JP2005187644A - Vinyl chloride-based polymer composition and molded product molded from the composition - Google Patents

Vinyl chloride-based polymer composition and molded product molded from the composition Download PDF

Info

Publication number
JP2005187644A
JP2005187644A JP2003430936A JP2003430936A JP2005187644A JP 2005187644 A JP2005187644 A JP 2005187644A JP 2003430936 A JP2003430936 A JP 2003430936A JP 2003430936 A JP2003430936 A JP 2003430936A JP 2005187644 A JP2005187644 A JP 2005187644A
Authority
JP
Japan
Prior art keywords
vinyl chloride
vinyl acetate
chloride polymer
vinyl
ethylene copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003430936A
Other languages
Japanese (ja)
Other versions
JP4245472B2 (en
Inventor
Takashi Inoue
隆 井上
Masahisa Enomoto
真久 榎本
Toshihiko Tanaka
利彦 田中
Keizo Suzuki
啓三 鈴木
Hiroyuki Enokido
洋之 榎戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunimine Industries Co Ltd
Taiyo Vinyl Corp
Original Assignee
Kunimine Industries Co Ltd
Taiyo Vinyl Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunimine Industries Co Ltd, Taiyo Vinyl Corp filed Critical Kunimine Industries Co Ltd
Priority to JP2003430936A priority Critical patent/JP4245472B2/en
Publication of JP2005187644A publication Critical patent/JP2005187644A/en
Application granted granted Critical
Publication of JP4245472B2 publication Critical patent/JP4245472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vinyl chloride-based polymer composition having excellent toughness at a fracture mode such as crack growth properties in long-time use while keeping the high modulus peculiar to a vinyl chloride-based polymer without damaging characteristics of tensile elongation. <P>SOLUTION: The vinyl chloride-based polymer composition is obtained by dispersing a swelling phyllosilicate and a vinyl acetate-ethylene-based copolymer in a vinyl chloride-based polymer, and satisfies the following conditions: (A) the vinyl chloride-based polymer has ≥600 average degree of polymerization; (B) the swelling phyllosilicate dispersed in the composition has 0.5-100 nm average layer thickness, and ≥5 average aspect ratio (ratio of the length of the layer to the thickness of the layer); (C) the vinyl acetate-ethylene-based copolymer dispersed in the composition has a particle shape having 10-1,000 nm average diameter; and (D) a part or the whole of the swelling phyllosilicate has a shape dispersed in the vinyl acetate-ethylene-based copolymer particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高い弾性率を維持し、引張り伸び特性を損ねることなく、優れた破壊靭性値を有する成形品が得られる塩化ビニル系重合体組成物、及びその組成物より得られた成形品に関する。 The present invention relates to a vinyl chloride polymer composition from which a molded article having an excellent fracture toughness value can be obtained without losing tensile elongation characteristics while maintaining a high elastic modulus, and a molded article obtained from the composition. .

塩化ビニル系重合体及びその組成物は、剛性、耐候性、難燃性等に優れ、又、安価で生産性が高い等の理由より、これまで、押出成形などにより、パイプ、窓枠、平板、シートなどの分野で広く用いられている。この中で、パイプの用途等においては、使用時や施工時に生じる亀裂等に伴う長時間使用時での亀裂進展性といったパイプの長期耐久性が問題となってきている。長期耐久性を向上させるには成形体の強靭性を向上させること、つまり破壊靭性値を向上させることが有効であることが知られている。   The vinyl chloride polymer and its composition are excellent in rigidity, weather resistance, flame retardancy, etc., and are inexpensive and highly productive. Widely used in fields such as sheets. Among these, in pipe applications and the like, the long-term durability of the pipe, such as crack progress in long-time use accompanying cracks that occur during use and construction, has become a problem. In order to improve long-term durability, it is known that it is effective to improve the toughness of the molded body, that is, to improve the fracture toughness value.

破壊靭性値とは、長時間にわたって成形品に負荷が加わった場合のノッチ近傍の応力集中に伴う亀裂進展性のしにくさを評価するものであり、例えば3点曲げ試験で評価する場合においては、破断する最大応力から破壊靭性値Kcが算出される。またクリープ試験で評価する場合は、一定時間で破断するのに必要な荷重の大きさより破壊靭性値Kcが算出される。したがって、破壊靭性値の向上には亀裂進展させるのに必要な応力の大きさが重要となり、単に延性的な材料よりも、延性と剛性を兼ね備えた材料が要求されている。   Fracture toughness value is an evaluation of the difficulty of crack growth due to stress concentration in the vicinity of a notch when a load is applied to a molded product for a long time. For example, in the case of evaluating by a three-point bending test The fracture toughness value Kc is calculated from the maximum stress that breaks. Moreover, when evaluating by a creep test, the fracture toughness value Kc is calculated from the magnitude of the load required to break in a certain time. Therefore, in order to improve the fracture toughness value, the magnitude of the stress necessary for causing the crack to grow is important, and a material having both ductility and rigidity is required rather than merely a ductile material.

特許文献1では、塩化ビニル系プラスチックパイプの破壊靱性値の改良手法として、塩化ビニル系重合体中に少量の塩素化ポリエチレン等の破壊性能作用剤(延伸性付与剤)を添加する技術が開示されている。これらの技術では、塩化ビニル系重合体の破壊靭性値の向上を促すが、塩化ビニル系重合体に少量の破壊性能作用剤を均一に分散させる必要があり、均一に分散させる為には混練を長くするあるいは強くするなどの対策が必要となる。その為、成形物のコストの増加や、破壊靱性値を改善したにも関わらず、成形外観の悪化や弾性率低下等、他の性能が引き出せないという技術ネックが懸念され、必ずしも満足できる技術とは言えない。   Patent Document 1 discloses a technique for adding a small amount of a fracture performance agent (stretchability imparting agent) such as chlorinated polyethylene to a vinyl chloride polymer as a technique for improving the fracture toughness value of a vinyl chloride plastic pipe. ing. These technologies promote the improvement of the fracture toughness value of the vinyl chloride polymer, but it is necessary to uniformly disperse a small amount of the fracture performance agent in the vinyl chloride polymer. Measures such as lengthening or strengthening are required. Therefore, despite the increased cost of molded products and improved fracture toughness values, there are concerns about the technical bottleneck that other performances such as deterioration of molded appearance and lowering of elastic modulus cannot be drawn out, and the technology is always satisfactory. I can't say that.

一方、塩化ビニル系重合体の剛性付与には、塩化ビニル系重合体に炭酸カルシウムやタルク、マイカ等の無機充填剤を添加する方法が一般になされている。
この場合、無機充填剤がより微細に分散される程、弾性率が向上する。例えば、層状膨潤性ケイ酸塩は、厚さが約1nmの非常に微細な薄片状結晶がイオン結合により層状に凝集してなる無機鉱物であるが、この層状構造を化学的または物理的な手段により剥離させ、高分子材料中に薄片状結晶をナノメーターレベルの大きさで分散させることで、従来の無機充填剤の添加と比べ、弾性率のみならず耐熱性、ガスバリヤー性が著しく向上することが、近年知られてきた。
On the other hand, a method of adding an inorganic filler such as calcium carbonate, talc, or mica to the vinyl chloride polymer is generally used to impart rigidity to the vinyl chloride polymer.
In this case, the elastic modulus improves as the inorganic filler is more finely dispersed. For example, layered swellable silicate is an inorganic mineral formed by agglomerating very fine flaky crystals with a thickness of about 1 nm in layers by ionic bonds. This layered structure is a chemical or physical means. By exfoliating and dispersing flaky crystals in a polymer material at a nanometer level, heat resistance and gas barrier properties as well as elastic modulus are remarkably improved compared to the addition of conventional inorganic fillers. This has been known in recent years.

特許文献2では、塩化ビニル系重合体に特定のアミノ化合物で有機化された層状膨潤性ケイ酸塩をナノメーターレベルの大きさで微分散化させることによる弾性率と耐熱性の向上技術が開示されている。しかしながら、これら開示されている技術では、剛性が向上する反面、延性が著しく低下し、又、塩化ビニル系重合体と層状膨潤性ケイ酸塩の親和性改良剤として使用されるアミノ化合物が塩化ビニル系重合体の熱分解を促進させ、工業用材料として使用するには未だ不十分である。   Patent Document 2 discloses a technique for improving elastic modulus and heat resistance by finely dispersing a layered swellable silicate that has been made organic with a specific amino compound into a vinyl chloride polymer to a nanometer level. Has been. However, in these disclosed techniques, the rigidity is improved, but the ductility is remarkably reduced, and the amino compound used as an affinity improver for the vinyl chloride polymer and the layered swellable silicate is vinyl chloride. It is still insufficient for use as an industrial material by promoting the thermal decomposition of the polymer.

特許文献3では、塩化ビニル系重合体に、層間に存在する交換性無機イオンの一部が陽イオンに置換された層状膨潤性ケイ酸塩を特定量、ナノメーターレベルの大きさで微分散化させることによる破壊靭性値の向上技術が開示されている。しかしながら、使用される有機陽イオンが得られる成形品の色相を悪化させる欠点を有し、その改良が望まれている。   In Patent Document 3, a specific amount of a layered swellable silicate in which a part of exchangeable inorganic ions existing between layers is replaced with a cation is finely dispersed at a nanometer level in a vinyl chloride polymer. A technique for improving the fracture toughness value is disclosed. However, there is a drawback that the hue of the molded article from which the organic cation used is obtained is deteriorated, and an improvement thereof is desired.

