JP2005186513A - Forming having minute shape, optical element, forming method, and forming apparatus - Google Patents

Forming having minute shape, optical element, forming method, and forming apparatus Download PDF

Info

Publication number
JP2005186513A
JP2005186513A JP2003432467A JP2003432467A JP2005186513A JP 2005186513 A JP2005186513 A JP 2005186513A JP 2003432467 A JP2003432467 A JP 2003432467A JP 2003432467 A JP2003432467 A JP 2003432467A JP 2005186513 A JP2005186513 A JP 2005186513A
Authority
JP
Japan
Prior art keywords
mold
fine shape
molding
optical element
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003432467A
Other languages
Japanese (ja)
Other versions
JP4576838B2 (en
Inventor
Hiroshi Miyakoshi
博史 宮越
Kazumi Furuta
和三 古田
Masahiro Morikawa
雅弘 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2003432467A priority Critical patent/JP4576838B2/en
Publication of JP2005186513A publication Critical patent/JP2005186513A/en
Application granted granted Critical
Publication of JP4576838B2 publication Critical patent/JP4576838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5833Measuring, controlling or regulating movement of moulds or mould parts, e.g. opening or closing, actuating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • B29C2045/5615Compression stroke, e.g. length thereof
    • B29C2045/562Velocity profiles of the compression stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forming method for a formed article having a minute structure with a high aspect ratio or a small angle R simply at low costs, an apparatus for the method, the formed article, and an optical element. <P>SOLUTION: By moving movable dies 3 and 3' at a speed of 10 mm/s or above toward a resin material, impact energy is given to the resin material, so that a minute shape having a high aspect ratio, which has been unable to form by a conventional technique, can precisely be transferred/formed. Since the heated movable dies 3 and 3' are brought into contact with the resin material for a short time, even when the surface of the minute shape is melted/deformed by heat transmitted from the dies, an inside part is kept to be rigid. By quick releasing, the formed minute shape is maintained to increase a successful transfer area as compared with a conventional case. Moreover, as a secondary effect of increasing the moving speed, a forming time can be curtailed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微細形状を有する成形物、光学素子、成形方法及び成形装置に関し、特に高アスペクト比を有する微細形状を有する成形物、光学素子、成形方法及び成形装置に関する。   The present invention relates to a molded article having a fine shape, an optical element, a molding method, and a molding apparatus, and more particularly to a molded article having a fine shape having a high aspect ratio, an optical element, a molding method, and a molding apparatus.

近年、急速に発展している光ピックアップ装置の分野では、極めて高精度な対物レンズなどの光学素子が用いられている。プラスチックやガラスなどの素材を、金型を用いてそのような光学素子に成形すると、均一な形状の製品を迅速に製造することができるため、かかる金型成形は、そのような用途の光学素子の大量生産に適しているといえる。   In recent years, optical elements such as objective lenses with extremely high accuracy are used in the field of optical pickup devices that are rapidly developing. When a material such as plastic or glass is molded into such an optical element using a mold, a product having a uniform shape can be quickly produced. It can be said that it is suitable for mass production.

更に、近年の光ピックアップ装置は、より短波長の半導体レーザからの光束を用いて、AOD(Advanced Optical Disc),BD(Blueray Disc)などの記録媒体に対して高密度な情報の記録及び/又は再生を行えるものが開発されており、その光学系の収差特性改善のため、微細構造である回折構造を光学面に設けることが行われている。又、そのような高密度な情報の記録及び/又は再生を行える光ピックアップ装置であっても、従来から大量に供給されたCD、DVDに対しても情報の記録及び/又は再生を確保する必要があり、そのため波長選択性を備えた回折構造を設けることも行われている。   Furthermore, recent optical pickup devices use a light beam from a semiconductor laser with a shorter wavelength to record high-density information on a recording medium such as an AOD (Advanced Optical Disc) or BD (Blueray Disc) and / or What can be reproduced has been developed, and in order to improve aberration characteristics of the optical system, a diffractive structure which is a fine structure is provided on the optical surface. Further, even in an optical pickup device capable of recording and / or reproducing such high-density information, it is necessary to ensure the recording and / or reproducing of information even with respect to CDs and DVDs that have conventionally been supplied in large quantities. For this reason, a diffractive structure having wavelength selectivity is also provided.

ここで、回折構造は、使用する光源波長にもよるが、例えば段差が最小2μm程度の輪帯構造であるため、通常の射出成形において、溶融した樹脂を型内に射出するのみでは、型に形成された微細構造の段差の奥深くに素材が入り込みにくく、そのため微細構造の転写が精度良くなされないという問題がある。転写不良(素材のダレ)により設計通りの回折構造が形成されないと、その回折特性が劣化してしまい、かかる光学素子を用いた光ピックアップ装置において書き込みエラーなどが生じる恐れがある。このため、素材の選定や、溶融した樹脂の温度や圧力を調整するなど、種々の工夫がなされているが、従来の方法では、ダレを完全になくすのは困難である。   Here, although the diffraction structure depends on the wavelength of the light source to be used, for example, since the step is a ring zone structure having a minimum level of about 2 μm, in ordinary injection molding, the molten resin is simply injected into the mold. There is a problem that the material is difficult to enter deep in the depth of the formed fine structure, so that the fine structure is not accurately transferred. If the designed diffractive structure is not formed due to transfer defects (sagging of the material), the diffraction characteristics deteriorate, and there is a possibility that a write error or the like occurs in the optical pickup device using such an optical element. For this reason, various ideas such as selection of materials and adjustment of the temperature and pressure of the molten resin have been made. However, it is difficult to completely eliminate sagging with conventional methods.

一方、以下の特許文献1には、加熱軟化状態にあるガラス素材をプレスすることによって、表面に微細パターンを有する光学素子を成形する方法が開示されている。
特開2002−220241号公報
On the other hand, Patent Document 1 below discloses a method of molding an optical element having a fine pattern on the surface by pressing a glass material in a heat-softened state.
Japanese Patent Laid-Open No. 2002-220241

ところが、特許文献1に記載の技術では、ガラス素材の表面に、幅約100〜50μm、高さが約20〜10μmという、アスペクト比が0.2程度の微細形状を成形するのが限界である。これは、無機ガラスの常温での弾性率が70GPa程度と高いため、その表面に3000Nという非常に大きな力で加熱した型を押しつけても、微細構造の奥にガラス素材がスムーズに流れ込まず、その結果アスペクト比が0.2程度の微細形状しか成形できなかったのである。従って、例えばアスペクト比が1以上という微細形状を有する成形物は、試作品としては存在するかもしれないが、形状の揃った工業製品としては未だ存在していないといえる。   However, the technique described in Patent Document 1 is limited to molding a fine shape having a width of about 100 to 50 μm and a height of about 20 to 10 μm with an aspect ratio of about 0.2 on the surface of the glass material. . This is because the elastic modulus of inorganic glass at room temperature is as high as about 70 GPa, so even if a mold heated with a very large force of 3000 N is pressed on its surface, the glass material does not flow smoothly into the back of the microstructure, As a result, only a fine shape having an aspect ratio of about 0.2 could be formed. Therefore, for example, a molded product having a fine shape with an aspect ratio of 1 or more may exist as a prototype, but it does not yet exist as an industrial product with a uniform shape.

加えて、近年、使用する光源の波長の数倍からそれよりも小さな微細構造を光学面に施して、新たな光学的機能を光学素子に付加することが試みられている。例えば、成形レンズの屈折による通常の集光機能とその時に副作用として発生する正の分散を、その非球面光学面の表面に回折溝を施すことで得られる回折による大きな負の分散を利用してうち消し、本来、屈折だけでは不可能な色消し機能を単玉光学素子に付加することが、DVD/CD互換の光ディスク用ピックアップ対物レンズで実用化されている。これは、光学素子を透過する光の波長の数10倍の大きさの回折溝による回折作用を利用したもので、このように波長より十分大きな構造による回折作用を扱う領域は、スカラー領域と呼ばれている。   In addition, in recent years, an attempt has been made to add a new optical function to an optical element by applying a fine structure smaller than several times the wavelength of a light source to be used to the optical surface. For example, the normal focusing function due to refraction of a molded lens and the positive dispersion that occurs as a side effect at that time are utilized by utilizing the large negative dispersion due to diffraction obtained by forming a diffraction groove on the surface of the aspheric optical surface. Of these, it has been put to practical use with a pickup objective lens for an optical disk compatible with DVD / CD to add an achromatic function, which is essentially impossible with refraction alone, to a single optical element. This utilizes the diffractive action of a diffraction groove having a size several tens of times the wavelength of light transmitted through the optical element, and the region that handles the diffractive action by a structure sufficiently larger than the wavelength is called a scalar region. It is.

一方、光学素子を透過する光の波長の数分の一という微細な間隔で、円錐形状の突起を光学面の表面に密集させて形成させることで、光の反射抑制機能を発揮できることが判っている。即ち、光波が光学素子に入射する際の空気との境界面での屈折率変化を、従来の光学素子のように1から媒体屈折率まで瞬間的に変化させるのではなく、微細な間隔で並んだ突起の円錐形状によって緩やかに変化させ、それにより光の反射を抑制することができるのである。このような突起を形成した光学面は、いわゆる蛾の眼(moth eye)と呼ばれる微細構造で、光の波長よりも微細な構造体が波長よりも短い周期で並ぶことにより、もはや個々の構造が回折せずに光波に対して平均的な屈折率として働くものである。このような領域を等価屈折率領域と一般に呼んでいる。このような等価屈折率領域に関しては、例えば電子情報通信学会論文誌C Vol.J83−C No.3pp.173−181 2000年3月に述べられている。   On the other hand, it has been found that the light reflection suppressing function can be exhibited by forming the conical projections densely on the surface of the optical surface at a minute interval of a fraction of the wavelength of the light transmitted through the optical element. Yes. That is, the refractive index change at the interface with the air when the light wave enters the optical element is not instantaneously changed from 1 to the medium refractive index as in the conventional optical element, but is arranged at a fine interval. By changing the shape of the protrusions gradually, the reflection of light can be suppressed. The optical surface on which such protrusions are formed has a fine structure called a so-called “eyes”, and individual structures can no longer be obtained by arranging structures finer than the wavelength of light with a period shorter than the wavelength. It works as an average refractive index for light waves without being diffracted. Such a region is generally called an equivalent refractive index region. Regarding such an equivalent refractive index region, see, for example, IEICE Transactions C Vol. J83-C No. 3pp. 173-181, described in March 2000.

等価屈折率領域の微細構造によれば、従来の反射防止コートに比べて反射防止効果の角度依存性や波長依存性を少なくしながら大きな反射防止効果を得られるが、プラスチック成形等によれば、光学面と微細構造を同時に創成できることから、レンズ機能と反射防止機能が同時に得られて、従来のように成形後に反射防止コート処理をするといった後加工が不要となる等の生産上のメリットも大きいと考えられ注目されている。さらに、このような等価屈折率領域の微細構造を光学面に対して方向性を持つように配すると、強い光学異方性を光学面に持たせることもでき、従来、水晶などの結晶を削りだして製作していた複屈折光学素子を成形によって得ることができ、また、屈折や反射光学素子と組み合わせて新たな光学的機能を付加することができる。この場合の光学異方性は、構造性複屈折と呼ばれている。   According to the microstructure of the equivalent refractive index region, it is possible to obtain a large antireflection effect while reducing the angle dependency and wavelength dependency of the antireflection effect as compared with the conventional antireflection coating, but according to plastic molding or the like, Since the optical surface and fine structure can be created at the same time, the lens function and the antireflection function can be obtained at the same time, and there is also a great merit in production such that post-processing such as antireflection coating treatment after molding is unnecessary as in the past. It is considered and is attracting attention. Furthermore, if such a fine structure of the equivalent refractive index region is arranged so as to have directionality with respect to the optical surface, it is possible to give the optical surface strong optical anisotropy. Thus, the birefringent optical element produced can be obtained by molding, and a new optical function can be added in combination with a refractive or reflective optical element. The optical anisotropy in this case is called structural birefringence.

上述したスカラー領域と等価屈折率領域の間には、回折効率が入射条件のわずかな違いにより急激に変化する共鳴領域がある。例えば、回折輪帯の溝幅を狭くしていくと、波長の数倍程度で急激に回折効率が減少し、また増加するという現象(アノマリー)が発生する。この領域の性質を利用して、特定の波長のみを反射する導波モード共鳴格子フィルターを微細構造で実現して、通常の干渉フィルターと同等の効果をより角度依存性を少なくして実現できる。   Between the above-described scalar region and equivalent refractive index region, there is a resonance region in which the diffraction efficiency changes rapidly due to a slight difference in incident conditions. For example, when the groove width of the diffraction ring zone is narrowed, a phenomenon (anomaly) occurs in which the diffraction efficiency rapidly decreases and increases by several times the wavelength. By utilizing the characteristics of this region, a waveguide mode resonance grating filter that reflects only a specific wavelength can be realized with a fine structure, and the same effect as a normal interference filter can be realized with less angular dependence.

ところで、スカラー領域や、等価屈折率領域や、共鳴領或を利用して光学素子を形成しようとする場合、その光学面に微細な突起(又はくぼみ)を形成する必要がある。このような微細な突起(又はくぼみ)を備えた光学素子を大量生産するには、一般的には樹脂を素材として成形を行うことが適しているといえるが、かかる場合、微細な突起(又はくぼみ)に対応したくぼみ(又は突起)を備えた光学面転写面をどのようにして形成するかが問題となる。   By the way, when an optical element is formed using a scalar region, an equivalent refractive index region, a resonance region, or the like, it is necessary to form fine protrusions (or depressions) on the optical surface. In order to mass-produce optical elements having such fine protrusions (or dents), it can be said that it is generally suitable to perform molding using a resin as a raw material. The problem is how to form an optical surface transfer surface having a depression (or protrusion) corresponding to the depression.

すなわち、上述したような等価屈折領域や共鳴領域の突起(又はくぼみ)に関しては、数十乃至数百ナノメートルの間隔で突起(又はくぼみ)を光学素子の光学面に形成しなくてはならないが、従来の射出成形では、それに対応した型の微細形状の奥底まで樹脂が行き届かず、微細形状を精度良く転写することは極めて困難である。   That is, for the projections (or depressions) in the equivalent refractive region and the resonance region as described above, the projections (or depressions) must be formed on the optical surface of the optical element at intervals of several tens to several hundreds of nanometers. In conventional injection molding, the resin does not reach the depth of the fine shape of the mold corresponding to it, and it is extremely difficult to accurately transfer the fine shape.

本発明は、かかる従来技術の問題に鑑みてなされたものであり、より簡便に且つ低コストで、高アスペクト比又は角Rの小さい微細構造を有する成形物を成形できる成形方法及び成形装置、並びにその成形物、光学素子を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and more easily and at low cost, a molding method and a molding apparatus capable of molding a molded product having a fine structure with a high aspect ratio or a small angle R, and An object of the present invention is to provide a molded product and an optical element.

第1の本発明の成形物は、型を押し当てることで成形される成形物において、常温での弾性率が1〜4(GPa)であり、成形後の厚みが0.1mm以上20mm以下であり、成形面に形成された微細形状のアスペクト比が1以上であり、前記微細形状は剪断面を有することを特徴とする。   The molded product according to the first aspect of the present invention is a molded product formed by pressing a mold, has an elastic modulus at normal temperature of 1 to 4 (GPa), and a thickness after molding of 0.1 mm to 20 mm. The aspect ratio of the fine shape formed on the molding surface is 1 or more, and the fine shape has a shearing surface.

上述の問題点に鑑みて、本発明者らは鋭意研究の結果、従来と全く異なる視点から、微細形状を有する成形物を成形できる方法を創案した。すなわち、常温での弾性率が1〜4(GPa)であるような樹脂素材の場合、微細形状を有する型を加熱して、その型表面に押しつけると、押しつけた表面が溶融して微細形状に倣い、その結果、アスペクト比が1以上であっても精密に型の微細形状を転写した成形物を得られることを見出したのである。かかる場合、特許文献1に記載されているように3000Nもの型押圧力は不要であり、従来の射出成形機を改良するだけで足り、製造設備が低コスト化され、また短時間で大量な成形物を製造することが可能となる。   In view of the above-mentioned problems, the present inventors have devised a method capable of forming a molded product having a fine shape from a completely different viewpoint as a result of intensive studies. That is, in the case of a resin material having an elastic modulus of 1 to 4 (GPa) at room temperature, when a mold having a fine shape is heated and pressed against the mold surface, the pressed surface is melted to a fine shape. As a result, it was found that even if the aspect ratio is 1 or more, a molded product in which the fine shape of the mold is accurately transferred can be obtained. In such a case, as described in Patent Document 1, a pressing force of 3000 N is unnecessary, it is sufficient to improve the conventional injection molding machine, the manufacturing equipment is reduced in cost, and a large amount of molding is performed in a short time. It becomes possible to manufacture a thing.

ところが、本発明者らによる更なる実験を通じて、上述の微細形状の転写手法を用いて、線幅が極めて小さく且つ高いアスペクト比の微細形状を形成しようとすると、不良率が増大することが判明した。かかる微細形状の不良としては、例えば線幅100nmでアスペクト比が1を超える微細形状が形成しようとすると、成形物より型を引き剥がす際の離型性が悪く、離型により微細形状を破壊してしまうこと等がある。   However, through further experiments by the present inventors, it has been found that the defect rate increases when an attempt is made to form a fine shape with a very small line width and a high aspect ratio using the fine shape transfer method described above. . For example, if a fine shape with a line width of 100 nm and an aspect ratio exceeding 1 is formed, the releasability when the mold is peeled off from the molded product is poor, and the fine shape is destroyed by the mold release. There are things that end up.

そこで、本発明者らは更に鋭意研究を重ねることで、特に高アスペクト比の微細形状を形成する場合の不良率を低減させるのに効果的な技術を導出した。これは、樹脂素材の成形加工に対し機械的加工を融合させた、極めて画期的な発想に基づくものである。   Therefore, the present inventors have conducted further intensive studies to derive a technique that is effective for reducing the defect rate particularly when a fine shape with a high aspect ratio is formed. This is based on an extremely innovative idea that combines mechanical processing with molding processing of a resin material.

ここで、不良率が増大することが判明した転写手法は、例えば0.05mm/sという非常に遅い速度で、加熱した型を樹脂素材に接近させ、型の熱を樹脂素材に十分に与えて溶融変形させながら微細形状を形成するものである。しかるに、この手法では、型の温度が樹脂素材に伝わることで、微細形状が溶融変形して強度が低下し、離型時に耐えきれず破壊してしまうという問題があることを本発明者らが見出したのである。これに対し、微細形状を転写した後、そのまま型と樹脂素材とを冷却し、微細形状が固化した後に離型するという手法も考えられるが、それでは加工時間が長くなるほか、型の熱収縮率と樹脂素材の熱収縮率とが異なることから、冷却中に微細形状が破損してしまうという問題がある。又、加熱した型を樹脂素材に押しつけた状態で長時間維持した場合にも、樹脂素材がクリープによりじわじわ変形するという問題がある。   Here, the transfer method that has been found to increase the defect rate is that the heated mold is brought close to the resin material at a very slow speed of, for example, 0.05 mm / s, and the heat of the mold is sufficiently applied to the resin material. A fine shape is formed while being melted and deformed. However, in this technique, the present inventors have a problem that the fine shape melts and deforms due to the temperature of the mold being transferred to the resin material, the strength decreases, and the mold cannot be withstood at the time of mold release and breaks. I found it. On the other hand, after transferring the fine shape, the mold and the resin material can be cooled as they are, and then the mold is released after the fine shape is solidified. Since the thermal shrinkage rate of the resin material is different from that of the resin material, there is a problem that the fine shape is damaged during cooling. Further, even when the heated mold is pressed against the resin material for a long time, there is a problem that the resin material is gradually deformed by creep.

そこで、本発明者らは発想を転換し、衝撃エネルギーを樹脂素材に与えて微細形状を形成できないかを検討した。衝撃エネルギーEは、型の質量をm、移動速度をvとしたときに、E=mv/2で表されることから、移動速度vを増大させて、大きな衝撃エネルギーEを樹脂素材に与えることとした。本発明者らの実験結果によれば、10mm/s以上の移動速度で、型を樹脂素材に接近させた場合、衝撃エネルギーが樹脂素材に付与され、それにより従来の技術では形成できなかった高アスペクト比の微細形状を精度よく転写形成することができた。又、加熱した型が樹脂素材に接触する時間が短いため、型からの伝熱で微細形状の表面は溶融変形しても、中の部分は剛性を維持したままであり、従って迅速に離型させることで、形成された微細形状が維持され、従来に比べて転写成功面積が増大した。更に、移動速度を上げた副次的な効果として、成形加工時間が短縮化された。形成された微細形状には、衝撃エネルギーを付与されることで形成された剪断面が確認された。本発明は、特に線幅が500nm以下の微細形状を形成する場合に有効である。 Therefore, the present inventors changed the way of thinking and examined whether a fine shape could be formed by applying impact energy to the resin material. Impact energy E is the type of mass m, when the moving speed to v, from being represented by E = mv 2/2, by increasing the moving velocity v, a stunner energy E to the resin material It was decided. According to the results of experiments by the present inventors, when the mold is brought close to the resin material at a moving speed of 10 mm / s or more, impact energy is imparted to the resin material, thereby making it impossible to form with a conventional technique. A fine shape with an aspect ratio could be accurately transferred and formed. In addition, since the time for which the heated mold is in contact with the resin material is short, even if the surface of the fine shape is melted and deformed by heat transfer from the mold, the inner part remains rigid, so that the mold can be released quickly. By doing so, the formed fine shape was maintained, and the transfer success area was increased as compared with the conventional case. Furthermore, as a secondary effect of increasing the moving speed, the molding process time has been shortened. A sheared surface formed by applying impact energy was confirmed in the formed fine shape. The present invention is particularly effective when a fine shape having a line width of 500 nm or less is formed.

尚、衝撃エネルギーEを増大させるためには、型の質量mを大きくすることも考えられるが、装置の大型化を招く恐れがあるので、本発明のように移動速度vを増大させる方が好都合なことが多いといえる。   In order to increase the impact energy E, it is conceivable to increase the mass m of the mold. However, since the apparatus may be increased in size, it is more convenient to increase the moving speed v as in the present invention. It can be said that there are many things.

ちなみに、常温での弾性率が1〜4(GPa)であるような素材とは、例えばPMMA(弾性率1.5〜3.3GPa)、ポリカーボネイト(弾性率3.1GPa)、ポリオレフィン(弾性率2.5〜3.1GPa)などの弾性率が1〜4の範囲の樹脂を組成成分として含有することが好ましい。ここで、常温とは25℃のことをいう。これらの樹脂は、ガラス転移点が50〜160℃であることが好ましい。弾性率は、JIS−K7161、7162などに従い求めることができる。ガラス転移点温度は、JIS R3102−3:2001に従い求めることができる。   Incidentally, materials having an elastic modulus of 1 to 4 (GPa) at room temperature include, for example, PMMA (elastic modulus of 1.5 to 3.3 GPa), polycarbonate (elastic modulus of 3.1 GPa), polyolefin (elastic modulus of 2). It is preferable to contain, as a composition component, a resin having an elastic modulus in the range of 1 to 4 such as .5 to 3.1 GPa). Here, room temperature means 25 ° C. These resins preferably have a glass transition point of 50 to 160 ° C. The elastic modulus can be obtained according to JIS-K7161, 7162, and the like. The glass transition temperature can be determined according to JIS R3102-3: 2001.

「アスペクト比」とは、図1(a)、(b)に示すように、微細構造の凹部又は凸部の幅をA、深さ又は高さをBとしたときに、B/Aで表される値をいう。「微細形状」とは、Aの値が10μm以下の形状をいう。成形後の厚みとは、型を押し当てる方向に対しての成形物の厚みをいい、例えば図2に示すTの値である。この成形後の厚みは、0.1〜20mmであり、好ましくは1〜5mmである。   As shown in FIGS. 1A and 1B, the “aspect ratio” is represented by B / A, where A is the width of the concave or convex portion of the microstructure and B is the depth or height. Value. “Fine shape” means a shape having a value of A of 10 μm or less. The thickness after molding refers to the thickness of the molded product in the direction in which the mold is pressed, and is, for example, the value of T shown in FIG. The thickness after this molding is 0.1 to 20 mm, preferably 1 to 5 mm.

更に、前記微細形状は、構造性複屈折を生じさせると好ましい。   Furthermore, it is preferable that the fine shape causes structural birefringence.

更に、前記微細形状は、光の波長以下のサイズで周期構造を持ち反射防止機能を有すると好ましい。   Furthermore, it is preferable that the fine shape has a periodic structure with a size equal to or smaller than the wavelength of light and has an antireflection function.

更に、前記成形物は、光学素子であると良好な光学特性を得ることができ好ましいが、インクジェットプリンタのヘッドなどにも適用できる。   Further, the molded product is preferably an optical element because good optical characteristics can be obtained, but it can also be applied to an inkjet printer head or the like.

第2の本発明の光学素子は、型を押し当てることで光学面を成形される光学素子において、常温での弾性率が1〜4(GPa)であり、成形後の厚みが0.1mm以上20mm以下であり、前記光学面に形成された輪帯状の回折構造における半径方向のピッチが10μm以下であり、前記回折構造の光軸方向断面における角部の曲率半径は1μm未満であり、前記回折構造は剪断面を有することを特徴とする。   The optical element of the second aspect of the present invention is an optical element whose optical surface is molded by pressing a mold, and has an elastic modulus at normal temperature of 1 to 4 (GPa) and a thickness after molding of 0.1 mm or more. 20 mm or less, the radial pitch in the annular diffraction structure formed on the optical surface is 10 μm or less, the radius of curvature of the corner in the cross section in the optical axis direction of the diffraction structure is less than 1 μm, and the diffraction The structure is characterized by having a shear surface.

従来の射出成形においては、回折構造に対応した型の微細構造の奥まで樹脂が入り込みにくいことから、それにより得られる光学素子の回折構造は、その光軸方向断面における角部がダレてその曲率半径が1μmを大きく超えており、光透過率が悪化する恐れがある。これに対し、本発明の光学素子では、上述した手法で高アスペクト比の回折構造を精密転写でき、前記回折構造の光軸方向断面における角部の曲率半径が1μm未満となり、より高い光透過率を得ることができる。尚、このような成形物や光学素子は、以下の成形方法又は成形装置により得ることができる。   In conventional injection molding, since it is difficult for the resin to penetrate deep into the microstructure of the mold corresponding to the diffractive structure, the resulting diffractive structure of the optical element has a sagging corner in the cross section in the optical axis direction and its curvature. The radius greatly exceeds 1 μm, and the light transmittance may be deteriorated. On the other hand, in the optical element of the present invention, a high-aspect-ratio diffractive structure can be precisely transferred by the above-described method, the radius of curvature of the corner in the cross section in the optical axis direction of the diffractive structure is less than 1 μm, and higher light transmittance. Can be obtained. Such a molded product or optical element can be obtained by the following molding method or molding apparatus.

第3の本発明の成形方法は、微細形状を有する型の温度を、常温での弾性率が1〜4(GPa)である素材のガラス転移点温度より高く設定するステップと、前記型を前記素材に向かって10mm/s以上の速度で押圧することで、前記微細形状を前記素材に転写するステップと、前記微細形状を有する型を樹脂素材から離型させるステップと、を有するので、高アスペクト比の微細形状を有する成形物又は光軸方向断面における角部の曲率半径が1μm未満の回折構造を有する光学素子を容易に成形できる。   The molding method according to the third aspect of the present invention includes a step of setting a temperature of a mold having a fine shape higher than a glass transition temperature of a material having an elastic modulus at room temperature of 1 to 4 (GPa), By pressing toward the material at a speed of 10 mm / s or more, there are a step of transferring the fine shape to the material and a step of releasing the mold having the fine shape from the resin material. It is possible to easily mold a molded article having a fine shape with a specific ratio or an optical element having a diffractive structure with a radius of curvature of a corner in an optical axis direction cross section of less than 1 μm.

更に、前記型を前記素材に向かって押圧する前に、前記微細形状の型と、それに対向する型の間に前記素材を射出するステップと前記素材を冷却するステップとを有すると好ましい。   Furthermore, before pressing the mold toward the material, it is preferable to have a step of injecting the material and a step of cooling the material between the mold having the fine shape, and the mold facing the mold.

第4の本発明の成形装置は、微細形状を有する可動型と、前記可動型の微細形状を包囲するように遮蔽する固定型と、前記可動型を加熱するヒータと、前記可動型と前記固定型とを相対移動させる駆動部と、を有し、前記可動型と前記固定型とで閉鎖される空間に、常温での弾性率が1〜4(GPa)である素材を配置し、少なくとも前記素材の内部が固化した状態で、前記ヒータにより前記可動型を加熱し、前記移動部が前記可動型を前記素材に向かって10mm/s以上の速度で相対移動させることにより、前記可動型の微細形状が転写されるようになっているので、高アスペクト比の微細形状を有する成形物又は光軸方向断面における角部の曲率半径が1μm未満の回折構造を有する光学素子を容易に成形できる。   A molding apparatus according to a fourth aspect of the present invention includes a movable mold having a fine shape, a fixed mold that shields the movable mold so as to surround the fine shape, a heater that heats the movable mold, the movable mold, and the fixed mold. A drive unit that relatively moves the mold, and in a space closed by the movable mold and the fixed mold, a material having an elastic modulus of 1 to 4 (GPa) at room temperature is disposed, and at least the In a state where the inside of the material is solidified, the movable mold is heated by the heater, and the moving part relatively moves the movable mold toward the material at a speed of 10 mm / s or more, thereby making the movable mold fine. Since the shape is transferred, it is possible to easily mold a molded product having a fine shape with a high aspect ratio or an optical element having a diffractive structure with a radius of curvature of a corner portion in an optical axis direction cross section of less than 1 μm.

尚、本発明の成形装置を用いて成形する場合、微細形状以外の母形状を予め射出成形等により成形し、その後、前記素材の内部が固化した状態で、素材のガラス転移点以上に加熱された前記可動型を素材に押しつけることで、母形状を維持しつつ微細形状が素材に転写される。従って、前記素材は、前記可動型と前記固定型とで閉鎖される空間内に射出されると良い。ただし、母形状を成形する型と微細形状を成形する可動型とは別個にしても良く、かかる場合、型交換時に素材を冷却することが可能となる。   In addition, when molding using the molding apparatus of the present invention, a mother shape other than a fine shape is molded in advance by injection molding or the like, and then heated above the glass transition point of the material with the inside of the material solidified. By pressing the movable mold against the material, the fine shape is transferred to the material while maintaining the mother shape. Therefore, the material is preferably injected into a space closed by the movable mold and the fixed mold. However, the mold for forming the mother shape and the movable mold for forming the fine shape may be separated, and in such a case, the material can be cooled at the time of mold replacement.

本発明によれば、より簡便に且つ低コストで、高アスペクト比又は角Rの小さい微細構造を有する成形物を成形できる成形方法及び成形装置、並びにその成形物、光学素子を提供することができる。   According to the present invention, it is possible to provide a molding method and molding apparatus, a molding product, and an optical element that can mold a molding having a microstructure with a high aspect ratio or a small angle R more easily and at low cost. .

以下、本発明の実施の形態につき、図面を参照して説明する。図2は、本実施の形態にかかる成形方法を実施できる光学素子の成形装置の断面図である。図2において、下型1の上に円管状の上型2が移動自在に配置されている。円筒状の可動型3が、上型2に対して摺動可能に内包されており、可動型3’が、下型1に対して摺動可能に内包されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a cross-sectional view of an optical element molding apparatus capable of performing the molding method according to the present embodiment. In FIG. 2, a circular tubular upper mold 2 is movably disposed on the lower mold 1. A cylindrical movable mold 3 is slidably included with respect to the upper mold 2, and a movable mold 3 ′ is slidably included with respect to the lower mold 1.

可動型3の下面には、成形しようとする光学素子の非球面形状3aと、構造性複屈折を生じさせる形状にに対応した微細形状3bとが形成されている。又、可動型3の内側には、ヒータ4が設置されている。可動型3’の上面には、成形しようとする光学素子の非球面形状3a’と、回折構造に対応した微細形状3b’とが形成されている。又、可動型3’の内側には、ヒータ4’が設置されている。尚、本実施の形態では、下型1と上型2とで固定型を構成する。   On the lower surface of the movable mold 3, an aspherical shape 3a of an optical element to be molded and a fine shape 3b corresponding to a shape that causes structural birefringence are formed. A heater 4 is installed inside the movable mold 3. On the upper surface of the movable mold 3 ', an aspherical shape 3a' of the optical element to be molded and a fine shape 3b 'corresponding to the diffractive structure are formed. A heater 4 'is installed inside the movable mold 3'. In the present embodiment, the lower mold 1 and the upper mold 2 constitute a fixed mold.

図3は、本実施の形態にかかる成形方法を示すフローチャート図である。図3を参照して、かかる成形方法について説明する。まず、ステップS101で、下型1,上型2,可動型3、3’を、図2に示す状態に配置し、いわゆる型締めを行う。続いて、ステップS102で、外部の加熱シリンダー(不図示)にて加熱溶融された樹脂素材を、ゲートGを介して下型1,上型2内へと射出する(素材を射出するステップ)。   FIG. 3 is a flowchart showing the molding method according to the present embodiment. With reference to FIG. 3, the forming method will be described. First, in step S101, the lower mold 1, the upper mold 2, the movable mold 3, 3 'are arranged in the state shown in FIG. 2, and so-called mold clamping is performed. Subsequently, in step S102, the resin material heated and melted by an external heating cylinder (not shown) is injected into the lower mold 1 and the upper mold 2 through the gate G (step of injecting the material).

ステップS103で、射出された素材を冷却する(自然冷却でも、可動型3,3’の少なくとも一方を退避させて素材を雰囲気に暴露する強制冷却を行っても良い)。このとき、素材の表面には、可動型3の非球面形状3aが転写されているが、素材の射出のみでは、微細形状3bは十分に転写するのは困難である。そこで、ステップS104で、ヒータ4、4’により可動型3、3’を加熱し、樹脂素材のガラス転移点以上の温度にする(型の温度を素材のガラス転移点温度より高く設定するステップ)。その後、ステップS105で、不図示の駆動部によって、10mm/s以上の速度で、可動型3、3’を樹脂素材に向かって押圧すると、微細形状3b、3b’が当たる樹脂素材の表面が溶融し、微細形状3b、3b’の溝底まで行き渡るようになる(微細形状を転写するステップ)。従って、アスペクト比が1以上の微細形状、及び光軸方向断面の角部の曲率半径が1μm以下の微細形状でも精度良く転写できる。   In step S103, the injected material is cooled (either natural cooling or forced cooling in which at least one of the movable molds 3 and 3 'is retracted to expose the material to the atmosphere). At this time, the aspherical shape 3a of the movable mold 3 is transferred to the surface of the material, but it is difficult to transfer the fine shape 3b sufficiently only by injection of the material. Therefore, in step S104, the movable molds 3 and 3 'are heated by the heaters 4 and 4' to a temperature equal to or higher than the glass transition point of the resin material (step of setting the mold temperature higher than the glass transition temperature of the material). . After that, in step S105, when the movable molds 3 and 3 ′ are pressed against the resin material at a speed of 10 mm / s or more by a driving unit (not shown), the surface of the resin material to which the fine shapes 3b and 3b ′ hit is melted. Then, it reaches the groove bottoms of the fine shapes 3b and 3b '(step of transferring the fine shapes). Therefore, even a fine shape having an aspect ratio of 1 or more and a fine shape having a radius of curvature of a corner of the cross section in the optical axis direction of 1 μm or less can be accurately transferred.

その後、ステップS106で、1〜5sec程度の保圧(可動型を樹脂素材に押しつけたまま静止)を行い、ステップS107で、不図示の駆動部を用いて下型1から上型2及び可動型3、3’を退避させる型開き(離型)により、高精度な微細形状を得る光学素子を形成できる。   After that, in step S106, pressure holding is performed for about 1 to 5 seconds (stationary while the movable mold is pressed against the resin material), and in step S107, the lower mold 1 to the upper mold 2 and the movable mold are used using a driving unit (not shown). An optical element that obtains a highly accurate fine shape can be formed by mold opening (releasing) for retracting 3, 3 ′.

従来の射出成形においては、微細形状の転写を行わない場合で数10秒程度、微細形状の転写を行う場合は1分程度のサイクルタイムを要していたが、本願発明の成形方法によれば、予め設計形状誤差範囲内に成形された被成形物表面に微細形状を転写し形状を成形する場合には、1〜10秒のサイクルタイムで成形が完了する。保圧時間が大幅に短くなるということもサイクルタイムの短縮に貢献している。   In the conventional injection molding, a cycle time of about several tens of seconds is required when the fine shape is not transferred, and about one minute is required when the fine shape is transferred, but according to the molding method of the present invention, In the case where the fine shape is transferred to the surface of the object that has been previously molded within the design shape error range and the shape is molded, the molding is completed in a cycle time of 1 to 10 seconds. The fact that the holding time is significantly shortened also contributes to shortening the cycle time.

又、可動型3,3’を10mm/s以上の速度で樹脂素材に向かって移動させることで、衝撃エネルギーが樹脂素材に付与され、それにより従来の技術では形成できなかった高アスペクト比の微細形状を精度よく転写形成することができる。又、加熱した可動型3,3’が樹脂素材に接触する時間が短いため、型からの伝熱で微細形状の表面は溶融変形しても、中の部分は剛性を維持したままであり、従って迅速に離型させることで、形成された微細形状が維持され、従来に比べて転写成功面積が増大する。更に、移動速度を上げた副次的な効果として、成形加工時間が短縮化される。形成された微細形状には、衝撃エネルギーを付与されることで形成された剪断面が形成される。   In addition, by moving the movable molds 3 and 3 'toward the resin material at a speed of 10 mm / s or more, impact energy is imparted to the resin material, thereby making the fineness of the high aspect ratio that could not be formed by the conventional technology. The shape can be accurately transferred and formed. In addition, since the time for which the heated movable molds 3 and 3 ′ are in contact with the resin material is short, even if the surface of the fine shape is melted and deformed by heat transfer from the mold, the inner part remains rigid. Therefore, by rapidly releasing the mold, the formed fine shape is maintained, and the transfer success area is increased as compared with the conventional case. Further, as a secondary effect of increasing the moving speed, the molding process time is shortened. The formed fine shape is formed with a sheared surface formed by applying impact energy.

図4は、以上の成形方法により成形される光学素子の例を示す図である。図4(a)の斜視図で示される形状の光学素子10は、図4(b)に示すように表面には構造性複屈折の微細形状10aを有しており、図4(b)に示すように裏面には光軸方向断面が鋸歯状の回折構造10bを有している。構造性複屈折の微細形状10aは、輪帯状の矩形溝を有しており、図4(d)に示す断面形状を有している。ここで、一例として、光学素子10の素材の屈折率を1.92とし、入射する光の波長をλとすると、構造性複屈折の微細形状10aにおける各部寸法は、d1=0.25λ、d2(溝幅)=0.39λ、d3=2λ、d4(溝深さ)=1.22λとなる。又、図4(c)において、鋸歯状の回折構造10bの光軸方向断面における角部の曲率半径Rは1μm未満である。   FIG. 4 is a diagram showing an example of an optical element molded by the above molding method. The optical element 10 having the shape shown in the perspective view of FIG. 4 (a) has a fine shape 10a of structural birefringence on the surface as shown in FIG. 4 (b). As shown, the back surface has a diffraction structure 10b having a sawtooth cross section in the optical axis direction. The fine shape 10a of structural birefringence has a ring-shaped rectangular groove, and has a cross-sectional shape shown in FIG. Here, as an example, if the refractive index of the material of the optical element 10 is 1.92 and the wavelength of incident light is λ, the dimensions of each part in the fine shape 10a of structural birefringence are d1 = 0.25λ, d2 (Groove width) = 0.39λ, d3 = 2λ, d4 (groove depth) = 1.22λ. Further, in FIG. 4C, the radius of curvature R of the corner in the cross section in the optical axis direction of the sawtooth diffraction structure 10b is less than 1 μm.

図5は、以上の成形方法により成形される光学素子の別の例を示す図である。図5(a)の断面図を示される形状の光学素子20は、図5(b)に示すように表面には光軸方向断面が鋸歯状の回折構造20aを有している。更に、回折構造20aの傾斜面には、深さ方向に向かうにつれ縮径した円錐形状の多数の孔20bが形成されている。反射防止機能を有するこの孔20bは、傾斜面の面積の20%乃至40%(好ましくは30%)を占める。   FIG. 5 is a diagram showing another example of an optical element molded by the above molding method. The optical element 20 having the shape shown in the cross-sectional view of FIG. 5A has a diffractive structure 20a having a serrated cross section in the optical axis direction on the surface, as shown in FIG. 5B. Furthermore, a large number of conical holes 20b having a diameter reduced in the depth direction are formed on the inclined surface of the diffractive structure 20a. The hole 20b having the antireflection function occupies 20% to 40% (preferably 30%) of the area of the inclined surface.

本願発明者らは、実験を通じて本願発明の効果を確認した。図6,7は、本発明者らが行った実験結果を示すグラフである。図6に示す実験結果は、線幅が100nmのライン状の突起を形成する際に、どれほど深い微細形状が形成できるかを示すものであり、すなわち図1(a)に示す状態で、A=100nmとしたときに、Bがどの程度になるかを求めている。   The inventors of the present application confirmed the effect of the present invention through experiments. 6 and 7 are graphs showing the results of experiments conducted by the present inventors. The experimental result shown in FIG. 6 shows how deep a fine shape can be formed when forming a line-shaped protrusion having a line width of 100 nm, that is, in the state shown in FIG. The level of B is obtained when the thickness is 100 nm.

これに対し、図7に示す実験結果は、転写成功面積を示すものであり、例えば100%であれば全領域で転写が成功したことを示し、逆に0%であれば転写が全領域で失敗したことを示している。本発明者らは、図2に示す成形装置を用いて、以下のように条件を変えて実験を行った。
[試験条件]
(a)型温度:150℃、移動速度:0.05mm/s、保圧:600sec(冷却あり)
(b)型温度:150℃、移動速度:50mm/s、保圧:2sec
(c)型温度:130℃、移動速度:0.05mm/s、保圧:2sec
(d)型温度:130℃、移動速度:0.05mm/s、保圧:10sec
(e)型温度:130℃、移動速度:5mm/s、保圧:3sec
(f)型温度:130℃、移動速度:50mm/s、保圧:2sec
On the other hand, the experimental result shown in FIG. 7 shows the transfer success area. For example, 100% indicates that the transfer is successful in the entire region, and conversely if 0%, the transfer is in the entire region. Indicates failure. The present inventors conducted an experiment using the molding apparatus shown in FIG. 2 while changing the conditions as follows.
[Test conditions]
(A) Mold temperature: 150 ° C., moving speed: 0.05 mm / s, holding pressure: 600 sec (with cooling)
(B) Mold temperature: 150 ° C., moving speed: 50 mm / s, holding pressure: 2 sec
(C) Mold temperature: 130 ° C., moving speed: 0.05 mm / s, holding pressure: 2 sec
(D) Mold temperature: 130 ° C., moving speed: 0.05 mm / s, holding pressure: 10 sec
(E) Mold temperature: 130 ° C., moving speed: 5 mm / s, holding pressure: 3 sec
(F) Mold temperature: 130 ° C., moving speed: 50 mm / s, holding pressure: 2 sec

図6,7のグラフを参照するに、型温度150℃(条件(a)、(b))では、アスペクト比が3.5〜4.5と高い微細形状を形成できるが、転写成功面積が10〜20%と低く改善の余地があることがわかる。一方、型温度130℃(条件(c)〜(f))では、アスペクト比が1.0〜2.0と比較的低い微細形状となるが、転写成功面積が最大100%であり、こちらは実現可能性がある。   Referring to the graphs of FIGS. 6 and 7, at a mold temperature of 150 ° C. (conditions (a) and (b)), a high fine shape with an aspect ratio of 3.5 to 4.5 can be formed. It can be seen that there is room for improvement as low as 10 to 20%. On the other hand, at a mold temperature of 130 ° C. (conditions (c) to (f)), the aspect ratio is relatively low, 1.0 to 2.0, but the transfer success area is 100% at the maximum. It is feasible.

更に、型温度130℃の条件による実験結果を詳細に検討する。まず条件(c)、(d)を比較すると、保圧時間が10sec(c)のときは、アスペクト比は2.0の微細形状を得ることができるが、転写成功率が30%であり改善の余地があることがわかる。一方、保圧時間が2sec(d)のときは、アスペクト比は1.0に留まるが、転写成功率が100%となることがわかる。   Furthermore, the experimental results under the condition of a mold temperature of 130 ° C. will be examined in detail. First, when the conditions (c) and (d) are compared, when the holding pressure time is 10 sec (c), a fine shape with an aspect ratio of 2.0 can be obtained, but the transfer success rate is 30%, which is improved. It can be seen that there is room for. On the other hand, when the pressure holding time is 2 sec (d), the aspect ratio remains at 1.0, but the transfer success rate is 100%.

次に条件(c)、(e)を比較して、移動速度が0.05mm/sと5mm/sでは、形成される微細形状のアスペクト比、転写成功面積は殆ど変わらないことがわかり、条件(c)、(f)を比較して、移動速度が0.05mm/sから50mm/sになると、形成される微細形状のアスペクト比は高くなるが、転写成功面積は70%に低下することがわかる。以上より、線幅100nmで1.5のアスペクト比を有する微細形状を、70%以上の転写成功面積で得ようとした場合、条件(f)で行うべきことがわかった。   Next, comparing the conditions (c) and (e), it can be seen that when the moving speed is 0.05 mm / s and 5 mm / s, the aspect ratio and the transfer success area of the formed fine shape are hardly changed. When (c) and (f) are compared, when the moving speed is changed from 0.05 mm / s to 50 mm / s, the aspect ratio of the formed fine shape increases, but the transfer success area decreases to 70%. I understand. From the above, it was found that when a fine shape having an aspect ratio of 1.5 with a line width of 100 nm is obtained with a transfer success area of 70% or more, it should be performed under the condition (f).

図8は、本発明者らの実験により得られた、型の位相速度と形成される微細形状の最大アスペクト比(充填深さ)との関係を示す図である。図8に示すように、型速度を10mm/s以上に設定すると、線幅100nmで最大アスペクト比1.1以上の微細形状を得ることができる。   FIG. 8 is a diagram showing the relationship between the phase velocity of the mold and the maximum aspect ratio (filling depth) of the fine shape to be formed, obtained by the experiments of the present inventors. As shown in FIG. 8, when the mold speed is set to 10 mm / s or more, a fine shape having a line width of 100 nm and a maximum aspect ratio of 1.1 or more can be obtained.

以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。本発明は、光ピックアップ装置用の光学素子に限らず、種々の光学素子、或いはインクジェットプリンタのヘッドなどの成形にも適用できる。   The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be modified or improved as appropriate. The present invention is not limited to an optical element for an optical pickup device, but can also be applied to molding various optical elements or an inkjet printer head.

アスペクト比を説明するための図である。It is a figure for demonstrating an aspect-ratio. 本実施の形態にかかる成形方法を実施できる光学素子の成形装置の断面図である。It is sectional drawing of the shaping | molding apparatus of the optical element which can implement the shaping | molding method concerning this Embodiment. 本実施の形態にかかる成形方法を示すフローチャート図である。It is a flowchart figure which shows the shaping | molding method concerning this Embodiment. 本実施の形態にかかる成形方法により成形される光学素子の例を示す図である。It is a figure which shows the example of the optical element shape | molded by the shaping | molding method concerning this Embodiment. 本実施の形態にかかる成形方法により成形される光学素子の別の例を示す図である。It is a figure which shows another example of the optical element shape | molded by the shaping | molding method concerning this Embodiment. 本発明者らが行った実験結果を示すグラフである。It is a graph which shows the experimental result which the present inventors conducted. 本発明者らが行った実験結果を示すグラフである。It is a graph which shows the experimental result which the present inventors conducted. 本発明者らの実験により得られた、型の位相速度と形成される微細形状の最大アスペクト比(充填深さ)との関係を示す図である。It is a figure which shows the relationship between the phase velocity of a type | mold obtained by experiment of the present inventors, and the maximum aspect ratio (filling depth) of the fine shape formed.

符号の説明Explanation of symbols

1 下型
2 上型
3 可動型
4 ヒータ
1 Lower mold 2 Upper mold 3 Movable mold 4 Heater

Claims (17)

型を押し当てることで成形される成形物において、
常温での弾性率が1〜4(GPa)であり、成形後の厚みが0.1mm以上20mm以下であり、成形面に形成された微細形状のアスペクト比が1以上であり、前記微細形状は剪断面を有することを特徴とする微細形状を有する成形物。
In a molded product formed by pressing a mold,
The elastic modulus at normal temperature is 1 to 4 (GPa), the thickness after molding is 0.1 mm or more and 20 mm or less, the aspect ratio of the fine shape formed on the molding surface is 1 or more, and the fine shape is A molded product having a fine shape characterized by having a shearing surface.
前記微細形状は、構造性複屈折を生じさせることを特徴とする請求項1に記載の成形物。 The molded article according to claim 1, wherein the fine shape causes structural birefringence. 前記微細形状は、光の波長以下のサイズで周期構造を持ち反射防止機能を有することを特徴とする請求項1に記載の成形物。 The molded product according to claim 1, wherein the fine shape has a periodic structure with a size equal to or smaller than the wavelength of light and has an antireflection function. 光学素子であることを特徴とする請求項1乃至3のいずれかに記載の微細形状を有する成形物。 The molded article having a fine shape according to any one of claims 1 to 3, which is an optical element. 型を押し当てることで光学面を成形される光学素子において、
常温での弾性率が1〜4(GPa)であり、成形後の厚みが0.1mm以上20mm以下であり、前記光学面に形成された輪帯状の回折構造における半径方向のピッチが10μm以下であり、前記回折構造の光軸方向断面における角部の曲率半径は1μm未満であり、前記回折構造は剪断面を有することを特徴とする光学素子。
In an optical element whose optical surface is molded by pressing a mold,
The elastic modulus at normal temperature is 1 to 4 (GPa), the thickness after molding is 0.1 mm or more and 20 mm or less, and the radial pitch in the annular diffraction structure formed on the optical surface is 10 μm or less. An optical element, wherein a radius of curvature of a corner portion in a cross section in the optical axis direction of the diffractive structure is less than 1 μm, and the diffractive structure has a shear plane.
微細形状を有する型の温度を、常温での弾性率が1〜4(GPa)である素材のガラス転移点温度より高く設定するステップと、
前記型を前記素材に向かって10mm/s以上の速度で押圧することで、前記微細形状を前記素材に転写するステップと、
前記微細形状を有する型を樹脂素材から離型させるステップと、を有することを特徴とする成形方法。
Setting the temperature of the mold having a fine shape higher than the glass transition temperature of the material having an elastic modulus at room temperature of 1 to 4 (GPa);
Transferring the fine shape to the material by pressing the mold toward the material at a speed of 10 mm / s or more;
Releasing the mold having the fine shape from the resin material.
前記型を前記素材に向かって押圧する前に、前記微細形状の型と、それに対向する型の間に前記素材を射出するステップと前記素材を冷却するステップとを有することを特徴とする請求項6に記載の成形方法。 2. The method according to claim 1, further comprising a step of injecting the material between the finely shaped die, a die facing the die, and a step of cooling the material before pressing the die toward the material. 6. The molding method according to 6. 前記素材は光学素子の素材であることを特徴とする請求項6又は7に記載の成形方法。 The molding method according to claim 6, wherein the material is a material of an optical element. 前記微細形状は輪帯状の回折構造であり、前記回折構造の半径方向のピッチは10μm以下であり、前記回折構造の光軸方向断面における角部の曲率半径は1μm未満であることを特徴とする請求項8に記載の成形方法。 The fine shape is a ring-shaped diffractive structure, the pitch of the diffractive structure in the radial direction is 10 μm or less, and the radius of curvature of the corner in the cross section in the optical axis direction of the diffractive structure is less than 1 μm. The molding method according to claim 8. 前記微細形状は、アスペクト比が1以上であり、構造性複屈折を生じさせることを特徴とする請求項8に記載の成形方法。 The molding method according to claim 8, wherein the fine shape has an aspect ratio of 1 or more and causes structural birefringence. 前記微細形状は、アスペクト比が1以上であり、光の波長以下のサイズで周期構造を持ち反射防止機能を有することを特徴とする請求項8に記載の成形方法。 The molding method according to claim 8, wherein the fine shape has an aspect ratio of 1 or more, a periodic structure with a size equal to or smaller than the wavelength of light, and an antireflection function. 微細形状を有する可動型と、
前記可動型の微細形状を包囲するように遮蔽する固定型と、
前記可動型を加熱するヒータと、
前記可動型と前記固定型とを相対移動させる駆動部と、を有し、
前記可動型と前記固定型とで閉鎖される空間に、常温での弾性率が1〜4(GPa)である素材を配置し、少なくとも前記素材の内部が固化した状態で、前記ヒータにより前記可動型を加熱し、前記移動部が前記可動型を前記素材に向かって10mm/s以上の速度で相対移動させることにより、前記可動型の微細形状が転写されるようになっていることを特徴とする成形装置。
A movable mold having a fine shape;
A stationary mold that shields the movable mold so as to surround the fine shape;
A heater for heating the movable mold;
A drive unit that relatively moves the movable mold and the fixed mold;
A material having an elastic modulus of 1 to 4 (GPa) at room temperature is disposed in a space closed by the movable mold and the fixed mold, and at least the interior of the material is solidified, and the movable by the heater. The mold is heated, and the moving part moves the movable mold relative to the material at a speed of 10 mm / s or more, whereby the fine shape of the movable mold is transferred. Forming equipment.
前記素材は、前記可動型と前記固定型とで閉鎖される空間内に射出されることを特徴とする請求項12に記載の成形装置。 The molding apparatus according to claim 12, wherein the material is injected into a space closed by the movable mold and the fixed mold. 前記素材は光学素子の素材であることを特徴とする請求項12又は13に記載の成形装置。 The molding apparatus according to claim 12, wherein the material is a material of an optical element. 前記微細形状は輪帯状の回折構造であり、前記回折構造の半径方向のピッチは10μm以下であり、前記回折構造の光軸方向断面における角部の曲率半径は1μm未満であることを特徴とする請求項14に記載の成形装置。 The fine shape is a ring-shaped diffractive structure, the pitch of the diffractive structure in the radial direction is 10 μm or less, and the radius of curvature of the corner in the cross section in the optical axis direction of the diffractive structure is less than 1 μm. The molding apparatus according to claim 14. 前記微細形状は、アスペクト比が1以上であり、構造性複屈折を生じさせることを特徴とする請求項14に記載の成形装置。 The molding apparatus according to claim 14, wherein the fine shape has an aspect ratio of 1 or more and causes structural birefringence. 前記微細形状は、アスペクト比が1以上であり、光の波長以下のサイズで周期構造を持ち反射防止機能を有することを特徴とする請求項14に記載の成形装置。

The molding apparatus according to claim 14, wherein the fine shape has an aspect ratio of 1 or more, has a periodic structure with a size equal to or smaller than the wavelength of light, and has an antireflection function.

JP2003432467A 2003-12-26 2003-12-26 Molding method Expired - Fee Related JP4576838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003432467A JP4576838B2 (en) 2003-12-26 2003-12-26 Molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432467A JP4576838B2 (en) 2003-12-26 2003-12-26 Molding method

Publications (2)

Publication Number Publication Date
JP2005186513A true JP2005186513A (en) 2005-07-14
JP4576838B2 JP4576838B2 (en) 2010-11-10

Family

ID=34790164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432467A Expired - Fee Related JP4576838B2 (en) 2003-12-26 2003-12-26 Molding method

Country Status (1)

Country Link
JP (1) JP4576838B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013456A3 (en) * 2006-07-28 2008-04-03 Ecim Technologies Bv Method and apparatus for manufacturing products
WO2008123461A1 (en) * 2007-03-30 2008-10-16 Soken Chemical & Engineering Co., Ltd. Wavelength demultiplexing optical element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096335A (en) * 2000-09-25 2002-04-02 Minolta Co Ltd Mold for molding optical element and method for molding optical element
JP2002321243A (en) * 2001-04-25 2002-11-05 Canon Inc Element having fine shape on its surface and method for manufacturing the same
JP2003075602A (en) * 2001-08-31 2003-03-12 Konica Corp Base material on which pattern is formed and its metal mold, optical pickup device, electron beam lithography, base material on which pattern is formed by the same method, and electron beam lithographic device
JP2003160343A (en) * 2001-11-21 2003-06-03 Konica Corp Molding die for forming optical element and optical element
JP2003211475A (en) * 2002-01-24 2003-07-29 Nippon Zeon Co Ltd Method for manufacturing molded product for optics
JP2003322743A (en) * 2002-05-02 2003-11-14 Hitachi Maxell Ltd Optical waveguide and manufacturing method thereof
JP2005049829A (en) * 2003-07-14 2005-02-24 Konica Minolta Holdings Inc Molding having minute shape, optical element, molding method and molding apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096335A (en) * 2000-09-25 2002-04-02 Minolta Co Ltd Mold for molding optical element and method for molding optical element
JP2002321243A (en) * 2001-04-25 2002-11-05 Canon Inc Element having fine shape on its surface and method for manufacturing the same
JP2003075602A (en) * 2001-08-31 2003-03-12 Konica Corp Base material on which pattern is formed and its metal mold, optical pickup device, electron beam lithography, base material on which pattern is formed by the same method, and electron beam lithographic device
JP2003160343A (en) * 2001-11-21 2003-06-03 Konica Corp Molding die for forming optical element and optical element
JP2003211475A (en) * 2002-01-24 2003-07-29 Nippon Zeon Co Ltd Method for manufacturing molded product for optics
JP2003322743A (en) * 2002-05-02 2003-11-14 Hitachi Maxell Ltd Optical waveguide and manufacturing method thereof
JP2005049829A (en) * 2003-07-14 2005-02-24 Konica Minolta Holdings Inc Molding having minute shape, optical element, molding method and molding apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013456A3 (en) * 2006-07-28 2008-04-03 Ecim Technologies Bv Method and apparatus for manufacturing products
WO2008123461A1 (en) * 2007-03-30 2008-10-16 Soken Chemical & Engineering Co., Ltd. Wavelength demultiplexing optical element
JP5293969B2 (en) * 2007-03-30 2013-09-18 綜研化学株式会社 Wavelength demultiplexing optical element

Also Published As

Publication number Publication date
JP4576838B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
CN1769223B (en) Method of forming optical device and optical device
JP4817106B2 (en) Molding method and molding apparatus control method
WO2009122862A1 (en) Optical element manufacturing method, optical element molding die, and optical element
US7365919B2 (en) Forming methods, forming devices for articles having a micro-sized shape and optical elements
WO2010116804A1 (en) Lens
JP5009635B2 (en) Manufacturing method and manufacturing apparatus for resin molded product
JP4569744B2 (en) Optical element molding method
JP2007044905A (en) Mold and molding method
JP4576838B2 (en) Molding method
JP4407148B2 (en) Optical element manufacturing method and apparatus, and optical element
US20060001185A1 (en) Molding method and molding apparatus
US20120182625A1 (en) Optical Element
US6881051B2 (en) Mold for injection molding of disc substrate
JP2007331311A (en) Optical element molding method
JP2006327147A (en) Forming method of plastic lens and plastic lens
JP4471099B2 (en) Molding method
JP2006015522A (en) Molding machine and optical element
JP2008257261A (en) Optical device, optical device molding die, and method for molding optical device
JP3566635B2 (en) Optical article manufacturing method
JP2006142521A (en) Injection molding method, mold and molded product
US7466488B2 (en) Optical element producing method and optical element
JP3203915B2 (en) Method for manufacturing optical element, molding die and method for cleaning molded article
JP2006150884A (en) Shaping apparatus and optical element
JP2006007435A (en) Molding method and molding apparatus
JP2006021441A (en) Method for molding sheet and sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees