. At this time, the volume change in the cylinder due to the entry and withdrawal of the piston rod is compensated by the compression and expansion of the gas in the reservoir.

油圧緩衝器がピストンロッドをストロークに対して減衰力を作用させる際、運動エネルギが熱エネルギに変換されるため、シリンダ内の油液の温度が上昇する。油液の温度が過度に上昇すると、油液が劣化して所期の特性が得られなくなるため、シリンダ内で発生した熱を外部へ放熱する必要がある。   When the hydraulic shock absorber applies a damping force to the stroke with respect to the piston rod, the kinetic energy is converted into thermal energy, so that the temperature of the oil liquid in the cylinder rises. If the temperature of the oil liquid rises excessively, the oil liquid deteriorates and the desired characteristics cannot be obtained. Therefore, it is necessary to dissipate the heat generated in the cylinder to the outside.

ところが、複筒式油圧緩衝器は、油液及びガスが封入されたリザーバがシリンダの周囲を取囲んでいるため、シリンダ内の熱が外部に放熱されにくくなっている。そこで、例えば特許文献1に記載された油圧緩衝器では、油液の容量を大きくすることにより、油温の上昇を抑制するようにしている。
特開平3−272338号公報
However, in the double-cylinder hydraulic shock absorber, the reservoir in which the oil and gas are enclosed surrounds the cylinder, so that the heat in the cylinder is not easily radiated to the outside. Therefore, for example, in the hydraulic shock absorber described in Patent Document 1, an increase in the oil temperature is suppressed by increasing the capacity of the oil liquid.
JP-A-3-272338

しかしながら、油液の容量を大きくすると、油圧緩衝器が大型化して、取付スペース上の問題及び重量の増大の問題を生じることになる。   However, when the capacity of the oil liquid is increased, the hydraulic shock absorber is increased in size, resulting in a problem of installation space and an increase in weight.

本発明は、上記の点に鑑みてなされたものであり、シリンダの放熱性を高めて油液の温度の上昇を抑制することができる複筒式の油圧緩衝器を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a double-cylinder hydraulic shock absorber that can increase the heat dissipation of a cylinder and suppress an increase in the temperature of an oil liquid. .

上記の課題を解決するために、請求項1に係る発明は、油液が封入されたシリンダと、前記シリンダの外周に設けられて、該シリンダとの間に油液及びガスが封入されたリザーバを形成する外筒と、前記シリンダ内に摺動可能に嵌装されたピストンと、前記シリンダ内のピストンの摺動によって生じる油液の流れを制御して減衰力を発生させる減衰力発生機構とを備えた油圧緩衝器において、
前記シリンダと前記外筒との間を連結する伝熱部材を前記リザーバ内の前記ピストンの所定のストローク範囲内に配置したことを特徴とする。
請求項2の発明に係る油圧緩衝器は、上記請求項1の構成において、前記伝熱部材は、前記外筒に形成された凸部に当接して位置決めされることを特徴とする。
請求項3の発明に係る油圧緩衝器は、上記請求項1又は2の構成において、前記伝熱部材は、筒状に形成された波状の薄板からなることを特徴とする。
In order to solve the above problems, the invention according to claim 1 is a cylinder in which an oil liquid is sealed, and a reservoir that is provided on an outer periphery of the cylinder and in which the oil liquid and the gas are sealed between the cylinders. A piston that is slidably fitted in the cylinder, and a damping force generation mechanism that generates a damping force by controlling the flow of oil and liquid generated by the sliding of the piston in the cylinder. In the hydraulic shock absorber with
A heat transfer member that connects the cylinder and the outer cylinder is disposed within a predetermined stroke range of the piston in the reservoir.
The hydraulic shock absorber according to a second aspect of the present invention is characterized in that, in the configuration of the first aspect, the heat transfer member is positioned in contact with a convex portion formed on the outer cylinder.
A hydraulic shock absorber according to a third aspect of the invention is characterized in that, in the configuration of the first or second aspect, the heat transfer member is formed of a wave-like thin plate formed in a cylindrical shape.

請求項1の発明に係る油圧緩衝器によれば、ピストン部で発生した熱を伝熱部材によってシリンダから外筒へ伝達して、外部へ放熱することができ、油温の上昇を抑制することができる。このとき、伝熱部材をピストンの所定ストローク範囲内に配置したことにより、リザーバの容積を犠牲にすることなく、ピストン部の熱を効果的に放熱することができる。
請求項2の発明に係る油圧緩衝器によれば、外筒に形成した凸部によって伝熱部材を確実に位置決めすることができる。
請求項3の発明に係る油圧緩衝器によれば、波状の薄板の撓みによって、シリンダ及び外筒の同心度及び径方向の寸法誤差を吸収することができる。
According to the hydraulic shock absorber according to the first aspect of the present invention, the heat generated in the piston portion can be transmitted from the cylinder to the outer cylinder by the heat transfer member, and can be radiated to the outside, thereby suppressing an increase in the oil temperature. Can do. At this time, by arranging the heat transfer member within the predetermined stroke range of the piston, the heat of the piston portion can be effectively radiated without sacrificing the volume of the reservoir.
According to the hydraulic shock absorber pertaining to the second aspect of the present invention, the heat transfer member can be reliably positioned by the convex portion formed on the outer cylinder.
According to the hydraulic shock absorber pertaining to the third aspect of the invention, the concentricity of the cylinder and the outer cylinder and the dimensional error in the radial direction can be absorbed by the bending of the wavy thin plate.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。
図1に示すように、油圧緩衝器1は、自動車の車両のサスペンション装置に装着される複筒式油圧緩衝器であって、シリンダ2の外周に外筒3が設けられ、シリンダ2と外筒3との間にリザーバ4が形成された二重筒構造となっている。シリンダ2内には、ピストン5が摺動可能に嵌装され、このピストン5によってシリンダ2内がシリンダ上室2Aとシリンダ下室2Bとの2室に画成されている。ピストン5には、ピストンロッド6の一端部がナット7に連結されており、ピストンロッド6の他端側は、シリンダ2および外筒3の上端部に装着されたロッドガイド8およびオイルシール9に挿通されて外部へ延出されている。シリンダ2の下端部には、シリンダ下室2Bとリザーバ4と適度な流通抵抗をもって接続するオリフィス通路10が設けられており、シリンダ上下室2A、2B内には、油液が封入され、リザーバ4内には、油液およびガスが封入されている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, a hydraulic shock absorber 1 is a multi-cylinder hydraulic shock absorber mounted on a suspension device of a vehicle of an automobile, and an outer cylinder 3 is provided on the outer periphery of a cylinder 2, and the cylinder 2 and the outer cylinder 3 has a double cylinder structure in which a reservoir 4 is formed. A piston 5 is slidably fitted in the cylinder 2, and the inside of the cylinder 2 is defined by the piston 5 as two chambers, a cylinder upper chamber 2 </ b> A and a cylinder lower chamber 2 </ b> B. One end of a piston rod 6 is connected to the piston 5 with a nut 7, and the other end of the piston rod 6 is connected to a rod guide 8 and an oil seal 9 attached to the upper ends of the cylinder 2 and the outer cylinder 3. It is inserted and extended to the outside. An orifice passage 10 is provided at the lower end of the cylinder 2 so as to be connected to the cylinder lower chamber 2B and the reservoir 4 with an appropriate flow resistance. Oil fluid is sealed in the cylinder upper and lower chambers 2A and 2B. Inside, oil liquid and gas are sealed.

ピストン5には、シリンダ上下室2A、2B間を連通させる伸び側油路11及び縮み側油路12が設けられており、伸び側および縮み側油路11、12には、それぞれ、その油液の流動を制御して減衰力を発生させるオリフィスおよびディスクバルブ等からなる伸び側及び縮み側減衰力発生機構13、14(減衰力発生機構)が設けられている。   The piston 5 is provided with an extension side oil passage 11 and a contraction side oil passage 12 for communicating between the cylinder upper and lower chambers 2A, 2B. Are provided with expansion side and contraction side damping force generation mechanisms 13 and 14 (damping force generation mechanism) composed of an orifice, a disk valve, and the like that control the flow of the gas and generate a damping force.

リザーバ4内には、シリンダ2の外壁と外筒3との間に伝熱部材15が嵌合されている。伝熱部材15は、銅、アルミニウム等の熱伝導率の高い金属等の部材からなり、リザーバ4内の油液を流通させるための通路16(図4及び図6参照)を形成する。伝熱部材15は、油圧緩衝器1が車両に装着された状態で、当該車両の通常の走行状態におけるピストン5のストローク範囲S内に配置されている。   A heat transfer member 15 is fitted in the reservoir 4 between the outer wall of the cylinder 2 and the outer cylinder 3. The heat transfer member 15 is made of a member such as a metal having a high thermal conductivity such as copper or aluminum, and forms a passage 16 (see FIGS. 4 and 6) through which the oil liquid in the reservoir 4 flows. The heat transfer member 15 is disposed within the stroke range S of the piston 5 in a normal traveling state of the vehicle with the hydraulic shock absorber 1 mounted on the vehicle.

伝熱部材15は、図2に示すように、外筒3の一側を小径部3Aとして形成した段部17(凸部)に当接させ、あるいは、図3に示すように、外筒3の一部を内側に突出させて、その凸部18に当接させることによって位置決めすることができる。   As shown in FIG. 2, the heat transfer member 15 is brought into contact with a step portion 17 (convex portion) formed on one side of the outer cylinder 3 as a small diameter portion 3A, or as shown in FIG. It is possible to position by projecting a part of the projection inward and bringing it into contact with the convex portion 18.

また、図4及び図5に示すように、伝熱部材15は、内周部にシリンダ2の外周面に当接する複数の略円弧状の突出部19が形成され、外周部に外筒3の内周面に嵌合する円筒状のフランジ部20が形成されたものとすることができ、この場合、複数の突出部19の間に通路16が形成される。   As shown in FIGS. 4 and 5, the heat transfer member 15 has a plurality of substantially arc-shaped protrusions 19 that are in contact with the outer peripheral surface of the cylinder 2 on the inner peripheral portion, and the outer cylinder 3 has an outer peripheral portion. A cylindrical flange portion 20 that fits on the inner peripheral surface can be formed. In this case, a passage 16 is formed between the plurality of protrusions 19.

あるいは、図6及び図7に示すように、伝熱部材15は、内周部にシリンダ2の外周面に嵌合する円筒状のフランジ部21が形成され、外周部に外筒3の内周面に嵌合する円筒状のフランジ部22が形成されており、フランジ21、22間を連結する円板状部分に通路16を形成する複数の円形開口23が貫通されたものとすることができる。   Alternatively, as shown in FIG. 6 and FIG. 7, the heat transfer member 15 has a cylindrical flange portion 21 that is fitted to the outer peripheral surface of the cylinder 2 on the inner peripheral portion, and the inner periphery of the outer cylinder 3 on the outer peripheral portion. A cylindrical flange portion 22 that is fitted to the surface is formed, and a plurality of circular openings 23 that form the passage 16 can be passed through a disk-shaped portion that connects the flanges 21 and 22. .

さらに、図8に示すように、伝熱部材15は、アルミニウム材等からなる波状の薄板をシリンダ2の軸方向に沿って延びる筒状に形成し、内周側に突出する複数の頂部24がシリンダの外周面に嵌合し、外周側に突出する複数の頂部25が外筒3の内周面に嵌合して、これらの間に通路16を形成するものとすることができる。   Further, as shown in FIG. 8, the heat transfer member 15 is formed by forming a wave-like thin plate made of an aluminum material or the like into a cylindrical shape extending along the axial direction of the cylinder 2, and a plurality of top portions 24 protruding to the inner peripheral side. A plurality of top portions 25 that fit on the outer peripheral surface of the cylinder and protrude toward the outer peripheral side are fitted on the inner peripheral surface of the outer cylinder 3, and the passage 16 can be formed between them.

以上のように構成した本実施形態の作用について次に説明する。
ピストンロッド6の伸び行程時には、シリンダ2内のピストン5の摺動にともない、シリンダ上室2Aの油液がピストン5の伸び側油路11を通ってシリンダ下室2Bへ流れ、主に伸び側減衰力発生機構13によって減衰力が発生する。このとき、ピストンロッド6がシリンダ2から退出した分の油液がリザーバ4からオリフィス通路10を通ってシリンダ下室2Bへ流れ、リザーバ4内のガスが膨張することによって、シリンダ2内の容積変化を補償する。
Next, the operation of the present embodiment configured as described above will be described.
During the extension stroke of the piston rod 6, as the piston 5 in the cylinder 2 slides, the oil in the cylinder upper chamber 2A flows into the cylinder lower chamber 2B through the extension-side oil passage 11 of the piston 5, and mainly on the extension side. A damping force is generated by the damping force generation mechanism 13. At this time, the amount of oil liquid that the piston rod 6 has retreated from the cylinder 2 flows from the reservoir 4 through the orifice passage 10 to the cylinder lower chamber 2B, and the gas in the reservoir 4 expands, whereby the volume change in the cylinder 2 changes. To compensate.

縮み行程時には、シリンダ2内のピストン5の摺動にともない、シリンダ下室2Bの油液がピストン5の縮み側油路12を通ってシリンダ上室2Aへ流れ、主に縮み側減衰力発生機構14によって減衰力が発生する。このとき、ピストンロッド6がシリンダ2内に侵入した分の油液がシリンダ下室2Bからオリフィス通路10を通ってリザーバ4へ流れ、リザーバ4内のガスが圧縮されることによって、シリンダ内の容積変化を補償する。   During the contraction stroke, as the piston 5 in the cylinder 2 slides, the oil in the cylinder lower chamber 2B flows into the cylinder upper chamber 2A through the contraction-side oil passage 12 of the piston 5, and mainly generates a contraction-side damping force generation mechanism. 14 generates a damping force. At this time, the oil liquid that has entered the cylinder 2 through the piston rod 6 flows from the cylinder lower chamber 2B through the orifice passage 10 to the reservoir 4, and the gas in the reservoir 4 is compressed, so that the volume in the cylinder is reduced. Compensate for changes.

そして、シリンダ2内のピストン5の摺動摩擦によって生じる熱や、油液がピストン5の伸び側及び縮み側減衰力発生機構13、14を流通して、ピストン5の運動エネルギが熱エネルギに変換されることによって生じる熱がシリンダ2の側壁から伝熱部材15によって外筒3に直接伝達されて大気に放熱されるので、これらの熱による油温の上昇を抑制することができる。   Then, the heat generated by the sliding friction of the piston 5 in the cylinder 2 or the oil liquid flows through the expansion side and contraction side damping force generation mechanisms 13 and 14 of the piston 5, and the kinetic energy of the piston 5 is converted into heat energy. Since the heat generated by this is directly transmitted from the side wall of the cylinder 2 to the outer cylinder 3 by the heat transfer member 15 and radiated to the atmosphere, an increase in the oil temperature due to the heat can be suppressed.

伝熱部材15は、通常の走行状態におけるピストン5のストローク範囲S内に配置されているので、リザーバ4の容積を犠牲にすることなく、ピストン部で生じる熱をシリンダ2から外筒3へ効果的に伝達することができる。これにより、油圧緩衝器1の放熱効果を効果的に高めることができ、小型、軽量化を達成することができる。   Since the heat transfer member 15 is disposed within the stroke range S of the piston 5 in a normal traveling state, the heat generated in the piston portion is effectively transferred from the cylinder 2 to the outer cylinder 3 without sacrificing the volume of the reservoir 4. Can be transmitted. Thereby, the heat dissipation effect of the hydraulic shock absorber 1 can be enhanced effectively, and a reduction in size and weight can be achieved.

油圧緩衝器1の組立工程において、シリンダ2を外筒3に挿入する際、伝熱部材15によってシリンダ2が案内されるので、組立作業性が向上する。また、図8に示す実施形態では、波状の薄板の撓みによってシリンダ2と外筒3との同心度及び径方向の寸法誤差を吸収することができるので、各部の寸法管理及び組立を容易に行うことができる。   In the assembly process of the hydraulic shock absorber 1, when the cylinder 2 is inserted into the outer cylinder 3, the cylinder 2 is guided by the heat transfer member 15, so that the assembly workability is improved. Further, in the embodiment shown in FIG. 8, the concentricity between the cylinder 2 and the outer cylinder 3 and the dimensional error in the radial direction can be absorbed by the bending of the wavy thin plate, so that the dimensional management and assembly of each part are easily performed. be able to.

本発明の一実施形態に係る油圧緩衝器の概略構成を示す縦断面図である。It is a longitudinal section showing a schematic structure of a hydraulic shock absorber concerning one embodiment of the present invention. 図1に示す油圧緩衝器における伝熱部材の位置決め構造の一例を示す要部の拡大図である。It is an enlarged view of the principal part which shows an example of the positioning structure of the heat-transfer member in the hydraulic shock absorber shown in FIG. 図1に示す油圧緩衝器における伝熱部材の位置決め構造の他の例を示す要部の拡大図である。It is an enlarged view of the principal part which shows the other example of the positioning structure of the heat-transfer member in the hydraulic shock absorber shown in FIG. 図1に示す油圧緩衝器における伝熱部材の一例を示す横断面図である。It is a cross-sectional view which shows an example of the heat-transfer member in the hydraulic shock absorber shown in FIG. 図4のA−A線による縦断面図である。It is a longitudinal cross-sectional view by the AA line of FIG. 図1に示す油圧緩衝器における伝熱部材の他の例を示す横断面図である。It is a cross-sectional view which shows the other example of the heat-transfer member in the hydraulic shock absorber shown in FIG. 図6のB−B線による縦断面図である。It is a longitudinal cross-sectional view by the BB line of FIG. 図1に示す油圧緩衝器における伝熱部材の更に他の例を示す横断面図である。It is a cross-sectional view which shows the further another example of the heat-transfer member in the hydraulic shock absorber shown in FIG.

符号の説明Explanation of symbols

1 油圧緩衝器、2 シリンダ、3 外筒、4 リザーバ、5 ピストン、13 伸び側減衰力発生機構(減衰力発生機構)、14 縮み側減衰力発生機構(減衰力発生機構)、15 伝熱部材、17 段部(凸部)、18 凸部
DESCRIPTION OF SYMBOLS 1 Hydraulic buffer, 2 cylinders, 3 outer cylinder, 4 reservoirs, 5 pistons, 13 expansion side damping force generation mechanism (damping force generation mechanism), 14 contraction side damping force generation mechanism (damping force generation mechanism), 15 heat transfer member , 17 steps (convex), 18 convex

Claims (3)

油液が封入されたシリンダと、前記シリンダの外周に設けられて、該シリンダとの間に油液及びガスが封入されたリザーバを形成する外筒と、前記シリンダ内に摺動可能に嵌装されたピストンと、前記シリンダ内のピストンの摺動によって生じる油液の流れを制御して減衰力を発生させる減衰力発生機構とを備えた油圧緩衝器において、
前記シリンダと前記外筒との間を連結する伝熱部材を前記リザーバ内の前記ピストンの所定のストローク範囲内に配置したことを特徴とする油圧緩衝器。
A cylinder in which oil is sealed, an outer cylinder that is provided on the outer periphery of the cylinder and forms a reservoir in which oil and gas are sealed between the cylinder, and a slidable fit in the cylinder In the hydraulic shock absorber provided with the piston formed and a damping force generation mechanism that generates a damping force by controlling the flow of the oil liquid generated by the sliding of the piston in the cylinder,
The hydraulic shock absorber according to claim 1, wherein a heat transfer member that connects the cylinder and the outer cylinder is disposed within a predetermined stroke range of the piston in the reservoir.
前記伝熱部材は、前記外筒に形成された凸部に当接して位置決めされることを特徴とする請求項1に記載の油圧緩衝器。 The hydraulic shock absorber according to claim 1, wherein the heat transfer member is positioned in contact with a convex portion formed on the outer cylinder. 前記伝熱部材は、筒状に形成された波状の薄板からなることを特徴とする請求項1又は2に記載の油圧緩衝器。
The hydraulic shock absorber according to claim 1 or 2, wherein the heat transfer member is formed of a corrugated thin plate formed in a cylindrical shape.
JP2003429855A 2003-12-25 2003-12-25 Hydraulic shock absorber Pending JP2005188601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429855A JP2005188601A (en) 2003-12-25 2003-12-25 Hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003429855A JP2005188601A (en) 2003-12-25 2003-12-25 Hydraulic shock absorber

Publications (1)

Publication Number Publication Date
JP2005188601A true JP2005188601A (en) 2005-07-14

Family

ID=34788394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429855A Pending JP2005188601A (en) 2003-12-25 2003-12-25 Hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP2005188601A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174630A (en) * 2008-01-24 2009-08-06 Fuji Latex Kk Shock absorber
EP2196337A1 (en) * 2008-12-12 2010-06-16 Hemscheidt Fahrwerktechnik GmbH &amp; Co. KG Dampening device for vehicles
EP2249057A1 (en) 2009-05-06 2010-11-10 HEMSCHEIDT FAHRWERKTECHNIK GmbH & Co. KG Dampening device for wheeled vehicles
EP2253862A1 (en) 2009-05-19 2010-11-24 HEMSCHEIDT FAHRWERKTECHNIK GmbH & Co. KG Dampening device for wheeled vehicles
DE202009018567U1 (en) 2009-05-06 2012-02-02 Hemscheidt Fahrwerktechnik Gmbh & Co. Kg Damping device for wheeled vehicles
CN102392870A (en) * 2011-06-24 2012-03-28 浙江正裕工业有限公司 Double-cylinder absorber
KR20180019814A (en) * 2016-08-17 2018-02-27 대우조선해양 주식회사 Submarine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174630A (en) * 2008-01-24 2009-08-06 Fuji Latex Kk Shock absorber
EP2196337A1 (en) * 2008-12-12 2010-06-16 Hemscheidt Fahrwerktechnik GmbH &amp; Co. KG Dampening device for vehicles
EP2249057A1 (en) 2009-05-06 2010-11-10 HEMSCHEIDT FAHRWERKTECHNIK GmbH & Co. KG Dampening device for wheeled vehicles
DE202009018567U1 (en) 2009-05-06 2012-02-02 Hemscheidt Fahrwerktechnik Gmbh & Co. Kg Damping device for wheeled vehicles
EP2253862A1 (en) 2009-05-19 2010-11-24 HEMSCHEIDT FAHRWERKTECHNIK GmbH & Co. KG Dampening device for wheeled vehicles
CN102392870A (en) * 2011-06-24 2012-03-28 浙江正裕工业有限公司 Double-cylinder absorber
KR20180019814A (en) * 2016-08-17 2018-02-27 대우조선해양 주식회사 Submarine
KR102505245B1 (en) * 2016-08-17 2023-02-28 대우조선해양 주식회사 Submarine

Similar Documents

Publication Publication Date Title
JP5115814B2 (en) Shock absorber
US20060081428A1 (en) Thermal expansion compensation shock absorber
JPH11311287A (en) Vehicular damper with car height adjusting function
JP2009014019A (en) Shock absorber
JP6062113B2 (en) Hydraulic suspension damper
JP2005188601A (en) Hydraulic shock absorber
JP2005344734A (en) Hydraulic buffer
WO2017022494A1 (en) Cylinder apparatus
JP2007218231A (en) Spring device, and valve train for internal combustion engine using it
JP2010060083A (en) Single tube type hydraulic shock absorber
JP2007138979A (en) Front fork
JP2010054009A (en) Shock absorber
JP5145157B2 (en) Cylinder device
JP2005155793A (en) Hydraulic damper
JP4883279B2 (en) Cylinder device
JP2010014196A (en) Single cylinder-type hydraulic shock absorber
JP2006183775A (en) Hydraulic shock absorber
JP4667331B2 (en) Pneumatic shock absorber
JPS6228331B2 (en)
JP6343542B2 (en) shock absorber
JP2003247585A (en) Hydraulic shock absorber
JP2008025801A (en) Cylinder device
JP4761466B2 (en) Pneumatic shock absorber
JP3830635B2 (en) Vehicle damper with height adjustment function
JP3701404B2 (en) Hydraulic damper for vehicle