特許文献4では、塩化ビニル系単量体を、重合開始剤の存在下に水性媒体中で重合するのに際し、層状膨潤性ケイ酸塩を特定量添加して行い、塩化ビニル系樹脂中にナノメーターレベルの大きさで層状膨潤性ケイ酸塩を分散させ、破壊靭性値を向上させる技術が開示されている。しかしながら、これらの技術では、製造プロセスが複雑となり、製造コストが上昇する欠点を有し、工業材料として使用するには未だ不十分である。
特表平4−500402号公報 特開2000−159962号公報 特開2003−231786号公報 特開2003−231787号公報
In Patent Document 4, when a vinyl chloride monomer is polymerized in an aqueous medium in the presence of a polymerization initiator, a specific amount of a layered swellable silicate is added, and the vinyl chloride resin is nano-sized. A technique for improving the fracture toughness value by dispersing a layered swellable silicate at a meter level size is disclosed. However, these techniques have the disadvantage that the manufacturing process becomes complicated and the manufacturing cost increases, and are still insufficient for use as industrial materials.
Japanese National Patent Publication No. 4-500402 JP 2000-159962 A JP 2003-231786 A JP 2003-231787 A

本発明は上記した事情に鑑みてなされたものであり、塩化ビニル系重合体特有の高い弾性率を維持しつつ、引張り伸び特性を損ねることなく、長時間使用時での亀裂進展性といった破壊モードにおける強靱性に優れた塩化ビニル系重合体組成物、及びその組成物より得られる成形品を提供することを課題とする。   The present invention has been made in view of the above-described circumstances, and maintains a high elastic modulus unique to a vinyl chloride polymer, and does not impair tensile elongation characteristics, and a fracture mode such as crack progressability during long-time use. An object of the present invention is to provide a vinyl chloride polymer composition excellent in toughness and a molded product obtained from the composition.

上記課題を解決する本発明は以下の事項により特定される。
(1)塩化ビニル系重合体に層状膨潤性ケイ酸塩と酢酸ビニル−エチレン系共重合体を分散してなる塩化ビニル系重合体組成物において、
(A)塩化ビニル系重合体が、平均重合度600以上であり、
(B)組成物中に分散した層状膨潤性ケイ酸塩が、電子顕微鏡で測定した平均層厚さ0.5〜100nmで、平均アスペクト比(層長さと層厚さの比)5以上であり、
(C)組成物中に分散した酢酸ビニル−エチレン系共重合体が、電子顕微鏡で測定した平均直径10〜1000nmの粒子形状であり、かつ、
(D)該層状膨潤性ケイ酸塩の一部又は全てが、該酢酸ビニル−エチレン系共重合体粒子中に分散した形態を有する
ことを特徴とする塩化ビニル系重合体組成物。
The present invention for solving the above problems is specified by the following matters.
(1) In a vinyl chloride polymer composition obtained by dispersing a layered swellable silicate and a vinyl acetate-ethylene copolymer in a vinyl chloride polymer,
(A) The vinyl chloride polymer has an average degree of polymerization of 600 or more,
(B) The layered swellable silicate dispersed in the composition has an average layer thickness of 0.5 to 100 nm as measured with an electron microscope and an average aspect ratio (ratio of layer length to layer thickness) of 5 or more. ,
(C) The vinyl acetate-ethylene copolymer dispersed in the composition has a particle shape with an average diameter of 10 to 1000 nm measured with an electron microscope, and
(D) A vinyl chloride polymer composition characterized in that a part or all of the layered swellable silicate has a form dispersed in the vinyl acetate-ethylene copolymer particles.

(2)酢酸ビニル−エチレン系共重合体が、酢酸ビニルを質量比率で2〜60質量%含有していることを特徴とする(1)記載の塩化ビニル系重合体組成物。   (2) The vinyl chloride polymer composition according to (1), wherein the vinyl acetate-ethylene copolymer contains 2 to 60% by mass of vinyl acetate in a mass ratio.

(3)酢酸ビニル−エチレン系共重合体が、酢酸ビニルの部分鹸化により、ビニルアルコールを質量比率で1〜40質量%含有していることを特徴とする(1)または(2)記載の塩化ビニル系重合体組成物。   (3) The chloride according to (1) or (2), wherein the vinyl acetate-ethylene copolymer contains 1 to 40% by mass of vinyl alcohol in a mass ratio by partial saponification of vinyl acetate. Vinyl polymer composition.

(4)酢酸ビニル−エチレン系共重合体が、マレイン酸変性されていることを特徴とする(1)〜(3)のいずれかに記載の塩化ビニル系重合体組成物。   (4) The vinyl chloride polymer composition according to any one of (1) to (3), wherein the vinyl acetate-ethylene copolymer is modified with maleic acid.

(5)該組成物中の層状膨潤性ケイ酸塩と酢酸ビニル−エチレン系共重合体の含有比率が質量比率で80:20〜20:80であることを特徴とする(1)〜(4)のいずれかに記載の塩化ビニル系重合体組成物。   (5) The content ratio of the layered swellable silicate and the vinyl acetate-ethylene copolymer in the composition is 80:20 to 20:80 by mass ratio (1) to (4) ). The vinyl chloride polymer composition according to any one of 1).

(6)層状膨潤性ケイ酸塩が、組成物を950℃で完全燃焼させたときの残滓として、組成物の0.05〜10質量%を含有することを特徴とする(1)〜(5)のいずれかに記載の塩化ビニル系重合体組成物。   (6) The layered swellable silicate contains 0.05 to 10% by mass of the composition as a residue when the composition is completely burned at 950 ° C. (1) to (5) ). The vinyl chloride polymer composition according to any one of 1).

(7)ASTM D5045―99に準じて測定した破壊靱性値が3.1MPa・m1/2以上となる(1)〜(6)のいずれかに記載の塩化ビニル系重合体組成物。 (7) The vinyl chloride polymer composition according to any one of (1) to (6), wherein a fracture toughness value measured according to ASTM D5045-99 is 3.1 MPa · m 1/2 or more.

(8)(1)〜(7)のいずれかに記載の塩化ビニル系重合体組成物を成形してなることを特徴とする成形品。   (8) A molded product obtained by molding the vinyl chloride polymer composition according to any one of (1) to (7).

(9)成形品がパイプである(8)記載の成形品。   (9) The molded product according to (8), wherein the molded product is a pipe.

本発明によれば、高い弾性率を維持し、引張り伸び特性を損ねることなく、優れた破壊靭性値を有する成形品が得られる塩化ビニル系重合体組成物を得ることができる。   According to the present invention, it is possible to obtain a vinyl chloride polymer composition capable of maintaining a high elastic modulus and obtaining a molded article having an excellent fracture toughness value without impairing tensile elongation characteristics.

本発明は、特定粒子形状の層状膨潤性ケイ酸塩及び酢酸ビニル−エチレン系共重合体を分散してなる塩化ビニル系重合体組成物及びその成形品に関するものであり、破壊靭性値(ASTM D5045−99に準じて測定)という指標を用いて、組成と分散形態の最適化を図ることにより、得られる成形品の長期耐久性と剛性を両立させている。   The present invention relates to a vinyl chloride polymer composition in which a layered swellable silicate having a specific particle shape and a vinyl acetate-ethylene copolymer are dispersed, and a molded product thereof, and has a fracture toughness value (ASTM D5045). The long-term durability and rigidity of the obtained molded product are made compatible by optimizing the composition and dispersion mode using an index of (measured according to -99).

すなわち、本発明の塩化ビニル系重合体組成物は、塩化ビニル系重合体と層状膨潤性ケイ酸塩の親和性改良剤として酢酸ビニル−エチレン系共重合体が含有されることにより、塩化ビニル系重合体中に、層状膨潤性ケイ酸塩が平均層厚さとして0.5〜100nm、平均アスペクト比5以上の大きさで微分散され、かつ、これら層状膨潤性ケイ酸塩の一部または全てが、つまり、含有している層状膨潤性ケイ酸塩の50〜100質量%、好ましくは70〜100質量%、さらに好ましくは80〜100質量%が、塩化ビニル系重合体中に平均直径10〜1000nmの大きさで微分散された酢酸ビニル−エチレン系共重合体粒子中に分散された階層構造が形成されていることを特徴とするものである。このような構造形成により、高い弾性率を維持した上で、伸び特性を損ねることなく、破壊靭性値を著しく向上させ、成形体の長期耐久性、具体的には長時間使用時での亀裂進展性といった破壊モードにおける強靱性を向上させることができる。   That is, the vinyl chloride polymer composition of the present invention contains a vinyl acetate-ethylene copolymer as an affinity improver for a vinyl chloride polymer and a layered swellable silicate, In the polymer, layered swellable silicate is finely dispersed with an average layer thickness of 0.5 to 100 nm and an average aspect ratio of 5 or more, and part or all of these layered swellable silicates That is, 50 to 100 mass%, preferably 70 to 100 mass%, more preferably 80 to 100 mass% of the layered swellable silicate contained therein has an average diameter of 10 to 10 in the vinyl chloride polymer. A hierarchical structure dispersed in vinyl acetate-ethylene copolymer particles finely dispersed with a size of 1000 nm is formed. By forming such a structure, while maintaining a high elastic modulus, the fracture toughness value is remarkably improved without impairing the elongation characteristics, and the long-term durability of the molded product, specifically, crack growth during long-term use It is possible to improve the toughness in the fracture mode such as property.

この理由は必ずしも明らかではないが、本発明で得られた成形品の構造は、透過型電子顕微鏡で観察した場合、ナノメーターオーダーレベルの大きさに微分散した薄片状の層状膨潤性ケイ酸塩及び、これらの一部又は全てを内部に含有する酢酸ビニル−エチレン系共重合体粒子が、重なり合うことなく、塩化ビニル系重合体の残存粒子構造の界面を覆うように、網目状に分散した多層構造となっていることから、成形品に膨張応力が生じた際に、残存粒子構造界面自身の剛性を損ねることなく、残存粒子構造界面での応力集中点の分散化によるクレーズやミクロボイドの多数形成を伴った界面の局所的な塑性変形が可能となり、破壊靱性値が向上するものと考えられる。   The reason for this is not necessarily clear, but the structure of the molded product obtained in the present invention is a flaky layered swellable silicate finely dispersed in a nanometer order size when observed with a transmission electron microscope. And a multilayer in which vinyl acetate-ethylene copolymer particles containing a part or all of them are dispersed in a network so as to cover the interface of the residual particle structure of the vinyl chloride polymer without overlapping. Because of the structure, when expansion stress occurs in the molded product, many crazes and microvoids are formed by dispersing stress concentration points at the residual particle structure interface without impairing the rigidity of the residual particle structure interface itself. It is considered that the local plastic deformation of the interface accompanied by the phenomenon becomes possible, and the fracture toughness value is improved.

この場合、層状膨潤性ケイ酸塩や酢酸ビニル−エチレン系共重合体が分散不良、つまり、塩化ビニル系重合体と層状膨潤性ケイ酸塩、酢酸ビニル−エチレン系共重合体の3成分の親和性のバランスが不十分で、層状膨潤性ケイ酸塩が酢酸ビニル−エチレン系共重合体中に全く内包されずに、塩化ビニル系重合体中に層状膨潤性ケイ酸塩の薄片結晶同士が凝集した大きな構造単位で分散したり、または、層状膨潤性ケイ酸塩が酢酸ビニル−エチレン系共重合体中で分散され、内包されても、酢酸ビニル−エチレン系共重合体が塩化ビニル系重合体中に大きな粒子形状で分散したりしていると、これら大きな凝集構造体が構造欠陥として振る舞い、亀裂進展を促進してしまい、破壊靭性値が低下する。その為、破壊靭性値の高い成形品を得るには、層状膨潤性ケイ酸塩や、その一部又は全てを含有する酢酸ビニル−エチレン系共重合体が上述のナノオーダーレベルの大きさにまで微分散させる必要がある。   In this case, the layered swellable silicate or vinyl acetate-ethylene copolymer is poorly dispersed, that is, the affinity of the three components of the vinyl chloride polymer, the layered swellable silicate, and the vinyl acetate-ethylene copolymer. The balance of properties is insufficient, and the layered swellable silicate is not encapsulated in the vinyl acetate-ethylene copolymer, and the lamellar crystals of the layered swellable silicate aggregate in the vinyl chloride polymer. The vinyl acetate-ethylene copolymer becomes a vinyl chloride polymer even if the layered swellable silicate is dispersed and encapsulated in the vinyl acetate-ethylene copolymer. If the particles are dispersed in a large particle shape, these large aggregate structures behave as structural defects, promote crack propagation, and lower the fracture toughness value. Therefore, in order to obtain a molded article having a high fracture toughness value, the layered swellable silicate and the vinyl acetate-ethylene copolymer containing a part or all of the swellable silicate are of the above-mentioned nano-order level. Need to be finely dispersed.

本発明は上述した手段により破壊靭性値の向上を図っているが、破壊靭性値は、好ましくは3.1MPa・m1/2以上、さらに好ましくは3.7MPa・m1/2以上、最も好ましくは3.9MPa・m1/2以上とする。ここで破壊靭性値の測定は、ASTM D−5045−95に準じて、片側に切り欠きを挿入した平板による3点曲げ試験により求めることができる。破壊靭性値を上記のような値とすることによって長期耐久性に優れた成形品を得ることができる。破壊靭性値の上限は特に無いが、たとえば6MPa・m1/2程度もあれば充分である。後に実施例等において説明するように、本発明によれば、成形品の弾性率を損ねることなく、高い破壊靭性値Kcが得られ、高品質な塩化ビニル系重合体組成物が提供される。 In the present invention, the fracture toughness value is improved by the above-mentioned means, but the fracture toughness value is preferably 3.1 MPa · m 1/2 or more, more preferably 3.7 MPa · m 1/2 or more, most preferably Is 3.9 MPa · m 1/2 or more. Here, the measurement of the fracture toughness value can be obtained by a three-point bending test using a flat plate having a notch on one side, in accordance with ASTM D-5045-95. By setting the fracture toughness value as described above, a molded product having excellent long-term durability can be obtained. There is no particular upper limit on the fracture toughness value, but for example, about 6 MPa · m 1/2 is sufficient. As will be described later in Examples and the like, according to the present invention, a high fracture toughness value Kc can be obtained without impairing the elastic modulus of a molded product, and a high-quality vinyl chloride polymer composition is provided.

本発明における塩化ビニル系重合体とは、塩化ビニルの単独重合体または、塩化ビニルと塩化ビニルと共重合可能な他のビニル系単量体との共重合体、さらには、塩化ビニル、必要により共重合可能な他のビニル系単量体および多官能性モノマーとの共重合による部分架橋された塩化ビニル系重合体などが挙げられる。   The vinyl chloride polymer in the present invention is a homopolymer of vinyl chloride, a copolymer of vinyl chloride and another vinyl monomer copolymerizable with vinyl chloride, further vinyl chloride, if necessary. Examples thereof include partially cross-linked vinyl chloride polymers by copolymerization with other vinyl monomers and polyfunctional monomers that can be copolymerized.

ここで用いる塩化ビニルと共重合可能な他のビニル系単量体としては、エチレン、プロピレン、ブチレンなどのα−モノオレフィン系単量体;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;メチルビニルエーテル、セチルビニルエーテル等のアルキルビニルエーテル;スチレン、α−メチルスチレン等のスチレン誘導体;n−ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリレート等の(メタ)アクリル酸エステル類;アクリロニトリル、メタクリロニトリル等のシアン化ビニル;シクロヘキシルマレイミド、フェニルマレイミド等のN−置換マレイミド;塩化ビニリデンなどのビニリデン類等であり、これらのうち少なくとも1種以上を塩化ビニルと共重合させる。   Examples of other vinyl monomers copolymerizable with vinyl chloride include α-monoolefin monomers such as ethylene, propylene and butylene; vinyl esters such as vinyl acetate and vinyl propionate; methyl vinyl ether, Alkyl vinyl ethers such as cetyl vinyl ether; styrene derivatives such as styrene and α-methylstyrene; (meth) acrylic esters such as n-butyl acrylate, 2-ethylhexyl acrylate and methyl methacrylate; vinyl cyanides such as acrylonitrile and methacrylonitrile N-substituted maleimides such as cyclohexylmaleimide and phenylmaleimide; vinylidenes such as vinylidene chloride; and at least one of them is copolymerized with vinyl chloride.

又、部分架橋させる多官能性モノマーとしては、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、ジアリルフマレート、ジアリルアジペート、トリアリルシアヌレート等の多官能アリル化合物;エチレングリコールジビニルエーテル、オクタデカンジビニルエーテル等の多官能ビニルエーテル類;1,3−ブチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなどの多官能(メタ)アクリレート類等があげられる。これらのうち少なくとも1種以上を塩化ビニルと共重合させ、部分的に架橋構造を有する塩化ビニル系重合体とする。   In addition, as the polyfunctional monomer to be partially crosslinked, polyfunctional allyl compounds such as diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl fumarate, diallyl adipate, triallyl cyanurate; ethylene glycol divinyl ether, octadecane divinyl ether, etc. Polyfunctional vinyl ethers; 1,3-butylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) And polyfunctional (meth) acrylates such as acrylate. At least one of these is copolymerized with vinyl chloride to obtain a vinyl chloride polymer having a partially crosslinked structure.

塩化ビニル系重合体の平均重合度は、600以上である。この範囲とすることにより得られる成形品の破壊靭性値を良好にすることができる。塩化ビニル系重合体の平均重合度が600未満では破壊靱性値の改良効果が得られない。ここで塩化ビニル系重合体の平均重合度が600〜3000、好ましくは700〜2000であると、破壊靭性値と成形性のバランスがさらに良好となり、成形時の流動性が良好で、成形機の混練トルクが小さくて、かつ破壊靱性値の高い成形品が得られ好ましい。   The average degree of polymerization of the vinyl chloride polymer is 600 or more. The fracture toughness value of the molded product obtained by setting it as this range can be made favorable. When the average degree of polymerization of the vinyl chloride polymer is less than 600, the effect of improving the fracture toughness value cannot be obtained. Here, when the average degree of polymerization of the vinyl chloride polymer is 600 to 3000, preferably 700 to 2000, the balance between fracture toughness value and moldability is further improved, the fluidity during molding is good, and the molding machine A molded product having a low kneading torque and a high fracture toughness value is preferable.

塩化ビニル系重合体は、懸濁重合法、乳化重合法、溶液重合法、塊状重合法などのいずれの方法で製造されたものでも良く、特に制限はないが、懸濁重合法で製造されたものが、残存モノマーが少なく、好ましい。   The vinyl chloride polymer may be produced by any of the suspension polymerization method, emulsion polymerization method, solution polymerization method, bulk polymerization method and the like, and is not particularly limited, but was produced by the suspension polymerization method. Those having less residual monomer are preferred.

塩化ビニル系重合体の懸濁重合法はよく知られており、公知の方法を用いればよく、特に制限は無い。   The suspension polymerization method for vinyl chloride polymers is well known, and any known method may be used without any particular limitation.

本発明における層状膨潤性ケイ酸塩とは、主として酸化ケイ素の四面体シートと、主として金属水酸化物の八面体シートからなる薄片状結晶が層状に重なった構造を有し、層間にナトリウムイオン、カルシウムイオン等の交換性陽イオンを有する水溶性のケイ酸塩鉱物である。層状膨潤性ケイ酸塩の種類は特に限定されるものではないが、例えば、モンモリロナイト、サポナイト、ヘクトライト、バイデライト、ノントリロナイト、ソーコナイト、ベントナイト等のスメクタイト系粘土鉱物及び、バーミキュライト、ハロイサイト、又は膨潤性マイカなどが挙げられ、天然のものでも合成されたものでも構わない。その中で、モンモリロナイト、ベントナイト、膨潤性雲母の使用が、入手の容易さ、物性改良の点から好ましい。   The layered swellable silicate in the present invention has a structure in which flaky crystals mainly composed of a tetrahedral sheet of silicon oxide and an octahedral sheet of metal hydroxide are stacked in layers, sodium ions between the layers, It is a water-soluble silicate mineral having exchangeable cations such as calcium ions. The type of layered swellable silicate is not particularly limited. For example, smectite clay minerals such as montmorillonite, saponite, hectorite, beidellite, nontrironite, soconite, bentonite, and vermiculite, halloysite, or swelling Examples include natural mica and the like, which may be natural or synthesized. Among them, use of montmorillonite, bentonite, and swellable mica is preferable from the viewpoint of easy availability and improvement of physical properties.

本発明における酢酸ビニル−エチレン系共重合体とは、エチレンと酢酸ビニルを必須成分とし、必要によりエチレン又は酢酸ビニルと共重合可能な他のビニル系単量体との多元的なランダム共重合体、ブロック共重合体、グラフト共重合体などが挙げられる。   The vinyl acetate-ethylene copolymer in the present invention is a multi-dimensional random copolymer of ethylene and vinyl acetate as essential components and, if necessary, ethylene or other vinyl monomers copolymerizable with vinyl acetate. , Block copolymers, graft copolymers and the like.

ここで用いるエチレン又は酢酸ビニルと共重合可能な他のビニル系単量体としては、プロピレン、ブチレンなどのα−モノオレフィン系単量体;プロピオン酸ビニル等のビニルエステル;メチルビニルエーテル、セチルビニルエーテル等のアルキルビニルエーテル;スチレン、α−メチルスチレン等のスチレン誘導体;n−ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリレート等の(メタ)アクリル酸エステル類;アクリロニトリル、メタクリロニトリル等のシアン化ビニル;シクロヘキシルマレイミド、フェニルマレイミド等のN−置換マレイミド;塩化ビニリデンなどのビニリデン類、塩化ビニル等であり、これらのうち少なくとも1種以上をエチレン又は酢酸ビニルと共重合させる。   Examples of other vinyl monomers copolymerizable with ethylene or vinyl acetate used here include α-monoolefin monomers such as propylene and butylene; vinyl esters such as vinyl propionate; methyl vinyl ether, cetyl vinyl ether, etc. Alkyl vinyl ethers of styrene; styrene derivatives such as styrene and α-methylstyrene; (meth) acrylic esters such as n-butyl acrylate, 2-ethylhexyl acrylate and methyl methacrylate; vinyl cyanides such as acrylonitrile and methacrylonitrile; cyclohexylmaleimide N-substituted maleimides such as phenylmaleimide; vinylidenes such as vinylidene chloride, vinyl chloride and the like, at least one of which is copolymerized with ethylene or vinyl acetate.

本発明に用いられるエチレン−酢酸ビニル系共重合体の分子量については特に制限はないが、重量平均分子量1000〜5000000の範囲であると、成形性が良好で、かつ破壊靱性値の高い成形品が得られ好ましい。   The molecular weight of the ethylene-vinyl acetate copolymer used in the present invention is not particularly limited, but if the weight average molecular weight is in the range of 1000 to 5000000, a molded product having good moldability and high fracture toughness value can be obtained. Obtained and preferred.

又、エチレン−酢酸ビニル系共重合体の製造方法についても特に制限は無く、公知の方法を用いてよい。   Moreover, there is no restriction | limiting in particular also about the manufacturing method of an ethylene- vinyl acetate type copolymer, You may use a well-known method.

上述したように、本発明に用いられる酢酸ビニル−エチレン系共重合体の組成は、酢酸ビニル及びエチレンを必須成分とする以外何ら制約されないが、好ましくは、酢酸ビニル含有率として、質量比率で、2〜60質量%、更に好ましくは、3〜40質量%である。酢酸ビニル含有率が上述の範囲であると、塩化ビニル系重合体と層状膨潤性ケイ酸塩、酢酸ビニル−エチレン系共重合体の3成分の親和性のバランスが良好となり、層状膨潤性ケイ酸塩及び酢酸ビニル−エチレン系共重合体の分散性が良好となり、破壊靱性値が高い成形体が得られ好ましい。   As described above, the composition of the vinyl acetate-ethylene copolymer used in the present invention is not limited at all except that vinyl acetate and ethylene are essential components. Preferably, the vinyl acetate content is as a mass ratio. It is 2-60 mass%, More preferably, it is 3-40 mass%. When the vinyl acetate content is within the above range, the balance of the affinity of the three components of the vinyl chloride polymer, the layered swellable silicate, and the vinyl acetate-ethylene copolymer is improved, and the layered swellable silicic acid is obtained. The dispersibility of the salt and the vinyl acetate-ethylene copolymer is good, and a molded article having a high fracture toughness value is obtained, which is preferable.

さらに、本発明に用いられる酢酸ビニル−エチレン系共重合体が、酢酸ビニルの部分鹸化により置換されたビニルアルコールを質量比率で1〜40質量%、好ましくは5〜30%含有すると、層状膨潤性ケイ酸塩及び酢酸ビニル−エチレン系共重合体の分散性がさらに良好となり、破壊靱性値が高い成形体が得られ、より好ましい。   Further, when the vinyl acetate-ethylene copolymer used in the present invention contains 1 to 40% by mass, preferably 5 to 30%, of vinyl alcohol substituted by partial saponification of vinyl acetate, layered swelling properties The dispersibility of the silicate and the vinyl acetate-ethylene copolymer is further improved, and a molded article having a high fracture toughness value is obtained, which is more preferable.

上述の部分鹸化された酢酸ビニル−エチレン系共重合体の製造方法は特に制限されず、公知の方法でよい。例えば、酢酸ビニル−エチレン系共重合体を水酸化ナトリウムを溶解させたメタノール中に浸漬させ、酢酸ビニルを加水分解させる方法が挙げられる。   The method for producing the partially saponified vinyl acetate-ethylene copolymer is not particularly limited, and may be a known method. For example, a method in which vinyl acetate-ethylene copolymer is immersed in methanol in which sodium hydroxide is dissolved to hydrolyze vinyl acetate can be mentioned.

また、本発明に用いられる酢酸ビニル−エチレン系共重合体が、マレイン酸変性された酢酸ビニル−エチレン系共重合体であると、層状膨潤性ケイ酸塩及び酢酸ビニル−エチレン系共重合体の分散性がさらに向上し、破壊靱性値が高い成形体が得られ、より好ましい。    Further, when the vinyl acetate-ethylene copolymer used in the present invention is a maleic acid-modified vinyl acetate-ethylene copolymer, the layered swellable silicate and the vinyl acetate-ethylene copolymer A dispersibility is further improved, and a molded article having a high fracture toughness value is obtained, which is more preferable.

上述のマレイン酸変性された酢酸ビニル−エチレン系共重合体の製造方法は特に制限されず、公知の方法でよい。例えば、酢酸ビニル−エチレン系共重合体を、有機過酸化物の存在下、無水マレイン酸と溶融混練させ、ラジカル反応により、エチレン又は酢酸ビニルをマレイン酸変性させる方法が挙げられる。   The method for producing the maleic acid-modified vinyl acetate-ethylene copolymer is not particularly limited, and may be a known method. For example, there is a method in which a vinyl acetate-ethylene copolymer is melt-kneaded with maleic anhydride in the presence of an organic peroxide and ethylene or vinyl acetate is modified with maleic acid by a radical reaction.

本発明では、成形品中で層状膨潤性ケイ酸塩の層間が剥離し、薄片状結晶単位にできる限り分散された形態を有しており、かつ、これら層状膨潤性ケイ酸塩の一部又は全てが、成形体中で微分散された酢酸ビニル−エチレン系共重合体粒子中に分散された階層的構造の形態を有することが必要である。   In the present invention, the layers of the layered swellable silicate are separated from each other in the molded product, and have a form dispersed in flaky crystal units as much as possible, and a part of these layered swellable silicates or All need to have the form of a hierarchical structure dispersed in vinyl acetate-ethylene copolymer particles finely dispersed in the molded body.

従って、本発明に用いられる層状膨潤性ケイ酸塩の成形品中で分散した状態での形状としては、平均層厚さが0.5〜100nm、かつ平均アスペクト比(層長さと層厚さの比)が5以上である。好ましくは、平均層厚さが0.5〜80nm、かつ平均アスペクト比が7〜300である。更に好ましくは、平均層厚さが0.5〜60nm、かつ平均アスペクト比が10〜300である。   Accordingly, the shape of the layered swellable silicate used in the present invention in the state of being dispersed in the molded product has an average layer thickness of 0.5 to 100 nm and an average aspect ratio (of the layer length and the layer thickness). Ratio) is 5 or more. Preferably, the average layer thickness is 0.5 to 80 nm and the average aspect ratio is 7 to 300. More preferably, the average layer thickness is 0.5 to 60 nm and the average aspect ratio is 10 to 300.

成形品に分散した状態での層状膨潤性ケイ酸塩の平均層厚さが100nmを越えたり、または平均アスペクト比が5未満であると、層状膨潤性ケイ酸塩は、その層間剥離が不十分で、薄片状結晶が多数凝集した形態になり易く、それが構造欠陥となり、高い破壊靭性値が得られず好ましくない。   When the average layer thickness of the layered swellable silicate dispersed in the molded product exceeds 100 nm or the average aspect ratio is less than 5, the layered swellable silicate has insufficient delamination. Thus, a large number of flaky crystals tend to be aggregated, which becomes a structural defect, and a high fracture toughness value cannot be obtained.

さらに、本発明に用いられる酢酸ビニル−エチレン系共重合体の成形品中で分散した形態は、平均直径が10〜1000nm、好ましくは、10〜700nmの粒子形状であり、かつ、上述の大きさや形状で分散した層状膨潤性ケイ酸塩の一部又は全てが、酢酸ビニル−エチレン系共重合体粒子中に分散した形態を有する。   Furthermore, the form dispersed in the molded article of the vinyl acetate-ethylene copolymer used in the present invention is a particle shape having an average diameter of 10 to 1000 nm, preferably 10 to 700 nm, and the above-described size and Part or all of the layered swellable silicate dispersed in shape has a form dispersed in vinyl acetate-ethylene copolymer particles.

成形品に分散した状態での酢酸ビニル−エチレン系共重合体の平均直径が1000nmを越えると、構造欠陥となり、高い破壊靭性値が得られず、好ましくない。又、酢酸ビニル−エチレン系共重合体粒子中に層状膨潤性ケイ酸塩が全く分散されていないと、塩化ビニル系重合体と層状膨潤性ケイ酸塩との親和性が欠如し、また、分散された酢酸ビニル−エチレン系共重合体粒子自身の弾性率低下により、高い破壊靭性値が得られず、好ましくない。   If the average diameter of the vinyl acetate-ethylene copolymer dispersed in the molded product exceeds 1000 nm, it becomes a structural defect, and a high fracture toughness value cannot be obtained. In addition, if the layered swellable silicate is not dispersed at all in the vinyl acetate-ethylene copolymer particles, the affinity between the vinyl chloride polymer and the layered swellable silicate is lacking. A high fracture toughness value cannot be obtained due to a decrease in the elastic modulus of the vinyl acetate-ethylene copolymer particles themselves, which is not preferable.

本発明の塩化ビニル系重合体組成物中の層状膨潤性ケイ酸塩と酢酸ビニル−エチレン系共重合体の含有比率は、特に制約されるものではないが、好ましくは、質量比率で80:20〜20:80、さらに好ましくは、70:30〜30:70である。上述した含有比率の範囲であると、成形体中での層状膨潤性ケイ酸塩及び酢酸ビニル−エチレン系共重合体の分散性が良好となり、高い破壊靭性値が得られ、より好ましい。   The content ratio of the layered swellable silicate and the vinyl acetate-ethylene copolymer in the vinyl chloride polymer composition of the present invention is not particularly limited, but is preferably 80:20 by mass ratio. -20: 80, more preferably 70: 30-30: 70. When the content ratio is in the above-described range, the dispersibility of the layered swellable silicate and the vinyl acetate-ethylene copolymer in the molded article is improved, and a high fracture toughness value is obtained, which is more preferable.

本発明の塩化ビニル系重合体組成物中の層状膨潤性ケイ酸塩の含有率もまた、特に制約されるものではないが、好ましくは、無機成分の重量分率として、0.05〜10質量%、さらに好ましくは、0.1〜3質量である。   The content of the layered swellable silicate in the vinyl chloride polymer composition of the present invention is not particularly limited, but is preferably 0.05 to 10 mass as a weight fraction of the inorganic component. %, And more preferably 0.1 to 3 mass.

ちなみに、層状膨潤性ケイ酸塩の含有率は、得られた塩化ビニル系重合体組成物の成形品を950℃で完全燃焼させ、灰分の質量測定より、規定されるものであり、無機成分の質量分率として規定される。   By the way, the content of the layered swellable silicate is determined by completely burning the molded article of the obtained vinyl chloride polymer composition at 950 ° C. and measuring the mass of ash. Defined as mass fraction.

本発明の製造方法については、特に制限されるものではなく、例えば、塩化ビニル系重合体と層状膨潤性ケイ酸塩及び酢酸ビニル−エチレン系共重合体を所定量配合し、必要に応じ各種添加剤を配合したものをヘンシェルミキサー、らいかい機、プラネタリーミキサー、その他各種ミキサーなどを用いて均一に混合することによって得られ、常温下でのいわゆるコールドブレンドで行っても、又、60〜140℃の範囲でのいわゆるホットブレンドで行ってもかまわない。上記の方法で製造した塩化ビニル系重合体組成物を、例えば、単軸押出機、二軸押出機、ロール混練機、バンバリーミキサー等の混練機により、所定の剪断応力場で溶融混練させて成形品を製造することにより、成形品中に層状膨潤性ケイ酸塩及び酢酸ビニル−エチレン系共重合体がナノメーターオーダーレベルの大きさに微分散された構造を形成させることができる。   The production method of the present invention is not particularly limited. For example, a predetermined amount of a vinyl chloride polymer, a layered swellable silicate, and a vinyl acetate-ethylene copolymer is blended, and various additions are added as necessary. It can be obtained by uniformly mixing the blended agent with a Henschel mixer, a rabies machine, a planetary mixer, and other various mixers. You may carry out by what is called a hot blend in the range of ° C. The vinyl chloride polymer composition produced by the above method is melt-kneaded in a predetermined shear stress field using a kneader such as a single screw extruder, a twin screw extruder, a roll kneader, or a Banbury mixer. By manufacturing the product, it is possible to form a structure in which the layered swellable silicate and the vinyl acetate-ethylene copolymer are finely dispersed in a nanometer order level in the molded product.

この場合、予め、層状膨潤性ケイ酸塩と酢酸ビニル−エチレン系共重合体のみを所定量配合し、例えば、単軸押出機、二軸押出機、ロール混練機、バンバリーミキサー等の混練機により、所定の剪断応力場で溶融混練させた後に、塩化ビニル系重合体及び必要に応じ各種添加剤を配合し、再溶融混練させて成形品を製造することにより、層状膨潤性ケイ酸塩が予め酢酸ビニル−エチレン系共重合体に覆われ、薄片状結晶単位まで剥離、分散された状態で、塩化ビニル系重合体と溶融混練される為、成形品中で層状膨潤性ケイ酸塩及び酢酸ビニル−エチレン系共重合体を、効率よく均一にナノメーターオーダーレベルの大きさに微分散させることができ、より好ましい。   In this case, only a predetermined amount of a layered swellable silicate and a vinyl acetate-ethylene copolymer is blended in advance, for example, by a kneader such as a single screw extruder, a twin screw extruder, a roll kneader, a Banbury mixer or the like. Then, after melt-kneading in a predetermined shear stress field, a vinyl chloride polymer and various additives as necessary are blended and re-melt-kneaded to produce a molded product, whereby the layered swellable silicate is previously obtained. Since it is covered with vinyl acetate-ethylene copolymer and melted and kneaded with vinyl chloride polymer in the state of peeling and dispersing to flaky crystal units, layered swellable silicate and vinyl acetate in the molded product -It is more preferable because the ethylene copolymer can be finely dispersed in a nanometer order level efficiently and uniformly.

本発明の塩化ビニル系重合体組成物には、目的に応じて、顔料や染料、熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、可塑剤、難燃剤、加工助剤、耐衝撃改良剤、耐電防止剤等の添加剤を添加しても良い。   In the vinyl chloride polymer composition of the present invention, depending on the purpose, pigments and dyes, heat stabilizers, antioxidants, UV absorbers, light stabilizers, lubricants, plasticizers, flame retardants, processing aids, Additives such as impact resistance improvers and antistatic agents may be added.

また、本発明の組成物からなる成形品は、公知の樹脂の成形方法、例えば、プレス成形、押出成形、射出成形、ブロー成形、カレンダー成形等によって、溶融混練、賦形加工されることにより得られる。溶融混練時の温度については特に制限は無いが、140〜200℃の温度範囲で成形加工することにより、高い弾性率と高い破壊靭性値を有する成形品が得られ好ましい。特に、本発明の組成物からなる成形品としては、パイプ、継ぎ手、雨樋、窓枠、サイジング材等、建築資材への使用が好ましい。その中で、押出成形により、パイプを成形した場合、高い剛性を有し、且つ破壊靭性値が高く、長期耐久性に優れたパイプが得られ、より好ましい。   In addition, a molded article made of the composition of the present invention can be obtained by melt kneading and shaping by a known resin molding method, for example, press molding, extrusion molding, injection molding, blow molding, calendar molding, and the like. It is done. Although there is no restriction | limiting in particular about the temperature at the time of melt-kneading, The molded article which has a high elasticity modulus and a high fracture toughness value is obtained by shape | molding in the temperature range of 140-200 degreeC, and is preferable. In particular, the molded article made of the composition of the present invention is preferably used for building materials such as pipes, joints, rain gutters, window frames, sizing materials and the like. Among them, when a pipe is formed by extrusion molding, a pipe having high rigidity, a high fracture toughness value, and excellent long-term durability is more preferable.

以下、本発明を実施例によって具体的に説明するが、本発明はこれに限定されるものではない。下記の実施例及び比較例で得られた塩化ビニル系重合体組成物の評価は、以下に示す方法によって行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to this. The vinyl chloride polymer compositions obtained in the following examples and comparative examples were evaluated by the methods shown below.

(平均重合度の測定方法)
JIS−K6721に準じて、ニトロベンゼンを溶媒とした塩化ビニル系重合体溶液の粘度測定により、算出した。尚、塩化ビニル系重合体が完全に溶解しない場合は、不溶分を濾過し、可溶分の粘度測定により、算出した。
(Measurement method of average degree of polymerization)
According to JIS-K6721, it was calculated by measuring the viscosity of a vinyl chloride polymer solution using nitrobenzene as a solvent. When the vinyl chloride polymer was not completely dissolved, the insoluble content was filtered, and the viscosity was calculated by measuring the viscosity of the soluble content.

(成形品の作製方法)
得られた塩化ビニル系重合体組成物を165℃の温度のロールで5分間混練し、ロール混練シートを作製し、このロール混練シートを、175℃にて、圧力15MPaの条件で20分間プレス成形し、成形品を作製した。
(Method for producing molded product)
The obtained vinyl chloride polymer composition was kneaded with a roll at a temperature of 165 ° C. for 5 minutes to prepare a roll kneaded sheet, and this roll kneaded sheet was press-molded at 175 ° C. under a pressure of 15 MPa for 20 minutes. Then, a molded product was produced.

(成形品中の層状膨潤性ケイ酸塩の平均層厚さ及び平均アスペクト比の測定方法)
上記で作成した成形品をウルトラミクロトームで厚さ1μmの薄片に切削し、透過型電子顕微鏡(日本電子社製、JEM−2000FX)で50万倍に拡大して観察し、0.1mm角中に分散している層状膨潤性ケイ酸塩の層厚さと層長さを計測し、平均層厚さ及び平均アスペクト比を算出した。
(Measurement method of average layer thickness and average aspect ratio of layered swellable silicate in molded product)
The molded product created above was cut into a 1 μm-thick piece with an ultramicrotome, observed with a transmission electron microscope (manufactured by JEOL Ltd., JEM-2000FX) at a magnification of 500,000 times, and in a 0.1 mm square. The layer thickness and layer length of the dispersed layered swellable silicate were measured, and the average layer thickness and average aspect ratio were calculated.

(成形品中の酢酸ビニル−エチレン系共重合体粒子の平均直径及び該粒子中の層状膨潤性珪酸塩含有の有無の測定方法)
上記と同様の方法にて顕微鏡観察を行い、酢酸ビニル−エチレン系共重合体粒子の平均直径の計測及び該粒子中の層状膨潤性珪酸塩含有の有無の観察を行った。
(Measuring method of average diameter of vinyl acetate-ethylene copolymer particles in molded product and presence / absence of layered swellable silicate in particles)
Microscopic observation was performed in the same manner as above, and the average diameter of the vinyl acetate-ethylene copolymer particles was measured and the presence or absence of a layered swellable silicate in the particles was observed.

(成形品中の層状膨潤性ケイ酸塩の含有率の測定方法)
上記で作成した成形品から1gを切削し、950℃で1時間燃焼させ、灰分の質量測定より、層状膨潤性ケイ酸塩の含有率を算出した。
(Measurement method of content of layered swellable silicate in molded product)
1 g was cut from the molded product prepared above, burned at 950 ° C. for 1 hour, and the content of the layered swellable silicate was calculated from the mass measurement of ash.

(破壊靭性試験方法)
上記で作成した成形品を用いて、ASTM D−5045−95に準じる試験機(エーアンドデイ社製、テンシロン)にて、片側に切り欠きを挿入した平板による3点曲げ試験により、最大応力より破壊靭性値(Kc)を算出した。なお、非線形破壊を示した成形品については、最大応力到達時が、成形品のクラック成長開始点とみなし、最大応力より破壊靭性値(Kc)を算出した。
(Fracture toughness test method)
Fracture toughness from maximum stress by three-point bending test using a flat plate with a notch on one side using a tester (A & D, Tensilon) according to ASTM D-5045-95, using the molded product created above. The value (Kc) was calculated. In addition, about the molded article which showed the nonlinear fracture | rupture, the time to reach the maximum stress was regarded as the crack growth start point of the molded article, and the fracture toughness value (Kc) was calculated from the maximum stress.

(引張り弾性率及び伸びの測定方法)
上記で作成した成形品を用いて、JIS K 7113に準じる試験機(エーアンドデイ社製。テンシロン)にて、引張り弾性率及び伸びを測定した。
(Measurement method of tensile modulus and elongation)
Using the molded article prepared above, the tensile modulus and elongation were measured with a testing machine according to JIS K 7113 (manufactured by A & D Corporation, Tensilon).

実施例1
塩化ビニル系重合体として、平均重合度1020の懸濁重合法で製造した塩化ビニル重合体(大洋塩ビ(株)製:商品名:TH−1000)を300g、層状膨潤性ケイ酸塩として、天然のベントナイト鉱石から精製されたモンモリロナイト(クニミネ工業(株)製、商品名:クニピアF)を1.506g、酢酸ビニル−エチレン系共重合体として、酢酸ビニル含有率が5質量%、エチレン含有率が95質量%である酢酸ビニル−エチレン共重合体(東ソー(株)製:商品名:ペトロセン291R)を0.645g、安定剤として、ジオクチル錫メルカプト系安定剤(三共有機(株)製:商品名:ONZ−82BF)を3gをヘンシェルミキサーで混合し、ロール混練及びプレス成形して塩化ビニル系重合体組成物を作製した。
Example 1
As a vinyl chloride polymer, 300 g of a vinyl chloride polymer (manufactured by Taiyo PVC Co., Ltd .: trade name : TH-1000) produced by a suspension polymerization method having an average degree of polymerization of 1020, natural as a layered swellable silicate Montmorillonite (Kunimine Kogyo Co., Ltd., trade name: Kunipia F) purified from bentonite ore of 1.506 g, vinyl acetate-ethylene copolymer, vinyl acetate content 5% by mass, ethylene content 0.645 g of 95% by mass vinyl acetate-ethylene copolymer (manufactured by Tosoh Corporation: trade name: Petrocene 291R) as a stabilizer, dioctyltin mercapto-based stabilizer (manufactured by Sansha Co., Ltd .: commodity) (Name: ONZ-82BF) 3 g was mixed with a Henschel mixer, and kneaded and press-molded to prepare a vinyl chloride polymer composition.

得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.50質量%であり、モンモリロナイトは平均層厚さが28nm、平均アスペクト比が12の大きさで分散されており、かつ、その一部が、平均直径が420nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。   The content of montmorillonite determined from the ash content of the obtained molded product was 0.50% by mass, the montmorillonite was dispersed with an average layer thickness of 28 nm and an average aspect ratio of 12, and A part was dispersed inside the vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 420 nm.

また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。   Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例2
実施例1において、酢酸ビニル−エチレン共重合体(東ソー(株)製:商品名:ペトロセン291R)を1.506gと変更した以外は、実施例1と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.49質量%であり、モンモリロナイトは平均層厚さが18nm、平均アスペクト比が20の大きさで分散されており、かつ、その一部が、平均直径が380nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。
また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。
Example 2
A vinyl chloride polymer composition was prepared in the same manner as in Example 1 except that the vinyl acetate-ethylene copolymer (manufactured by Tosoh Corporation: trade name: Petrocene 291R) was changed to 1.506 g in Example 1. Produced.
The content of montmorillonite determined from the ash content of the obtained molded product is 0.49% by mass, the montmorillonite is dispersed with an average layer thickness of 18 nm and an average aspect ratio of 20, and A part was dispersed inside the vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 380 nm.
Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例3
実施例1において、酢酸ビニル−エチレン共重合体(東ソー(株)製:ペトロセン291R)を3.519gと変更した以外は、実施例1と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.51質量%であり、モンモリロナイトは平均層厚さが16nm、平均アスペクト比が18の大きさで分散されており、かつ、その一部が、平均直径が320nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。
また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。
Example 3
A vinyl chloride polymer composition was prepared in the same manner as in Example 1, except that the vinyl acetate-ethylene copolymer (manufactured by Tosoh Corporation: Petrocene 291R) was changed to 3.519 g.
The content of montmorillonite determined from the ash content of the obtained molded product is 0.51% by mass, the montmorillonite is dispersed with an average layer thickness of 16 nm and an average aspect ratio of 18, and A part was dispersed inside the vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 320 nm.
Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例4
実施例2において、酢酸ビニル−エチレン系共重合体を、酢酸ビニル含有率が20質量%、エチレン含有率が80質量%である酢酸ビニル−エチレン共重合体(東ソー(株)製:商品名:ウルトラセン631)に更した以外は、実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.48質量%であり、モンモリロナイトは平均層厚さが30nm、平均アスペクト比が13の大きさで分散されており、かつ、その一部が、平均直径が510nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。
また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。
Example 4
In Example 2, a vinyl acetate-ethylene copolymer was prepared by using a vinyl acetate-ethylene copolymer having a vinyl acetate content of 20% by mass and an ethylene content of 80% by mass (trade name: manufactured by Tosoh Corporation). A vinyl chloride polymer composition was prepared in the same manner as in Example 2 except that Ultrasen 631) was used.
The content of montmorillonite determined from the ash content of the obtained molded product is 0.48% by mass, the montmorillonite is dispersed with an average layer thickness of 30 nm and an average aspect ratio of 13, and A part was dispersed inside the vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 510 nm.
Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例5
実施例2において、モンモリロナイト(クニミネ工業(株):クニピアF)を9.036gとし、酢酸ビニル−エチレン共重合体(東ソー(株)製:ペトロセン291R)を21.084gと変更した以外は、実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は3.02質量%であり、モンモリロナイトは平均層厚さが31nm、平均アスペクト比が12の大きさで分散されており、かつ、その一部が、平均直径が430nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。
また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。
Example 5
In Example 2, except that Montmorillonite (Kunimine Kogyo Co., Ltd .: Kunipia F) was changed to 9.036 g and the vinyl acetate-ethylene copolymer (Tosoh Corp .: Petrocene 291R) was changed to 21.084 g. A vinyl chloride polymer composition was prepared in the same manner as in Example 2.
The content of montmorillonite determined from the ash content of the obtained molded product is 3.02% by mass, the montmorillonite is dispersed with an average layer thickness of 31 nm and an average aspect ratio of 12, and A part of the particles were dispersed inside vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 430 nm.
Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例6
実施例2において、酢酸ビニル−エチレン系共重合体を、酢酸ビニル含有率が17質量%、エチレン含有率が78質量%、ビニルアルコール含有率が10質量%である部分鹸化処理された酢酸ビニル−エチレン共重合体(東ソー(株)製:商品名:メルセンH)に変更した以外は、実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.49質量%であり、モンモリロナイトは平均層厚さが21nm、平均アスペクト比が17の大きさで分散されており、かつ、その一部が、平均直径が410nmの大きさで分散された部分鹸化酢酸ビニル−エチレン共重合体粒子内部で分散されていた。また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。
Example 6
In Example 2, a vinyl acetate-ethylene copolymer was partially saponified vinyl acetate having a vinyl acetate content of 17% by mass, an ethylene content of 78% by mass, and a vinyl alcohol content of 10% by mass. A vinyl chloride polymer composition was prepared in the same manner as in Example 2 except that the copolymer was changed to an ethylene copolymer (trade name: Mersen H manufactured by Tosoh Corporation).
The content of montmorillonite determined from the ash content of the obtained molded product is 0.49% by mass, the montmorillonite is dispersed with an average layer thickness of 21 nm and an average aspect ratio of 17, and A part was dispersed inside the partially saponified vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 410 nm. Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例7
実施例2において、酢酸ビニル−エチレン系共重合体を、酢酸ビニル含有率が30質量%、エチレン含有率が70質量%である酢酸ビニル−エチレン共重合体を、有機過酸化物の存在下、無水マレイン酸と溶融混練させ、変性処理させて得られたマレイン酸変性の酢酸ビニル−エチレン共重合体に変更した以外は、実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.49質量%であり、モンモリロナイトは平均層厚さが20nm、平均アスペクト比が16の大きさで分散されており、かつ、その一部が、平均直径が370nmの大きさで分散されたマレイン酸変性酢酸ビニル−エチレン共重合体粒子内部で分散されていた。また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。
Example 7
In Example 2, a vinyl acetate-ethylene copolymer was prepared by adding a vinyl acetate-ethylene copolymer having a vinyl acetate content of 30% by mass and an ethylene content of 70% by mass in the presence of an organic peroxide. A vinyl chloride polymer composition was prepared in the same manner as in Example 2 except that it was changed to a maleic acid-modified vinyl acetate-ethylene copolymer obtained by melt-kneading with maleic anhydride and modified.
The content of montmorillonite determined from the ash content of the obtained molded product was 0.49% by mass, the montmorillonite was dispersed with an average layer thickness of 20 nm and an average aspect ratio of 16, and A part was dispersed inside the maleic acid-modified vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 370 nm. Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例8
実施例2において、層状膨潤性ケイ酸塩を、天然のベントナイト鉱石を平均直径1μmの大きさの粒子状に分級粉砕させた微粉砕ベントナイト(クニミネ工業(株)製:試作品)に変更し、その添加量を2.154gとした以外は、実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したベントナイトの含有率は0.70質量%であり、ベントナイトは平均層厚さが40nm、平均アスペクト比が12の大きさで分散されており、かつ、その一部が、平均直径が520nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。
Example 8
In Example 2, the layered swellable silicate was changed to finely pulverized bentonite (Kunimine Kogyo Co., Ltd .: prototype) obtained by classifying and pulverizing natural bentonite ore into particles having an average diameter of 1 μm. A vinyl chloride polymer composition was prepared in the same manner as in Example 2 except that the amount added was 2.154 g.
The bentonite content determined from the ash content of the obtained molded product is 0.70% by mass, the bentonite is dispersed with an average layer thickness of 40 nm and an average aspect ratio of 12, and A part was dispersed inside the vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 520 nm. Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例9
実施例2において、塩化ビニル系重合体を、平均重合度1710の懸濁重合法で製造した塩化ビニル重合体(大洋塩ビ(株)製:TH−1700)に変更した以外は、実施例2と同様にして塩化ビニル系重合体組成物を作製した。
Example 9
Example 2 is the same as Example 2 except that the vinyl chloride polymer was changed to a vinyl chloride polymer produced by a suspension polymerization method with an average degree of polymerization of 1710 (manufactured by Taiyo PVC Co., Ltd .: TH-1700). Similarly, a vinyl chloride polymer composition was prepared.

得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.48質量%であり、ベントナイトは平均層厚さが18nm、平均アスペクト比が21の大きさで分散されており、かつ、その一部が、平均直径が460nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。   The content of montmorillonite determined from the ash content of the obtained molded product was 0.48% by mass, bentonite was dispersed with an average layer thickness of 18 nm and an average aspect ratio of 21; A part of the particles were dispersed inside vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 460 nm. Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例10
層状膨潤性珪酸塩として、天然のベントナイト鉱石から精製されたモンモリロナイト(クニミネ工業(株)製:クニピアF)を30g、酢酸ビニル−エチレン系共重合体として、酢酸ビニル含有率が5質量%、エチレン含有率が95質量%である酢酸ビニル−エチレン共重合体(東ソー(株)製:ペトロセン291R)を30gを、140℃の温度下にて、プラストミキサー(東洋精機社製:ラボプラストミル)にて5分間、溶融混練させ、得られた酢酸ビニル−エチレン共重合体とモンモリロナイトの溶融混合物の破砕物を3.012g、塩化ビニル系重合体として、平均重合度1020の懸濁重合法で製造した塩化ビニル重合体(大洋塩ビ(株)製:TH−1000)を300g、安定剤として、ジオクチル錫メルカプト系安定剤(三共有機(株)製:ONZ−82BF)を3gをヘンシェルミキサーで混合し、ロール混練及びプレス成形して塩化ビニル系重合体組成物を作製した。得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.49質量%であり、モンモリロナイトは平均層厚さが15nm、平均アスペクト比が16の大きさで分散されており、かつ、その一部が、平均直径が250nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。
Example 10
30 g of montmorillonite purified from natural bentonite ore (Kunimine Kogyo Co., Ltd .: Kunipia F) as a layered swellable silicate, a vinyl acetate-ethylene copolymer having a vinyl acetate content of 5% by mass, ethylene 30 g of a vinyl acetate-ethylene copolymer (Tosoh Co., Ltd .: Petrocene 291R) having a content of 95% by mass is placed in a plast mixer (Toyo Seiki Co., Ltd .: Labo Plast Mill) at a temperature of 140 ° C. The resulting mixture was melt-kneaded for 5 minutes, and 3.012 g of a crushed mixture of the resulting vinyl acetate-ethylene copolymer and montmorillonite was produced as a vinyl chloride polymer by suspension polymerization with an average degree of polymerization of 1020. 300 g of vinyl chloride polymer (manufactured by Taiyo PVC Co., Ltd .: TH-1000) as a stabilizer, dioctyltin mercapto-based stabilizer (Three sharing machine ( 3 g of ONZ-82BF) was mixed with a Henschel mixer, kneaded in a roll and press-molded to prepare a vinyl chloride polymer composition. The content of montmorillonite determined from the ash content of the obtained molded product was 0.49% by mass, the montmorillonite was dispersed with an average layer thickness of 15 nm and an average aspect ratio of 16, and A part was dispersed inside the vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 250 nm. Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

実施例11
実施例2において、酢酸ビニル−エチレン系共重合体を、酢酸ビニル含有率が70質量%、エチレン含有率が30質量%である酢酸ビニル−エチレン共重合体(日本合成化学工業(株)製:商品名:ソアプレン)に変更した以外は、実施例2と同様にして塩化ビニル系重合体組成物を作成した。得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.49質量%であり、モンモリロナイトは平均層厚さが60nm、平均アスペクト比が8の大きさで分散されており、かつ、その一部が、平均直径が520nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。また、得られた成形品の破壊靭性値は高く、引張り弾性率、引張り伸びも高く、良好であった。
Example 11
In Example 2, a vinyl acetate-ethylene copolymer was prepared by using a vinyl acetate-ethylene copolymer having a vinyl acetate content of 70% by mass and an ethylene content of 30% by mass (manufactured by Nippon Synthetic Chemical Industry Co., Ltd .: A vinyl chloride polymer composition was prepared in the same manner as in Example 2 except that the product name was changed to (trade name: Soaprene). The content of montmorillonite determined from the ash content of the obtained molded product was 0.49% by mass, the montmorillonite was dispersed with an average layer thickness of 60 nm and an average aspect ratio of 8, and A part was dispersed inside the vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 520 nm. Further, the obtained molded article had a high fracture toughness value, and had a high tensile elastic modulus and a high tensile elongation.

Figure 2005187644
Figure 2005187644

比較例1
実施例2において、塩化ビニル重合体(大洋塩ビ(株)製:TH−1000)を300gとし、モンモリロナイト(クニミネ工業(株):クニピアF)及び酢酸ビニル−エチレン共重合体(東ソー(株)製:ペトロセン291R)を全く添加せずに実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は0質量%であった。また、得られた成形品の引張り伸びは高かったが、破壊靭性値は低く、引張り弾性率も低く、好ましくなかった。
Comparative Example 1
In Example 2, 300 g of a vinyl chloride polymer (manufactured by Taiyo PVC Co., Ltd .: TH-1000), montmorillonite (Kunimine Industry Co., Ltd .: Kunipia F) and a vinyl acetate-ethylene copolymer (manufactured by Tosoh Corp.) : A vinyl chloride polymer composition was prepared in the same manner as in Example 2 without adding any petrocene 291R).
The content of montmorillonite determined from the ash content of the obtained molded product was 0% by mass. Moreover, although the tensile elongation of the obtained molded product was high, the fracture toughness value was low and the tensile elastic modulus was low, which was not preferable.

比較例2
実施例2において、塩化ビニル重合体(大洋塩ビ(株)製:TH−1000)を300gとし、酢酸ビニル−エチレン共重合体(東ソー(株)製:ペトロセン291R)を全く添加せずに実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.50質量%であり、モンモリロナイトは平均層厚さが160μm、平均アスペクト比が2.1の大きさで、凝集状に分散されていた。得られた成形品の引張り弾性率、引張り伸びは高かったが、破壊靭性値は低く、好ましくなかった。
Comparative Example 2
In Example 2, a vinyl chloride polymer (manufactured by Taiyo PVC Co., Ltd .: TH-1000) was used as 300 g, and a vinyl acetate-ethylene copolymer (manufactured by Tosoh Corporation: Petrocene 291R) was not added at all. In the same manner as in Example 2, a vinyl chloride polymer composition was prepared.
The content of montmorillonite determined from the ash content of the obtained molded product is 0.50% by mass, and montmorillonite has an average layer thickness of 160 μm and an average aspect ratio of 2.1, and is dispersed in an aggregated state. It was. Although the obtained molded article had high tensile modulus and tensile elongation, the fracture toughness value was low, which was not preferable.

比較例3
実施例2において、塩化ビニル重合体(大洋塩ビ(株)製:TH−1000)を300gとし、モンモリロナイト(クニミネ工業(株):クニピアF)を全く添加せずに実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は0質量%であったが、酢酸ビニル−エチレン共重合体は、平均直径360nmの大きさで分散されていた。
しかしながら、得られた成形品の引張り伸びは高かったが、破壊靭性値は低く、引張り弾性率も低く、好ましくなかった。
Comparative Example 3
In Example 2, 300 g of a vinyl chloride polymer (manufactured by Taiyo PVC Co., Ltd .: TH-1000) was used, and chlorinated in the same manner as in Example 2 without adding montmorillonite (Kunimine Industry Co., Ltd .: Kunipia F). A vinyl polymer composition was prepared.
The content of montmorillonite determined from the ash content of the obtained molded product was 0% by mass, but the vinyl acetate-ethylene copolymer was dispersed with an average diameter of 360 nm.
However, although the tensile elongation of the obtained molded product was high, the fracture toughness value was low and the tensile elastic modulus was low, which was not preferable.

比較例4
実施例2において、酢酸ビニル−エチレン系共重合体を、酢酸ビニル含有率が0質量%、エチレン含有率が100質量%であるポリエチレン(東ソー(株)製:商品名:ニポロンL)に変更した以外は、実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品では、ポリエチレンが平均直径820nmの大きさで分散されていた。一方、得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.49質量%であり、モンモリロナイトは平均層厚さが72μm、平均アスペクト比が3.2の大きさで、凝集状に分散されており、かつ、ポリエチレン粒子内部には分散されてはいなかった。
得られた成形品の引張り弾性率、引張り伸び共に高かったが、破壊靭性値は低く、好ましくなかった。
Comparative Example 4
In Example 2, the vinyl acetate-ethylene copolymer was changed to polyethylene having a vinyl acetate content of 0% by mass and an ethylene content of 100% by mass (trade name: Nipolon L, manufactured by Tosoh Corporation). A vinyl chloride polymer composition was prepared in the same manner as in Example 2 except for the above.
In the obtained molded product, polyethylene was dispersed with an average diameter of 820 nm. On the other hand, the content of montmorillonite determined from the ash content of the obtained molded product is 0.49% by mass, and the montmorillonite has an average layer thickness of 72 μm, an average aspect ratio of 3.2, and is agglomerated. It was dispersed and was not dispersed inside the polyethylene particles.
Although the tensile modulus and tensile elongation of the obtained molded product were both high, the fracture toughness value was low, which was not preferable.

比較例5
実施例2において、酢酸ビニル−エチレン系共重合体を、酢酸ビニル含有率が100質量%、エチレン含有率が0質量%であるポリ酢酸ビニル(日本合成化学(株)製:商品名:ゴーセニール)に変更した以外は、実施例2と同様にして塩化ビニル系重合体組成物を作製した。
得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.50質量%であり、モンモリロナイトは平均層厚さが80nm、平均アスペクト比が5.0の大きさで分散され、かつ、ポリ酢酸ビニル粒子内部に内包、分散されていたが、ポリ酢酸ビニル自身は、得られた成形品中で、平均直径15μmの大きさに、凝集されて分散されていた。
得られた成形品の引張り弾性率、引張り伸び共に高かったが、破壊靭性値は低く、好ましくなかった。
Comparative Example 5
In Example 2, a vinyl acetate-ethylene copolymer was made of polyvinyl acetate having a vinyl acetate content of 100% by mass and an ethylene content of 0% by mass (manufactured by Nippon Synthetic Chemical Co., Ltd .: trade name: Gosenil). A vinyl chloride polymer composition was prepared in the same manner as in Example 2 except that the composition was changed.
The content of montmorillonite determined from the ash content of the obtained molded product is 0.50% by mass, the montmorillonite is dispersed with an average layer thickness of 80 nm, an average aspect ratio of 5.0, The polyvinyl acetate particles were encapsulated and dispersed inside, but the polyvinyl acetate itself was aggregated and dispersed to an average diameter of 15 μm in the obtained molded product.
Although the tensile modulus and tensile elongation of the obtained molded product were both high, the fracture toughness value was low, which was not preferable.

比較例6
実施例2において、塩化ビニル系重合体を、平均重合度510の懸濁重合法で製造した塩化ビニル重合体(大洋塩ビ(株)製:商品名:TH−500)に変更した以外は、実施例2と同様にして塩化ビニル系重合体組成物を作製した。
Comparative Example 6
In Example 2, except that the vinyl chloride polymer was changed to a vinyl chloride polymer (manufactured by Taiyo PVC Co., Ltd .: trade name: TH-500) produced by a suspension polymerization method with an average degree of polymerization of 510. A vinyl chloride polymer composition was prepared in the same manner as in Example 2.

得られた成形品の灰分率から定量したモンモリロナイトの含有率は0.49質量%であり、モンモリロナイトは平均層厚さが15nm、平均アスペクト比が30の大きさで分散されており、かつ、その一部が、平均直径が560nmの大きさで分散された酢酸ビニル−エチレン共重合体粒子内部で分散されていた。しかしながら、得られた成形品の引張り弾性率、引張り伸び、壊靭性値ともに低く、好ましくなかった。   The content of montmorillonite determined from the ash content of the obtained molded product is 0.49% by mass, the montmorillonite is dispersed with an average layer thickness of 15 nm and an average aspect ratio of 30, and A part of the particles were dispersed inside the vinyl acetate-ethylene copolymer particles dispersed with an average diameter of 560 nm. However, it was not preferable because the obtained molded article had low tensile elastic modulus, tensile elongation, and fracture toughness.

Figure 2005187644
Figure 2005187644

Claims (9)

塩化ビニル系重合体に層状膨潤性ケイ酸塩と酢酸ビニル−エチレン系共重合体を分散してなる塩化ビニル系重合体組成物において、
(A)塩化ビニル系重合体が、平均重合度600以上であり、
(B)組成物中に分散した層状膨潤性ケイ酸塩が、電子顕微鏡で測定した平均層厚さ0.5〜100nmで、平均アスペクト比(層長さと層厚さの比)5以上であり、
(C)組成物中に分散した酢酸ビニル−エチレン系共重合体が、電子顕微鏡で測定した平均直径10〜1000nmの粒子形状であり、かつ、
(D)該層状膨潤性ケイ酸塩の一部又は全てが、該酢酸ビニル−エチレン系共重合体粒子中に分散した形態を有する
ことを特徴とする塩化ビニル系重合体組成物。
In a vinyl chloride polymer composition obtained by dispersing a layered swellable silicate and a vinyl acetate-ethylene copolymer in a vinyl chloride polymer,
(A) The vinyl chloride polymer has an average degree of polymerization of 600 or more,
(B) The layered swellable silicate dispersed in the composition has an average layer thickness of 0.5 to 100 nm as measured with an electron microscope and an average aspect ratio (ratio of layer length to layer thickness) of 5 or more. ,
(C) The vinyl acetate-ethylene copolymer dispersed in the composition has a particle shape with an average diameter of 10 to 1000 nm measured with an electron microscope, and
(D) A vinyl chloride polymer composition characterized in that a part or all of the layered swellable silicate has a form dispersed in the vinyl acetate-ethylene copolymer particles.
酢酸ビニル−エチレン系共重合体が、酢酸ビニルを質量比率で2〜60質量%含有していることを特徴とする請求項1記載の塩化ビニル系重合体組成物。 The vinyl chloride polymer composition according to claim 1, wherein the vinyl acetate-ethylene copolymer contains 2 to 60% by mass of vinyl acetate in a mass ratio. 酢酸ビニル−エチレン系共重合体が、酢酸ビニルの部分鹸化により、ビニルアルコールを質量比率で1〜40質量%含有していることを特徴とする請求項1または請求項2記載の塩化ビニル系重合体組成物。 The vinyl chloride heavy polymer according to claim 1 or 2, wherein the vinyl acetate-ethylene copolymer contains 1 to 40% by mass of vinyl alcohol by mass saponification of vinyl acetate. Combined composition. 酢酸ビニル−エチレン系共重合体が、マレイン酸変性されていることを特徴とする請求項2〜3のいずれかに記載の塩化ビニル系重合体組成物。 4. The vinyl chloride polymer composition according to claim 2, wherein the vinyl acetate-ethylene copolymer is modified with maleic acid. 該組成物中の層状膨潤性ケイ酸塩と酢酸ビニル−エチレン系共重合体の含有比率が質量比率で80:20〜20:80であることを特徴とする請求項1〜4のいずれかに記載の塩化ビニル系重合体組成物。 The content ratio of the layered swellable silicate and the vinyl acetate-ethylene copolymer in the composition is 80:20 to 20:80 in mass ratio. The vinyl chloride polymer composition described. 層状膨潤性ケイ酸塩が、組成物を950℃で完全燃焼させたときの残滓として、組成物の0.05〜10質量%を含有することを特徴とする請求項1〜5のいずれかに記載の塩化ビニル系重合体組成物。 The layered swellable silicate contains 0.05 to 10% by mass of the composition as a residue when the composition is completely burned at 950 ° C. The vinyl chloride polymer composition described. ASTM D5045―99に準じて測定した破壊靱性値が3.1MPa・m1/2以上となる請求項1〜6のいずれかに記載の塩化ビニル系重合体組成物。 The vinyl chloride polymer composition according to any one of claims 1 to 6, wherein a fracture toughness value measured according to ASTM D5045-99 is 3.1 MPa · m 1/2 or more. 請求項1〜7のいずれかに記載の塩化ビニル系重合体組成物を成形してなることを特徴とする成形品。 A molded article obtained by molding the vinyl chloride polymer composition according to any one of claims 1 to 7. 成形品がパイプである請求項8記載の成形品。 The molded article according to claim 8, wherein the molded article is a pipe.
JP2003430936A 2003-12-25 2003-12-25 Molded product molded from vinyl chloride polymer composition Expired - Fee Related JP4245472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430936A JP4245472B2 (en) 2003-12-25 2003-12-25 Molded product molded from vinyl chloride polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430936A JP4245472B2 (en) 2003-12-25 2003-12-25 Molded product molded from vinyl chloride polymer composition

Publications (2)

Publication Number Publication Date
JP2005187644A true JP2005187644A (en) 2005-07-14
JP4245472B2 JP4245472B2 (en) 2009-03-25

Family

ID=34789161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430936A Expired - Fee Related JP4245472B2 (en) 2003-12-25 2003-12-25 Molded product molded from vinyl chloride polymer composition

Country Status (1)

Country Link
JP (1) JP4245472B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393764A (en) * 2020-04-22 2020-07-10 四川省川汇塑胶有限公司 High-toughness high-strength PVC pipe material
JP7465943B1 (en) 2022-10-07 2024-04-11 南亞塑膠工業股▲分▼有限公司 Polyvinyl chloride resin composition and method for producing pipes having high heat resistance and high transparency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393764A (en) * 2020-04-22 2020-07-10 四川省川汇塑胶有限公司 High-toughness high-strength PVC pipe material
CN111393764B (en) * 2020-04-22 2022-03-18 四川省川汇塑胶有限公司 High-toughness high-strength PVC pipe material
JP7465943B1 (en) 2022-10-07 2024-04-11 南亞塑膠工業股▲分▼有限公司 Polyvinyl chloride resin composition and method for producing pipes having high heat resistance and high transparency

Also Published As

Publication number Publication date
JP4245472B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4268190B2 (en) Vinyl chloride nanocomposite resin composition having excellent impact resistance and method for producing the same
JP2003277574A5 (en)
CN109476900B (en) Polymer composition, method for the production thereof, use thereof and composition comprising the same
JP2009545667A (en) Nanoscale carboxylic acid / anhydride copolymer processing aids
JP7409359B2 (en) Polyvinyl chloride resin molded product and its manufacturing method
KR20070006858A (en) Vinyl chloride resin composition
JP4245472B2 (en) Molded product molded from vinyl chloride polymer composition
JP2001026724A (en) Thermoplastic resin composite material and its production
JP2012087177A (en) Oxazoline-based filler dispersion accelerator for polyolefin resin
JP3802818B2 (en) Vinyl chloride polymer composition and molded article molded from the composition
JP4396217B2 (en) Flame retardant polymer composition
JP2006274034A (en) Method for producing resin composition
KR100546792B1 (en) Flame Retardant Polypropylene Resin Composition comprising Nanoclay Masterbatch
JPWO2005097904A1 (en) Thermoplastic resin composition and molded body obtained from the thermoplastic resin composition
Rahim et al. Mechanical and thermal properties of poly (vinyl chloride)/poly (butylene adipate-co-terephthalate) clay nanocomposites
JP3749185B2 (en) Vinyl chloride polymer composition, process for producing the same, and molded article molded from the composition
JP2008063423A (en) Polyvinyl chloride resin composition
US11312854B2 (en) Polymer composition, its process of preparation and its use
JP2006104464A (en) Process for preparing polyolefin nanocomposite
JP2005036110A (en) Vinyl chloride resin plate for vacuum forming
EP1219678A1 (en) Use of a nanofiller-containing polyolefin composition for the production of improved articles
JP4990638B2 (en) Acrylic resin composition having excellent transparency and method for producing the same
JP2001055476A (en) Vinyl chloride resin composite material and its production
JP2005248000A (en) Polymer composition
JP2001011141A (en) Graft copolymer and thermoplastic resin composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Ref document number: 4245472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees