JP2005187509A - Molded item and modifier comprised of resin composition - Google Patents

Molded item and modifier comprised of resin composition Download PDF

Info

Publication number
JP2005187509A
JP2005187509A JP2003427302A JP2003427302A JP2005187509A JP 2005187509 A JP2005187509 A JP 2005187509A JP 2003427302 A JP2003427302 A JP 2003427302A JP 2003427302 A JP2003427302 A JP 2003427302A JP 2005187509 A JP2005187509 A JP 2005187509A
Authority
JP
Japan
Prior art keywords
group
resin composition
resin
isobutylene
aromatic vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003427302A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kimura
勝彦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2003427302A priority Critical patent/JP2005187509A/en
Publication of JP2005187509A publication Critical patent/JP2005187509A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded item and a modifier which are each comprised of a resin composition highly flexible and excellent in molding processability, rubber properties, mechanical strength, permanent compression set property and vibration-damping property. <P>SOLUTION: The molded item and the modifier are each comprised of the resin composition obtained by dynamic crosslinking of an isobutylene polymer bearing an alkenyl group on its end using a hydrosilyl group-bearing compound by melt-kneading in the presence of at least one selected from the group consisting of aromatic vinyl thermoplastic elastomers and olefin resins. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特定のイソブチレン系共重合体を動的架橋してなる樹脂組成物からなる成形体および改質剤に関する。   The present invention relates to a molded article and a modifier comprising a resin composition obtained by dynamically crosslinking a specific isobutylene copolymer.

従来、弾性を有する高分子材料としては、天然ゴムまたは合成ゴムなどのゴム類に架橋剤や補強剤などを配合して高温高圧下で架橋したものが汎用されている。しかしながらこの様なゴム類では、高温高圧下で長時間にわたって架橋および成形を行なう行程が必要であり、加工性に劣る。また架橋したゴムは熱可塑性を示さないため、熱可塑性樹脂のようにリサイクル成形が一般的に不可能である。そのため、通常の熱可塑性樹脂と同じように熱プレス成形、射出成形、および押出し成形などの汎用の溶融成形技術を利用して成型品を簡単に製造することのできる熱可塑性エラストマーが近年種々開発されている。   Conventionally, as a polymer material having elasticity, a material obtained by blending a rubber such as natural rubber or synthetic rubber with a crosslinking agent or a reinforcing agent and crosslinking under high temperature and high pressure has been widely used. However, such rubbers require a process of crosslinking and molding for a long time under high temperature and pressure, and are inferior in processability. Moreover, since the crosslinked rubber does not exhibit thermoplasticity, it is generally impossible to perform recycle molding like a thermoplastic resin. For this reason, various thermoplastic elastomers have recently been developed that can be used to easily produce molded products using general-purpose melt molding techniques such as hot press molding, injection molding, and extrusion molding in the same way as ordinary thermoplastic resins. ing.

また、柔軟性を有する材料として軟質塩化ビニルコンパウンドが汎用されている。これは、室温で柔軟な材料として様々な用途に用いられているが、近年の脱塩ビ化の要求から、他の材料での代替が要求されている。このための代替材料として熱可塑性エラストマー組成物が用いられている。   Moreover, a soft vinyl chloride compound is widely used as a flexible material. Although this is used for various uses as a flexible material at room temperature, substitution with other materials is requested | required from the request | requirement of devinylation in recent years. As an alternative material for this, a thermoplastic elastomer composition is used.

このような熱可塑性エラストマーには、現在、オレフィン系、ウレタン系、エステル系、スチレン系、塩化ビニル系などの種々の形式のポリマーが開発され、市販されている。   As such thermoplastic elastomers, various types of polymers such as olefins, urethanes, esters, styrenes, and vinyl chlorides have been developed and are commercially available.

これらのうちで、スチレン系熱可塑性エラストマーは、柔軟性に富み、常温で良好なゴム弾性に優れている。スチレン系熱可塑性エラストマーとしては、スチレン−ブタジエン−スチレンブロック共重合体(SBS)やスチレン−イソプレン−スチレンブロック共重合体(SIS)、またそれらを水素添加したスチレン−エチレンブチレン−スチレンブロック共重合体(SEBS)やスチレン−エチレンプロピレン−スチレンブロック共重合体(SEPS)などが開発されている。しかし、これらのブロック共重合体は、圧縮永久歪み特性が不充分であった。   Of these, the styrene thermoplastic elastomer is rich in flexibility and excellent in rubber elasticity at room temperature. Styrenic thermoplastic elastomers include styrene-butadiene-styrene block copolymers (SBS), styrene-isoprene-styrene block copolymers (SIS), and styrene-ethylenebutylene-styrene block copolymers obtained by hydrogenating them. (SEBS) and styrene-ethylenepropylene-styrene block copolymer (SEPS) have been developed. However, these block copolymers have insufficient compression set characteristics.

一方、柔軟性に富み、常温で良好なゴム弾性に優れ、さらにガスバリヤー性、密封性に優れた熱可塑性エラストマーとしては、イソブチレンを主体とする重合体ブロックと、芳香族ビニル系化合物を主体とする重合体ブロックとを含有するイソブチレン系ブロック共重合体が知られている。しかしながら、このイソブチレン系ブロック共重合体も、加熱時の加圧変形率(圧縮永久歪み)や高温時のゴム弾性に問題があった。   On the other hand, thermoplastic elastomers with excellent flexibility, excellent rubber elasticity at room temperature, and excellent gas barrier properties and sealing properties are mainly composed of polymer blocks mainly composed of isobutylene and aromatic vinyl compounds. An isobutylene block copolymer containing a polymer block is known. However, this isobutylene block copolymer also has problems in the pressure deformation rate (compression set) during heating and the rubber elasticity at high temperatures.

また、特許文献1には、イソブチレンを主体とする重合体ブロックを含有するイソブチレン系ブロック共重合体とゴムの架橋物からなる熱可塑性重合体組成物が開示されている。この組成物は圧縮永久歪特性が改善されたものであるが不充分であった。   Patent Document 1 discloses a thermoplastic polymer composition comprising an isobutylene block copolymer containing a polymer block mainly composed of isobutylene and a crosslinked rubber. This composition had improved compression set properties but was inadequate.

特許文献2および3には、上記の課題を解決するものとして、イソブチレン系重合体を芳香族ビニル系熱可塑性エラストマーまたはオレフィン系樹脂の存在下で動的架橋した熱可塑性エラストマー組成物が開示されている。この組成物は、イソブチレン系重合体の特徴である制振性に優れ、柔軟性や、成形加工性、ゴム的特性を有した上で、圧縮永久歪み特性が改良されたものである。しかし、特許文献2および3においては、熱可塑性エラストマー組成物に添加する添加剤や充填材についてほとんど開示されていないため、該組成物がどのような成形体として利用できるか、またどのような改質剤に利用できるのか、充分に知られていないのが現状である。   Patent Documents 2 and 3 disclose a thermoplastic elastomer composition obtained by dynamically crosslinking an isobutylene polymer in the presence of an aromatic vinyl-based thermoplastic elastomer or an olefin-based resin as a solution to the above problem. Yes. This composition is excellent in vibration damping, which is a characteristic of an isobutylene polymer, and has improved flexibility, molding processability, and rubber-like characteristics, and improved compression set characteristics. However, since Patent Documents 2 and 3 hardly disclose additives and fillers added to the thermoplastic elastomer composition, what kind of molded product the composition can be used for and what modifications At present, it is not well known whether it can be used as a quality agent.

再公表特許WO98/14518号公報Republished patent WO98 / 14518 再公表特許WO03/2654号公報Republished patent WO03 / 2654 特開2003−55528号公報JP 2003-55528 A

本発明の目的は、上述の従来技術の課題に鑑み、柔軟性に富み、成形加工性、ゴム的特性、機械的強度、圧縮永久歪み特性に優れた樹脂組成物からなる成形体および改質剤を提供することにある。   An object of the present invention is to provide a molded article and a modifier comprising a resin composition which is rich in flexibility and excellent in molding processability, rubber-like characteristics, mechanical strength and compression set characteristics in view of the above-mentioned problems of the prior art. Is to provide.

本発明者らは、上記課題を解決するために鋭意研究を積み重ねた結果、特定のイソブチレン系共重合体を動的架橋してなる樹脂組成物からなる成形体および改質剤が前記課題を解決することを見出し、本発明に至ったものである。   As a result of intensive research to solve the above problems, the present inventors have solved the above problems by using a molded article and a modifier comprising a resin composition obtained by dynamically crosslinking a specific isobutylene copolymer. The present invention has been found and the present invention has been achieved.

すなわち本発明は、末端にアルケニル基を有するイソブチレン系重合体が、芳香族ビニル系熱可塑性エラストマーおよびオレフィン系樹脂からなる群より選択される少なくとも1種の存在下で、ヒドロシリル基含有化合物により溶融混練下で動的架橋した樹脂組成物からなる成形体および改質剤に関する。   That is, in the present invention, the isobutylene polymer having an alkenyl group at the terminal is melt kneaded with the hydrosilyl group-containing compound in the presence of at least one selected from the group consisting of an aromatic vinyl thermoplastic elastomer and an olefin resin. The present invention relates to a molded article and a modifier comprising a resin composition dynamically crosslinked below.

前記樹脂組成物がさらに熱可塑性樹脂を含むことが好ましい。   It is preferable that the resin composition further contains a thermoplastic resin.

前記樹脂組成物がさらに軟化剤を含むことが好ましい。   It is preferable that the resin composition further contains a softening agent.

芳香族ビニル系熱可塑性エラストマーが、芳香族ビニル系化合物を主体とする単位とイソブチレンを主体とする単位からなるブロック共重合体であることが好ましい。   The aromatic vinyl-based thermoplastic elastomer is preferably a block copolymer comprising a unit mainly composed of an aromatic vinyl-based compound and a unit mainly composed of isobutylene.

末端にアルケニル基を有するイソブチレン系重合体が、数平均分子量1000〜500000であり、かつ1分子あたり少なくとも0.2個のアルケニル基を末端に有する重合体であることが好ましい。   The isobutylene polymer having an alkenyl group at the terminal is preferably a polymer having a number average molecular weight of 1,000 to 500,000 and at least 0.2 alkenyl groups per molecule per terminal.

本発明によれば、柔軟性に富み、成形加工性、ゴム的特性、機械的強度、圧縮永久歪み特性に優れた樹脂組成物からなる成形体および改質剤を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the molded object and modifier which are rich in a softness | flexibility and are excellent in a moldability, rubber-like characteristic, mechanical strength, and a compression set characteristic can be provided.

本発明は、末端にアルケニル基を有するイソブチレン系重合体が、芳香族ビニル系熱可塑性エラストマーおよびオレフィン系樹脂からなる群より選択される少なくとも1種の存在下で、ヒドロシリル基含有化合物により溶融混練下で動的架橋した樹脂組成物からなる成形体および改質剤である。   In the present invention, an isobutylene polymer having an alkenyl group at a terminal is melt kneaded with a hydrosilyl group-containing compound in the presence of at least one selected from the group consisting of an aromatic vinyl thermoplastic elastomer and an olefin resin. And a modifier comprising a dynamically crosslinked resin composition.

本発明に使用される、末端にアルケニル基を有するイソブチレン系重合体は、イソブチレンが50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上を占める重合体である。イソブチレン系重合体中の、イソブチレン以外の単量体としては、カチオン重合可能な単量体成分であればとくに限定されないが、芳香族ビニル類、脂肪族オレフィン類、ジエン類、ビニルエーテル類、シラン類、β−ピネン、ビニルカルバゾール、アセナフチレンなどの単量体が例示できる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。   The isobutylene polymer having an alkenyl group at the terminal used in the present invention is a polymer in which isobutylene accounts for 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. The monomer other than isobutylene in the isobutylene polymer is not particularly limited as long as it is a monomer component capable of cationic polymerization, but aromatic vinyls, aliphatic olefins, dienes, vinyl ethers, silanes. , Β-pinene, vinylcarbazole, acenaphthylene and the like. These may be used alone or in combination of two or more.

脂肪族オレフィン類としては、エチレン、プロピレン、1−ブテン、2−メチル−1−ブテン、3−メチル−1−ブテン、ペンテン、ヘキセン、シクロヘキセン、4−メチル−1−ペンテン、ビニルシクロヘキサン、オクテン、ノルボルネンなどがあげられる。   Aliphatic olefins include ethylene, propylene, 1-butene, 2-methyl-1-butene, 3-methyl-1-butene, pentene, hexene, cyclohexene, 4-methyl-1-pentene, vinylcyclohexane, octene, Examples include norbornene.

芳香族ビニル類としては、スチレン、o−、m−またはp−メチルスチレン、α−メチルスチレン、β−メチルスチレン、2,6−ジメチルスチレン、2,4−ジメチルスチレン、α−メチル−o−メチルスチレン、α−メチル−m−メチルスチレン、α−メチル−p−メチルスチレン、β−メチル−o−メチルスチレン、β−メチル−m−メチルスチレン、β−メチル−p−メチルスチレン、2,4,6−トリメチルスチレン、α−メチル−2,6−ジメチルスチレン、α−メチル−2,4−ジメチルスチレン、β−メチル−2,6−ジメチルスチレン、β−メチル−2,4−ジメチルスチレン、o−、m−またはp−クロロスチレン、2,6−ジクロロスチレン、2,4−ジクロロスチレン、α−クロロ−o−クロロスチレン、α−クロロ−m−クロロスチレン、α−クロロ−p−クロロスチレン、β−クロロ−o−クロロスチレン、β−クロロ−m−クロロスチレン、β−クロロ−p−クロロスチレン、2,4,6−トリクロロスチレン、α−クロロ−2,6−ジクロロスチレン、α−クロロ−2,4−ジクロロスチレン、β−クロロ−2,6−ジクロロスチレン、β−クロロ−2,4−ジクロロスチレン、o−、m−またはp−t−ブチルスチレン、o−、m−またはp−メトキシスチレン、o−、m−またはp−クロロメチルスチレン、o−、m−またはp−ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビニルナフタレン、ジビニルベンゼン、N,N−ジメチル−p−アミノエチルスチレン、N,N−ジエチル−p−アミノエチルスチレン、ビニルピリジンなどがあげられる。   Aromatic vinyls include styrene, o-, m- or p-methylstyrene, α-methylstyrene, β-methylstyrene, 2,6-dimethylstyrene, 2,4-dimethylstyrene, α-methyl-o-. Methyl styrene, α-methyl-m-methyl styrene, α-methyl-p-methyl styrene, β-methyl-o-methyl styrene, β-methyl-m-methyl styrene, β-methyl-p-methyl styrene, 2, 4,6-trimethylstyrene, α-methyl-2,6-dimethylstyrene, α-methyl-2,4-dimethylstyrene, β-methyl-2,6-dimethylstyrene, β-methyl-2,4-dimethylstyrene , O-, m- or p-chlorostyrene, 2,6-dichlorostyrene, 2,4-dichlorostyrene, α-chloro-o-chlorostyrene, α-chloro-m-alkyl Rollostyrene, α-chloro-p-chlorostyrene, β-chloro-o-chlorostyrene, β-chloro-m-chlorostyrene, β-chloro-p-chlorostyrene, 2,4,6-trichlorostyrene, α-chloro -2,6-dichlorostyrene, α-chloro-2,4-dichlorostyrene, β-chloro-2,6-dichlorostyrene, β-chloro-2,4-dichlorostyrene, o-, m- or pt -Butyl styrene, o-, m- or p-methoxy styrene, o-, m- or p-chloromethyl styrene, o-, m- or p-bromomethyl styrene, styrene derivatives substituted with silyl groups, indene, Vinylnaphthalene, divinylbenzene, N, N-dimethyl-p-aminoethylstyrene, N, N-diethyl-p-aminoethylstyrene, vinylpyridine Etc.

ジエン類としては、ブタジエン、イソプレン、ヘキサジエン、シクロペンタジエン、シクロヘキサジエン、ジシクロペンタジエン、ジビニルベンゼン、エチリデンノルボルネンなどがあげられる。   Examples of dienes include butadiene, isoprene, hexadiene, cyclopentadiene, cyclohexadiene, dicyclopentadiene, divinylbenzene, and ethylidene norbornene.

ビニルエーテル類としては、メチルビニルエーテル、エチルビニルエーテル、(n−、イソ)プロピルビニルエーテル、(n−、sec−、tert−、イソ)ブチルビニルエーテル、メチルプロペニルエーテル、エチルプロペニルエーテルなどがあげられる。   Examples of vinyl ethers include methyl vinyl ether, ethyl vinyl ether, (n-, iso) propyl vinyl ether, (n-, sec-, tert-, iso) butyl vinyl ether, methyl propenyl ether, ethyl propenyl ether, and the like.

シラン類としては、ビニルトリクロロシラン、ビニルメチルジクロロシラン、ビニルジメチルクロロシラン、ビニルジメチルメトキシシラン、ビニルトリメチルシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジメチルシラン、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、トリビニルメチルシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシランなどがあげられる。   Examples of silanes include vinyltrichlorosilane, vinylmethyldichlorosilane, vinyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyltrimethylsilane, divinyldichlorosilane, divinyldimethoxysilane, divinyldimethylsilane, 1,3-divinyl-1,1,3. , 3-tetramethyldisiloxane, trivinylmethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, and the like.

末端にアルケニル基を有するイソブチレン系重合体の数平均分子量にとくに制限はないが、1000から500000が好ましく、5000から200000がとくに好ましい。数平均分子量が1000未満の場合、機械的な特性が充分に発現されず、また、500000をこえる場合、成形性の低下が大きい。   The number average molecular weight of the isobutylene polymer having an alkenyl group at the terminal is not particularly limited, but is preferably from 1,000 to 500,000, particularly preferably from 5,000 to 200,000. When the number average molecular weight is less than 1000, mechanical properties are not sufficiently exhibited, and when the number average molecular weight exceeds 500,000, the moldability is greatly deteriorated.

末端にアルケニル基を有するイソブチレン系重合体のアルケニル基とは、ヒドロシリル基含有化合物による架橋反応に対して、活性のある炭素−炭素二重結合を含む基であればとくに制限されるものではない。具体例としては、ビニル基、アリル基、メチルビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基などの脂肪族不飽和炭化水素基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基などの環式不飽和炭化水素基をあげることができる。   The alkenyl group of the isobutylene polymer having an alkenyl group at the terminal is not particularly limited as long as it is a group containing an active carbon-carbon double bond with respect to a crosslinking reaction by a hydrosilyl group-containing compound. Specific examples include aliphatic unsaturated hydrocarbon groups such as vinyl group, allyl group, methyl vinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group. And cyclic unsaturated hydrocarbon groups such as

イソブチレン系重合体の末端へのアルケニル基の導入方法としては特開平3−152164号公報や特開平7−304909号公報に開示されているような、水酸基などの官能基を有する重合体に不飽和基を有する化合物を反応させて重合体に不飽和基を導入する方法があげられる。またハロゲン原子を有する重合体に不飽和基を導入するためにはアルケニルフェニルエーテルとのフリーデルクラフツ反応を行なう方法、ルイス酸存在下アリルトリメチルシランなどとの置換反応を行なう方法、種々のフェノール類とのフリーデルクラフツ反応を行ない水酸基を導入した上でさらに前記のアルケニル基導入反応を行なう方法などがあげられる。さらに米国特許第4316973号明細書、特開昭63−105005号公報、特開平4−288309号公報に開示されているように単量体の重合時に不飽和基を導入することも可能である。この中でもアリルトリメチルシランと塩素の置換反応により末端にアリル基を導入したものが、反応性の点から好ましい。   As a method for introducing an alkenyl group into the terminal of an isobutylene polymer, the polymer having a functional group such as a hydroxyl group is unsaturated as disclosed in JP-A-3-152164 and JP-A-7-304909. Examples thereof include a method of introducing an unsaturated group into a polymer by reacting a group-containing compound. In order to introduce an unsaturated group into a polymer having a halogen atom, a method of performing a Friedel-Crafts reaction with an alkenylphenyl ether, a method of performing a substitution reaction with allyltrimethylsilane in the presence of a Lewis acid, various phenols, etc. And the like, and the above-described alkenyl group-introducing reaction is further performed after introducing a hydroxyl group. Further, as disclosed in US Pat. No. 4,316,973, Japanese Patent Application Laid-Open No. 63-105005, and Japanese Patent Application Laid-Open No. 4-288309, an unsaturated group can be introduced during the polymerization of the monomer. Among these, those in which an allyl group is introduced at the terminal by a substitution reaction of allyltrimethylsilane and chlorine are preferable from the viewpoint of reactivity.

イソブチレン系重合体の末端のアルケニル基の量は、必要とする特性によって任意に選ぶことができるが、架橋後の圧縮永久歪みの観点から、1分子あたり少なくとも0.2個のアルケニル基を末端に有する重合体であることが好ましい。0.2個未満であると、架橋による圧縮永久歪みの改善効果が充分に得られない場合がある。   The amount of the alkenyl group at the end of the isobutylene polymer can be arbitrarily selected depending on the required properties, but from the viewpoint of compression set after crosslinking, at least 0.2 alkenyl groups per molecule are terminated. It is preferable that it is a polymer which has. If the number is less than 0.2, the effect of improving the compression set due to crosslinking may not be sufficiently obtained.

本発明に使用される芳香族ビニル系熱可塑性エラストマーの構造としては、ランダム共重合体でも、ブロック共重合体でもとくに制限はないが、芳香族ビニル系化合物を主体とする単位とイソブチレンを主体とする単位からなるブロック共重合体であることが好ましい。また芳香族ビニル系熱可塑性エラストマーは、芳香族ビニル系化合物を主体とする単位と共役ジエン化合物を主体とする単位からなるブロック共重合体、およびこれに水素添加して得られるブロック共重合体であることが好ましい。この中でも引張り強度が高くなるという点から、芳香族ビニル系化合物を主体とする単位−イソブチレンを主体とする単位−芳香族ビニル系化合物を主体とする単位からなるトリブロック共重合体がとくに好ましい。   The structure of the aromatic vinyl-based thermoplastic elastomer used in the present invention is not particularly limited, whether it is a random copolymer or a block copolymer, but is mainly composed of units mainly composed of an aromatic vinyl compound and isobutylene. It is preferable that it is a block copolymer which consists of a unit to do. The aromatic vinyl-based thermoplastic elastomer is a block copolymer composed of a unit mainly composed of an aromatic vinyl compound and a unit mainly composed of a conjugated diene compound, and a block copolymer obtained by hydrogenating the block copolymer. Preferably there is. Among these, a triblock copolymer consisting of a unit mainly composed of an aromatic vinyl compound, a unit mainly composed of isobutylene, and a unit mainly composed of an aromatic vinyl compound is particularly preferred from the viewpoint of high tensile strength.

芳香族ビニル系化合物としては、前記の芳香族ビニル系化合物を用いることができるが、上記化合物の中でもコストと物性および生産性のバランスからスチレン、α−メチルスチレン、p−メチルスチレン、インデンが好ましい。   As the aromatic vinyl compound, the above-mentioned aromatic vinyl compound can be used, but among the above compounds, styrene, α-methylstyrene, p-methylstyrene, and indene are preferable from the balance of cost, physical properties, and productivity. .

共役ジエン化合物としては1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、4,5−ジエチル−1,3−オクタジエン、3−ブチル−1,3−オクタジエン、クロロプレンなどがあげられるが、工業的に利用でき、また物性の優れた水添ジエン系重合体を得るには、1,3−ブタジエン、イソプレン、1,3−ペンタジエンが好ましく、1,3−ブタジエン、イソプレンがとくに好ましい。   Conjugated diene compounds include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4,5 -Diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene, etc. are mentioned. To obtain a hydrogenated diene polymer having industrial properties and excellent physical properties, 3-butadiene, isoprene and 1,3-pentadiene are preferred, and 1,3-butadiene and isoprene are particularly preferred.

イソブチレンを主体とする単位とは、イソブチレンが50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上を占めるブロックのことをいう。イソブチレンを主体とする単位中の、イソブチレン以外の単量体は、カチオン重合可能な単量体成分であればとくに限定されないが、芳香族ビニル類、脂肪族オレフィン類、ジエン類、ビニルエーテル類、シラン類、β−ピネン、ビニルカルバゾール、アセナフチレンなどの単量体が例示できる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。   The unit mainly composed of isobutylene means a block in which isobutylene occupies 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. The monomer other than isobutylene in the unit mainly composed of isobutylene is not particularly limited as long as it is a monomer component capable of cationic polymerization, but aromatic vinyls, aliphatic olefins, dienes, vinyl ethers, silanes. And monomers such as β-pinene, vinylcarbazole, and acenaphthylene. These may be used alone or in combination of two or more.

芳香族ビニル系熱可塑性エラストマー中の芳香族ビニル化合物の割合に関しては、とくに制限はないが、物性と加工性のバランスから、5〜80重量%であることが好ましく、10〜40重量%であることがとくに好ましい。   The ratio of the aromatic vinyl compound in the aromatic vinyl-based thermoplastic elastomer is not particularly limited, but is preferably 5 to 80% by weight, and preferably 10 to 40% by weight from the balance between physical properties and processability. Particularly preferred.

芳香族ビニル系熱可塑性エラストマーの数平均分子量にもとくに制限はないが、15000から500000が好ましく、40000から200000がとくに好ましい。数平均分子量が15000未満の場合、引張り特性などの機械的な特性が不充分となる傾向があり、また、500000をこえる場合、成形性の低下が著しくなる傾向がある。   The number average molecular weight of the aromatic vinyl-based thermoplastic elastomer is not particularly limited, but is preferably 15,000 to 500,000, particularly preferably 40,000 to 200,000. If the number average molecular weight is less than 15,000, mechanical properties such as tensile properties tend to be insufficient, and if it exceeds 500,000, the moldability tends to deteriorate significantly.

本発明で用いるオレフィン系樹脂とは、エチレンおよび炭素数3〜20のα−オレフィンから選ばれる単量体を主成分とする単独重合体または共重合体である。このような例としては、ポリエチレン(高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン)、ポリプロピレン(アイソタクチック−ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、シンジオタクチック−ホモポリプロピレン)、ポリ−1−ブテン、エチレン−プロピレン共重合体、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体などがあげられる。これらの中でも、耐熱性の観点から、結晶性を有する、ポリプロピレンおよびポリエチレンが好ましい。さらに、機械特性の観点からは、ランダムポリプロピレンが最も好ましく、圧縮永久歪み特性の観点からは、高密度ポリエチレンが最も好ましい。   The olefin resin used in the present invention is a homopolymer or copolymer having as a main component a monomer selected from ethylene and an α-olefin having 3 to 20 carbon atoms. Examples of such include polyethylene (high density polyethylene, low density polyethylene, linear low density polyethylene), polypropylene (isotactic-homopolypropylene, random polypropylene, block polypropylene, syndiotactic-homopolypropylene), poly- Examples thereof include 1-butene, ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene-1-hexene copolymer, and ethylene-1-octene copolymer. Among these, from the viewpoint of heat resistance, polypropylene and polyethylene having crystallinity are preferable. Further, from the viewpoint of mechanical properties, random polypropylene is most preferable, and from the viewpoint of compression set properties, high-density polyethylene is most preferable.

本発明において、末端にアルケニル基を有するイソブチレン系重合体は、芳香族ビニル系熱可塑性エラストマーおよびオレフィン系樹脂からなる群より選択される少なくとも1種の存在下で、ヒドロシリル基含有化合物により、溶融混練下で動的架橋されてなる組成物を形成している。動的架橋は、通常の化学架橋(静的架橋)と異なり、溶融混練下で架橋反応が進行することで、生成したポリマーネットワークが剪断力により分断され、架橋後も熱可塑性を示すことが特徴である。本来、イソブチレン系重合体には架橋性の官能基がなく、また、架橋反応として汎用的に用いられるラジカル反応では分解反応が起こりやすいという傾向があった。本発明では、イソブチレン系重合体の末端にアルケニル基を導入することで、ヒドロシリル化反応を可能とし、ヒドロシリル基含有化合物を架橋剤として使用する架橋反応を可能としている。このヒドロシリル化反応には、副生成物の発生がなく、また不要な副反応を起こさないなどの利点がある。   In the present invention, the isobutylene polymer having an alkenyl group at the terminal is melt kneaded with a hydrosilyl group-containing compound in the presence of at least one selected from the group consisting of an aromatic vinyl thermoplastic elastomer and an olefin resin. A composition is formed which is dynamically cross-linked underneath. Dynamic crosslinking differs from normal chemical crosslinking (static crosslinking) in that the crosslinking reaction proceeds under melt-kneading, resulting in the polymer network being broken by shearing force and exhibiting thermoplasticity after crosslinking. It is. Originally, the isobutylene-based polymer has no crosslinkable functional group, and the radical reaction generally used as a crosslinking reaction tends to cause a decomposition reaction. In the present invention, by introducing an alkenyl group at the end of the isobutylene polymer, a hydrosilylation reaction is possible, and a crosslinking reaction using a hydrosilyl group-containing compound as a crosslinking agent is possible. This hydrosilylation reaction has advantages such as no generation of by-products and no unnecessary side reactions.

本発明において、末端にアルケニル基を有するイソブチレン系重合体の架橋物を得るためのヒドロシリル基含有化合物としてはとくに制限はなく、各種のものを用いることができる。すなわち、一般式(I)または(II)で表される鎖状ポリシロキサン;
1 3SiO−[Si(R12O]a−[Si(H)(R2)O]b−[Si(R2)(R3)O]c−SiR1 3 (I)
HR1 2SiO−[Si(R12O]a−[Si(H)(R2)O]b−[Si(R2)(R3)O]c−SiR1 2H (II)
(式中、R1およびR2は炭素数1〜6のアルキル基、または、フェニル基、R3は炭素数1〜10のアルキル基またはアラルキル基を示す。aは0≦a≦100、bは2≦b≦100、cは0≦c≦100を満たす整数を示す。)
一般式(III)で表される環状シロキサン;
In the present invention, the hydrosilyl group-containing compound for obtaining a crosslinked product of an isobutylene polymer having an alkenyl group at the terminal is not particularly limited, and various compounds can be used. That is, a linear polysiloxane represented by the general formula (I) or (II);
R 1 3 SiO- [Si (R 1) 2 O] a - [Si (H) (R 2) O] b - [Si (R 2) (R 3) O] c -SiR 1 3 (I)
HR 1 2 SiO- [Si (R 1) 2 O] a - [Si (H) (R 2) O] b - [Si (R 2) (R 3) O] c -SiR 1 2 H (II)
(Wherein R 1 and R 2 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, R 3 represents an alkyl group having 1 to 10 carbon atoms or an aralkyl group. A represents 0 ≦ a ≦ 100, b Represents an integer satisfying 2 ≦ b ≦ 100 and c satisfying 0 ≦ c ≦ 100.)
A cyclic siloxane represented by the general formula (III);

Figure 2005187509
Figure 2005187509

(式中、R4およびR5は炭素数1〜6のアルキル基、または、フェニル基、R6は炭素数1〜10のアルキル基またはアラルキル基を示す。dは0≦d≦8、eは2≦e≦10、fは0≦f≦8の整数を表し、かつ3≦d+e+f≦10を満たす。)などの化合物を用いることができる。さらに上記のヒドロシリル基(Si−H基)を有する化合物のうち、相溶性がよいという点から、とくに下記の一般式(IV)で表されるものが好ましい。 (In the formula, R 4 and R 5 represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, R 6 represents an alkyl group having 1 to 10 carbon atoms or an aralkyl group. D represents 0 ≦ d ≦ 8, e 2 ≦ e ≦ 10, f represents an integer of 0 ≦ f ≦ 8, and 3 ≦ d + e + f ≦ 10 is satisfied). Furthermore, among the compounds having the above hydrosilyl group (Si—H group), those represented by the following general formula (IV) are particularly preferable from the viewpoint of good compatibility.

Figure 2005187509
Figure 2005187509

(式中、g、hは整数であり2≦g+h≦50、2≦g、0≦hである。R7は水素原子またはメチル基を表し、R8は炭素数2〜20の炭化水素基で1つ以上の芳香環を有していてもよい。iは0≦i≦5の整数である。)
末端にアルケニル基を有するイソブチレン系重合体とヒドロシリル基含有化合物は任意の割合で混合することができるが、反応性の面から、アルケニル基のヒドロシリル基に対するモル比が5〜0.2の範囲にあることが好ましく、さらに、2.5〜0.4であることがとくに好ましい。モル比が5以上になると架橋が不充分でべとつきがあり、圧縮永久歪み特性が悪化する傾向が見られ、また、0.2より小さいと、架橋後も活性なヒドロシリル基が大量に残るので、加水分解により水素ガスが発生し、クラックやボイドを生じやすい傾向がある。
(In the formula, g and h are integers, and 2 ≦ g + h ≦ 50, 2 ≦ g, and 0 ≦ h. R 7 represents a hydrogen atom or a methyl group, and R 8 represents carbonization having 2 to 20 carbon atoms. (It may be a hydrogen group and may have one or more aromatic rings. I is an integer of 0 ≦ i ≦ 5.)
The isobutylene polymer having an alkenyl group at the terminal and the hydrosilyl group-containing compound can be mixed at an arbitrary ratio, but from the viewpoint of reactivity, the molar ratio of the alkenyl group to the hydrosilyl group is in the range of 5 to 0.2. It is preferable that the ratio is 2.5 to 0.4. When the molar ratio is 5 or more, the crosslinking is insufficient and sticky, and the compression set tends to deteriorate. When the molar ratio is less than 0.2, a large amount of active hydrosilyl groups remain even after crosslinking. Hydrogen gas is generated by hydrolysis and tends to cause cracks and voids.

イソブチレン系重合体とヒドロシリル基含有化合物との架橋反応は、2成分を混合して加熱することにより進行するが、反応をより迅速に進めるために、ヒドロシリル化触媒を添加することができる。このようなヒドロシリル化触媒としてはとくに限定されず、たとえば、有機過酸化物やアゾ化合物などのラジカル開始剤、および遷移金属触媒があげられる。   The cross-linking reaction between the isobutylene polymer and the hydrosilyl group-containing compound proceeds by mixing and heating the two components, but a hydrosilylation catalyst can be added to advance the reaction more rapidly. Such a hydrosilylation catalyst is not particularly limited, and examples thereof include radical initiators such as organic peroxides and azo compounds, and transition metal catalysts.

ラジカル開始剤としてはとくに限定されず、たとえば、ジ−t−ブチルペルオキシド、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)−3−ヘキシン、ジクミルペルオキシド、t−ブチルクミルペルオキシド、α,α’−ビス(t−ブチルペルオキシ)イソプロピルベンゼンのようなジアルキルペルオキシド、ベンゾイルペルオキシド、p−クロロベンゾイルペルオキシド、m−クロロベンゾイルペルオキシド、2,4−ジクロロベンゾイルペルオキシド、ラウロイルペルオキシドのようなアシルペルオキシド、過安息香酸−t−ブチルのような過酸エステル、過ジ炭酸ジイソプロピル、過ジ炭酸ジ−2−エチルヘキシルのようなペルオキシジカーボネート、1,1−ジ(t−ブチルペルオキシ)シクロヘキサン、1,1−ジ(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサンのようなペルオキシケタール、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2−メチルブチロニトリル、1,1’−アゾビス−1−シクロヘキサンカルボニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾイソブチロバレロニトリルのようなアゾ化合物などをあげることができる。   The radical initiator is not particularly limited, and examples thereof include di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di ( t-butylperoxy) -3-hexyne, dicumyl peroxide, t-butylcumyl peroxide, dialkyl peroxides such as α, α′-bis (t-butylperoxy) isopropylbenzene, benzoyl peroxide, p-chlorobenzoyl peroxide, of m-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, acyl peroxides such as lauroyl peroxide, peracid esters such as t-butyl perbenzoate, diisopropyl percarbonate, di-2-ethylhexyl percarbonate Peroxydicarbonate such as 1, Peroxyketals such as 1-di (t-butylperoxy) cyclohexane, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,2′-azobisisobutyronitrile, 2 2,2'-azobis-2-methylbutyronitrile, 1,1'-azobis-1-cyclohexanecarbonitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azoisobuty An azo compound such as lovaleronitrile can be given.

また、遷移金属触媒としてもとくに限定されず、たとえば、白金単体、アルミナ、シリカ、カーボンブラックなどの担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトンなどとの錯体、白金−オレフィン錯体、白金(0)−ジアルケニルテトラメチルジシロキサン錯体があげられる。白金化合物以外の触媒の例としては、RhCl(PPh33,RhCl3,RuCl3,IrCl3,FeCl3,AlCl3,PdCl2・H2O,NiCl2,TiCl4などがあげられる。これらの触媒は単独で用いてもよく、2種類以上を併用してもかまわない。これらのうち、相溶性、架橋効率、スコーチ安定性の点で、白金ビニルシロキサンが最も好ましい。 Also, the transition metal catalyst is not particularly limited. For example, platinum solid, alumina, silica, carbon black or the like dispersed in a platinum solid, chloroplatinic acid, chloroplatinic acid and alcohol, aldehyde, ketone, etc. Complex, platinum-olefin complex, and platinum (0) -dialkenyltetramethyldisiloxane complex. Examples of the catalyst other than platinum compounds, RhCl (PPh 3) 3, RhCl 3, RuCl 3, IrCl 3, FeCl 3, AlCl 3, PdCl 2 · H 2 O, such as NiCl 2, TiCl 4 and the like. These catalysts may be used alone or in combination of two or more. Of these, platinum vinyl siloxane is most preferred in terms of compatibility, crosslinking efficiency, and scorch stability.

触媒量としてはとくに制限はないが、イソブチレン系重合体のアルケニル基1molに対し、10-1〜10-8molの範囲で用いるのが良く、好ましくは10-3〜10-6molの範囲で用いるのがよい。10-8molより少ないと架橋が充分に進行しない傾向がある。また、10-1mol以上用いても明確な効果は見られないため、経済性の面から、10-1molよりも少ないことが好ましい。 Although there is no restriction | limiting in particular as a catalyst amount, It is good to use in the range of 10 < -1 > -10 <-8> mol with respect to 1 mol of alkenyl groups of an isobutylene type polymer, Preferably it is the range of 10 < -3 > -10 <-6> mol. It is good to use. When the amount is less than 10 −8 mol, crosslinking tends not to proceed sufficiently. Moreover, since a clear effect is not seen even if it uses 10 <-1 > mol or more, it is preferable that it is less than 10 < -1 > mol from the surface of economical efficiency.

本発明において、芳香族ビニル系熱可塑性エラストマーおよびオレフィン系樹脂からなる群より選択される少なくとも1種の配合量は、末端にアルケニル基を有するイソブチレン系重合体100重量部に対し、0.5〜900重量部、好ましくは5〜100重量部である。配合量が900重量部をこえると、圧縮永久歪み特性が悪化する傾向にある。また、100重量部以下の場合は、アルケニル基の濃度が充分に高いため、架橋反応の反応速度が速くなり、好ましい。一方、0.5重量部を下回ると成形性の低下が著しくなる傾向にある。   In the present invention, the blending amount of at least one selected from the group consisting of an aromatic vinyl-based thermoplastic elastomer and an olefin resin is 0.5 to 100 parts by weight with respect to 100 parts by weight of an isobutylene-based polymer having an alkenyl group at the terminal. 900 parts by weight, preferably 5 to 100 parts by weight. When the blending amount exceeds 900 parts by weight, compression set characteristics tend to deteriorate. Further, the case of 100 parts by weight or less is preferable because the concentration of the alkenyl group is sufficiently high, and the reaction rate of the crosslinking reaction is increased. On the other hand, if the amount is less than 0.5 parts by weight, the moldability tends to be significantly reduced.

本発明では、動的架橋した前記樹脂組成物がさらに熱可塑性樹脂を含むことが好ましい。熱可塑性樹脂としては、(i)汎用熱可塑性樹脂、(ii)汎用エンジニアリングプラスチック、および(iii)特殊エンジニアリングプラスチックなどがあげられる。   In the present invention, it is preferable that the dynamically crosslinked resin composition further contains a thermoplastic resin. Examples of the thermoplastic resin include (i) general-purpose thermoplastic resin, (ii) general-purpose engineering plastic, and (iii) special engineering plastic.

(i)汎用熱可塑性樹脂としては、ポリオレフィン系樹脂、芳香族ビニル化合物系樹脂、ポリ塩化ビニル系樹脂、ポリアクリル系樹脂、ポリエーテル系樹脂などがあげられる。   (i) Examples of the general-purpose thermoplastic resin include polyolefin resin, aromatic vinyl compound resin, polyvinyl chloride resin, polyacrylic resin, and polyether resin.

ポリオレフィン系樹脂としては、α−オレフィンの単独重合体、ランダム共重合体、ブロック共重合体およびそれらの混合物、またはα−オレフィンと他の不飽和単量体とのランダム共重合体、ブロック共重合体、グラフト共重合体およびこれら重合体の酸化、ハロゲン化またはスルホン化したものなどがあげられる。具体的には、ポリエチレン、エチレン−プロピレン共重合体、エチレン−プロピレン−非共役ジエン共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体、エチレン−オクテン共重合体、その他のエチレン−αオレフィン系共重合体、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−エチルアクリレート共重合体、塩素化ポリエチレンなどのポリエチレン系樹脂、ポリプロピレン、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体、塩素化ポリプロピレンなどのポリプロピレン系樹脂、ポリブテン、ポリイソブチレン、ポリメチルペンテン、環状オレフィンの(共)重合体などがあげられる。これらの中でコスト、樹脂組成物の物性バランスの点からポリエチレン系樹脂、ポリプロピレン系樹脂、またはこれらの混合物が好ましく使用できる。   Examples of polyolefin resins include α-olefin homopolymers, random copolymers, block copolymers and mixtures thereof, or random copolymers of α-olefins and other unsaturated monomers, block copolymers. Examples thereof include polymers, graft copolymers and oxidized, halogenated or sulfonated polymers of these polymers. Specifically, polyethylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-octene copolymer, other ethylene- α-olefin copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-ethyl acrylate copolymer, polyethylene resin such as chlorinated polyethylene, polypropylene, propylene-ethylene random copolymer, Examples thereof include propylene-ethylene block copolymers, polypropylene resins such as chlorinated polypropylene, polybutene, polyisobutylene, polymethylpentene, and cyclic olefin (co) polymers. Among these, a polyethylene resin, a polypropylene resin, or a mixture thereof can be preferably used from the viewpoint of cost and physical property balance of the resin composition.

芳香族ビニル化合物系樹脂としては、ポリスチレン、ハイインパクトポリスチレン、ポリ−α−メチルスチレン、ポリ−p−メチルスチレン、スチレン−無水マレイン酸共重合体などがあげられる。   Examples of the aromatic vinyl compound resin include polystyrene, high impact polystyrene, poly-α-methylstyrene, poly-p-methylstyrene, and styrene-maleic anhydride copolymer.

ポリ塩化ビニル系樹脂としては、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリ塩化ビニルなどがあげられる。   Examples of the polyvinyl chloride resin include polyvinyl chloride, polyvinylidene chloride, and chlorinated polyvinyl chloride.

ポリアクリル系樹脂としては、アクリロニトリル−スチレン樹脂(AS)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS)、アクリロニトリル−ブタジエン−α−メチルスチレン(耐熱ABS)、ポリメチルメタクリレート、メチルメタクリレート−スチレン共重合体などがあげられる。   Examples of polyacrylic resins include acrylonitrile-styrene resin (AS), acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-butadiene-α-methylstyrene (heat-resistant ABS), polymethyl methacrylate, and methyl methacrylate-styrene copolymer. Can be given.

ポリエーテル系樹脂としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリテトラヒドロフランなどがあげられる。   Examples of the polyether resin include polyethylene oxide, polypropylene oxide, and polytetrahydrofuran.

(ii)汎用エンジニアリングプラスチックとしては、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリメチルペンテン、超高分子量ポリエチレンなどがあげられる。   (ii) Examples of general-purpose engineering plastics include polyamide resins, polyester resins, polycarbonate resins, polyacetal resins, polyphenylene ether resins, polymethylpentene, and ultrahigh molecular weight polyethylene.

ポリアミド系樹脂としては、ナイロン−6、ナイロン−66、ナイロン−11、ナイロン−12、ナイロン−46、ナイロン−610、ナイロン−612などがあげられる。   Examples of the polyamide-based resin include nylon-6, nylon-66, nylon-11, nylon-12, nylon-46, nylon-610, nylon-612, and the like.

ポリエステル系樹脂としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリアリレート、無定形ポリエチレンテレフタレート、結晶性ポリエチレンテレフタレートなどがあげられる。   Examples of polyester resins include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyarylate, amorphous polyethylene terephthalate, and crystalline polyethylene terephthalate.

ポリカーボネート系樹脂としては、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、ビスェノールAの芳香族水素の一部または全部を、アルキル基、ハロゲン原子で置換したもの、ヒドロキノン、ビス(4−ヒドロキシフェニル)スルホンなどに基づいて形成されるポリカーボネート系樹脂などがあげられる。   Polycarbonate resins include 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), those in which a part or all of the aromatic hydrogen of bisphenol A is substituted with an alkyl group or a halogen atom, hydroquinone, bis ( Examples thereof include polycarbonate resins formed on the basis of 4-hydroxyphenyl) sulfone and the like.

ポリアセタール系樹脂としては、ポリオキシメチレンなどがあげられる。   Examples of the polyacetal resin include polyoxymethylene.

ポリフェニレンエーテル系樹脂としては、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2,6−ジブチル−1,4−フェニレン)エーテル、ポリ(2,6−ジフェニル−1,4−フェニレン)エーテル、ポリ(2,6−ジメトキシ−1,4−フェニレン)エーテル、ポリ(2,6−ジクロロ−1,4−フェニレン)エーテルなどがあげられる。   Examples of polyphenylene ether resins include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, and poly (2,6-dibutyl-1 , 4-phenylene) ether, poly (2,6-diphenyl-1,4-phenylene) ether, poly (2,6-dimethoxy-1,4-phenylene) ether, poly (2,6-dichloro-1,4) -Phenylene) ether and the like.

(iii)特殊エンジニアリングプラスチックとしては、ポリスルホン系樹脂、ポリスルフィド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリエーテルイミド系樹脂、フッ素系樹脂、熱可塑性ポリウレタン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルケトン系樹脂、サーモトロピック液晶樹脂などがあげられる。   (iii) Special engineering plastics include polysulfone resins, polysulfide resins, polyimide resins, polyamideimide resins, polyetherimide resins, fluorine resins, thermoplastic polyurethane resins, polyethersulfone resins, polyethers Examples thereof include ketone-based resins and thermotropic liquid crystal resins.

ポリスルホン系樹脂としては、ポリ(エーテルスルホン)、ポリ(4,4’−ビスフェノールエーテルスルホン)などがあげられる。   Examples of the polysulfone resin include poly (ether sulfone) and poly (4,4'-bisphenol ether sulfone).

ポリスルフィド系樹脂としては、ポリフェニレンスルフィド、ポリ(4,4’−ジフェニレンスルフィド)などがあげられる。   Examples of the polysulfide resin include polyphenylene sulfide and poly (4,4'-diphenylene sulfide).

ポリエーテルケトン系樹脂としては、ポリエーテルエーテルケトンなどがあげられる。   Examples of the polyether ketone resin include polyether ether ketone.

サーモトロピック液晶樹脂としては、p−ヒドロキシ安息香酸、ビフェノールおよびテレフタル酸の共重合体、p−ヒドロキシ安息香酸および6−ヒドロキシ−2−ナフトエ酸の共重合体、ポリエチレンテレフタレート(PET)およびp−ヒドロキシ安息香酸の共重合体などがあげられる。   Examples of thermotropic liquid crystal resins include p-hydroxybenzoic acid, a copolymer of biphenol and terephthalic acid, a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, polyethylene terephthalate (PET), and p-hydroxy. Examples include benzoic acid copolymers.

熱可塑性樹脂の配合量は、動的架橋された前記樹脂組成物の合計量100重量部に対し、5〜200重量部であることが好ましく、5〜100重量部であるのがさらに好ましい。200重量部をこえると、圧縮永久歪み特性の悪化が著しくなる傾向にあり、5重量部より少なくなると成形性が著しく低くなる傾向にある。   The blending amount of the thermoplastic resin is preferably 5 to 200 parts by weight, and more preferably 5 to 100 parts by weight with respect to 100 parts by weight of the total amount of the dynamically crosslinked resin composition. When the amount exceeds 200 parts by weight, the compression set characteristic tends to be remarkably deteriorated. When the amount is less than 5 parts by weight, the moldability tends to be remarkably lowered.

本発明の動的架橋された樹脂組成物に熱可塑性樹脂を溶融混練するには、公知の方法を採用すればよく、前述のバッチ式混練装置や連続式混練装置を使用することができる。たとえば、各成分を計量し、タンブラーや、ヘンシェルミキサー、リボブレンダーなどで混合したのち、押出機や、バンバリーミキサー、ロールなどで溶融混練する方法があげられる。このときの混練温度は、とくに限定はないが、100〜250℃の範囲が好ましく、150〜220℃の範囲がより好ましい。混練温度が100℃よりも低くなると、溶融が不充分となる傾向があり、250℃よりも高くなると、加熱による劣化が起こり始める傾向がある。   In order to melt-knead the thermoplastic resin to the dynamically crosslinked resin composition of the present invention, a known method may be employed, and the above-described batch kneader or continuous kneader can be used. For example, there is a method in which each component is weighed and mixed with a tumbler, a Henschel mixer, a riboblender or the like and then melt kneaded with an extruder, a Banbury mixer, a roll or the like. Although the kneading | mixing temperature at this time does not have limitation in particular, the range of 100-250 degreeC is preferable, and the range of 150-220 degreeC is more preferable. When the kneading temperature is lower than 100 ° C., melting tends to be insufficient, and when it is higher than 250 ° C., deterioration due to heating tends to start.

本発明の樹脂組成物には、成形性や柔軟性を向上させるため、さらに軟化剤を添加することができる。軟化剤としてはとくに限定されないが、通常、室温で液体または液状の材料が好適に用いられる。また親水性および疎水性のいずれの軟化剤も使用できる。このような軟化剤としては鉱物油系、植物油系、合成系などの各種ゴム用または樹脂用軟化剤があげられる。   A softener can be further added to the resin composition of the present invention in order to improve moldability and flexibility. Although it does not specifically limit as a softening agent, Usually, a liquid or liquid material is used suitably at room temperature. Both hydrophilic and hydrophobic softeners can be used. Such softeners include various rubber or resin softeners such as mineral oils, vegetable oils, and synthetics.

鉱物油としては、パラフィン系オイル、ナフテン系オイル、および芳香族系の高沸点石油成分があげられる。このなかでも架橋反応を阻害しないパラフィン系オイルが好ましい。植物油系としては、ひまし油、綿実油、あまみ油、なたね油、大豆油、パーム油、やし油、落花生油、木ろう、パインオイル、オリーブ油などがあげられる。合成系としては、ポリブテン、水添ポリブテン、液状ポリブタジエン、水添液状ポリブタジエン、液状ポリα−オレフィン類などの液状もしくは低分子量の合成油があげられる。これら軟化剤は所望の粘度および物性を得るために2種以上を適宜組み合わせて使用することも可能である。   Mineral oils include paraffinic oils, naphthenic oils, and aromatic high-boiling petroleum components. Of these, paraffinic oil that does not inhibit the crosslinking reaction is preferred. Examples of vegetable oils include castor oil, cottonseed oil, ramie oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, wax, pine oil, olive oil and the like. Synthetic systems include liquid or low molecular weight synthetic oils such as polybutene, hydrogenated polybutene, liquid polybutadiene, hydrogenated liquid polybutadiene, and liquid poly α-olefins. These softeners can be used in an appropriate combination of two or more in order to obtain the desired viscosity and physical properties.

軟化剤の配合量は、末端にアルケニル基を有するイソブチレン系重合体100重量部に対し、1〜300重量部であることが好ましい。配合量が300重量部をこえると、べとつきが生じたり、機械的強度の低下が起こる傾向がある。   The blending amount of the softening agent is preferably 1 to 300 parts by weight with respect to 100 parts by weight of the isobutylene polymer having an alkenyl group at the terminal. If the blending amount exceeds 300 parts by weight, stickiness or mechanical strength tends to decrease.

さらに本発明の成形体および改質剤の性能を損なわない範囲であれば、熱可塑性エラストマー、ライオトロピック液晶樹脂、液状樹脂、熱硬化性樹脂、架橋ゴムなどを配合してもよい。   Furthermore, a thermoplastic elastomer, a lyotropic liquid crystal resin, a liquid resin, a thermosetting resin, a cross-linked rubber, or the like may be added as long as the performance of the molded article and the modifier of the present invention is not impaired.

熱可塑性エラストマーとしては、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、スチレン−イソプレン−スチレンブロック共重合体(SIS)、スチレン−エチレン/ブチレン−スチレンブロック共重合体(SEBS)、スチレン−エチレン/プロピレン−スチレンブロック共重合体(SEPS)、およびこれらの水添系エラストマー、ポリオレフィン系、ポリジエン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、フッ素系、シリコーン系、アイオノマー系などの各種エラストマーなどがあげられる。   Thermoplastic elastomers include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene / butylene-styrene block copolymer (SEBS), and styrene-ethylene. / Propylene-styrene block copolymer (SEPS) and their hydrogenated elastomers, polyolefins, polydienes, polyvinyl chlorides, polyurethanes, polyesters, polyamides, fluorines, silicones, ionomers, etc. Examples include various elastomers.

ライオトロピック液晶樹脂としては、アラミド、ポリp−フェニレンベンゾビスチアゾール、ポリテレフタロイルフドラジドなどがあげれられる。   Examples of the lyotropic liquid crystal resin include aramid, poly p-phenylene benzobisthiazole, polyterephthaloyl hydrazide, and the like.

液状樹脂としては、シリコーン系樹脂、変性シリコーン(MS)系樹脂、ポリイソブチレン(PIB)系樹脂、ポリサルファイド系樹脂、変性ポリサルファイド系樹脂、ポリウレタン系樹脂、ポリアクリル系樹脂、ポリアクリルウレタン系樹脂などがあげられる。   Examples of liquid resins include silicone resins, modified silicone (MS) resins, polyisobutylene (PIB) resins, polysulfide resins, modified polysulfide resins, polyurethane resins, polyacrylic resins, and polyacrylurethane resins. can give.

熱硬化性樹脂としては、不飽和ポリエステル系樹脂、エポキシ系樹脂、ヒドロシリル化架橋系樹脂、フェノール系樹脂、アルキッド系樹脂、ジアリルフタレート系樹脂、ユリア系樹脂、ポリウレタン系樹脂、メラミン系樹脂などがあげられる。   Examples of thermosetting resins include unsaturated polyester resins, epoxy resins, hydrosilylated crosslinking resins, phenol resins, alkyd resins, diallyl phthalate resins, urea resins, polyurethane resins, melamine resins, and the like. It is done.

架橋ゴムとしては、天然ゴム系、ポリブタジエン系ゴム(PBD)、スチレン−ブタジエン系ゴム(SBR)、水添スチレン−ブタジエン系ゴム、アクリロニトリル−ブタジエン系ゴム、ブチルゴム、塩素化ブチルゴム、クロロプレン系ゴム、アクリルゴム、ウレタンゴム、イソプレン系ゴム、エチレン−プロピレンゴム、フッ素系ゴム、シリコーン系ゴムなどがあげられる。   Cross-linked rubbers include natural rubber, polybutadiene rubber (PBD), styrene-butadiene rubber (SBR), hydrogenated styrene-butadiene rubber, acrylonitrile-butadiene rubber, butyl rubber, chlorinated butyl rubber, chloroprene rubber, acrylic. Examples thereof include rubber, urethane rubber, isoprene rubber, ethylene-propylene rubber, fluorine rubber, and silicone rubber.

さらに本発明における樹脂組成物には、物性改良あるいは経済上のメリットから充填材および補強材を配合することができる。好適な充填材、補強材としては、ハードクレー、ソフトクレー、カオリンクレー、珪藻土、ケイ砂、軽石粉、スレート粉、乾式または湿式シリカ、無定形シリカ、ウォラスナイト、合成または天然ゼオライト、タルク、硫酸バリウム、軽質または重質炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸アルミニウム、二硫化モリブデン、水酸化マグネシウム、ケイ酸カルシウム、アルミナ、酸化チタン、その他の金属酸化物、マイカ、グラファイト、水酸化アルミニウムなどの麟片状無機充填材、各種の金属粉、木片、ガラス粉、セラミックス粉、カーボンブラック、粒状ないし粉末ポリマーなどの粒状ないし粉末状固体充填材、その他の各種の天然または人工の短繊維、長繊維などが例示できる。これらの充填剤、補強材はシラン処理してもよい。また中空フィラー、たとえば、ガラスバルーン、シリカバルーンなどの無機中空フィラー、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体からなる有機中空フィラーを配合することにより、軽量化を図ることができる。さらに軽量化、衝撃吸収性などの各種物性の改善のために、各種発泡剤を混入させることも可能であり、また、混合時などに機械的に気体を混ぜ込むことも可能である。   Furthermore, a filler and a reinforcing material can be blended with the resin composition in the present invention from the viewpoint of improving physical properties or economic advantages. Suitable fillers and reinforcements include hard clay, soft clay, kaolin clay, diatomaceous earth, silica sand, pumice powder, slate powder, dry or wet silica, amorphous silica, wollastonite, synthetic or natural zeolite, talc, sulfuric acid Barium, light or heavy calcium carbonate, magnesium carbonate, calcium sulfate, aluminum sulfate, molybdenum disulfide, magnesium hydroxide, calcium silicate, alumina, titanium oxide, other metal oxides, mica, graphite, aluminum hydroxide, etc. Flour-like inorganic filler, various metal powders, wood chips, glass powder, ceramic powder, carbon black, granular or powdered solid filler such as granular or powdered polymer, other various natural or artificial short fibers, long fibers Etc. can be exemplified. These fillers and reinforcing materials may be silane treated. Moreover, weight reduction can be achieved by mix | blending the hollow filler, for example, inorganic hollow fillers, such as a glass balloon and a silica balloon, and the organic hollow filler which consists of a polyvinylidene fluoride and a polyvinylidene fluoride copolymer. Furthermore, various foaming agents can be mixed in order to improve various physical properties such as weight reduction and shock absorption, and it is also possible to mix gas mechanically during mixing.

充填材および補強材の配合量は、樹脂組成物100重量部に対して0〜200重量部であり、好ましくは0〜100重量部である。200重量部を超えると得られる樹脂組成物の機械強度の低下が起こり、柔軟性も損なわれるので好ましくない。   The blending amount of the filler and the reinforcing material is 0 to 200 parts by weight, preferably 0 to 100 parts by weight with respect to 100 parts by weight of the resin composition. If it exceeds 200 parts by weight, the mechanical strength of the resulting resin composition is lowered, and the flexibility is also impaired.

また本発明における樹脂組成物には、必要に応じて、ヒンダードフェノール系、リン酸エステル系、アミン系、硫黄系などの酸化防止剤、および/またはベンソチアゾール系、ベンソトリアゾール系、ベンゾフェノン系などの紫外線吸収剤、および光安定剤を配合することができる。配合量は樹脂樹脂組成物100重量部に対して、0.000001〜10重量部、好ましくは0.00001〜5重量部である。   In addition, the resin composition in the present invention may include hindered phenol-based, phosphate ester-based, amine-based, sulfur-based antioxidants, and / or benzothiazole-based, benzosotriazole-based, benzophenone as necessary. An ultraviolet absorber such as a system and a light stabilizer can be blended. A compounding quantity is 0.000001-10 weight part with respect to 100 weight part of resin resin compositions, Preferably it is 0.00001-5 weight part.

さらに本発明における樹脂組成物には、可塑剤を添加することができる。可塑剤としては、フタル酸エステル、アジピン酸エステル、リン酸エステル、トリメリット酸エステル、クエン酸エステル、エポキシ、ポリエステルなどがあげられる。   Furthermore, a plasticizer can be added to the resin composition in the present invention. Examples of the plasticizer include phthalic acid ester, adipic acid ester, phosphoric acid ester, trimellitic acid ester, citric acid ester, epoxy, and polyester.

さらに本発明における樹脂組成物には、粘着付与樹脂を添加することができる。粘着付与樹脂としては、脂環族系石油樹脂およびその水素化物、脂肪族系石油樹脂、芳香族系石油樹脂の水素化物、ポリテルペン樹脂などがあげられる。   Furthermore, a tackifier resin can be added to the resin composition in the present invention. Examples of the tackifying resin include alicyclic petroleum resins and hydrides thereof, aliphatic petroleum resins, hydrides of aromatic petroleum resins, polyterpene resins, and the like.

さらに他の添加剤として難燃剤、抗菌剤、光安定剤、着色剤、流動性改良剤、滑剤、ブロッキング防止剤、帯電防止剤、架橋剤、架橋助剤、改質剤、顔料、染料、導電性フィラー、各種の化学発泡剤、物理発泡剤などを添加することができ、これらは1種または2種以上を組み合わせて使用可能である。ブロッキング防止剤としては、たとえばシリカ、ゼオライトなどが好適であり、これらは天然、合成の何れでもよくまた架橋アクリル真球粒子などの真球架橋粒子も好適である。また帯電防止剤としては、炭素数12〜18のアルキル基を有するN,N−ビス−(2−ヒドロキシエチル)−アルキルアミン類やグリセリン脂肪酸エステルが好ましい。さらに、滑剤としては、脂肪酸金属塩系滑剤、脂肪酸アミド系滑剤、脂肪酸エステル系滑剤、脂肪酸系滑剤、脂肪族アルコール系滑剤、脂肪酸と多価アルコールの部分エステル、パラフィン系滑剤などが好ましく用いられ、これらの中から2種以上を選択して用いてもよい。   Still other additives include flame retardants, antibacterial agents, light stabilizers, colorants, fluidity improvers, lubricants, anti-blocking agents, antistatic agents, cross-linking agents, cross-linking aids, modifiers, pigments, dyes, conductive A filler, various chemical foaming agents, physical foaming agents and the like can be added, and these can be used alone or in combination of two or more. As the antiblocking agent, for example, silica, zeolite and the like are suitable, and these may be natural or synthetic, and true spherical crosslinked particles such as crosslinked acrylic true spherical particles are also suitable. As the antistatic agent, N, N-bis- (2-hydroxyethyl) -alkylamines and glycerin fatty acid esters having an alkyl group having 12 to 18 carbon atoms are preferable. Furthermore, as the lubricant, fatty acid metal salt lubricants, fatty acid amide lubricants, fatty acid ester lubricants, fatty acid lubricants, aliphatic alcohol lubricants, partial esters of fatty acids and polyhydric alcohols, paraffin lubricants and the like are preferably used. Two or more of these may be selected and used.

本発明における樹脂組成物は、以下に例示する方法によって製造することができる。   The resin composition in this invention can be manufactured by the method illustrated below.

たとえば、ラボプラストミル、ブラベンダー、バンバリーミキサー、ニーダー、ロールなどのような密閉型または開放型のバッチ式混練装置を用いて製造する場合は、あらかじめ混合した架橋剤以外の全ての成分を混練装置に投入し、均一になるまで溶融混練し、次いでそれに架橋剤を添加して架橋反応が充分に進行したのち、溶融混練を停止する方法があげられる。   For example, when manufacturing using a closed or open batch kneader such as a lab plast mill, brabender, banbury mixer, kneader, roll, etc., all components other than the premixed crosslinking agent are kneaded. And then kneading and kneading until uniform, then adding a cross-linking agent to the cross-linking reaction and then stopping the melt-kneading.

また、単軸押出機、二軸押出機などのように連続式の溶融混練装置を用いて製造する場合は、架橋剤以外の全ての成分をあらかじめ押出機などの溶融混練装置によって均一になるまで溶融混練した後ペレット化し、そのペレットに架橋剤をドライブレンドした後、更に押出機やバンバリーミキサーなどの溶融混練装置で溶融混練して、末端にアルケニル基を有するイソブチレン系重合体を動的に架橋する方法や、架橋剤以外のすべての成分を押出機などの溶融混練装置によって溶融混練し、そこに押出機のシリンダーの途中から架橋剤を添加して更に溶融混練し、末端にアルケニル基を有するイソブチレン系重合体を動的に架橋する方法などがあげられる。   In addition, when producing using a continuous melt kneader such as a single screw extruder or a twin screw extruder, all components other than the crosslinking agent are made uniform in advance by a melt kneader such as an extruder. After melt-kneading and pelletizing, the pellet is dry-blended with a crosslinking agent, and then melt-kneaded with a melt-kneader such as an extruder or Banbury mixer to dynamically crosslink the isobutylene polymer having an alkenyl group at the terminal. And all components other than the crosslinking agent are melt-kneaded by a melt-kneading apparatus such as an extruder, and a cross-linking agent is added from the middle of the extruder cylinder to further melt-knead to have an alkenyl group at the end. Examples thereof include a method of dynamically crosslinking an isobutylene polymer.

溶融混練を行なうに当たっては、140〜210℃の温度範囲が好ましく、150〜200℃の温度範囲がさらに好ましい。溶融混練温度が140℃よりも低いと、芳香族ビニル系熱可塑性エラストマーおよびオレフィン系樹脂が溶融せず、充分な混合ができない傾向があり、210℃よりも高いと、イソブチレン系重合体の熱分解が起こりやすくなる傾向がある。   In performing melt-kneading, a temperature range of 140 to 210 ° C is preferable, and a temperature range of 150 to 200 ° C is more preferable. If the melt kneading temperature is lower than 140 ° C., the aromatic vinyl-based thermoplastic elastomer and olefin resin do not melt and tend not to be mixed sufficiently. Tends to occur.

本発明の成形体および改質剤は、柔軟性に富み、成形加工性、ゴム的特性、機械的強度、圧縮永久歪み特性に優れている。したがって、以下のような用途に利用可能である。
(1)改質剤
樹脂改質剤(熱可塑性樹脂の耐衝撃性改質剤、制振性改質剤、ガスバリヤー性改質剤、軟化剤など、熱硬化性樹脂の耐衝撃性改質剤、低応力化剤など)、アスファルト改質剤(道路用アスファルト改質剤、防水シート用アスファルト改質剤、橋梁床版用防水材)、タイヤ改質剤(タイヤのウェットグリップ性向上剤)、ゴム改質剤
The molded article and modifier of the present invention are rich in flexibility and excellent in molding processability, rubber-like characteristics, mechanical strength, and compression set characteristics. Therefore, it can be used for the following purposes.
(1) Modifiers Resin modifiers (impact modifiers for thermosetting resins such as thermoplastic resin impact modifiers, damping modifiers, gas barrier modifiers, softeners, etc. Agents, low stress agents, etc.), asphalt modifiers (asphalt modifiers for roads, asphalt modifiers for waterproof sheets, waterproof materials for bridge decks), tire modifiers (wet grip improvers for tires) , Rubber modifier

(2)接着剤または粘着剤
ホットメルト系接着剤、水系接着剤、溶剤系接着剤、粘着剤
(2) Adhesive or adhesive Hot-melt adhesive, water-based adhesive, solvent-based adhesive, adhesive

(3)粘度調整剤
オイル、潤滑油などに添加する粘度調整剤
(3) Viscosity modifier Viscosity modifier added to oil, lubricating oil, etc.

(4)コーティング剤
塗料などに利用するベースレジン、シーラント
(4) Coating agents Base resins and sealants used for paints, etc.

(5)PVC代替などに使用される材料
ケーブル、コネクター、プラグなどの電線被覆材、人形などの玩具、養生用テープ、ロゴマーク(スポーツウェアやスポーツシューズ用)、キャリーバック、衣料用包装材、トラックの幌、農業用フィルム(ハウス栽培用)、消しゴム、業務用エプロン(ターポリン)、床材・天井材などの建物の内装材、レインコート、雨傘、ショッピングバッグ、椅子やソファーなどの表皮材、ベルトや鞄などの表皮材、ガーデンホース、冷蔵庫のガスケット(パッキング)、洗濯機や掃除機のフレキシブルホース、自動車用内装材
(5) Materials used for PVC replacement Cable covering materials such as cables, connectors and plugs, toys such as dolls, curing tapes, logo marks (for sportswear and sports shoes), carry bags, clothing packaging materials, Truck tops, agricultural films (for house cultivation), erasers, commercial aprons (tarpaulins), building interior materials such as flooring and ceiling materials, raincoats, umbrellas, shopping bags, skin materials such as chairs and sofas, Cover materials such as belts and bags, garden hoses, refrigerator gaskets (packing), flexible hoses for washing machines and vacuum cleaners, automotive interior materials

(6)制振材、防振材、緩衝材
制振材、とくにアルミ、鋼板とともに多層に張り合わせた制振材、防振材、緩衝材(建築用途、自動車用途、フロアー制振用途、フローリング用途、遊戯器具用途、精密機器用途、電子機器用途に使用)
靴底、文具・玩具用品のグリップ、日用雑貨・大工用品のグリップ、ゴルフクラブ・バットなどのグリップや心材、テニスラケット・卓球ラケットなどのラバーおよびグリップ
(6) Damping materials, anti-vibration materials, shock-absorbing materials Damping materials, especially vibration-damping materials, anti-vibration materials and shock-absorbing materials laminated together with aluminum and steel sheets (building applications, automotive applications, floor vibration-damping applications, flooring applications) , Used for play equipment, precision equipment, electronic equipment)
Gloves for shoe soles, stationery and toy supplies, grips for daily goods and carpenter supplies, grips and heartwood for golf clubs and bats, rubber and grips for tennis rackets and table tennis rackets, etc.

(7)防音材、吸音材
自動車内外装材、自動車天井材、鉄道車両用材、配管用材
(7) Soundproofing materials, sound absorbing materials Automotive interior / exterior materials, automotive ceiling materials, railcar materials, piping materials

(8)パッキング材、シール材などの密封用材、包装材
ガスケット、建築用ガスケット、栓体
合わせガラス用および複層ガラス用のガラスシール材
包装材、シート、多層シート、容器、多層容器などのガスバリヤー用材
土木シート、防水シート、包装輸送資材、シーラント
(8) Sealing materials such as packing materials and sealing materials, packaging materials Gaskets, architectural gaskets, plugs Glass sealing materials for laminated glass and multilayer glass Gases for packaging materials, sheets, multilayer sheets, containers, multilayer containers, etc. Barrier materials Civil engineering sheets, tarpaulins, packaging transport materials, sealants

(9)発泡体
ビーズ発泡、徐圧発泡、押出発泡による発泡体(配管被覆材、合成木材、木粉系発泡体など)
化学発泡および物理発泡における発泡剤のキャリヤー
(9) Foam Foam by bead foaming, slow pressure foaming, extrusion foaming (pipe coating material, synthetic wood, wood powder foam, etc.)
Carrier of blowing agent in chemical and physical foaming

(10)その他
衣料用途、難燃剤用途、
医療用途のチューブ、閉がい具、キャップ、バッグ、ガスケット、ホース、シューズ、運動用具類
発泡性耐火シート
エアバックカバー、バンパー、内装部品(インパネやシフトノブなどの表皮材)、ウェザーストリップ、ルーフモール、ドア下モールなどの自動車用部材
電子レンジ用食品トレー、ポーション用食品容器、食品容器用ラミネートフィルム、食品容器用ポリスチレンシート(刺身容器・鶏卵パック)、カップラーメン容器、ポリスチレン系網目状発泡体、冷菓カップ、透明飲料カップなどの食品用容器
ICトレー、CD−ROMシャーシ、ホイールキャップ、弾性糸、不織布、ワイヤーハーネス、紙おむつのバックシート、2色成形用コンパウンド材、水中ゴーグル、パソコン用マウス、クッション、ストッパー
(10) Others For clothing, flame retardant,
Tubes, closures, caps, bags, gaskets, hoses, shoes, sports equipment for medical use Foamable fireproof seats Airbag covers, bumpers, interior parts (skin materials such as instrument panels and shift knobs), weather strips, roof moldings, Automotive parts such as moldings under the door Food trays for microwave ovens, food containers for potions, laminated films for food containers, polystyrene sheets for food containers (sashimi containers / chicken egg packs), cup ramen containers, polystyrene-based reticulated foams, frozen desserts Cups, transparent beverage cups and other food containers IC trays, CD-ROM chassis, wheel caps, elastic yarns, non-woven fabrics, wire harnesses, backsheets for disposable diapers, compound materials for 2-color molding, underwater goggles, PC mice, cushions, stopper

以下、実施例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更実施可能である。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited at all by these Examples, In the range which does not change the summary, it can change suitably.

まず、各種測定法、評価法について説明する。
(硬度)
JIS K 6352に準拠し、試験片は12.0mm圧プレスシートを用いた。
First, various measurement methods and evaluation methods will be described.
(hardness)
In accordance with JIS K 6352, a 12.0 mm pressure press sheet was used as a test piece.

(引張破断強度)
JIS K 6251に準拠し、試験片は2mm厚プレスシートを、ダンベルで3号型に打抜いて使用した。引張速度は500mm/分とした。
(Tensile strength at break)
In accordance with JIS K 6251, a 2 mm thick press sheet was used as a test piece by punching it into a No. 3 type with a dumbbell. The tensile speed was 500 mm / min.

(引張破断伸び)
JIS K 6251に準拠し、試験片は2mm厚プレスシートを、ダンベルで3号型に打抜いて使用した。引張速度は500mm/分とした。
(Tensile breaking elongation)
In accordance with JIS K 6251, a 2 mm thick press sheet was used as a test piece by punching it into a No. 3 type with a dumbbell. The tensile speed was 500 mm / min.

(圧縮永久歪み)
JIS K 6262に準拠し、試験片は12.0mm厚さプレスシートを使用した。70℃×22時間、25%変形の条件にて測定した。
(Compression set)
In accordance with JIS K 6262, a 12.0 mm thick press sheet was used as the test piece. The measurement was performed at 70 ° C. × 22 hours under conditions of 25% deformation.

(動的粘弾性)
JIS K−6394(加硫ゴムおよび熱可塑性ゴムの動的性質試験方法)に準拠し、縦6mm×横5mm×厚さ2mmの試験片を切り出し、動的粘弾性測定装置DVA−200(アイティー計測制御(株)製)を用い、損失正接tanδを測定した。測定周波数は0.5Hzとした。
(Dynamic viscoelasticity)
In accordance with JIS K-6394 (Method for testing dynamic properties of vulcanized rubber and thermoplastic rubber), a test piece having a length of 6 mm, a width of 5 mm, and a thickness of 2 mm was cut out and a dynamic viscoelasticity measuring apparatus DVA-200 (IT Loss tangent tan δ was measured using Measurement Control Co., Ltd. The measurement frequency was 0.5 Hz.

また、実施例および比較例で用いた材料の略号とその具体的な内容は、次のとおりである。
SIBS:スチレン−イソブチレン−スチレントリブロック共重合体
APIB:末端にアリル基が導入されたポリイソブチレン EP600A(鐘淵化学工業(株)製)
IIR:ブチルゴム(Butyl065、JSR社製)
熱可塑性樹脂:ポリフェニレンエーテル系樹脂 Noryl EFN4230(日本ジーイープラスチック(株)製)
架橋剤1:分子中に平均5個のヒドロシリル基と平均5個のα−メチルスチレン基を含有する鎖状シロキサン
架橋剤2:反応型臭素化アルキルフェノールホルムアルデヒド化合物(タッキロール250−1、田岡化学工業(株)製)
架橋助剤1:トリエチレングリコールジメタクリレート(NKエステル 3G、新中村化学(株)製)
架橋助剤2:酸化亜鉛
架橋触媒:0価白金の1,1,3,3−テトラメチル−1,3−ジアリルジシロキサン錯体 1%キシレン溶液
Moreover, the symbol of the material used by the Example and the comparative example and its specific content are as follows.
SIBS: Styrene-isobutylene-styrene triblock copolymer APIB: Polyisobutylene having an allyl group introduced at the terminal EP600A (manufactured by Kaneka Chemical Co., Ltd.)
IIR: Butyl rubber (Butyl065, manufactured by JSR)
Thermoplastic resin: Polyphenylene ether resin Noryl EFN4230 (manufactured by GE Plastics)
Crosslinking agent 1: Chain siloxane crosslinking agent containing an average of 5 hydrosilyl groups and an average of 5 α-methylstyrene groups in the molecule 2: Reactive brominated alkylphenol formaldehyde compound (Tactrol 250-1, Taoka Chemical Industries ( Made by)
Crosslinking aid 1: Triethylene glycol dimethacrylate (NK ester 3G, manufactured by Shin-Nakamura Chemical Co., Ltd.)
Crosslinking aid 2: Zinc oxide crosslinking catalyst: 1,1,3,3-tetramethyl-1,3-diallyldisiloxane complex of zerovalent platinum 1% xylene solution

製造例1(SIBSの製造)
2Lのセパラブルフラスコの重合容器内を窒素置換したのち、注射器を用いてn−ヘキサン456.4mLおよび塩化ブチル656.3mL(いずれもモレキュラーシーブスで乾燥したもの)を加え、重合容器を−70℃のドライアイス/メタノールバス中につけて冷却した。イソブチレンモノマー232mL(2871mmol)が入っている三方コック付耐圧ガラス製液化採取管にテフロン(登録商標)製の送液チューブを接続し、重合容器内にイソブチレンモノマーを窒素圧により送液した。p−ジクミルクロライド0.647g(2.8mmol)およびN,N−ジメチルアセトアミド1.22g(14mmol)を加えた。次にさらに四塩化チタン8.67mL(79.1mmol)を加えて重合を開始した。重合開始から2.5時間同じ温度で撹拌を行なったのち、重合溶液からサンプリング用として重合溶液約1mLを抜き取った。続いて、あらかじめ−70℃に冷却しておいたスチレンモノマー77.9g(748mmol)、n−ヘキサン14.1mLおよび塩化ブチル20.4mLの混合溶液を重合容器内に添加した。該混合溶液を添加してから2時間後に、大量の水に加えて反応を終了させた。
Production Example 1 (Manufacture of SIBS)
After the inside of the polymerization vessel of the 2 L separable flask was purged with nitrogen, 456.4 mL of n-hexane and 656.3 mL of butyl chloride (both dried with molecular sieves) were added using a syringe, and the polymerization vessel was kept at -70 ° C. In a dry ice / methanol bath. A liquid feeding tube made of Teflon (registered trademark) was connected to a liquefied collection tube made of pressure resistant glass with a three-way cock containing 232 mL (2871 mmol) of isobutylene monomer, and the isobutylene monomer was fed into the polymerization vessel by nitrogen pressure. 0.647 g (2.8 mmol) of p-dicumyl chloride and 1.22 g (14 mmol) of N, N-dimethylacetamide were added. Next, 8.67 mL (79.1 mmol) of titanium tetrachloride was further added to initiate polymerization. After stirring at the same temperature for 2.5 hours from the start of polymerization, about 1 mL of the polymerization solution was extracted from the polymerization solution for sampling. Subsequently, a mixed solution of 77.9 g (748 mmol) of styrene monomer, 14.1 mL of n-hexane and 20.4 mL of butyl chloride, which had been cooled to −70 ° C. in advance, was added to the polymerization vessel. Two hours after the addition of the mixed solution, the reaction was terminated by adding a large amount of water.

反応溶液を2回水洗し、溶媒を蒸発させ、得られた重合体を60℃で24時間真空乾燥することにより目的のブロック共重合体を得た。ゲルパーミエーションクロマトグラフィー(GPC)法により得られた重合体の分子量を測定した。ブロック共重合体のMwが101000であるブロック共重合体が得られた。   The reaction solution was washed twice with water, the solvent was evaporated, and the resulting polymer was vacuum-dried at 60 ° C. for 24 hours to obtain the desired block copolymer. The molecular weight of the polymer obtained by the gel permeation chromatography (GPC) method was measured. A block copolymer having a block copolymer Mw of 101000 was obtained.

実施例1
SIBSとAPIBを表1に示した割合で、150℃に設定したラボプラストミル(東洋精機(株)製)を用いて5分間溶融混練し、次いで架橋剤を表1に示した割合で添加し、5分間引き続き混練した。架橋触媒を投入し、さらに溶融混練し動的架橋を行なった。得られた熱可塑性エラストマー組成物は180℃で容易にシート状に成形することができた。得られたシートの、硬度、引張破断強度、引張破断伸び、および圧縮永久歪み、動的粘弾性を上記方法にしたがって測定した。結果を表1に示す。
Example 1
SIBS and APIB were melt-kneaded for 5 minutes using a lab plast mill (manufactured by Toyo Seiki Co., Ltd.) set at 150 ° C. in the ratio shown in Table 1, and then a crosslinking agent was added in the ratio shown in Table 1. The kneading was continued for 5 minutes. A cross-linking catalyst was added, and melt kneading was further performed for dynamic cross-linking. The obtained thermoplastic elastomer composition could be easily formed into a sheet at 180 ° C. The hardness, tensile breaking strength, tensile breaking elongation, compression set, and dynamic viscoelasticity of the obtained sheet were measured according to the above methods. The results are shown in Table 1.

実施例2
SIBSとAPIBと熱可塑性樹脂を表1に示した割合で混合し、実施例1と同様に動的架橋を行なった。得られた熱可塑性エラストマー組成物は180℃で容易にシート状に成形することができた。得られたシートの、硬度、引張破断強度、引張破断伸び、および圧縮永久歪みを上記方法にしたがって測定した。結果を表1に示す。
Example 2
SIBS, APIB, and a thermoplastic resin were mixed in the proportions shown in Table 1, and dynamic crosslinking was performed in the same manner as in Example 1. The obtained thermoplastic elastomer composition could be easily formed into a sheet at 180 ° C. The hardness, tensile breaking strength, tensile breaking elongation, and compression set of the obtained sheet were measured according to the above methods. The results are shown in Table 1.

比較例1
SIBSを180℃に設定したラボプラストミルを用いて10分間溶融混練した後、180℃でシート状に成形した。得られたシートの硬度、引張破断強度、引張破断伸びおよび圧縮永久歪みを上記方法にしたがって測定した。結果を表1に示す。
Comparative Example 1
After melt-kneading for 10 minutes using a Laboplast mill with SIBS set at 180 ° C., it was molded into a sheet at 180 ° C. The hardness, tensile breaking strength, tensile breaking elongation and compression set of the obtained sheet were measured according to the above methods. The results are shown in Table 1.

比較例2
SIBS、IIRを表1に示した割合で、180℃に設定したラボプラストミルを用いて5分間溶融混練し、次いで架橋剤2、架橋助剤3および4を表1に示した割合で添加し、トルクの値が最高値を示すまで(3〜7分)180℃でさらに溶融混練し動的架橋を行なった。得られた熱可塑性エラストマー組成物は180℃で容易にシート状に成形することができた。得られたシートの硬度、引張破断強度、引張破断伸び、および圧縮永久歪みを上記方法にしたがって測定した。結果を表1に示す。
Comparative Example 2
SIBS and IIR were melt kneaded for 5 minutes using a lab plast mill set at 180 ° C. in the proportions shown in Table 1, and then crosslinking agent 2, crosslinking assistants 3 and 4 were added in the proportions shown in Table 1. Further, the mixture was further melt-kneaded at 180 ° C. until the torque value reached the maximum value (3 to 7 minutes) to perform dynamic crosslinking. The obtained thermoplastic elastomer composition could be easily formed into a sheet at 180 ° C. The hardness, tensile breaking strength, tensile breaking elongation, and compression set of the obtained sheet were measured according to the above methods. The results are shown in Table 1.

比較例3
APIBのみを用いて、架橋剤、架橋触媒を表1に示す割合で配合し、実施例1と同様の方法で組成物を得た。この組成物を用いてシート状の成形体を得ることはできなかった。
Comparative Example 3
Using only APIB, a crosslinking agent and a crosslinking catalyst were blended in the ratios shown in Table 1, and a composition was obtained in the same manner as in Example 1. A sheet-like molded product could not be obtained using this composition.

比較例4
ラバロンSJ5400N(三菱化学(株)製)を用いてシートを作製し、硬度、引張破断強度、引張破断伸び、圧縮永久歪みおよび動的粘弾性を上記方法にしたがって測定した。結果を表1に示す。
Comparative Example 4
Sheets were prepared using Lavalon SJ5400N (manufactured by Mitsubishi Chemical Corporation), and the hardness, tensile breaking strength, tensile breaking elongation, compression set and dynamic viscoelasticity were measured according to the above methods. The results are shown in Table 1.

Figure 2005187509
Figure 2005187509

実施例で得られたシートは、比較例1に示すイソブチレン系ブロック共重合体のみからなるシートより圧縮永久歪みの値が低く、イソブチレン系ブロック共重合体の特性を保持したまま圧縮永久歪みに優れている。比較例2に示す、架橋物にIIRを用いた場合と比較すると、硬度は同程度でありながら、圧縮永久歪みに関して優れている。また、比較例4と比較して、実施例1のシートはtanδの値が高く、制振性に優れていることがわかる。
The sheet obtained in the example has a lower compression set value than the sheet composed only of the isobutylene block copolymer shown in Comparative Example 1, and is excellent in compression set while maintaining the characteristics of the isobutylene block copolymer. ing. Compared with the case where IIR is used for the cross-linked product shown in Comparative Example 2, the hardness is comparable, but the compression set is excellent. Further, it can be seen that the sheet of Example 1 has a high tan δ value and excellent vibration damping properties as compared with Comparative Example 4.

Claims (10)

末端にアルケニル基を有するイソブチレン系重合体が、芳香族ビニル系熱可塑性エラストマーおよびオレフィン系樹脂からなる群より選択される少なくとも1種の存在下で、ヒドロシリル基含有化合物により溶融混練下で動的架橋した樹脂組成物からなる成形体。 In the presence of at least one selected from the group consisting of an aromatic vinyl thermoplastic elastomer and an olefin resin, the isobutylene polymer having an alkenyl group at the terminal is dynamically cross-linked under melt kneading with a hydrosilyl group-containing compound. A molded body made of the resin composition. 末端にアルケニル基を有するイソブチレン系重合体が、芳香族ビニル系熱可塑性エラストマーおよびオレフィン系樹脂からなる群より選択される少なくとも1種の存在下で、ヒドロシリル基含有化合物により溶融混練下で動的架橋した樹脂組成物からなる改質剤。 In the presence of at least one selected from the group consisting of an aromatic vinyl thermoplastic elastomer and an olefin resin, the isobutylene polymer having an alkenyl group at the terminal is dynamically cross-linked under melt kneading with a hydrosilyl group-containing compound. The modifier which consists of a resin composition. 前記樹脂組成物がさらに熱可塑性樹脂を含む請求項1記載の成形体。 The molded article according to claim 1, wherein the resin composition further contains a thermoplastic resin. 前記樹脂組成物がさらに熱可塑性樹脂を含む請求項2記載の改質剤。 The modifier according to claim 2, wherein the resin composition further comprises a thermoplastic resin. 前記樹脂組成物がさらに軟化剤を含む請求項1または3記載の成形体。 The molded article according to claim 1 or 3, wherein the resin composition further contains a softening agent. 前記樹脂組成物がさらに軟化剤を含む請求項2または4記載の改質剤。 The modifier according to claim 2 or 4, wherein the resin composition further contains a softening agent. 芳香族ビニル系熱可塑性エラストマーが、芳香族ビニル系化合物を主体とする単位とイソブチレンを主体とする単位からなるブロック共重合体である請求項1、3または5記載の成形体。 The molded article according to claim 1, 3 or 5, wherein the aromatic vinyl-based thermoplastic elastomer is a block copolymer comprising a unit mainly composed of an aromatic vinyl compound and a unit mainly composed of isobutylene. 芳香族ビニル系熱可塑性エラストマーが、芳香族ビニル系化合物を主体とする単位とイソブチレンを主体とする単位からなるブロック共重合体である請求項2、4または6記載の改質剤。 The modifier according to claim 2, 4 or 6, wherein the aromatic vinyl-based thermoplastic elastomer is a block copolymer comprising a unit mainly composed of an aromatic vinyl-based compound and a unit mainly composed of isobutylene. 末端にアルケニル基を有するイソブチレン系重合体が、数平均分子量1000〜500000であり、かつ1分子あたり少なくとも0.2個のアルケニル基を末端に有する重合体である請求項1、3、5または7記載の成形体。 The isobutylene polymer having an alkenyl group at a terminal is a polymer having a number average molecular weight of 1,000 to 500,000 and having at least 0.2 alkenyl groups per molecule per terminal. The molded body described. 末端にアルケニル基を有するイソブチレン系重合体が、数平均分子量1000〜500000であり、かつ1分子あたり少なくとも0.2個のアルケニル基を末端に有する重合体である請求項2、4、6または8記載の改質剤。 The isobutylene polymer having an alkenyl group at the end is a polymer having a number average molecular weight of 1,000 to 500,000 and having at least 0.2 alkenyl groups per molecule per end. The modifier described.
JP2003427302A 2003-12-24 2003-12-24 Molded item and modifier comprised of resin composition Pending JP2005187509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427302A JP2005187509A (en) 2003-12-24 2003-12-24 Molded item and modifier comprised of resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427302A JP2005187509A (en) 2003-12-24 2003-12-24 Molded item and modifier comprised of resin composition

Publications (1)

Publication Number Publication Date
JP2005187509A true JP2005187509A (en) 2005-07-14

Family

ID=34786619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427302A Pending JP2005187509A (en) 2003-12-24 2003-12-24 Molded item and modifier comprised of resin composition

Country Status (1)

Country Link
JP (1) JP2005187509A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091770A (en) * 2005-09-27 2007-04-12 Kaneka Corp Composition for cap liner
JP2008007587A (en) * 2006-06-28 2008-01-17 Kaneka Corp Synthetic cork
JP2008013728A (en) * 2006-07-10 2008-01-24 Kaneka Corp Thermoplastic elastomer composition
JP2008260906A (en) * 2007-03-16 2008-10-30 Kaneka Corp Thermoplastic elastomer composition
JP2012057068A (en) * 2010-09-09 2012-03-22 Kaneka Corp Molding comprising resin composition, and modifier
JP2012082262A (en) * 2010-10-07 2012-04-26 Kaneka Corp Thermoplastic resin composition and molding
WO2012057051A1 (en) * 2010-10-29 2012-05-03 株式会社カネカ Isobutylene-based block copolymer
CN102821822A (en) * 2010-02-01 2012-12-12 美泰有限公司 Figure and a composition for forming the figure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091770A (en) * 2005-09-27 2007-04-12 Kaneka Corp Composition for cap liner
JP2008007587A (en) * 2006-06-28 2008-01-17 Kaneka Corp Synthetic cork
JP2008013728A (en) * 2006-07-10 2008-01-24 Kaneka Corp Thermoplastic elastomer composition
JP2008260906A (en) * 2007-03-16 2008-10-30 Kaneka Corp Thermoplastic elastomer composition
CN102821822A (en) * 2010-02-01 2012-12-12 美泰有限公司 Figure and a composition for forming the figure
JP2013518616A (en) * 2010-02-01 2013-05-23 マテル,インコーポレイテッド Compositions for forming dolls and dolls
JP2012057068A (en) * 2010-09-09 2012-03-22 Kaneka Corp Molding comprising resin composition, and modifier
JP2012082262A (en) * 2010-10-07 2012-04-26 Kaneka Corp Thermoplastic resin composition and molding
WO2012057051A1 (en) * 2010-10-29 2012-05-03 株式会社カネカ Isobutylene-based block copolymer
US20130225765A1 (en) * 2010-10-29 2013-08-29 Kaneka Corporation Isobutylene-based block copolymer composition

Similar Documents

Publication Publication Date Title
JP5620777B2 (en) Thermoplastic resin composition and molded body
EP1561783B1 (en) Thermoplastic elastomer composition
JP4776155B2 (en) Hydrogenated copolymer
AU604691B2 (en) Method of producing thermoplastic elastomer compositions
JP2005105164A (en) Molded article made of resin composition and modifying agent
JP4287126B2 (en) Thermoplastic elastomer composition
AU599643B2 (en) Method of manufacture of thermoplastic elastomer compositions
AU598808B2 (en) Thermoplastic elastomer composition
JP4160379B2 (en) Thermoplastic elastomer composition
JP2005187509A (en) Molded item and modifier comprised of resin composition
JP4686118B2 (en) Thermoplastic elastomer composition with excellent gas barrier properties
JP4259295B2 (en) Hydrogenated diene copolymer, polymer composition, and molded article using the polymer composition
JP4387088B2 (en) Rubber composition with improved wet grip
JP2012057068A (en) Molding comprising resin composition, and modifier
JP4568455B2 (en) Thermoplastic elastomer composition
JP4287137B2 (en) Thermoplastic elastomer composition
JP4354800B2 (en) Thermoplastic elastomer composition and molded article
JP4160378B2 (en) Thermoplastic elastomer composition
JP2003012887A (en) Thermoplastic elastomer resin composition
JPH05171002A (en) Elastomer composition excellent in scratch resistance
MXPA05005627A (en) Thermoplastic elastomer composition.
JP4026527B2 (en) Method for producing styrenic thermoplastic elastomer composition
JPH05171004A (en) Elastomer composition having improved scratch resistance
JP2004196970A (en) Method for producing thermoplastic elastomer composition
JP2004307564A (en) Styrenic thermoplastic elastomer composition