JP2005187656A - Self-organized monomolecular membrane having lubricant-storing structure and method for producing the same - Google Patents

Self-organized monomolecular membrane having lubricant-storing structure and method for producing the same Download PDF

Info

Publication number
JP2005187656A
JP2005187656A JP2003431113A JP2003431113A JP2005187656A JP 2005187656 A JP2005187656 A JP 2005187656A JP 2003431113 A JP2003431113 A JP 2003431113A JP 2003431113 A JP2003431113 A JP 2003431113A JP 2005187656 A JP2005187656 A JP 2005187656A
Authority
JP
Japan
Prior art keywords
lubricant
self
assembled monolayer
solid surface
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003431113A
Other languages
Japanese (ja)
Inventor
Takahisa Kato
孝久 加藤
Junho Che
ジュンホ チェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003431113A priority Critical patent/JP2005187656A/en
Publication of JP2005187656A publication Critical patent/JP2005187656A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-organized monomolecular membrane having a lubricant-storing structure aimed to be provided on the lubricating surface or its neighborhood in order to prevent separation or depletion of lubricant. <P>SOLUTION: This self-organized monomolecular membrane has a structure storing fluent lubricant, formed partially or wholly on the surface of a solid, and comprises a hydrophobic silane-based organic compound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超高密度記録装置、精密位置決め機構、精密搬送装置、精密回転機械、マイクロマシン、宇宙用軸受などの微小機械のしゅう動要素として有用な流動潤滑剤の貯蔵又は固定が可能な自己組織化単分子膜及びその製造方法に関するものである。   The present invention is a self-organization capable of storing or fixing a fluid lubricant useful as a sliding element of a micromachine such as an ultra-high density recording apparatus, a precision positioning mechanism, a precision transport apparatus, a precision rotating machine, a micromachine, and a space bearing. The present invention relates to a monomolecular film and a method for producing the same.

上記微小機械では摩擦を低下させ、また摩擦要素が接触したときの衝撃をやわらげるため潤滑剤が塗布されているが、ナノメータレベルの位置決めあるいは作動制度を期待し、ナノメータ厚さの、主としてフッ素系高分子パーフルオロポリエーテルなどの潤滑剤が使われている。   In the above micromachines, a lubricant is applied to reduce friction and soften the impact when the frictional elements come into contact. However, a nanometer-level positioning or operation system is expected. Lubricants such as molecular perfluoropolyethers are used.

超高密度記録装置、精密位置決め機構、精密搬送装置、精密回転機械、マイクロマシン、宇宙用軸受などにおいては潤滑剤給油が困難なため長期間のメンテナンスフリーが要求されている。   Ultra-high-density recording devices, precision positioning mechanisms, precision transport devices, precision rotating machines, micromachines, space bearings, and the like are required to be maintenance-free for a long period of time because it is difficult to supply lubricant.

しかし、潤滑剤には流動性あるいは蒸発性があるため、潤滑剤が必要な部位からの離脱、枯渇が不可避である。特に回転部分からのスピンアウト(遠心力による飛散)が重大な潤滑油離脱の原因として挙げられている。   However, since the lubricant has fluidity or evaporability, it is inevitable that the lubricant is detached from the portion where the lubricant is necessary and depleted. In particular, the spin-out from the rotating part (scattering due to centrifugal force) is cited as a major cause of lubricant removal.

本発明は、潤滑油の離脱、枯渇を防ぐための、潤滑面上あるいはその近傍に設けるべく潤滑剤貯蔵構造を有する自己組織化単分子膜及びその製造方法を提供することをその課題とする。   An object of the present invention is to provide a self-assembled monolayer having a lubricant storage structure to be provided on or in the vicinity of a lubricating surface in order to prevent the separation and depletion of the lubricating oil, and a method for producing the same.

本発明によれば、以下に示す自己組織化単分子膜及びその製造方法が提供される。   According to the present invention, the following self-assembled monolayer and a method for producing the same are provided.

(1)固体表面上に部分的又は全面的に形成した流動性潤滑剤貯蔵構造を有する自己組織化単分子膜であって、該膜は疎水性シラン系有機化合物からなることを特徴とする自己組織化単分子膜。
(2)固体表面に疎水性シラン系有機化合物の溶液を接触させた後乾燥して、流動性潤滑剤貯蔵構造を有する自己組織化単分子膜を形成することを特徴とする自己組織化単分子膜の製造方法。
(1) A self-assembled monomolecular film having a fluid lubricant storage structure partially or wholly formed on a solid surface, wherein the film is made of a hydrophobic silane organic compound. An organized monolayer.
(2) A self-assembled monolayer characterized by forming a self-assembled monolayer having a fluid lubricant storage structure by contacting a solution of a hydrophobic silane-based organic compound with a solid surface and then drying the solution. A method for producing a membrane.

本発明によれば、各種の固体表面上に、潤滑剤の貯蔵構造を有する自己組織化単分子膜を形成することができる。この膜は、これに流動性潤滑剤を吸着させることにより、潤滑面とすることができる。即ち、固体表面を微量の潤滑剤の使用により、潤滑表面化することができる。   According to the present invention, a self-assembled monolayer having a lubricant storage structure can be formed on various solid surfaces. This film can be made into a lubricating surface by adsorbing a fluid lubricant thereto. That is, the solid surface can be made into a lubricating surface by using a small amount of lubricant.

本発明による自己組織化単分子膜は、固体表面と化学結合して流動性潤滑剤に対して吸着性を示す。自己組織化単分子膜を部分的あるいは全面的に固体表面上に形成すると、自己組織化膜はそれ自身の低濡れ性によって、あるいはそれ自身が物理的障害となって、潤滑剤の流動を阻止して、潤滑剤貯蔵構造を形成する。   The self-assembled monolayer according to the present invention is chemically bonded to a solid surface and exhibits adsorptivity to a fluid lubricant. When a self-assembled monolayer is formed partially or entirely on a solid surface, the self-assembled film prevents the lubricant from flowing due to its own low wettability or by itself becoming a physical obstacle. Thus, a lubricant storage structure is formed.

なお、本明細書で言う自己組織化単分子膜とは、有機分子の溶液に固体を浸漬したときに、該有機分子が該固体表面に吸着して自主的に形成する単分子膜を意味する。   The self-assembled monolayer referred to in the present specification means a monomolecular film that forms spontaneously by adsorbing to the solid surface when the solid is immersed in a solution of organic molecules. .

本発明において用いる疎水性シラン系有機化合物はその溶液を固体表面に接触、乾燥したときに、該固体表面に自己組織化単分子膜を形成し得るものであればよい。このようなものには、分子中にケイ素原子を1〜3個、好ましくは1〜2個含有し、かつ固体表面に結合し得る官能基を1〜9個含有し、かつ疎水性(撥水性)有機基を含有するシラン系有機化合物が含有される。
該シラン系有機化合物には、下記一般式(1)で表されるものが包含される。
R−SiX (1)
前記式中、Rは疎水性有機基を示し、Xは固体表面に結合し得る基又は元素を示す。
The hydrophobic silane organic compound used in the present invention only needs to be capable of forming a self-assembled monolayer on the solid surface when the solution is brought into contact with the solid surface and dried. Such a substance contains 1 to 3, preferably 1 to 2 silicon atoms in the molecule and 1 to 9 functional groups capable of bonding to the solid surface, and is hydrophobic (water repellent). ) Silane organic compounds containing organic groups are contained.
The silane organic compound includes those represented by the following general formula (1).
R-SiX 3 (1)
In the above formula, R represents a hydrophobic organic group, and X represents a group or element that can be bonded to the solid surface.

疎水性有機基Rには、炭素数1〜18、好ましくは6〜18の含炭素基(アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アルアルキル基等)が包含される。Xには炭素数1または2のアルコキシ基や、ハロゲン元素(塩素、臭素等)、メルカプト基、カルボキシル基、スルホン酸基、リン酸基等が包含される。
前記含炭素基は、炭素水素基や含ハロゲン(フッ素、塩素、臭素等)炭素水素基が包含される。
The hydrophobic organic group R includes a carbon-containing group having 1 to 18 carbon atoms, preferably 6 to 18 carbon atoms (alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, aryl group, aralkyl group, etc.). . X includes an alkoxy group having 1 or 2 carbon atoms, a halogen element (such as chlorine and bromine), a mercapto group, a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
The carbon-containing group includes a carbon hydrogen group and a halogen-containing (fluorine, chlorine, bromine, etc.) carbon hydrogen group.

本発明で用いるシラン系有機化合物において、その分子量は、200〜800、好ましくは500〜700程度である。   The molecular weight of the silane organic compound used in the present invention is about 200 to 800, preferably about 500 to 700.

本明細書で言う流動性潤滑剤には、従来公知の各種のもの、例えば、炭素水素系、含フッ素炭化水素系、オルガノシロキサン系等の潤滑剤が包含される。この潤滑剤において、その沸点は50〜250℃、好ましくは200〜250℃である。   The fluid lubricant referred to in the present specification includes various conventionally known lubricants such as carbon hydrogen, fluorine-containing hydrocarbon, and organosiloxane lubricants. In this lubricant, the boiling point is 50 to 250 ° C, preferably 200 to 250 ° C.

本明細書で言う固体表面には、ダイヤモンドライクカーボン、シリカ、シリコン、ガラス、金属等からなるものが包含されるが、特に制約されない。   The solid surface referred to in this specification includes diamond-like carbon, silica, silicon, glass, metal and the like, but is not particularly limited.

本発明による単分子膜は、該疎水性シラン系有機化合物を含む溶液を固体表面に接触させた後、乾燥することによって得ることができる。   The monomolecular film according to the present invention can be obtained by bringing a solution containing the hydrophobic silane-based organic compound into contact with a solid surface, followed by drying.

該疎水性シラン化合物を含む溶液において、その溶媒は該シラン系有機化合物を溶解させ得るものであればよく、このようなものには、炭化水素系溶媒、エステル系溶媒、エーテル系溶媒等が包含される。該溶媒の沸点は、特に制約されないが、通常、30〜50℃、好ましくは30〜40℃である。
該溶液中に含まれる該疎水性シラン系有機化合物の濃度は、10−5〜10−6モル/リットル、好ましくは10−3〜10−4モル/リットルである。
該溶液を固体表面に接触させた後の乾燥温度は、100〜200℃、好ましくは120〜150℃である。
In the solution containing the hydrophobic silane compound, the solvent may be any solvent as long as it can dissolve the silane organic compound. Such solvents include hydrocarbon solvents, ester solvents, ether solvents, and the like. Is done. The boiling point of the solvent is not particularly limited, but is usually 30 to 50 ° C, preferably 30 to 40 ° C.
The concentration of the hydrophobic silane organic compound contained in the solution is 10 −5 to 10 −6 mol / liter, preferably 10 −3 to 10 −4 mol / liter.
The drying temperature after contacting the solution with the solid surface is 100 to 200 ° C, preferably 120 to 150 ° C.

前記のようにして、固体表面上には、図1に示すように、シラン系有機化合物からなる自己組織化単分子膜が形成されるが、この膜は、流動性潤滑剤を該膜中に保持ないし固定化し得る構造(潤滑油貯蔵構造)を有するものである。そして、この単分子膜に流動性潤滑剤を吸着させることにより、該固体表面を潤滑性表面とすることができる。この場合、流動性潤滑剤の吸着量は、固体表面上に、厚さ0.5〜5mm、好ましくは1〜3mmの潤滑剤膜が形成されるような量であればよい。   As described above, on the solid surface, as shown in FIG. 1, a self-assembled monomolecular film made of a silane-based organic compound is formed. This film contains a fluid lubricant in the film. It has a structure (lubricating oil storage structure) that can be held or fixed. Then, by adsorbing a fluid lubricant to the monomolecular film, the solid surface can be made a lubricious surface. In this case, the adsorbed amount of the fluid lubricant may be such that a lubricant film having a thickness of 0.5 to 5 mm, preferably 1 to 3 mm, is formed on the solid surface.

次に、本発明による単分子膜についてさらに詳述する。   Next, the monomolecular film according to the present invention will be described in more detail.

(潤滑剤貯蔵構造の製造方法1)
疎水性シラン系有機化合物の溶液に新たな固体試料を接触させると、固体表面と自己組織化単分子膜とが適当に化学結合して、図2に示すような、自己組織化単分子膜が部分的に形成される。ここで、溶液の濃度を高めることにより、あるいは固体試料の溶液接触時間を増やすことによって自己組織化単分子膜の固体面積に占める割合を増加させることができる。
(Manufacturing method 1 of lubricant storage structure)
When a new solid sample is brought into contact with the solution of the hydrophobic silane organic compound, the solid surface and the self-assembled monolayer are appropriately chemically bonded, and the self-assembled monolayer as shown in FIG. Partially formed. Here, the ratio of the self-assembled monolayer to the solid area can be increased by increasing the concentration of the solution or increasing the solution contact time of the solid sample.

(潤滑剤貯蔵構造の製造方法2)
疎水性シラン系有機化合物の溶液に新たな固体試料を接触させると、あるいは高い濃度の溶液を用いると、図2に示すように、固体表面全体に自己組織化単分子膜が形成される。ここで、自己組織化単分子膜は紫外線、イオンビームなどの照射によって分解するため、フォトリソグラフィー、イオンビームなどの技術によって図2と同様のパターン状の自己組織化膜を形成することができる。ただし、この方法よれば、第1の方法と違い、制御された幾何学的パターン状の自己組織化単分子膜を形成することが可能である。
(Manufacturing method 2 of lubricant storage structure)
When a new solid sample is brought into contact with the solution of the hydrophobic silane-based organic compound, or when a high concentration solution is used, a self-assembled monolayer is formed on the entire solid surface as shown in FIG. Here, since the self-assembled monomolecular film is decomposed by irradiation with ultraviolet rays, ion beams or the like, a self-assembled film having the same pattern as that shown in FIG. 2 can be formed by a technique such as photolithography or ion beam. However, according to this method, unlike the first method, it is possible to form a self-assembled monolayer having a controlled geometric pattern.

(潤滑剤分子の貯蔵)
前記のようにして製作したパターン状の自己組織化単分子膜を形成した固体試料を、潤滑剤溶液に浸漬することによって、図4に示すような潤滑剤分子の貯蔵構造が形成される。なお、溶液濃度が高いほど潤滑剤分子の貯蔵量は増加する。
(Storage of lubricant molecules)
A solid sample having a patterned self-assembled monolayer formed as described above is immersed in a lubricant solution to form a lubricant molecule storage structure as shown in FIG. In addition, the storage amount of lubricant molecules increases as the solution concentration increases.

(潤滑剤分子の貯蔵機構)
潤滑剤分子の流動の予想図を模式的に図5および図6に示す。図5は前記の製造方法1を用いた場合に、図6は前記の製造方法2を用いた場合に対応している。いずれの図でも、潤滑剤流動分子(灰色で塗りつぶされた部分)は、右方向へ拡散しようとするが、潤滑剤分子の流動は次の2つの制約を受けその結果として潤滑剤分子は貯蔵される。まず、自己組織化単分子膜の上に乗り上げた潤滑剤分子は、自己組織化単分子膜の低い濡れ性によって流動が妨げられ(図5のAの上に存在する流動分子)、また自己組織化単分子膜自信が物理的な障害となって潤滑剤分子の流動が妨げられる(図5のB)。
(Storage mechanism of lubricant molecules)
Predictions of the flow of lubricant molecules are schematically shown in FIGS. 5 corresponds to the case where the manufacturing method 1 is used, and FIG. 6 corresponds to the case where the manufacturing method 2 is used. In both figures, the lubricant flow molecules (filled in gray) try to diffuse to the right, but the flow of the lubricant molecules is subject to the following two constraints, resulting in the storage of the lubricant molecules: The First, the flow of lubricant molecules on the self-assembled monolayer is hindered by the low wettability of the self-assembled monolayer (the flow molecules present on A in FIG. 5), and the self-organization The self-assembled monolayer confidence becomes a physical obstacle and the flow of lubricant molecules is hindered (FIG. 5B).

(潤滑剤分子の貯蔵に関する計測の試料)
以下、潤滑剤分子の貯蔵に関する計測に用いた試料の仕様を示す。
(Measurement sample for storage of lubricant molecules)
The specifications of the sample used for measurement related to storage of lubricant molecules are shown below.

(1)固体試料
ガラス製の磁気ディスク用基板を用いた。これにスパッタ法によって、3〜5nmの厚さのダイヤモンドライクカーボン薄膜で被覆した。ダイヤモンドライクカーボン薄膜の水素含有量は30〜40%原子比率である。
(1) Solid sample A glass magnetic disk substrate was used. This was coated with a diamond-like carbon thin film having a thickness of 3 to 5 nm by sputtering. The hydrogen content of the diamond-like carbon thin film is 30 to 40% atomic ratio.

(2)自己組織化分子
前記で示した製造方法1により、1H、1H、2H、2H−Perflorodecyltrichlorosilaneを用いて潤滑剤貯蔵機構を形成させた。この分子の化学式はCF(CFCHCHSiClで表される。用いた自己組織化分子の溶液の濃度は1mMである。この分子の長さは1.5nmである。固体試料を自己組織化分子の溶液に浸漬させる時間が長いほど自己組織化膜の成長、すなわち被覆率は増大する。そして、浸漬時間約6時間で被服率が約100%に達することを純水に対する接触角から確認した。同時に走査型エリプソメータを用いて自己組織化単分子膜の厚さを測定したところ、浸漬時間6時間で分子長の1.5nmを測定した。なお、走査型エリプソメータはレーザー光による測定であり、その測定値はレーザー光計測領域(直径数十ミクロン)における平均膜厚である。その計測値が自己組織化分子の分子長さ1.5nmより小さい場合には、被覆率が100%より小さいことを意味する。
(2) Self-assembled molecule According to the production method 1 shown above, a lubricant storage mechanism was formed using 1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane. The chemical formula of this molecule is represented by CF 3 (CF 2 ) 7 CH 2 CH 2 SiCl 3 . The concentration of the self-assembled molecule solution used is 1 mM. The length of this molecule is 1.5 nm. The longer the time during which the solid sample is immersed in the solution of the self-assembled molecules, the more the growth of the self-assembled film, that is, the coverage rate. And it was confirmed from the contact angle with respect to pure water that the coverage ratio reached about 100% in about 6 hours of immersion time. At the same time, when the thickness of the self-assembled monolayer was measured using a scanning ellipsometer, the molecular length of 1.5 nm was measured at an immersion time of 6 hours. The scanning ellipsometer measures with laser light, and the measured value is the average film thickness in the laser light measurement region (diameter tens of microns). When the measured value is smaller than the molecular length of the self-assembled molecule of 1.5 nm, it means that the coverage is smaller than 100%.

(流動潤滑剤分子)
フッ素の高分子潤滑剤CF[(OCF)CF]p(OCF)q]OCF
(ただし、p/q=2/3、分子量はMw=3840g/molである。)を浸漬法によって固体試料上に貯蔵した。以降この潤滑剤をFonblin Z03と呼ぶ。以下のいずれの実験でも、貯蔵されるFonblin Z03の厚さが1.2nmとなるように、用いた潤滑剤溶液の濃度を0.01体積濃度、溶液からの固体試料引き上げ速度をを毎秒1mmとした。走査型エリプソメータを用いてFonblin Z03の厚さを計算した。
(Fluid lubricant molecules)
Fluorine polymer lubricant CF 3 [(OCF 2 ) CF 2 ] p (OCF 2 ) q] OCF 3
(However, p / q = 2/3, the molecular weight is Mw = 3840 g / mol.) Was stored on the solid sample by the dipping method. Hereinafter, this lubricant is referred to as Fomblin Z03. In any of the following experiments, the concentration of the lubricant solution used was 0.01 volume concentration, and the solid sample lifting speed from the solution was 1 mm per second so that the thickness of the stored Fomblin Z03 was 1.2 nm. did. The thickness of Fomblin Z03 was calculated using a scanning ellipsometer.

(貯蔵機構がない場合の潤滑剤Fonblin Z03の流動の様子)
図7に貯蔵構造がない場合の潤滑剤Fonblin Z03の流動の様子を示す。計測は走査型エリプソメータを用いた。初期には固体試料の一部のみに塗布されていたFonblin Z03は時間とともに右側へ流れ出す。貯蔵機構が全く働いていないことを図7は示している。
(Flow of lubricant Fomblin Z03 when there is no storage mechanism)
FIG. 7 shows the flow of the lubricant Fomblin Z03 when there is no storage structure. A scanning ellipsometer was used for the measurement. Fomblin Z03, which was initially applied to only a part of the solid sample, flows out to the right with time. FIG. 7 shows that the storage mechanism is not working at all.

(貯蔵機構がある場合の潤滑剤Fonblin Z03の流動の様子)
図8に自己組織化単分子膜の平均厚さが0.5nmの場合の潤滑剤Fonblin Z03の流動の様子を示す。用いた自己組織化分子の分子長さは1.5nmであるので、平均厚さ0.5nmは固体表面被覆率約36%に相当する。図8は3回の計測結果を示しており、見やすくするために、X軸の原点をずらしてある。すなわち、貯蔵端を示す縦の線は全く移動していない。ただし、貯蔵部の下部から微量の潤滑剤が染み出ていることを図は示している。続いて図9に自己組織化単分子膜の平均厚さが1.0nmの場合の潤滑剤Fonblin Z03の流動の様子を示す。自己組織化単分子膜の固体表面被覆率は約67%である。さらに、図10に自己組織化単分子膜の平均厚さが1.4nmの場合の潤滑剤Fonblin Z03の流動の様子を示す。自己組織化単分子膜の固体表面被覆率約は約93%である。いずれの場合も、潤滑剤の貯蔵構造からのごく微量の染み出しが観測されているのみであり、貯蔵機構が正常に働いていることを示している。なお、貯蔵端に見られる上方の突起は潤滑剤が盛り上がっていることを示している(縦軸と横軸の比は約1/5,000,000であることに注意していただきたい)。この盛り上がりは、自己組織化単分子膜の平均厚さが1.4nmの場合(図10)の時が最も高くなっており、これは自己組織化単分子膜が厚いほど、潤滑剤の流動に対する貯蔵構造の抵抗が高いことを示している。
(Flow of lubricant Fomblin Z03 when there is a storage mechanism)
FIG. 8 shows the flow of the lubricant Fomblin Z03 when the average thickness of the self-assembled monolayer is 0.5 nm. Since the molecular length of the self-assembled molecules used is 1.5 nm, an average thickness of 0.5 nm corresponds to a solid surface coverage of about 36%. FIG. 8 shows the measurement results of three times, and the origin of the X axis is shifted for easy viewing. That is, the vertical line indicating the storage end has not moved at all. However, the figure shows that a small amount of lubricant oozes out from the lower part of the storage unit. Subsequently, FIG. 9 shows the flow of the lubricant Fomblin Z03 when the average thickness of the self-assembled monolayer is 1.0 nm. The solid surface coverage of the self-assembled monolayer is about 67%. Furthermore, FIG. 10 shows the flow of the lubricant Fomblin Z03 when the average thickness of the self-assembled monolayer is 1.4 nm. The solid surface coverage of the self-assembled monolayer is about 93%. In either case, only a very small amount of seepage from the lubricant storage structure is observed, indicating that the storage mechanism is functioning normally. Note that the upper protrusions seen at the storage end indicate that the lubricant is raised (note that the ratio of the vertical axis to the horizontal axis is about 1 / 5,000,000). This swell is highest when the average thickness of the self-assembled monolayer is 1.4 nm (FIG. 10). This is because the thicker the self-assembled monolayer, the more the lubricant flows. It shows that the resistance of the storage structure is high.

固体表面上に形成された自己組織化単分子膜の説明図である。It is explanatory drawing of the self-assembled monolayer formed on the solid surface. 固体表面上に部分的に形成された自己組織化単分子膜の概念図を示す。The conceptual diagram of the self-assembled monolayer partially formed on the solid surface is shown. 固体表面上全面に形成された自己組織化単分子膜の概念図を示す。The conceptual diagram of the self-assembled monolayer formed on the entire surface of the solid surface is shown. 潤滑剤分子の貯蔵構造を示す。The storage structure of lubricant molecules is shown. 製造方法1における、貯蔵構造の説明図(平面図)である。It is explanatory drawing (plan view) of the storage structure in the manufacturing method. 製造方法2における、潤滑剤分子の貯蔵構造の説明図(平面図)である。It is explanatory drawing (plan view) of the storage structure of the lubricant molecule in the production method 2. 潤滑剤貯蔵構造がない場合の潤滑剤の流れを示す図である。It is a figure which shows the flow of the lubricant when there is no lubricant storage structure. 自己組織化膜の平均厚さが0.5nmの潤滑剤貯蔵構造がある場合の潤滑剤の流れを示す図である。It is a figure which shows the flow of a lubricant when there is a lubricant storage structure with an average thickness of a self-assembled film of 0.5 nm. 自己組織化膜の平均厚さが1.0nmの潤滑剤貯蔵構造がある場合の潤滑剤の流れを示す図である。It is a figure which shows the flow of a lubricant when there exists a lubricant storage structure whose average thickness of a self-organization film is 1.0 nm. 自己組織化膜の平均厚さが1.4nmの潤滑剤貯蔵構造がある場合の潤滑剤の流れを示す図である。It is a figure which shows the flow of a lubricant when there exists a lubricant storage structure whose average thickness of a self-organization film | membrane is 1.4 nm.

Claims (2)

固体表面上に部分的又は全面的に形成した流動性潤滑剤貯蔵構造を有する自己組織化単分子膜であって、該膜は疎水性シラン系有機化合物からなることを特徴とする自己組織化単分子膜。   A self-assembled monomolecular film having a fluid lubricant storage structure formed partially or entirely on a solid surface, wherein the film is made of a hydrophobic silane-based organic compound. Molecular film. 固体表面に疎水性シラン系有機化合物の溶液を接触させた後乾燥して、流動性潤滑剤貯蔵構造を有する自己組織化単分子膜を形成することを特徴とする自己組織化単分子膜の製造方法。   Production of a self-assembled monolayer characterized by forming a self-assembled monolayer having a fluid lubricant storage structure by contacting a solution of a hydrophobic silane organic compound with a solid surface and then drying the solution. Method.
JP2003431113A 2003-12-25 2003-12-25 Self-organized monomolecular membrane having lubricant-storing structure and method for producing the same Pending JP2005187656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431113A JP2005187656A (en) 2003-12-25 2003-12-25 Self-organized monomolecular membrane having lubricant-storing structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431113A JP2005187656A (en) 2003-12-25 2003-12-25 Self-organized monomolecular membrane having lubricant-storing structure and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005187656A true JP2005187656A (en) 2005-07-14

Family

ID=34789282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431113A Pending JP2005187656A (en) 2003-12-25 2003-12-25 Self-organized monomolecular membrane having lubricant-storing structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005187656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020723A1 (en) * 2005-08-12 2007-02-22 National University Corporation Nagoya University Recording medium, recorder, and process for producing recording medium
WO2007116812A1 (en) * 2006-03-29 2007-10-18 Hoya Corporation Magnetic disc and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020723A1 (en) * 2005-08-12 2007-02-22 National University Corporation Nagoya University Recording medium, recorder, and process for producing recording medium
WO2007116812A1 (en) * 2006-03-29 2007-10-18 Hoya Corporation Magnetic disc and method for manufacturing same
US8257783B2 (en) 2006-03-29 2012-09-04 Wd Media (Singapore) Pte. Ltd. Magnetic disk and method of manufacturing the same

Similar Documents

Publication Publication Date Title
ES2745812T3 (en) Deposition method of fluorinated lubricants
Asencio et al. Ionic liquid nanotribology: Stiction suppression and surface induced shear thinning
JP6443335B2 (en) Fluorinated polyether compound, lubricant, liquid composition and article
Chen et al. Omniphobic liquid-like surfaces
WO2018159232A1 (en) Magnetic recording medium, fluoroether compound, and lubricant for magnetic recording medium
JP5327855B2 (en) Perfluoropolyether compound, lubricant containing the same and magnetic disk
Wang et al. Impact of nanoscale surface heterogeneity on precursor film growth and macroscopic spreading of [Rmim][NTf2] ionic liquids on mica
Liu et al. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids
US20120190603A1 (en) Ether compound, lubricant containing same, and composition for lubricant containing same
Pu et al. Micro/nano-tribological behaviors of crown-type phosphate ionic liquid ultrathin films on self-assembled monolayer modified silicon
Gong et al. Study on nanometer-thick room-temperature ionic liquids (RTILs) for application as the media lubricant in heat-assisted magnetic recording (HAMR)
Reddyhoff et al. Friction modifier behaviour in lubricated MEMS devices
JP5469924B2 (en) Magnetic recording medium, magnetic recording medium manufacturing method, and magnetic recording / reproducing apparatus
JP5382876B2 (en) Perfluoropolyether compound, lubricant containing the same and magnetic disk
JP2005187656A (en) Self-organized monomolecular membrane having lubricant-storing structure and method for producing the same
JP2010168512A (en) Lubricant and magnetic disk unit using the same
JP6142915B2 (en) Fluorinated ether composition, surface modifier, surfactant, liquid composition, article
JP4092407B2 (en) Recording medium, recording apparatus, and recording medium manufacturing method
Choi et al. Nanoscale lubricant with strongly bonded phase and mobile phase
JP2006307123A (en) Perfluoropolyether compound and lubricant and magnetic disk using it
JP2008075000A (en) Lubricant solution for magnetic recording medium
Zhao et al. Micro/nanotribological behaviors of ionic liquid nanofilms with different functional cations
US20110256425A1 (en) Lubricating film, magnetic disk and magnetic head
JP6145424B2 (en) Lubricant for magnetic recording medium, magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
Hatsuda et al. Ionic liquid lubricant for ultra-low head-media spacing in hard disk drives

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050616

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014