JP2005186083A - 接合物の接合強度推定方法、変形状態推定方法および接合条件決定方法 - Google Patents

接合物の接合強度推定方法、変形状態推定方法および接合条件決定方法 Download PDF

Info

Publication number
JP2005186083A
JP2005186083A JP2003427960A JP2003427960A JP2005186083A JP 2005186083 A JP2005186083 A JP 2005186083A JP 2003427960 A JP2003427960 A JP 2003427960A JP 2003427960 A JP2003427960 A JP 2003427960A JP 2005186083 A JP2005186083 A JP 2005186083A
Authority
JP
Japan
Prior art keywords
joining
strength
joint
calculated
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003427960A
Other languages
English (en)
Other versions
JP4372534B2 (ja
Inventor
Yasumasa Nakajima
康雅 中島
Hideki Hiramatsu
秀基 平松
Koji Dojo
康二 道場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003427960A priority Critical patent/JP4372534B2/ja
Publication of JP2005186083A publication Critical patent/JP2005186083A/ja
Application granted granted Critical
Publication of JP4372534B2 publication Critical patent/JP4372534B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract


【課題】 摩擦撹拌接合において強度試験を行うことなく接合物の接合強度を推定する推定方法を提供する。
【解決手段】 接合ツール4を没入方向に押付けるとともに、接合条件に従った入熱量を被接合物3に与えた場合を数値解析して、摩擦熱の影響を考慮した被接合物3の変形状態と温度分布とを算出する。次にその結果に基づいて、接合ツール4を回転させた場合を数値解析して被接合物3にひずみを生じるひずみ領域を算出する。このひずみ領域に基づいて、被接合物3の変形状態を表わす接合長さDおよび接合高さHを求めて、接合物の接合強度を算出する。このような手順で数値解析を行うことによって、強度試験を行うことなく接合物の接合強度を算出することができる。
【選択図】 図1

Description

本発明は、摩擦撹拌接合された接合物の接合強度を推定する接合強度推定方法、変形状態を推定する変形状態推定方法および要求される接合品質を満足する接合条件を決定する接合条件決定方法に関する。
複数の被接合部材を接合する技術として、摩擦撹拌接合方法が提案されている(たとえば特許文献1参照)。摩擦撹拌接合は、被接合部材を重ね合わせた被接合物に、回転する接合ツールを押付けて没入させる。接合ツールは、摩擦熱によって各被接合部材を非溶融の状態で部分的に流動化し、流動化した部材を撹拌して各被接合部材を接合する。
特開2000−310995号公報
摩擦撹拌接合はそのメカニズムが十分に解明されていない。したがって従来では、摩擦撹拌接合された接合物の接合強度を求めるためには、実際に強度試験を行う必要があった。従来では、異なる接合条件で接合された接合物について強度試験をそれぞれ行って、目標とする接合強度を得ることができる接合条件を試行錯誤的に決定していた。接合条件は、たとえば接合ツールの回転数、接合ツールの加圧力、接合時間、押込み量および接合ツールの形状などである。
この場合には、目標とする強度を得るために接合条件を変えて強度試験を繰り返す必要があり、短時間に接合条件を決定することができなかった。また接合条件を変更する毎に接合物となるべき試験片が必要であり、接合条件決定に費やす費用が大きかった。
仮に必要な強度を得ることができる接合条件が決定したとしても、被接合部材の材質、板厚が異なる場合には、再び試行錯誤的に最適な接合条件を決定する必要がある。このように従来では、接合強度を強度試験でしか求めることができず、時間および費用の面から効率が悪かった。
したがって本発明の目的は、摩擦撹拌接合において強度試験を行うことなく接合物の接合強度を推定し得る接合物の接合強度推定方法および接合条件決定方法を提供することである。
本発明は、2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の接合強度を推定する接合強度推定方法であって、
予め定められる接合条件に従って、摩擦撹拌による被接合物の変形状態を数値解析によって算出する形状算出工程と、
形状算出工程で算出される変形状態に基づいて、接合物の接合強度を算出する強度算出工程とを含むことを特徴とする接合物の接合強度推定方法である。
接合ツールの回転数、接合ツールの加圧力、接合時間、押込み量および接合ツールの形状などの接合条件が異なっても、接合後の接合物の変形後の接合状態がほぼ同じであれば、ほぼ同じ接合強度となる。本発明では、数値解析によって被接合物の変形状態を算出し、算出した被接合物の変形後の接合状態に基づいて、接合物の接合強度を算出する。これによって実際に摩擦撹拌接合することなく、接合物の接合強度を求めることができる。
また本発明は、形状算出工程は、摩擦撹拌時の摩擦熱によって被接合物が部分的に流動化する流動化領域の外径寸法に対応する接合長さを算出する接合長さ算出段階と、
2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入位置に対して没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを算出する接合高さ算出段階とを有し、
強度算出工程は、算出した接合長さと接合高さとに基づいて、接合物の接合強度を算出することを特徴とする。
強度試験における接合物の破断形態は、接合長さが短い場合に生じる破断形態と、接合高さが長い場合に生じる破断形態とに分けられる。このことについて、発明者らは、実験によって確証を得た。そして接合強度は、接合長さと接合高さとに密接に関係している。本発明では、接合強度に関連する接合長さと接合高さとを数値解析によって算出し、その接合長さと接合高さとに基づいて、接合強度を求めることによって、接合強度を精度良く推定することができる。たとえば接合強度は、はく離強度およびせん断強度などがある。
また本発明は、形状算出工程は、接合ツールを被接合物に没入させた場合の被接合物の変形状態を、数値解析によって算出するツール押込み解析段階と、
ツール押込み解析段階によって算出される被接合物の変形状態からさらに接合ツールを回転させた場合の被接合物のひずみ分布を、数値解析によって算出する回転解析段階と、
回転解析段階によって算出される被接合物のひずみ分布に基づいて、被接合物が部分的に流動化する流動化領域を算出する流動化領域算出段階とを有することを特徴とする。
摩擦撹拌接合を厳密にモデル化しようとすると、接合ツールの高速回転を考慮する必要がある。しかしながら計算量が膨大になることなどから、このような厳密なモデルによる数値解析が困難である。本発明では、接合ツールを回転させずに被接合物に没入させた場合を数値解析し、その後で、没入させた場合の数値解析データを用いて、接合ツールを回転させた場合を数値解析する。このようにして流動化領域を算出することで、計算を単純化して被接合物の変形状態を算出することができる。
また本発明は、ツール押込み解析段階は、予め定められる接合条件に従った加圧力で接合ツールを没入方向に押付けるとともに、前記接合条件に従った入熱量を被接合物に与えた場合の被接合物の変形状態と温度分布とを、数値解析によって算出することを特徴とする。
本発明に従えば、接合条件に従った入熱量を被接合物に与えることによって、摩擦撹拌接合による摩擦熱を考慮した被接合物の変形状態を算出することができる。これによって現実に摩擦撹拌接合された場合の接合物の変形状態に近似した変形状態を算出することができる。たとえば2つの被接合部材がアルミ合金である場合、摩擦熱による温度上昇によって変形に関する強度が大きく変化する。このような場合に、本発明のように摩擦熱による被接合物の強度変化を考慮することによって、被接合物の変形状態を精度良く算出することができる。
また本発明は、回転解析段階は、ツール押込み解析段階によって算出される被接合物の変形状態と温度分布とに基づいて、被接合物のうち接合ツールとの接触部分を強制回転させた場合の被接合物のひずみ分布を、数値解析によって算出することを特徴とする。
また摩擦撹拌接合を厳密にモデル化しようとすると、流動化領域における動的再結晶現象および流動化領域のうち接合ツール側の大きな塑性流動などを考慮する必要がある。しかしながら摩擦撹拌接合における具体的なメカニズムが解明されていないことから、このような厳密なモデルによる数値解析が困難である。本発明では、接合条件に従った入熱量を被接合物に与えることによって、摩擦撹拌接合の摩擦熱を考慮して数値解析することができる。これによって具体的なメカニズムが解明されていなくても、現実に摩擦撹拌接合された場合の流動化領域に近似した流動化領域を算出することができる。
また本発明は、形状算出工程は、流動化領域算出段階によって算出される流動化領域に基づいて、流動化領域の外径寸法に対応する接合長さを算出する接合長さ算出段階と、
押込み解析段階によって算出される変形状態に基づいて、2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入位置に対して没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを算出する接合高さ算出段階とを有し、
強度算出工程は、接合長さ算出結果と接合高さ算出結果とに基づいて、接合物の接合強度を算出することを特徴とする。
強度試験における接合物の破断形態は、接合長さが短い場合に生じる破断形態と、接合高さが長い場合に生じる破断形態とがある。したがって接合強度は、接合長さと接合高さとに密接に関係している。本発明では、流動化領域算出段階によって算出される流動化領域に基づいて、接合強度に関連する接合長さと接合高さとを数値解析によって算出する。その接合長さと接合高さとに基づいて、接合強度を求めることによって、接合強度を精度良く推定することができる。
また本発明は、形状算出工程は、ツール押込み解析段階によって算出される被接合物の変形状態と、流動化領域算出段階によって算出される被接合物の流動化領域とに基づいて、接合ツールと流動化領域と没入方向上流側の被接合部材とを有する押圧構成体を、予め定められる接合条件に従って、没入方向下流側の被接合部材に押付けた場合の被接合物の変形状態を数値解析によって算出する被接合部材押込み段階をさらに有し、
接合高さ算出段階は、被接合部材押込み段階によって算出される被接合物の変形状態に基づいて接合高さを算出することを特徴とする。
本発明に従えば、押圧構成体を没入方向下流側の被接合部材に押付けた状態を数値解析する。押圧構成体が没入方向下流側の被接合部材を押付けることによって、没入方向下流側の被接合部材は、流動化領域の近傍でかつ半径方向外方で、部分的に没入方向上流側に隆起する。この隆起現象に基づいてフック点を算出することによって、次のような作用を奏する。つまりフック点を容易にかつ精度良く算出することができ、接合高さを精度良く求めることができる。
また本発明は、形状算出工程によって算出される被接合物の変形状態に基づいて、没入方向上流側の被接合部材の厚み寸法と、没入方向下流側の被接合部材の厚み寸法とを算出する板厚算出工程をさらに含むことを特徴とする。
本発明に従えば、板厚算出工程によって各被接合部材の板厚を算出することで、実際に板厚を測定することなく、各被接合部材の板厚を推定することができる。
また本発明は、2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の変形状態を推定する変形状態推定方法であって、
接合ツールを被接合物に没入させた場合の被接合物の変形状態を、数値解析によって算出するツール押込み解析段階と、
ツール押込み解析段階によって算出される被接合物の変形状態からさらに接合ツールを回転させた場合の被接合物のひずみ分布を、数値解析によって算出する回転解析段階と、
回転解析段階によって算出される被接合物のひずみ分布に基づいて、被接合物が部分的に流動化する流動化領域を算出する流動化領域算出段階とを有することを特徴とする接合物の変形状態推定方法である。
本発明に従えば、摩擦撹拌接合を厳密にモデル化しようとすると、接合ツールの高速回転を考慮する必要がある。しかしながら計算量が膨大になることなどから、このような厳密なモデルによる数値解析が困難である。本発明では、接合ツールを回転させずに被接合物に没入させた場合を数値解析し、その後で、没入させた場合の数値解析データを用いて、接合ツールを回転させた場合を数値解析する。このようにして流動化領域を算出することで、計算を単純化して被接合物の変形後の接合状態を算出することができる。たとえば被接合物の変形後の接合状態は、上述した接合長さおよび接合高さを含む。
また本発明は、ツール押込み解析段階は、予め定められる接合条件に従った加圧力で接合ツールを没入方向に押付けるとともに、前記接合条件に従った入熱量を被接合物に与えた場合の被接合物の変形状態と温度分布とを、数値解析によって算出し、
回転解析段階は、ツール押込み解析段階によって算出される被接合物の変形状態と温度分布とに基づいて、被接合物のうち接合ツールとの接触部分を強制回転させた場合の被接合物のひずみ分布を、数値解析によって算出することを特徴とする。
本発明に従えば、接合条件に従った入熱量を被接合物に与えることによって、摩擦撹拌接合による摩擦熱を考慮した被接合物の変形状態を算出することができる。これによって現実に摩擦撹拌接合された場合の接合物の変形後の接合状態に近似した変形状態を算出することができる。たとえば2つの被接合部材がアルミ合金である場合、摩擦熱による温度上昇によって変形に関する強度が大きく変化する。このような場合に、本発明のように摩擦熱による被接合物の強度変化を考慮することによって、被接合物の変形後の接合状態を精度良く算出することができる。
また摩擦撹拌接合を厳密にモデル化しようとすると、流動化領域における動的再結晶現象および流動化領域のうち接合ツール側の大きな塑性流動などを考慮する必要がある。しかしながら摩擦撹拌接合における具体的なメカニズムが解明されていないことから、このような厳密なモデルによる数値解析が困難である。本発明では、接合条件に従った入熱量を被接合物に与えることによって、摩擦撹拌接合の摩擦熱を考慮して数値解析することができる。これによって具体的なメカニズムが解明されていなくても、現実に摩擦撹拌接合された場合の流動化領域に近似した流動化領域を算出することができる。
また本発明は、2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の接合強度が予め定める範囲に収まる接合条件を決定する接合条件決定方法であって、
摩擦撹拌時の摩擦熱によって被接合物が部分的に流動化する流動化領域の外径寸法に対応する接合長さを、予め定める接合条件毎にそれぞれ数値解析によって算出する接合長さ算出段階と、
2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入位置に対して没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを、予め定める接合条件毎に数値解析によって算出する接合高さ算出段階と、
予め定める接合条件毎に算出される、接合長さ算出結果と接合高さ算出結果とに基づいて、接合物の接合強度をそれぞれ算出する強度算出段階と、
強度算出段階によって算出される算出結果に基づいて、予め定める接合強度範囲に収まる接合強度となる接合条件を抽出する接合条件抽出段階とを含むことを特徴とする接合条件決定方法である。
本発明に従えば、予め定める接合強度範囲に収まる接合条件を決定することができる。これによって要求される接合強度を確保したうえで、最適な施工条件を選択することができ、利便性を向上することができる。
本発明によれば、数値解析によって被接合物の変形状態を算出し、変形後の接合状態に基づいて接合強度を算出する。算出した被接合物の変形後の接合状態から、接合後の接合物の接合強度を求めることによって、接合物に強度試験を行う必要がない。また数値解析によって変形状態を求めることによって、接合物の変形後の接合状態を実験によって測定する必要がない。すなわち実際に摩擦撹拌接合することなく接合物の接合強度を求めることができる。したがって接合条件を変更した場合の接合強度も容易に求めることができるので、目標とする接合強度となる接合条件を容易に求めることができ、接合条件の設定に費やす時間および費用を低減することができる。
また本発明によれば、接合長さと接合高さとを算出し、算出した接合長さと接合高さとに基づいて接合強度を決定する。これによって接合強度を精度良く推定することができる。
また本発明によれば、回転する接合ツールを被接合物に押込んだ場合の被接合物の変形状態を算出するために、押込み解析段階と回転解析段階とに分けて数値解析を行う。このようにして流動化領域を算出することによって、接合ツールの高速回転を数値解析する必要がなく、計算を単純化して被接合物の変形状態を算出することができる。また計算を単純化することで、短時間で流動化領域の算出を行うことができる。
また本発明によれば、摩擦熱に対応する入熱量を被接合物に与えることによって、摩擦熱を考慮した被接合物の変形後の接合状態を求めることができ、現実に摩擦撹拌接合された場合の変形状態に近似した変形状態を算出することができる。これによって算出した変形状態を現実の変形状態に近づけることができ、さらに精度良く変形形状を算出することができる。
また本発明によれば、摩擦熱に対応する温度分布を考慮した変形状態に基づいて、流動化領域を算出する。これによって現実に摩擦撹拌接合された場合の流動化領域に近似した流動化領域を算出することができ、さらに精度良く流動化領域を算出することができる。
また本発明によれば、流動化領域算出段階によって算出される流動化領域に基づいて、接合長さと接合高さとを算出する。これによって接合長さと接合高さとをさらに精度良く算出することができ、ひいては接合強度をさらに精度良く算出することができる。
また本発明によれば、押圧構成体を没入方向下流側の被接合部材に押付けることによって、没入方向下流側の被接合部材が部分的に没入方向上流側に隆起する。この隆起現象に基づいてフック点を算出することによって、フック点を容易にかつ精度良く算出することができる。これによって接合強度をさらに精度良く算出することができる。
また本発明によれば、板厚算出工程によって各被接合部材の板厚を算出することができる。また各被接合部材の板厚は、接合物の外観からは測定することができず、試験によって求めることは困難である。本発明では、試験を行うことなく各被接合物の板厚を推定することができる。これによって接合品質の目安の1つである各被接合部材の板厚を求めることができ、接合強度推定に用いることができるとともに、利便性を向上することができる。
また本発明によれば、予め定める接合強度範囲に収まる接合条件を決定することができる。これによって要求される接合強度を確保したうえで、最適な施工条件を選択することができ、利便性を向上することができる。
図1は、本発明の実施の一形態である接合強度推定方法の推定手順を示すフローチャートである。本発明の接合強度推定方法は、摩擦撹拌接合を実際に行うことなく、摩擦撹拌接合された接合物の接合強度を推定する方法である。大略的には、接合条件取得工程s1で、摩擦撹拌接合に関する接合条件を取得する。次に形状算出工程s2で接合時の被接合物の変形状態を数値解析によって算出する。次に強度算出工程s3で、摩擦撹拌接合によって接合されるであろう接合物の接合強度を算出する。
図2は、摩擦撹拌接合の接合手順を示す断面図であり、図2(1)〜図2(4)の順で進む。摩擦撹拌接合(Friction Stir Welding:略称FSW)は、予め定める基準方向Aに並ぶ2つの被接合部材1,2を接合する。接合前の2つの被接合部材1,2は、被接合物3を構成する。摩擦撹拌接合方法は、後述する摩擦撹拌接合装置10を用いて、被接合部材1,2を局所的に接合するスポット接合に用いられる。
摩擦撹拌接合は、円筒状の接合ツール4を用いて行われる。接合ツール4は、略円柱状に形成される本体部5と、本体部5から軸線方向一方に突出し、略円柱状に形成されるピン部6とを有する。本体部5は、軸線方向一方A1側端面となるショルダ面7を有する。ショルダ面7は、接合ツール4の軸線L1に対して略垂直に形成される。ピン部6は、ショルダ面7から垂直に突出する。本体部5とピン部6とは、同軸に形成され、ピン部6の外形は、本体部5の外形よりも小さく形成される。
回転しながら接合ツール4が被接合物3に没入することによって、被接合物3は、接合ツール4との摩擦熱によって部分的に流動化し、流動化した領域が撹拌される。被接合物3のうち流動化した各被接合部材1,2が互いに混ぜ合わされる。この後、流動化した部分が固まることによって、各被接合部材1,2が接合される。被接合部材1,2は、たとえばアルミ合金から成る。
たとえば接合ツール4は、ピン部6の直径が5mmに設定され、本体部5の直径が10mmに設定され、ピン部6が本体部5から突出する突出量が3mmに設定される。また接合ツール4は、面とりがなされている。
図3は、摩擦撹拌接合装置10を示す斜視図である。摩擦撹拌接合装置10(以下単に接合装置10と称する)は、ツール保持部11と、回転駆動手段12と、変位駆動手段13と、受け台14と、基台15と、制御手段16とを含んで構成される。接合装置10は、予め定める基準軸線L1が設定される。ツール保持部11は、接合ツール4を着脱可能に保持する。装着されたツール保持部11は、その軸線が、接合装置10の基準軸線L1と同軸に配置される。回転駆動手段12は、ツール保持部11を基準軸線L1まわりに回転駆動する。変位駆動手段13は、ツール保持部11を基準軸線L1に沿って延びる基準方向A1,A2に変位駆動する。
受け台14は、ツール保持部11に対して基準方向Aに対向する位置に設けられて、接合ツール4と反対側から被接合物3を支持する。基台15は、ロボットアーム17の先端部に連結され、ツール保持部11、各駆動手段12,13および受け台14を直接または間接的に支持する。また基台15は、いわゆるCガンであって、略C字状に形成される。受け台14は、C字状に形成される基台15の周方向一端部15aに設けられる。またツール保持部11は、C字状に形成される基台15の周方向他端部15bに設けられる。制御手段16は、回転駆動手段12および変位駆動手段13を制御する。制御手段16は、マイクロコンピュータなどによって実現され、回転駆動手段12および変位駆動手段13は、サーボモータによって実現される。
摩擦撹拌接合方法は、図2に示す手順に従って行なわれる。まず、作業者などが、接合ツール4をツール保持部11に装着する。また被接合物3を予め定める保持位置に保持する。このような接合準備が完了すると、制御手段16が接合動作を開始する。
制御手段16は、ロボットアーム17によって基台15を予め定める接合待機位置に変位移動させる。接合待機位置に基台15が配置されると、接合ツール4は、被接合物3に設定される目標接合位置に対して基準方向Aに間隔を開けて配置される。また受け台14は、接合ツール4と反対側から被接合物3に当接する。また被接合部材1,2が並ぶ方向と接合装置10の基準方向とが一致する。
次に制御手段16は、回転駆動手段12を制御し、ツール保持部11を基準軸線L1まわりに回転させる。また制御手段16は、変位駆動手段13を制御し、ツール保持部11を基準方向一方A1に移動させる。これによって図2(1)に示すように、接合ツール4は、回転しながら被接合物3に向かい、図2(2)に示すように、被接合物3に没入する。
接合ツール4は、被接合物3に没入した後、図2(3)に示すように回転しながら被接合物3と摺動することで、摩擦熱を被接合物3に与える。この摩擦熱によって被接合物3には、部分的に流動化する流動化領域8が形成される。流動化領域8は、2つの被接合部材1,2を互いに混ぜ合わせる。このようにして被接合物3は、いわゆる固相撹拌される。
接合ツール4が被接合物3に当接してから予め定める撹拌時間が経過すると、制御手段16は、変位駆動手段13を制御し、ツール保持部11を基準方向他方A2に移動させる。これによって図2(4)に示すように、接合ツール4が被接合物3から離反する。また制御手段16は、回転駆動手段12を制御してツール保持部11の回転を停止し、制御手段16は、接合動作を終了する。
接合ツール4が被接合物3から離脱すると、被接合物3の温度低下にともなって流動化領域8が固まる。これによって2つの被接合部材1,2が接合された接合物が構成される。なお、本発明において、接合前の2つの被接合部材1,2を合わせて被接合物3と称し、接合後の2つの被接合部材1,2を合わせて接合物と称する。
図4は、本発明の接合強度推定方法を実行する演算装置20を示すブロック図である。本発明の接合強度推定方法は、演算装置20によって行われる。演算装置20は、入力手段21と、出力手段22と、演算手段23と、記憶手段24とを含む。入力手段21は、作業者などから摩擦撹拌接合に関する接合条件および演算開始命令が入力される。出力手段22は、演算手段23によって算出された接合強度を出力する。また記憶手段24は、演算手段23が実行するための演算プログラムおよび演算時に算出されるデータを一時的に記憶する。演算手段23は、記憶手段24に記憶される演算プログラムを読み出し、その演算プログラムを実行することによって接合強度推定方法の各手順を順次行う。
このような演算装置20は、コンピュータによって実現される。たとえば入力手段21は、キーボードおよびポインティングデバイスなどで実現される。また出力手段22は、ディスプレイなどの表示装置で実現される。また記憶手段24は、RAM(Random
Access Memory)およびROM(Read Only memory)などの記憶回路によって実現され、演算手段23は、マイクロコンピュータなどによって実現される演算回路、たとえばCPU(Central Processing Unit)によって実現される。
接合強度算出手順の概略を説明すると、図1に示すように、作業者が入力手段21を操作することによって、入力手段21から接合強度の算出指令が与えられると、演算手段23は接合強度推定動作を開始し、接合条件取得工程s1に進む。接合強度得工程s1では、演算手段23は、摩擦撹拌接合に関する接合条件を入力手段21から取得する。たとえば、表1に接合条件例を表わす。
Figure 2005186083
表1に示すように、与えられる接合条件は、接合すべき各被接合部材の材質に応じた物性値と、各被接合部材の厚み方向寸法と、摩擦撹拌条件とを含む。
摩擦撹拌条件は、接合ツールの形状と、接合ツールによって被接合物を加圧する加圧力と、接合ツールの回転数と、接合ツールの没入時間となる接合時間と、接合ツールの没入量とを含む。
被接合部材の材質に応じた物性値は、縦弾性係数と、ポワソン比と、降伏応力と、応力ひずみ関係と、摩擦係数と、密度と、熱膨張係数と、比熱と、熱伝導率とを含む。応力ひずみ関係は、予め定める真応力を与えた場合に被接合部材が変形する塑性真ひずみ量を示す。なお、本実施の形態では、各被接合部材として、日本工業規格(JIS)に規定されるA6N01−T5が用いられる。
本実施の形態では、各被接合部材の物性値のうち、温度依存性を有する物性値については、温度毎の特性値が与えられる。したがって、縦弾性係数と、降伏応力と、応力−ひずみ関係とにおける温度毎の特性を表2〜表4にそれぞれ示す。
Figure 2005186083
Figure 2005186083
Figure 2005186083
表1〜表4に示す接合条件を演算手段23が取得すると、形状算出工程s2に進む。
形状算出工程s2では、演算手段23は、接合条件取得工程s1で取得した接合条件に基づいて、被接合物3の変形状態を数値解析によって算出し、強度算出工程s3に進む。強度算出工程s3では、演算手段23は、形状算出工程s2で算出された被接合物3の変形状態に基づいて、接合物の接合強度を算出し、終了工程s4に進む。終了工程では、演算手段23は、算出した接合強度を出力手段22によって出力させ、接合強度算出動作を終了する。数値解析は、有限要素法(Finite Element Method)を用いて行われる。
与えられる接合条件が異なった場合には、被接合物3の変形状態が変化する。ただし接合条件が異なっても被接合物3の変形後の接合状態が同じ場合には、ほぼ同じ接合強度となることが実験によって明らかとなっている。したがって上述したように、数値解析によって被接合物3の変形状態を算出し、その変形後の接合状態に基づくことによって接合条件にかかわらず、接合後の接合物の接合強度を算出することができる。
図5は、被接合物3を拡大して示す断面図である。なお、本発明では、接合ツール4が被接合物3に没入する方向を没入方向Bとし、没入方向Bに垂直な方向を延在方向Cとする。また接合ツール4が没入したときに、接合ツール4の軸線L1が被接合物3を通過するであろう軸線を中心軸線L1と称し、接合される位置を接合位置30と称する。また没入方向上流側の被接合部材1を第1被接合部材1と称し、没入方向下流側の被接合部材2を第2被接合部材2と称する。
被接合物3は、回転する接合ツール4が没入することによって、接合ツール4に隣接する部分に流動化領域8が形成される。この流動化領域8は、中心軸線L1を中心とするリング形状に形成される。また第1被接合部材1と第2被接合部材2との境界線31のうち、流動化領域8の近傍の境界線31aは、流動化領域8の外周面32に沿って没入方向上流側に隆起する。
また接合位置30から延在方向Cに十分に離反した離反位置33における各被接合部材1,2の板厚は、接合ツール4の没入による影響を受けず、接合前と同じ板厚となる。本発明では、各被接合部材1,2が接合ツール4の没入による影響を受けない部分の境界線31のうち1点を基準点P1と称する。言換えると、基準点P1は、境界線31のうち接合ツール4が没入する接合位置に対して延在方向Cに離反した位置の点である。また流動化領域8の近傍の境界線31aであって、没入方向最上流の点をフック点P2と称する。
本発明の実施の一形態では、被接合物3の変形状態を示す指標として、接合長さDと接合高さHとを算出する。接合長さDは、摩擦撹拌時の摩擦熱によって被接合物3が部分的に流動化する流動化領域8の外径寸法に対応する。接合長さDは、図5に示すように基準点P1を含み中心軸線L1に沿って延びる仮想平面によって被接合物3を切断した場合に、第1被接合部材1と第2被接合部材2との境界線31のうち、フック点P2よりも没入方向下流側に存在し、基準軸線L1の延在方向Cの両側でかつ基準軸線L1に最も近い2つの点n1,n2の間の延在方向寸法である。
言換えると、前記仮想平面によって被接合物3を切断した場合に、基準軸線L1に対して延在方向一方に十分離反した位置から境界線31に沿って進んで、フック点P2に到達前に基準軸線L1に最も近づく点n1と、基準軸線L1に対して延在方向他方に十分離反した位置から境界線31に沿って進んで、フック点P2に到達前に基準軸線L1に最も近づく点n2との間の延在方向寸法が、接合長さDとなる。また接合高さHは、前述した基準点P1とフック点P2との間の没入方向寸法である。
図6は、実験によるはく離強度と変形後の接合状態との関係を示すグラフである。なお、図6について縦軸は、はく離強度を表わす。また横軸は、接合面積とフックリガメントとを示す。接合面積は、横軸に沿って右側に向かうにつれて大きくなる。またフックリガメントは、横軸に沿って右側に向かうにつれて小さくなる。
接合面積は、接合長さDに基づいて求められる。具体的には、接合面積Aは、接合長さをD、ピン部6の半径をrとすると、(D/2)・π−r・πで表わされる。この式において、乗算を算術記号「・」で表記している。フックリガメントは、接合高さHに基づいて求められる。具体的にはフックリガメントは、フック点P2における第1被接合部材の板厚Tuを表わす。フックリガメントは、接合高さをH、接合前の第1被接合部材1の板厚をT1とすると、T1−Hで表わされる。
はく離強度は、各被接合部材1,2に相互に離反する方向であって中心軸線L1に平行な方向に力を与えた場合に、各被接合部材1,2が離反するまでに耐えうる力である。図6に示すように、はく離強度と接合面積とは、対応関係にある。接合面積、すなわち接合長さDが大きいほど、はく離強度が大きくなる。実験結果に基づいて、接合面積に対応するはく離強度を示すプロット点32をグラフ上にプロットした場合、そのプロット点32は、グラフ上で予め定められる第1近似線30に沿って並ぶ。
同様に、フックリガメントとはく離強度とは、対応関係にある。フックリガメントが大きいほど、すなわち接合高さが小さいほど、はく離強度が大きくなる。実験結果に基づいて、フックリガメントに対応するはく離強度を示すプロット点33をグラフ上にプロットした場合、そのプロット点33は、グラフ上で予め定められる第2近似線31に沿って並ぶ。
このような関係は、ツール4の回転数、加圧力および接合時間などにかかわらず、一定の傾向を示す。したがって接合強度の1つであるはく離強度は、接合条件にかかわらず接合後の接合物の変形後の接合状態、具体的には接合長さDと接合高さHとによって決定される。
図7は、はく離強度試験における接合物の破断形態を示す断面図である。被接合物3に与える熱量が大きくなるにつれて、接合面積が大きくなり、かつフックリガメントが小さくなる。すなわち傾向として接合面積とフックリガメントとでは、反比例の関係となる。
フックリガメントが小さい場合(図6において符号34で表記する)には、図7(1)に示す破断形態を示す。この場合、接合高さHが大きいので、フック点Pから第1被接合部材1の没入方向上流側の表面36に向かって亀裂が延びて、第1被接合部材1が、流動化領域8および第2接合物材2から分離する。このときのはく離強度を第1はく離強度とすると、第1はく離強度は、実験的に求めることができる。たとえば、第1はく離強度Pは、α・(F・D・π)と近似することができる。前式において、αは、接合条件に応じて決定される第1係数を示し、たとえば135となる。またFはフックリガメントを示し、Dは接合長さを示し、πは円周率を示す。なお、この近似式は、一例であって他の近似式を用いてもよい。
また接合面積が小さい場合(図6において符号35で表記する)には、図7(2)に示す破断形態を示す。この場合、フック点Pから中心軸線L1に向かって亀裂が延びて、第1被接合部材1および流動化領域8が、第2被接合部材2から分離する。このときのはく離強度を第2はく離強度とすると、第2はく離強度も、実験的に求めることができる。たとえば第2はく離強度Pは、α・Aと近似することができる。前式において、αは、接合条件に応じて決定される第2係数を示し、たとえば216となる。またAは、接合面積を示す。なお、この近似式は、一例であって他の近似式を用いてもよい。
はく離強度試験における破断形態は、図7(1)および図7(2)のいずれかに示す破断形態となる。はく離強度を大きくするには、接合面積を大きくするとともにフックリガメントを大きくすることが好ましいが、両方の関係が反比例関係になるので、両方を達成することができない。したがって、はく離強度が最大となる接合面積およびフックリガメントは、両方の折り合いを考えて決定される。具体的には、はく離強度が最大となる接合面積およびフックリガメントは、図6に示す第1近似曲線30と第2近似曲線31との交点P3で表わされる接合面積およびフックリガメントとなる。
また、接合長さDと接合高さHとが与えられた場合には、実際の被接合物のはく離強度Pは、Min(P,P)によって表わされる。すなわち、算出される第1はく離強度Pと、第2はく離強度Pとのうち、小さいほうが、実際の被接合物のはく離強度となる。
図8は、実験によるせん断強度と変形後の接合状態との関係を示すグラフである。なお、図8について縦軸は、せん断強度を表わす。また横軸は、接合面積とフックリガメントとを示す。接合面積は、横軸に沿って右側に向かうにつれて大きくなり、フックリガメントは、横軸に沿って右側に向かうにつれて小さくなる。接合面積およびフックリガメントの定義は、前述と同様である。せん断強度は、各被接合部材1,2に相互に離反する方向であって中心軸線L1に垂直な方向に力を与えた場合に、各被接合部材1,2が離反するまでに耐えうる力である。
図8に示すように、接合面積とせん断強度とは、対応関係にある。接合面積、すなわち接合長さDが大きいほど、せん断強度が大きくなる。実験結果に基づいて、接合面積に対応するせん断強度を示すプロット点39をグラフ上にプロットした場合、そのプロット点39は、グラフ上で予め定められる第3近似線37に沿って並ぶ。
同様に、フックリガメントとせん断強度とは、対応関係にある。フックリガメントが大きいほど、すなわち接合高さが小さいほど、せん断強度が大きくなる。ただしフックリガメントが予め定める境界値を越えた後は、せん断強度はほぼ一定の値となる。実験結果に基づいて、フックリガメントに対応するせん断強度を示すプロット点40をグラフ上にプロットした場合、そのプロット点40は、グラフ上で予め定められる第4近似線38に沿って並ぶ。
このような関係は、ツール4の回転数、加圧力および接合時間などにかかわらず、一定の傾向を示す。したがって接合強度の1つであるせん断強度は、接合条件にかかわらず接合後の接合物の変形後の接合状態、具体的には接合長さDと接合高さHによって決定される。
図9は、せん断強度試験における接合物の破断形態を示す断面図である。被接合物3に与える熱量が大きくなるにつれて、接合面積が大きくなり、かつフックリガメントが小さくなる。すなわち傾向として接合面積とフックリガメントとには、反比例の関係となる。
フックリガメントが小さい場合(図9において符号34で表記する)には、図9(1)に示す破断形態を示す。この場合、せん断方向両側で破断状態が異なる。せん断方向一方側41では、フック点Pから第1被接合部材1の没入方向上流側の表面36に向かって亀裂が延びて、第1被接合部材1が、流動化領域8および第2接合物材2から分離する。せん断方向他方側42では、フック点Pから中心軸線L1に向かって亀裂が延びて、第1被接合部材1と流動化領域8が、第2被接合部材2から分離する。このときのせん断強度を第1せん断強度とすると、第1せん断強度は、実験的に求めることができる。たとえば、第1せん断強度Sは、β・F+γと近似することができる。前式において、βおよびγは、接合条件に応じて決定される第3係数および第4係数をそれぞれ示す。たとえばβは1576となり、γは3296となる。またFはフックリガメントを示す。なお、この近似式は、一例であって他の近似式を用いてもよい。
また接合面積が小さい場合(図9において符号35で表記する)には、図9(2)に示す破断形態を示す。この場合、フック点Pから中心軸線L1に向かって亀裂が延びて、第1被接合部材1と流動化領域8が、第2被接合部材2から分離する。このときのせん断強度を第2せん断強度とすると、第2せん断強度も、実験的に求めることができる。たとえば第2せん断強度Sは、β・Aと近似することができる。前式において、βは、接合条件に応じて決定される第5係数を示し、たとえば177となる。なお、この近似式は、一例であって他の近似式を用いてもよい。
せん断強度試験における破断形態は、図9(1)および図9(2)のいずれかに示す破断形態となる。せん断強度を大きくするには、接合面積を大きくするとともにフックリガメントを大きくすることが好ましいが、両方の関係が反比例関係になるので、両方を達成することができない。したがってせん断強度が最大となる接合面積およびフックリガメントは、両方の折り合いを考えて決定される。具体的には、せん断強度が最大となる接合面積およびフックリガメントは、図8に示す第3近似曲線37と第4近似曲線38との交点P4で表わされる接合面積およびフックリガメントとなる。
また、接合長さDと接合高さHとが与えられた場合には、以下の式に基づいてせん断強度を求めることができる。実際の被接合物のせん断強度Sは、Min(S,S)によって表わされる。すなわち、算出される第1せん断強度Sと、第2せん断強度Sとのうち、小さいほうが、実際の被接合物のせん断強度となる。
形状算出工程s1では、接合長さDと接合高さHとを数値解析によって、算出する。そして算出した接合長さDと接合高さHに基づくことによって、接合後の接合物の接合強度を求めることができる。形状算出手段s1は、具体的には、ツール押込み解析段階a1と、押込み解析結果取得段階a2と、ツール回転解析段階a3と、回転解析結果取得段階a4と、流動化領域算出段階a5と、接合長さ算出段階a6と、被接合部材押込み段階a7と、接合高さ算出段階a8とを含む。
なお数値解析を行う摩擦撹拌接合モデルは、中心軸線L1に関する軸対称モデルによって行われる。形状算出工程s2は、演算手段23が入力手段21に与えられる接合条件に基づいて、演算プログラムを実行することによって実現することができる。
図10は、ツール押込み解析段階a1におけるシミュレーション結果を示す図である。ツール押込み解析は、図10(1)〜図10(6)の順で行われる。ツール押込み解析段階a1は、接合条件取得工程s1によって与えられる接合条件に基づいて、接合ツール4を回転させずに被接合物3に押込んだ場合の変形状態を数値解析によって算出する。
数値解析にあたって、接合ツール4、各被接合部材1,2および受け台14を含む軸対称モデルを用いる。また接合ツール4および受け台14を剛体とし、各被接合部材1,2の強度は、接合条件に従って与えられる材質に基づいて決定する。また接合ツール4が被接合物3を押圧する加圧力は、接合条件に従って与えられる。
なお、本発明の実施の一形態では、接合ツール4を被接合物3に押付けるとともに、接合条件に従った入熱量を、接合ツール4に接触する被接合物3の接触部分3aに与える。接触部分3aに与えられる単位時間あたりの入熱量qは、以下の式によって表わされる。
Figure 2005186083
ここで、πは円周率であり、μは摩擦係数であり、Pは接合ツール4と被接合物3との接触界面に与えられる圧力(N/mm)であり、Nは接合ツール4の1秒間当たりの回転数(rev/sec)であり、Rは中心軸線L1から接触界面までの半径である。このような入熱量が被接合物の押込みの時間変化に応じて順次与えられる。なお、各被接合部材1,2は、その材質に応じた温度による強度変化に基づいて、その強度が変更するように設定される。たとえば被接合部材1,2がアルミ合金の場合、アルミ合金の強度−温度特性に応じて、常温の部分に比べて高温となる部分については、常温の部分よりも強度が低く設定される。
図10には、各被接合部材1,2の温度分布をグレー表示で示す。図11は、各被接合部材1,2の時間経過による温度変化を示すグラフである。図11には、第1被接合部材1の没入方向上流側の表面の温度変化を実線43で示す。また第2被接合部材2の内部の温度変化を破線44で示す。また第2被接合部材2の没入方向下流側の表面の温度変化を一点鎖線45で示す。
各被接合部材1,2は、時間経過とともに温度が上昇する。また各被接合部材1,2は、接合ツール4に近づくにつれて温度が高くなる。図10(1)〜図10(6)に示すように数値計算を順次繰り返し、接合ツール4が予め定める没入量に達した場合の被接合物3の変形状態および温度分布を求めると、押込み解析結果取得段階a2に進む。押込み解析結果取得段階a2では、ツール押込み解析段階a1で算出された被接合物3の変形状態および温度分布を示すデータを抽出する。
次にツール回転解析段階a3を行う。ツール回転解析段階a3は、押込み解析結果取得段階a2によって取得された被接合物3の変形状態および温度分布を利用して、中心軸線L1まわりの被接合物3のひずみ分布を求める。
図12は、ツール回転解析段階a3におけるシミュレーション結果を示す図である。具体的には、軸対称モデルにおいて、接合ツール4と接触する被接合物3の接触部分を中心軸線L1まわりに回転させる応力を与えた場合の、被接合物3のひずみ分布を算出する。図13には、第1被接合部材1のうちひずむ領域51をグレー表示で示す。
図13は、第1被接合部材1のうち、ピン部6からの任意の距離にある部分の中心軸線L1まわりに回転する塑性ひずみを示す図である。図13(1)と図13(2)とは、接合条件が異なる場合を数値解析した場合を示す。なお図13には、接触部分を360度角変位させた場合を実線46で示す。また180度角変位させた場合を破線47で示し、90度角変位させた場合を一点鎖線48で示す。図13に示すように、ひずみ量は、接合ツール4から延在方向Cに遠ざかるにつれて小さくなり、接合ツール4から延在方向Cに十分に遠ざかると接合ツール4の回転によるひずみがなくなる。
図14は、中心軸線L1まわりのひずみがゼロとなるひずみ臨界領域50の幅と、接触部分を強制回転する角度を示すグラフである。ひずみ臨界領域50の幅は、せん断ひずみが発生している領域の臨界面の外周径である。図14におけるプロット点の形状が同じものは、同じ接合条件であることを示す。図14に示すように、数値解析では、中心軸線L1まわりのひずみがなくなる延在方向Cの位置は、接触部分を強制回転する角度が90度であっても360度であっても変化しない。したがって接合ツール4を360度以上回転させても、ひずみ臨界領域50が大きく変化することがない。したがって、中心軸線L1まわりのひずみがなくなる延在方向Cの位置は、回転角度によらずほぼ一定であり、計算量の短縮化のために、接触部分を回転する角度は90度で十分である。
図15は、流動化領域を実験によって流動化領域8の最大幅を求めた場合と、実験における接合条件と同じ接合条件でひずみ臨界領域50の幅を算出した場合とを示す図である。流動化領域8の最大幅は、流動化領域8の最大外周径を意味する。図15に示すように、数値計算によって求められるひずみ臨界領域50の幅は、同じ接合条件で実験を行った実際の流動化領域8の最大幅とほぼ同一であり、1対1に対応する。したがってこのような数値解析を行い、ひずみ臨界領域50の幅を算出することによって、実際の流動化領域8の最大幅を推定することができる。
図16は、実験値による流動化領域8の最大幅と、実験値による接合長さDとを示す図である。実験値による流動化領域8の最大幅と、実験値による接合長さDとはほぼ同一であり、1対1に対応する。したがって数値解析を行って算出したひずみ臨界領域50の幅に基づいて、接合長さDを推定することができる。
強度推定手順では、ツール回転解析段階a3で、被接合物3のせん断塑性ひずみ分布を算出し、回転解析結果取得段階a4で、ツール回転解析段階a3で算出したせん断塑性ひずみ分布を示すデータを抽出する。次に流動化領域算出段階a5で、回転解析結果取得段階a4で抽出したひずみ分布を示すデータに基づいて、ひずみ臨界領域50の幅を求め、そのひずみ臨界領域50の幅を流動化領域の最大幅として算出する。算出される流動化領域の幅は、算出されるひずみ臨界領域50の幅をそのまま用いてもよい。また算出されるひずみ臨界領域50の幅に、実験によって求められる対応関係に基づく係数を加減乗除して求めてもよい。
次に接合長さ算出段階a6で、流動化領域算出段階a5で算出した流動化領域8の最大幅に基づいて、接合長さDを算出する。算出される接合長さDは、算出される流動化領域8の最大幅をそのまま用いてもよい。また算出される流動化領域8の最大幅に、実験によって求められる対応関係に基づく係数を加減乗除して求めてもよい。このようにして接合長さ算出段階a6で、与えられる接合条件に応じた接合長さDを算出することができる。
図17は、被接合物押込み解析段階a7におけるシミュレーション結果を示す図である。流動化領域算出段階a5が終了すると、接合長さ算出段階a6とは独立して、被接合部材押込み段階a7を行う。被接合物押込み段階a7では、押込み解析結果取得段階a2が取得した変形状態および温度分布と、流動化領域算出段階a5で算出した流動化領域とを利用して、第2被接合部材2の変形状態を求める。
被接合部材押込み段階a7では、接合ツール4と流動化領域8と第1被接合部材1とによって構成される押圧構成体を設定し、押圧構成体によって第2被接合部材2を没入方向下流側に押圧した場合の変形状態を数値解析する。このとき、接合ツール4にのみに、初期に設定した加圧力を与える。図17に示すように、押圧構成体を第2被接合部材2に押込むと、流動化領域8の近傍でかつ半径方向外方で、第2被接合部材2が没入方向上流側に隆起し、実際の被接合物3に形成されるフック点P2が形成される。次に、被接合押込み段階a7が完了すると、接合高さ算出段階a8を行う。接合高さ算出段階a8は、被接合押込み段階a7によって算出された第2被接合部材の変形状態に基づいて、フック点P2と基準点P1との間の没入方向寸法を求め、接合高さHとして算出する。
図18は、実験による接合高さと、接合高さ算出段階a8によって求められる接合高さHとを示すグラフである。図18に示すように、数値計算によって求められる接合高さHは、同じ接合条件で実験を行った実際の接合高さHとほぼ同一であり、1対1に対応する。したがってこのような数値解析を行い、接合高さHを算出することによって、実際の接合高さを推定することができる。算出される接合高さHは、被接合物押込み解析a7によって求められるフック点P2と基準点P1との没入方向寸法をそのまま用いてもよい。また算出されるフック点P2と基準点P1と没入方向寸法に、実験によって求められる対応関係に基づく係数を加減乗除して求めてもよい。
図19は、強度算出工程s3を具体的に示すフローチャートである。強度算出工程s3は、たとえば有限要素法による破壊シミュレーションによって求める。強度算出工程s3では、前述した形状算出工程s2によって算出された接合長さDと接合高さHとに基づいて、破壊シミュレーションを行う。この破壊シミュレーションにおいて、接合物に与えられる力の形態が設定され、この力の形態に応じた接合物の破壊形態の数値解析を行う。そして解析結果に基づいて、接合物の強度を求める。
具体的には、強度算出工程s3では、まず、破壊クライテリア設定段階b1で、接合物の破壊抵抗値が作業者によって設定される。この破壊抵抗値は、作業者によって入力される。次に破壊形態数値解析工程b2で、形状算出工程s2によって算出された接合長さDと接合高さHとを含む変形後の接合状態とに基づいて、接合物に力が付与されたときの状態を数値解析する。力の形態を演算する数値解析としてたとえば応力解析またはき裂進展解析が行われる。
次に、強度算出段階b3で、破壊形態数値解析段階b2によって算出された力の状態と、破壊クライテリア設定段階b1で設定された接合物の破壊抵抗値とに基づいて、接合物の接合強度を算出する。すなわち、接合物に付与される力が、接合物の破壊抵抗値と等しくなった時点を破壊点とし、そのときの接合物に付与された力を接合強度とする。算出される強度として、静的延性強度および疲労強度などを算出することができる。このようにして接合強度b3が算出されると、終了工程s4に進み、出力手段によって推定した接合強度を表示して、接合強度の推定動作を終了する。強度算出工程s3は、演算手段23が、接合長さDおよび接合高さHに基づいて、演算プログラムを実行することによって実現することができる。
図20は、他の推定手順を示すフローチャートである。図19に示すフローチャートでは、有限要素法によって破壊シミュレーションを行ったが、破壊シミュレーションを行わずに、接合長さDと接合高さHとに関連する接合強度近似式に基づいて接合強度を求めてもよい。すなわち、形状算出工程s2によって接合長さDおよび接合高さHを求めると、強度算出工程s3に進む。
強度算出工程s3では、図6または図8のグラフに示す近似式に基づいて、はく離強度またはせん断強度を算出する。そして終了工程s4で算出した接合強度を出力手段によって表示してもよい。演算手段23は、接合長さDおよび接合高さHと、接合強度との対応関係をデータベースまたは近似線などによって予め取得している。これによって強度算出工程s3で、演算手段23が、算出された接合長さDおよび接合高さHに基づいて、前記データベースまたは近似線を参照することによって、接合強度を簡単に求めることができる。このようにして接合強度を算出することによって、強度算出にかかわる数値解析を行う必要がなく、接合強度をより短時間で算出することができる。
図21は、同じ接合条件での、実験結果と解析結果とのはく離強度を示すグラフであり、図22は、同じ接合条件での、実験結果と解析結果とのせん断強度を示すグラフである。上述した推定方法によって、はく離強度およびせん断強度を推測すると、図21および図22に示すように実験結果とほぼ等しい強度を求めることができる。
以上のように本発明の実施の一形態に従えば、数値解析によって被接合物3の変形状態を算出し、その変形状態に基づいて接合物の接合強度を算出する。これによって実際に摩擦撹拌接合して強度試験によって接合強度を求める必要がないので、短時間でかつ容易に接合強度を推定することができる。したがって接合条件を変更した場合の接合強度も容易に求めることができるので、要求される接合強度範囲を満足する接合強度となる接合条件を容易に求めることができ、接合条件の設定に費やす時間および費用を低減することができる。なお、数値解析によって接合強度を直接算出することは困難であるが、本発明のように数値解析によって接合物の変形状態を算出することは、比較的容易であり、かつ精度良く算出することができる。
また接合強度は、接合長さと接合高さとに密接に関係しており、接合長さが小さい場合と、接合高さが長い場合とで破断形態が異なる。本実施の形態では、変形後の接合状態を表わす指標として、接合長さと接合高さとを算出し、その接合長さと接合高さに基づいて、接合強度を算出する。これによっていずれの破断形態にも対応することができ、より精度良く接合強度を算出することができる。
また接合ツール4を回転させずに被接合物3に没入させた場合を数値解析し、その後で、没入させた場合の数値解析データを用いて、接合ツール4を回転させた場合を数値解析する。これによって摩擦撹拌接合を厳密にモデル化しなくても、流動化領域を良好に推定することができ、数値解析を単純化することができる。さらにツール押込み解析段階において、摩擦熱を考慮した入熱量を与えることによって、現実に摩擦撹拌接合された場合の接合物の変形状態に近似した変形状態を算出することができる。これによって変形状態をさらに精度良く算出することができる。
また押圧構成体を没入方向下流側の被接合部材に押付けることによって、没入方向下流側の被接合部材が部分的に没入方向上流側に隆起する。この隆起現象に基づいてフック点を算出することによって、フック点を容易にかつ精度良く算出することができる。これによって接合強度をさらに精度良く算出することができる。
さらに本発明の実施の一形態では、数値解析を軸対称モデルによって実現することによって、2次元的に解析することができ、数値解析を単純化することができる。さらに回転解析段階a3において、ツール4と接触する被接合物3の接触する部分を回転する角度は、90度以下で十分である。このように回転する角度を小さくしても、ひずみ臨界領域50が大きく変化することがなく、計算時間を短縮することができる。
また本発明の実施の一形態では、接合強度を出力したが、その他に被接合物3の変形状態を出力してもよい。たとえば形状算出工程s2によって算出される被接合物3の変形状態に基づいて、第1被接合部材1の厚み寸法と第2被接合部材2の厚み寸法とを算出する板厚算出工程をさらに含んでもよい。
図23は、実験による接合位置の総板厚が同じ2つの接合物を示す断面図である。図23(1)は、第1被接合部材1の板厚H1が大きく、第2被接合部材2の板厚H2が小さい第1の接合物を示す。図23(2)は、第1被接合部材1の板厚H1が小さく、第2被接合部材2の板厚H2が大きい第2の接合物を示す。表5は、図23に示す各接合物の寸法とせん断強度を示す。
Figure 2005186083
表5に示すように、総板厚H3は同じでも接合強度が異なる場合がある。具体的には、第1被接合部材1の板厚H1が小さくかつ、第2被接合部材2の板厚H2が大きい接合物のほうが、接合強度が大きくなる。すなわち接合後に外部から計測可能な総板厚を測定するよりも、数値解析によって第1被接合部材1と第2被接合部材2との板厚を個別に測定するほうが、接合強度の管理上有効である場合がある。本発明では、板厚算出工程によって、各被接合物の板厚H1,H2,H3を算出可能であるので利便性を向上することができる。
また第1および第2の被接合物3は、接合長さDがほぼ同一である。また第2の被接合物3は、第1の被接合物3に比べて、接合高さが小さいので、図6のグラフに示す関係を満たす。板厚算出工程によって、各被接合部材1,2の板厚を算出し、その算出した板厚H1,H2と、接合長さDと、接合高さHとに基づくことによって、接合強度をさらに正確に推定することができる。
また本実施の形態では、ツール回転解析段階a3、回転解析結果取得段階a4および流動化領域算出段階a5を順に行って、流動化領域8を算出したが他の方法を用いて、流動化領域8を算出してもよい。
図24は、被接合物3に与えられる入熱パラメータと、流動化領域8の最大幅との関係を示すグラフである。被接合物3に与える熱量は、被接合物3の接触部に与えられる単位時間当たりの入熱量をqとすると、入熱パラメータQ/Uは、次式によって表わされる。
Q/U=q・t/U
ここで、qは接合ツール4に接触する被接合物3の接触部分3aに与えられる単位時間あたりの入熱量(W)であり、tは接合時間(sec)であり、Uは被接合物3の総板厚(mm)である。
図24に示すように、流動化領域の最大幅と入熱パラメータとは、1対1との関係があり、グラフ上に示す1つの近似曲線によって対応づけることができる。したがって接合条件から算出される入熱パラメータに基づいて、流動化領域8の最大幅を求めてもよく、その流動化領域8の最大幅から接合長さを求めてもよい。この場合には、接合高さHは、ツール押込み解析段階a1によって算出される変形状態において、第1被接合部材1と接合ツール4とによって押圧構成体を設定して、接合高さを求める。このようにして流動化領域8の最大幅を簡易的に求めることによって、数値解析をさらに単純化することができ、接合強度の算出にかかる時間を短縮することができる。
上述した本発明の実施の一形態は、本発明の例示に過ぎず他の方法によっても実現することができる。たとえば本発明では、変形後の接合状態を示す指標として、接合長さDと接合高さHとを算出したが、他の変形状態を算出してもよい。たとえば接合位置における各被接合部材1,2の没入方向寸法である板厚のみを算出してもよい。各被接合部材1,2の板厚は、第1被接合部材1の板厚H1が小さいほど、また第2被接合部材2の板厚H3が大きいほど接合高さHが小さくなることが実験的に確認されているので、各被接合部材1,2の板厚H1,H2を算出することによって、接合強度を推定してもよい。
また各被接合部材1,2の材質は、アルミ合金以外であってもよく、またそれぞれ異なる材質の材料であってもよい。また被接合物3を構成する被接合部材の枚数も2枚以上であってもよい。
図25は、本発明の強度推定方法を用いた接合条件算出手順を示すフローチャートである。接合条件算出手順は、たとえば上述した演算手段23によって行われる。ステップc0において、入力手段21に接合条件算出の指示が与えられると、ステップc1に進み、演算手段23は、接合条件の推定動作を開始する。
ステップc1では、接合条件のうち制約される条件と、目標とする目標接合強度、接合条件の優先順位などを取得し、ステップc2に進む。ステップc2では、制約される条件を満足する接合条件を設定しステップc3に進む。ステップc3では、設定される接合条件に応じた接合強度を算出する。この接合強度算出手順については、上述した接合強度の推定方法が用いられる。
すなわちステップc3の工程は、接合長さを接合条件毎にそれぞれ数値解析によって算出する接合長さ算出段階と、接合高さを接合条件毎に数値解析によって算出する接合高さ算出段階と、予め定める接合条件毎に算出される接合強度をそれぞれ算出する強度算出段階を含む。そして設定した接合条件における接合条件が算出されると、ステップc4に進む。
ステップc4では、ステップc3で算出した接合強度が目標強度以上であるか否かを判定する。また目標接合強度以上である場合には、ステップc5に進み、そうでない場合には、ステップc10に進む。ステップc5では、接合条件とその接合強度とを対応づけて記憶し、ステップc6に進む。ステップc6では、制約される条件のうち接合条件を変更可能である場合には、ステップc7に進む。ステップc7では、接合条件を変更してステップc3に戻る。
ステップc6において、制約条件を満たしたうえで、すべての接合条件について接合強度を求めた場合には、ステップc8に進む。ステップc8では、予め定める優先順位にしたがってステップc5で記憶した接合条件から最適の接合条件を抽出して、最適な接合条件を決定し、ステップc9に進む。ステップc8の工程は、予め定める接合強度範囲に収まる接合強度となる接合条件を抽出する接合条件抽出段階を含む。ステップc9では、最適な接合条件を出力手段によって出力させ、接合条件の決定動作を終了する。
またステップc10において、制約される条件のうち接合条件を変更可能である場合には、ステップc3に戻る。ステップc10において、接合条件を変更可能でない場合には、ステップc11に進む。ステップc11では、目標とする強度を変更し、ステップc1に戻る。
このようにして目標接続強度以上となる接合条件を抽出することができる。これによって要求される接合強度を確保したうえで、最適な施工条件を選択することができ、利便性を向上することができる。したがって従来のように試行錯誤的に最適な接合条件を決定する必要がなく、時間および費用の面で効率化することができる。これによってたとえば被接合部材の材料や寸法が変更される場合であっても、目標接合強度で接合可能な接合条件を迅速に決定することができる。
本発明の実施の一形態である接合強度推定方法の推定手順を示すフローチャートである。 摩擦撹拌接合の接合手順を示す断面図である。 摩擦撹拌接合装置10を示す斜視図である。 本発明の接合強度推定方法を実行する演算装置20を示すブロック図である。 被接合物3を拡大して示す断面図である。 実験によるはく離強度と変形後の接合状態との関係を示すグラフである。 はく離強度試験における接合物の破断形態を示す断面図である。 実験によるせん断強度と変形後の接合状態との関係を示すグラフである。 せん断強度試験における接合物の破断形態を示す断面図である。 ツール押込み解析段階a1におけるシミュレーション結果を示す図である。 各被接合部材1,2の時間経過による温度変化を示すグラフである。 ツール回転解析段階a3におけるシミュレーション結果を示す図である。 第1被接合部材1のうち、ピン部6からの任意の距離にある部分の中心軸線L1まわりに回転する塑性ひずみを示す図である 中心軸線L1まわりのひずみがゼロとなるひずみ臨界領域50の幅と、接触部分を強制回転する角度を示すグラフである。 流動化領域を実験によって流動化領域8の最大幅を求めた場合と、実験における接合条件と同じ接合条件でひずみ臨界領域50の幅を算出した場合とを示す図である。 実験値による流動化領域8の最大幅と、実験値による接合長さDとを示す図である。 被接合物押込み解析段階a7におけるシミュレーション結果を示す図である 実験による接合高さと、接合高さ算出段階a8によって求められる接合高さとを示すグラフである。 強度算出工程s3を具体的に示すフローチャートである。 他の推定手順を示すフローチャートである。
同じ接合条件での、実験結果と解析結果とのはく離強度を示すグラフである。 同じ接合条件での、実験結果と解析結果とのせん断強度を示すグラフである。 実験による接合位置の総板厚が同じ2つの接合物を示す断面図である。 被接合物3に与えられる入熱パラメータと、流動化領域の最大幅との関係を示すグラフである。 本発明の強度推定方法を用いた接合条件算出手順を示すフローチャートである。
符号の説明
1 第1被接合部材
2 第2被接合部材
3 被接合物
4 接合ツール
s1 接合条件取得工程
s2 形状算出工程
s3 強度算出工程
a1 ツール押込み解析段階
a2 押込み解析結果取得段階
a3 ツール回転解析段階
a4 回転解析結果取得段階
a5 流動化領域算出段階
a6 接合長さ算出段階
a7 被接合部材押込み解析段階
a8 接合高さ算出段階

Claims (11)

  1. 2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の接合強度を推定する接合強度推定方法であって、
    予め定められる接合条件に従って、摩擦撹拌による被接合物の変形状態を数値解析によって算出する形状算出工程と、
    形状算出工程で算出される変形状態に基づいて、接合物の接合強度を算出する強度算出工程とを含むことを特徴とする接合物の接合強度推定方法。
  2. 形状算出工程は、摩擦撹拌時の摩擦熱によって被接合物が部分的に流動化する流動化領域の外径寸法に対応する接合長さを算出する接合長さ算出段階と、
    2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入位置に対して没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを算出する接合高さ算出段階とを有し、
    強度算出工程は、算出した接合長さと接合高さとに基づいて、接合物の接合強度を算出することを特徴とする請求項1記載の接合物の接合強度推定方法。
  3. 形状算出工程は、接合ツールを被接合物に没入させた場合の被接合物の変形状態を、数値解析によって算出するツール押込み解析段階と、
    ツール押込み解析段階によって算出される被接合物の変形状態からさらに接合ツールを回転させた場合の被接合物のひずみ分布を、数値解析によって算出する回転解析段階と、
    回転解析段階によって算出される被接合物のひずみ分布に基づいて、被接合物が部分的に流動化する流動化領域を算出する流動化領域算出段階とを有することを特徴とする請求項1記載の接合物の接合強度推定方法。
  4. ツール押込み解析段階は、予め定められる接合条件に従った加圧力で接合ツールを没入方向に押付けるとともに、前記接合条件に従った入熱量を被接合物に与えた場合の被接合物の変形状態と温度分布とを、数値解析によって算出することを特徴とする請求項3記載の接合物の接合強度推定方法。
  5. 回転解析段階は、ツール押込み解析段階によって算出される被接合物の変形状態と温度分布とに基づいて、被接合物のうち接合ツールとの接触部分を強制回転させた場合の被接合物のひずみ分布を、数値解析によって算出することを特徴とする請求項4記載の接合物の接合強度推定方法。
  6. 形状算出工程は、流動化領域算出段階によって算出される流動化領域に基づいて、流動化領域の外径寸法に対応する接合長さを算出する接合長さ算出段階と、
    押込み解析段階によって算出される変形状態に基づいて、2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入位置に対して没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを算出する接合高さ算出段階とを有し、
    強度算出工程は、接合長さ算出結果と接合高さ算出結果とに基づいて、接合物の接合強度を算出することを特徴とする請求項3〜5のいずれか1項に記載の接合物の接合強度推定方法。
  7. 形状算出工程は、ツール押込み解析段階によって算出される被接合物の変形状態と、流動化領域算出段階によって算出される被接合物の流動化領域とに基づいて、接合ツールと流動化領域と没入方向上流側の被接合部材とを有する押圧構成体を、予め定められる接合条件に従って、没入方向下流側の被接合部材に押付けた場合の被接合物の変形状態を数値解析によって算出する被接合部材押込み段階をさらに有し、
    接合高さ算出段階は、被接合部材押込み段階によって算出される被接合物の変形状態に基づいて接合高さを算出することを特徴とする請求項3〜6のいずれか1項に記載の接合物の接合強度推定方法。
  8. 形状算出工程によって算出される被接合物の変形状態に基づいて、没入方向上流側の被接合部材の厚み寸法と、没入方向下流側の被接合部材の厚み寸法とを算出する板厚算出工程をさらに含むことを特徴とする請求項1〜7のいずれか1項に記載の接合物の接合強度推定方法。
  9. 2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の変形状態を推定する変形状態推定方法であって、
    接合ツールを被接合物に没入させた場合の被接合物の変形状態を、数値解析によって算出するツール押込み解析段階と、
    ツール押込み解析段階によって算出される被接合物の変形状態からさらに接合ツールを回転させた場合の被接合物のひずみ分布を、数値解析によって算出する回転解析段階と、
    回転解析段階によって算出される被接合物のひずみ分布に基づいて、被接合物が部分的に流動化する流動化領域を算出する流動化領域算出段階とを有することを特徴とする接合物の変形状態推定方法。
  10. ツール押込み解析段階は、予め定められる接合条件に従った加圧力で接合ツールを没入方向に押付けるとともに、前記接合条件に従った入熱量を被接合物に与えた場合の被接合物の変形状態と温度分布とを、数値解析によって算出し、
    回転解析段階は、ツール押込み解析段階によって算出される被接合物の変形状態と温度分布とに基づいて、被接合物のうち接合ツールとの接触部分を強制回転させた場合の被接合物のひずみ分布を、数値解析によって算出することを特徴とする請求項9記載の接合物の変形状態推定方法。
  11. 2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の接合強度が予め定める範囲に収まる接合条件を決定する接合条件決定方法であって、
    摩擦撹拌時の摩擦熱によって被接合物が部分的に流動化する流動化領域の外径寸法に対応する接合長さを、予め定める接合条件毎にそれぞれ数値解析によって算出する接合長さ算出段階と、
    2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入位置に対して没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを、予め定める接合条件毎に数値解析によって算出する接合高さ算出段階と、
    予め定める接合条件毎に算出される、接合長さ算出結果と接合高さ算出結果とに基づいて、接合物の接合強度をそれぞれ算出する強度算出段階と、
    強度算出段階によって算出される算出結果に基づいて、予め定める接合強度範囲に収まる接合強度となる接合条件を抽出する接合条件抽出段階とを含むことを特徴とする接合条件決定方法。
JP2003427960A 2003-12-24 2003-12-24 接合物の接合強度推定方法、変形状態推定方法および接合条件決定方法 Expired - Fee Related JP4372534B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427960A JP4372534B2 (ja) 2003-12-24 2003-12-24 接合物の接合強度推定方法、変形状態推定方法および接合条件決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427960A JP4372534B2 (ja) 2003-12-24 2003-12-24 接合物の接合強度推定方法、変形状態推定方法および接合条件決定方法

Publications (2)

Publication Number Publication Date
JP2005186083A true JP2005186083A (ja) 2005-07-14
JP4372534B2 JP4372534B2 (ja) 2009-11-25

Family

ID=34787086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427960A Expired - Fee Related JP4372534B2 (ja) 2003-12-24 2003-12-24 接合物の接合強度推定方法、変形状態推定方法および接合条件決定方法

Country Status (1)

Country Link
JP (1) JP4372534B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212984A (ja) * 2007-03-05 2008-09-18 Mazda Motor Corp 摩擦点接合方法及び摩擦点接合構造
WO2010050834A1 (en) * 2008-11-03 2010-05-06 Instituto De Soldadura E Qualidade System and process for automatic determination of welding parameters for automated friction stir welding
JP2017100160A (ja) * 2015-12-02 2017-06-08 スズキ株式会社 異種金属接合体及びその製造方法
JP2017106618A (ja) * 2015-10-02 2017-06-15 バット ホールディング アーゲー 摩擦攪拌溶接接続を有した真空シールのための閉鎖エレメント

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212984A (ja) * 2007-03-05 2008-09-18 Mazda Motor Corp 摩擦点接合方法及び摩擦点接合構造
WO2010050834A1 (en) * 2008-11-03 2010-05-06 Instituto De Soldadura E Qualidade System and process for automatic determination of welding parameters for automated friction stir welding
JP2017106618A (ja) * 2015-10-02 2017-06-15 バット ホールディング アーゲー 摩擦攪拌溶接接続を有した真空シールのための閉鎖エレメント
US10876637B2 (en) 2015-10-02 2020-12-29 Vat Holding Ag Closure element for a vacuum seal having a friction stir welding connection
JP2017100160A (ja) * 2015-12-02 2017-06-08 スズキ株式会社 異種金属接合体及びその製造方法

Also Published As

Publication number Publication date
JP4372534B2 (ja) 2009-11-25

Similar Documents

Publication Publication Date Title
Dialami et al. Enhanced friction model for Friction Stir Welding (FSW) analysis: Simulation and experimental validation
Chao et al. Heat transfer in friction stir welding—experimental and numerical studies
Zhang et al. Thermo-mechanical simulation using microstructure-based modeling of friction stir spot welded AA 6061-T6
Ansari et al. An efficient coupled Eulerian-Lagrangian finite element model for friction stir processing
Li et al. Numerical Simulation of Friction Welding Processes Based on ABAQUS Environment.
Citarella et al. Hybrid technique to assess the fatigue performance of multiple cracked FSW joints
D’Urso Thermo-mechanical characterization of friction stir spot welded AA6060 sheets: Experimental and FEM analysis
Geng et al. Numerical and experimental investigation on friction welding of austenite stainless steel and middle carbon steel
D’Urso et al. FEM model for the thermo-mechanical characterization of friction stir spot welded joints
Jweeg et al. Theoretical and experimental investigation of transient temperature distribution in friction stir welding of AA 7020-T53
McCune et al. The influence of friction stir welding process idealization on residual stress and distortion predictions for future airframe assembly simulations
JP4372534B2 (ja) 接合物の接合強度推定方法、変形状態推定方法および接合条件決定方法
Schemmel et al. Co-simulation of MATLAB and ANSYS for ultrasonic wire bonding process optimization
Effertz et al. Modelling the flash formation of linear friction welded 30CrNiMo8 high strength steel chains
JP7054199B2 (ja) 残留応力分布の測定方法、算出方法及びプログラム
Hashemzadeh et al. Friction stir welding induced residual stresses in thick steel plates from experimental and numerical analysis
Saha et al. Thermomechanical analysis of induction assisted friction stir welding of Inconel 718 alloy: A finite element approach
Amini et al. Friction stir welding of AA2024-T3: development of numerical simulation considering thermal history and heat generation
You et al. Numerical modeling of multiphysics field in conventional and stationary shoulder friction stir welding of Al-Cu alloy
Thoppul et al. Mechanical characterization of spot friction stir welded joints in aluminum alloys by combined experimental/numerical approaches: part I: micromechanical studies
Bhardwaj et al. Exit-hole-free friction stir spot welding of aluminum alloy sheets using a consumable pin
JP2002035986A (ja) スポット溶接された構造体の亀裂発生危険部位予測方法
Mori Simulation of Material Processing: Theory, Methods and Application: Proceedings of the 7th International Conference NUMIFORM 2001, Toyohashi, Japan 18-21 June 2001
Das et al. Prediction of surface profile in friction stir welding using coupled eulerian and lagrangian method
Assidi et al. Accurate 3D friction stir welding simulation tool based on friction model calibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4372534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140911

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees