JP2005183665A - Metallized film capacitor and its manufacturing method - Google Patents

Metallized film capacitor and its manufacturing method Download PDF

Info

Publication number
JP2005183665A
JP2005183665A JP2003422241A JP2003422241A JP2005183665A JP 2005183665 A JP2005183665 A JP 2005183665A JP 2003422241 A JP2003422241 A JP 2003422241A JP 2003422241 A JP2003422241 A JP 2003422241A JP 2005183665 A JP2005183665 A JP 2005183665A
Authority
JP
Japan
Prior art keywords
electrode layer
zinc
resin
electrode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003422241A
Other languages
Japanese (ja)
Inventor
Hirokazu Sakaguchi
博数 阪口
Takashi Mori
隆志 森
Tomoya Adachi
智哉 安立
Yoriko Takeya
依里子 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2003422241A priority Critical patent/JP2005183665A/en
Publication of JP2005183665A publication Critical patent/JP2005183665A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the bumping of a second electrode layer when the sheath-less surface-mounting metallized film capacitor undergoes lead-free reflow soldering, to eliminate bad external appearance; and to improve moisture resistance. <P>SOLUTION: A metallized film capacitor and its manufacturing method are configured in such a way that a capacitor element is formed by winding in layers a later winding plastic film on an element on which a pair of metallized films is wound. After the first electrode layer of an electrode lead is formed on opposite end surfaces of the capacitor element, a second electrode layer is formed and an external electrode is mounted. Herein, the second electrode layer is formed after the first electrode layer is formed, impregnated in resin, and hardened. The foregoing resin is epoxy resin or silicone resin of 1 to 1000 mPa s viscosity, and the first electrode layer is constituted by any of an alloy consisted of 60 to 70 % copper and remaining zinc, an alloy consisted of 40 to 56 % aluminum, ≥4% silicon, and ≥40% zinc, an alloy consisted of ≥90 % zinc and remaining aluminum, and single zinc. The second electrode layer is consisted of ≥80% tin and remaining zinc and copper. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は外装レス面実装タイプの金属化フィルムコンデンサに関するものであり、特に耐電流特性に優れ、はんだ耐熱性を向上させた金属化フィルムコンデンサおよびその製造方法に関するものである。   The present invention relates to a metallized film capacitor of an exterior-less surface mounting type, and more particularly to a metallized film capacitor having excellent current resistance characteristics and improved solder heat resistance, and a method for manufacturing the same.

従来、面実装タイプの金属化フィルムコンデンサは素子構造が偏平型の技術が知られている(例えば、特許文献1参照)。   Conventionally, a surface mount type metalized film capacitor has been known to have a flat element structure (see, for example, Patent Document 1).

特開2000−58369号公報(第2−6頁、図3、図5、図7)JP 2000-58369 A (page 2-6, FIG. 3, FIG. 5, FIG. 7)

上記の偏平型フィルムコンデンサは、一対の金属化フィルムを巻回し重ねた素子に、後巻用プラスチックフィルムを重ね巻回してコンデンサ素子を形成し、該コンデンサ素子の両端面に電極引出し部の第1電極層、第2電極層と順次形成した後、樹脂を真空含浸(または超音波含浸)し、余剰の樹脂を取り除き、加熱硬化した後外部電極を取り付け構成する。
近年、環境問題からはんだの鉛フリー化が進められているが、一般的な無鉛はんだは、従来の鉛入りはんだより溶融温度が高いため、金属化フィルムコンデンサには耐熱性の向上が求められている。
しかしながら、上記金属化フィルムコンデンサでは第2電極層に外部電極との接合性を向上させるため低融点金属が使用されているが、260℃、10秒間の無鉛はんだリフローを行うと、第2電極層に含浸された樹脂が熱膨張し、半溶融状態となった第2電極層の金属が外部に押し出されて突沸状態になり、金属化フィルムコンデンサの外観、耐湿性が劣化するという問題を有していた。
In the flat type film capacitor, a capacitor film is formed by stacking and winding a plastic film for subsequent winding on an element in which a pair of metallized films are wound and stacked, and a first electrode lead portion is formed on both end faces of the capacitor element. After sequentially forming the electrode layer and the second electrode layer, the resin is vacuum impregnated (or ultrasonically impregnated), the excess resin is removed, and after heat curing, an external electrode is attached and configured.
In recent years, lead-free solder has been promoted due to environmental problems. However, general lead-free solder has a higher melting temperature than conventional lead-containing solder, and metalized film capacitors are required to have improved heat resistance. Yes.
However, in the metallized film capacitor, a low melting point metal is used for the second electrode layer in order to improve the bondability with the external electrode. However, when lead-free solder reflow is performed at 260 ° C. for 10 seconds, the second electrode layer The resin impregnated in is thermally expanded and the metal of the second electrode layer, which has been in a semi-molten state, is pushed out to a bumping state, which deteriorates the appearance and moisture resistance of the metallized film capacitor. It was.

本発明は上記の課題を解決するものであり、260℃、10秒間等の無鉛はんだリフローにおいても金属化フィルムコンデンサの第2電極層からの突沸がなく、かつ、耐湿性が向上した金属化フィルムコンデンサを提供するものである。
すなわち、一対の金属化フィルムを巻回した素子に、後巻用プラスチックフィルムを重ね巻きしてコンデンサ素子を形成し、該コンデンサ素子の両端面に電極引出部の第1電極層を形成した後、第2電極層を形成し、外部電極を取付ける金属化フィルムコンデンサおよびその製造方法において、
第1電極層を形成して樹脂含浸し、硬化した後、第2電極層を形成することを特徴とする金属化フィルムコンデンサおよびその製造方法である。
The present invention solves the above-mentioned problem, and there is no bumping from the second electrode layer of the metallized film capacitor even in lead-free solder reflow at 260 ° C. for 10 seconds, etc., and the metallized film with improved moisture resistance A capacitor is provided.
That is, after a pair of metallized films is wound around a plastic film for subsequent winding to form a capacitor element, and after forming the first electrode layer of the electrode lead portion on both end faces of the capacitor element, In the metallized film capacitor for forming the second electrode layer and attaching the external electrode, and the manufacturing method thereof,
A metallized film capacitor and a method of manufacturing the same, wherein a second electrode layer is formed after forming a first electrode layer, impregnating with resin, and curing.

また、上記の第1電極層形成後、含浸する樹脂が粘度1〜1000mPa・sのエポキシ樹脂またはシリコーン樹脂であることを特徴とする金属化フィルムコンデンサである。   The metallized film capacitor is characterized in that after the first electrode layer is formed, the resin to be impregnated is an epoxy resin or a silicone resin having a viscosity of 1 to 1000 mPa · s.

さらに、上記の第1電極層は銅60〜70%残亜鉛からなる合金、アルミニウム40〜56%とケイ素4%以上と亜鉛40%以上からなる合金、亜鉛90%以上で残アルミニウムからなる合金、亜鉛単体のいずれかで構成され、第2電極層は錫80%以上で残亜鉛、銅から構成されることを特徴とする金属化フィルムコンデンサである。   Further, the first electrode layer is made of an alloy composed of 60 to 70% residual zinc of copper, an alloy composed of 40 to 56% aluminum, 4% or more of silicon and 40% or more of zinc, an alloy composed of residual aluminum containing 90% or more of zinc, The metallized film capacitor is composed of any one of zinc alone, and the second electrode layer is composed of 80% or more of tin and remaining zinc and copper.

そして、上記の第1および第2電極層を金属溶射により形成したことを特徴とする金属化フィルムコンデンサである。   A metallized film capacitor is characterized in that the first and second electrode layers are formed by metal spraying.

また、上記の外部電極として板状端子を使用したことを特徴とする金属化フィルムコンデンサである。   Further, the present invention is a metallized film capacitor using a plate-like terminal as the external electrode.

本発明の金属化フィルムコンデンサは、コンデンサ素子の両端面に、高融点金属からなる第1電極層を形成した後、樹脂含浸し、余剰の樹脂を取り除き、硬化させた後、低融点金属からなる第2電極層を設けることにより、第2電極層には樹脂が含浸されないため、無鉛はんだリフローにより第2電極層が半溶融状態になっても金属が突沸状態になることはなく、外部端子の接合性を落とすことなく外観不良発生の防止、さらには耐湿性の向上も図ることができる。   The metallized film capacitor of the present invention is formed of a low melting point metal after forming a first electrode layer made of a high melting point metal on both end faces of the capacitor element, then impregnating the resin, removing excess resin and curing it. By providing the second electrode layer, the second electrode layer is not impregnated with resin. Therefore, even if the second electrode layer is in a semi-molten state due to the lead-free solder reflow, the metal is not bumped, and the external terminal It is possible to prevent the appearance failure and further improve the moisture resistance without deteriorating the bonding property.

一対の金属化フィルムを巻回した素子に後巻用フィルムを重ね巻回してコンデンサ素子3を形成し、該コンデンサ素子3の両端面に、電極引出部の第1電極層4aを形成して樹脂含浸し、硬化させた後、第2電極層4bを形成する。第2電極層4b形成後の樹脂含浸は行わない。
ここで、第1電極層は銅60〜70%残亜鉛からなる合金、アルミニウム40〜56%とケイ素4%以上と亜鉛40%以上からなる合金、亜鉛90%以上で残アルミニウムからなる合金、亜鉛単体のいずれかで構成し、第2電極層は錫80%以上で残亜鉛および/または銅から構成される。
また、第1電極層形成後、含浸する樹脂は、エポキシ樹脂またはシリコーン樹脂とする。
A capacitor film 3 is formed by overlappingly winding a film for subsequent winding on an element in which a pair of metallized films are wound, and a first electrode layer 4a of an electrode lead portion is formed on both end faces of the capacitor element 3 to form a resin. After impregnating and curing, the second electrode layer 4b is formed. The resin impregnation after the formation of the second electrode layer 4b is not performed.
Here, the first electrode layer is made of an alloy composed of 60 to 70% residual zinc of copper, an alloy composed of 40 to 56% aluminum, 4% or more of silicon and 40% or more of zinc, an alloy composed of residual aluminum containing 90% or more of zinc, zinc The second electrode layer is composed of 80% or more of tin and residual zinc and / or copper.
Moreover, after forming the first electrode layer, the resin to be impregnated is an epoxy resin or a silicone resin.

次に本発明の実施例を図1〜4に基づいて説明する。
[実施例1−1〜1−4]
Next, an embodiment of the present invention will be described with reference to FIGS.
[Examples 1-1 to 1-4]

図1は本発明の実施例によるコンデンサ素子の断面図である。誘電体フィルムPPS(ポリフェニンスルフィド)にアルミニウムを蒸着した一対の金属化フィルム1を重ねて巻回し、これに後巻用PPSフィルムを複数回巻回してコンデンサ素子3を形成した。
次いで、コンデンサ素子3の両端面に各々、表1に示す金属を溶射して電極引出部の第1電極層4a(厚さ0.15mm)を構成した。
FIG. 1 is a sectional view of a capacitor element according to an embodiment of the present invention. A pair of metallized films 1 deposited with aluminum on a dielectric film PPS (polyphenine sulfide) were overlapped and wound, and a PPS film for subsequent winding was wound a plurality of times to form a capacitor element 3.
Next, the first electrode layer 4a (thickness 0.15 mm) of the electrode lead portion was formed by spraying the metal shown in Table 1 on both end faces of the capacitor element 3 respectively.

このコンデンサ素子に粘度800mPa・sの液状エポキシ樹脂を真空度100kPa以下で含浸し、余分に付着した樹脂を除去後、110℃で3時間加熱し、樹脂を硬化させた。   This capacitor element was impregnated with a liquid epoxy resin having a viscosity of 800 mPa · s at a degree of vacuum of 100 kPa or less, and after removing the excessively adhered resin, the resin was heated at 110 ° C. for 3 hours to cure the resin.

樹脂硬化後、180℃、4時間熱処理を行い、第1電極層4a上に錫89%、残亜鉛、銅を金属溶射し、厚さ0.25mmの第2電極層4bを形成した。
そして、第2電極層4b形成後、樹脂含浸は行わず、外部電極として図4(a)の板状端子を抵抗溶接により取り付けた。
上記のようにして、100VDC、0.1μFのコンデンサを作製した。
After the resin was cured, heat treatment was performed at 180 ° C. for 4 hours, and metal spraying of 89% tin, residual zinc, and copper was performed on the first electrode layer 4a to form a second electrode layer 4b having a thickness of 0.25 mm.
Then, after the formation of the second electrode layer 4b, resin impregnation was not performed, and the plate-like terminal of FIG. 4A was attached as an external electrode by resistance welding.
A capacitor of 100 VDC and 0.1 μF was produced as described above.

(従来例1−1〜1−4)
上記実施例と同様に、コンデンサ素子3を形成し、その両端面に表1に示す金属を溶射して電極引出部の第1電極層4aを構成した。
(Conventional examples 1-1 to 1-4)
Similarly to the above example, the capacitor element 3 was formed, and the metal shown in Table 1 was sprayed on both end faces thereof to constitute the first electrode layer 4a of the electrode lead portion.

その後、第2電極層4bを錫89%、残亜鉛、銅で形成し、粘度800mPa・sの液状エポキシ樹脂を真空度100kPa以下で含浸し、余分に付着した樹脂を除去後、110℃で3時間加熱し、樹脂を硬化させた。   Thereafter, the second electrode layer 4b is formed of 89% tin, residual zinc, and copper, impregnated with a liquid epoxy resin having a viscosity of 800 mPa · s at a vacuum degree of 100 kPa or less, and after removing the excessively adhered resin, the second electrode layer 4b is formed at Heated for hours to cure the resin.

このコンデンサ素子に外部電極として図4(a)の板状端子を抵抗溶接により取り付けた。
上記のようにして、100VDC、0.1μFのコンデンサを作製した。
A plate-like terminal shown in FIG. 4A was attached to the capacitor element as an external electrode by resistance welding.
A capacitor of 100 VDC and 0.1 μF was produced as described above.

(比較例1−1〜1−4)
上記実施例と同様に、コンデンサ素子形成、および第1電極層4a、第2電極層4b形成を行った後、樹脂含浸を行わず、外部電極として図4(a)の板状端子を抵抗溶接により取り付けた。
(Comparative Examples 1-1 to 1-4)
Similarly to the above embodiment, after the capacitor element formation and the first electrode layer 4a and the second electrode layer 4b are formed, the resin-impregnation is not performed, and the plate-like terminal of FIG. Attached by.

上記の実施例1−1〜1−4、従来例1−1〜1−4、および比較例1−1〜1−4について、260℃、10秒間の無鉛はんだリフローを行い、また、60℃、95%の耐湿性試験を2000時間実施して特性を測定した。ここで、試料数は各10個とした。
その結果を表1に示す。
For Examples 1-1 to 1-4, Conventional Examples 1-1 to 1-4, and Comparative Examples 1-1 to 1-4, lead-free solder reflow was performed at 260 ° C. for 10 seconds, and 60 ° C. A 95% humidity resistance test was conducted for 2000 hours to measure the characteristics. Here, the number of samples was 10 each.
The results are shown in Table 1.

Figure 2005183665
Figure 2005183665

表1より明らかなように、第1電極層を形成した後にエポキシ樹脂を含浸し、第2電極層を形成した後の樹脂含浸を行わなかった実施例1−1〜1−4では、リフローはんだ付け後、第2電極層の突沸はなく、耐湿性試験後の静電容量、tanδの変化が小さく、安定している。
一方、第2電極層まで樹脂含浸を行った従来例1−1〜1−4では、リフローはんだ付け後、第2電極層の突沸が発生し、耐湿性試験後の静電容量、tanδの変化も実施例1−1〜1−4より大きかった。
さらに、第1電極層、第2電極層に樹脂含浸を行わなかった比較例1−1〜1−4では突沸は発生しなかったが、耐湿試験後の特性が著しく悪化した。
ここで、エポキシ樹脂の粘度は1〜1000mPa・sが適当である。1mPa・s未満では含浸した樹脂が流れ出すという問題があり、また、1000mPa・sを超えると、含浸率が低下する。
また、第1、第2電極層の合金組成は、金属材料の耐食性、はんだ付性、コストを考慮し、上記のように設定している。
As is clear from Table 1, in Examples 1-1 to 1-4 in which the first electrode layer was formed and the epoxy resin was impregnated and the second electrode layer was not impregnated with the resin, the reflow soldering was performed. After the attachment, there is no bumping of the second electrode layer, and the change in capacitance and tan δ after the moisture resistance test is small and stable.
On the other hand, in the conventional examples 1-1 to 1-4 in which resin impregnation was performed up to the second electrode layer, bumping of the second electrode layer occurred after reflow soldering, and the capacitance and tan δ after the moisture resistance test were changed. Was larger than Examples 1-1 to 1-4.
Further, in Comparative Examples 1-1 to 1-4 in which the first electrode layer and the second electrode layer were not impregnated with resin, bumping did not occur, but the characteristics after the moisture resistance test were significantly deteriorated.
Here, the viscosity of the epoxy resin is suitably 1 to 1000 mPa · s. If it is less than 1 mPa · s, there is a problem that the impregnated resin flows out. If it exceeds 1000 mPa · s, the impregnation rate decreases.
The alloy composition of the first and second electrode layers is set as described above in consideration of the corrosion resistance, solderability, and cost of the metal material.

[実施例2−1〜2−4]
上記実施例1−1〜1−4と同様にコンデンサ素子を作製し、両端面に表2に示す金属を溶射して第1電極層4a(厚さ0.15mm)を構成した。
[Examples 2-1 to 2-4]
Capacitor elements were produced in the same manner as in Examples 1-1 to 1-4, and the first electrode layer 4a (thickness 0.15 mm) was configured by spraying the metal shown in Table 2 on both end faces.

このコンデンサ素子に粘度20mPa・sの液状シリコーン樹脂を超音波含浸し、余分に付着した樹脂を除去後、110℃で3時間加熱し、樹脂を硬化させた。   This capacitor element was ultrasonically impregnated with a liquid silicone resin having a viscosity of 20 mPa · s to remove excess resin, and then heated at 110 ° C. for 3 hours to cure the resin.

樹脂硬化後、180℃、4時間熱処理を行い、第1電極層4a上に錫89%、残亜鉛、銅を金属溶射し、厚さ0.25mmの第2電極層4bを形成した。
そして、第2電極層4b形成後、樹脂含浸は行わず、外部電極として図4(a)の板状端子を抵抗溶接により取り付けた。
上記のようにして、100VDC、0.1μFのコンデンサを作製した。
After the resin was cured, heat treatment was performed at 180 ° C. for 4 hours, and metal spraying of 89% tin, residual zinc, and copper was performed on the first electrode layer 4a to form a second electrode layer 4b having a thickness of 0.25 mm.
Then, after the formation of the second electrode layer 4b, resin impregnation was not performed, and the plate-like terminal of FIG. 4A was attached as an external electrode by resistance welding.
A capacitor of 100 VDC and 0.1 μF was produced as described above.

(従来例2−1〜2−4)
上記実施例と同様に、コンデンサ素子3を形成し、その両端面に表2に示す金属を溶射して、電極引出部の第1電極層4aを構成した。
(Conventional examples 2-1 to 2-4)
Similarly to the above example, the capacitor element 3 was formed, and the metal shown in Table 2 was sprayed on both end faces thereof to constitute the first electrode layer 4a of the electrode lead portion.

その後、第2電極層4bを錫89%、残亜鉛、銅で形成し、粘度20mPa・sの液状シリコーン樹脂を真空度100kPa以下で含浸し、余分に付着した樹脂を除去後、110℃で3時間加熱し、樹脂を硬化させた。
このコンデンサ素子に、外部電極として図4(a)の板状端子を抵抗溶接により取り付けた。
上記のようにして、100VDC、0.1μFのコンデンサを作製した。
Thereafter, the second electrode layer 4b is formed of 89% tin, residual zinc and copper, impregnated with a liquid silicone resin having a viscosity of 20 mPa · s at a vacuum degree of 100 kPa or less, and after removing the excessively adhered resin, the second electrode layer 4b is removed at 110 ° C. Heated for hours to cure the resin.
A plate-like terminal shown in FIG. 4A was attached to the capacitor element as an external electrode by resistance welding.
A capacitor of 100 VDC and 0.1 μF was produced as described above.

(比較例2−1〜2−4)
上記実施例と同様に、コンデンサ素子形成、および第1電極層4a、第2電極層4b形成を行った後、樹脂含浸を行わず、外部電極として図4(a)の板状端子を抵抗溶接により取り付けた。
(Comparative Examples 2-1 to 2-4)
Similarly to the above embodiment, after the capacitor element formation and the first electrode layer 4a and the second electrode layer 4b are formed, the resin-impregnation is not performed, and the plate-like terminal of FIG. Attached by.

上記の実施例2−1〜2−4、従来例2−1〜2−4、および比較例2−1〜2−4について、260℃、10秒間の無鉛はんだリフローを行い、また、60℃、95%の耐湿性試験を2000時間実施して特性を測定した。ここで、試料数は各10個とした。
その結果を表2に示す。
For Examples 2-1 to 2-4, Conventional Examples 2-1 to 2-4, and Comparative Examples 2-1 to 2-4, lead-free solder reflow was performed at 260 ° C. for 10 seconds, and 60 ° C. A 95% humidity resistance test was conducted for 2000 hours to measure the characteristics. Here, the number of samples was 10 each.
The results are shown in Table 2.

Figure 2005183665
Figure 2005183665

表2より明らかなように、第1電極層を形成した後にシリコーン樹脂を含浸し、第2電極層を形成した後の樹脂含浸を行わなかった実施例2−1〜2−4では、リフローはんだ付け後、第2電極層の突沸はなく、耐湿性試験後の静電容量、tanδの変化が小さく、安定している。
一方、第2電極層まで樹脂含浸を行った従来例2−1〜2−4では、リフローはんだ付け後、第2電極層の突沸が発生し、耐湿性試験後の静電容量、tanδの変化も実施例2−1〜2−4より大きかった。
さらに、第1電極層、第2電極層に樹脂含浸を行わなかった比較例1−1〜1−4では突沸は発生しなかったが、耐湿試験後の特性が著しく悪化した。
ここで、シリコーン樹脂の粘度は1〜1000mPa・sが適当である。1mPa・s未満では含浸した樹脂が流れ出すという問題があり、また、1000mPa・sを超えると、含浸率が低下する。
As is clear from Table 2, in Examples 2-1 to 2-4 in which the first electrode layer was formed and then the silicone resin was impregnated, and the resin impregnation after the second electrode layer was not formed was performed in reflow soldering After the attachment, there is no bumping of the second electrode layer, and the change in capacitance and tan δ after the moisture resistance test is small and stable.
On the other hand, in Conventional Examples 2-1 to 2-4 in which resin impregnation was performed up to the second electrode layer, bumping of the second electrode layer occurred after reflow soldering, and the capacitance and tan δ after the moisture resistance test were changed. Was larger than Examples 2-1 to 2-4.
Further, in Comparative Examples 1-1 to 1-4 in which the first electrode layer and the second electrode layer were not impregnated with resin, bumping did not occur, but the characteristics after the moisture resistance test were significantly deteriorated.
Here, the viscosity of the silicone resin is suitably 1 to 1000 mPa · s. If it is less than 1 mPa · s, there is a problem that the impregnated resin flows out, and if it exceeds 1000 mPa · s, the impregnation rate decreases.

上記実施例では、第2電極層に外部電極として図4(a)のような板状端子を接合したが、図4(b)、(c)のような形状の板状端子を用いた場合でも、上記と同様、第2電極層の突沸防止、耐湿性向上の効果が得られた。   In the above embodiment, a plate-like terminal as shown in FIG. 4A is joined to the second electrode layer as an external electrode. However, when a plate-like terminal as shown in FIGS. 4B and 4C is used. However, as described above, the effects of preventing bumping of the second electrode layer and improving moisture resistance were obtained.

また、上記実施例では、第1電極層が銅65%残亜鉛からなる合金、アルミニウム44%とケイ素6%と亜鉛50%からなる合金、亜鉛95%で残アルミニウムからなる合金、亜鉛単体のいずれかで構成され、第2電極層が錫89%で残亜鉛、銅から構成されたものを用いたが、第1電極層が銅60〜70%残亜鉛からなる合金、アルミニウム40〜56%とケイ素4%以上と亜鉛40%以上からなる合金、亜鉛90%以上で残アルミニウムのいずれかで構成され、第2電極層が錫80%以上残亜鉛および/または銅であれば同様の効果が得られる。
また、第2電極層の形成方法は、メッキ等の場合でも効果が得られるが、溶射が好ましく、さらに樹脂としてはエポキシ樹脂、シリコーン樹脂が好ましい。
なお、第1電極層の厚さは0.1〜0.2mmの範囲が適当である。0.1mm未満では耐電流性が低下し、0.2mmを超えると、小形化する上で好ましくない。
そして、第2電極層の厚さは0.2〜0.3mmの範囲が適当である。0.2mm未満では外部電極との接合強度が低下し、0.3mmを超えると、小形化する上で好ましくない。
また、樹脂硬化の条件は、実施例に限定されるものではなく、コンデンサ素子の大きさ、使用する樹脂により変更することができる。
そして、金属化フィルムもPPSに限定されるものではなく、ポリエチレンテレフタート、ポリエチレンナフタレート等にアルミニウム、亜鉛を蒸着する公知の材料を使用することができる。
In the above embodiment, the first electrode layer is made of any alloy consisting of 65% copper remaining zinc, 44% aluminum, 6% silicon, 50% zinc alloy, 95% zinc remaining aluminum alloy, and zinc alone. The second electrode layer is composed of 89% tin and the remaining zinc and copper, but the first electrode layer is composed of 60 to 70% copper and 40% to 56% aluminum. The same effect can be obtained if the alloy is composed of an alloy consisting of 4% or more of silicon and 40% or more of zinc, or 90% or more of zinc and remaining aluminum, and the second electrode layer is 80% or more of tin and remaining zinc and / or copper. It is done.
In addition, the method for forming the second electrode layer is effective even in the case of plating or the like, but thermal spraying is preferable, and as the resin, epoxy resin and silicone resin are preferable.
The thickness of the first electrode layer is suitably in the range of 0.1 to 0.2 mm. If the thickness is less than 0.1 mm, the current resistance decreases.
The thickness of the second electrode layer is suitably in the range of 0.2 to 0.3 mm. If it is less than 0.2 mm, the bonding strength with the external electrode is lowered, and if it exceeds 0.3 mm, it is not preferable for miniaturization.
The resin curing conditions are not limited to those in the examples, and can be changed depending on the size of the capacitor element and the resin used.
The metallized film is not limited to PPS, and a known material for depositing aluminum or zinc on polyethylene terephthalate, polyethylene naphthalate, or the like can be used.

本発明の実施例による金属化フィルムコンデンサのコンデンサ素子の断面図である。It is sectional drawing of the capacitor | condenser element of the metallized film capacitor by the Example of this invention. 図1の外観図である。It is an external view of FIG. 図1のコンデンサ素子に、外部電極を取り付けた状態を表す図である。It is a figure showing the state which attached the external electrode to the capacitor | condenser element of FIG. 図3の外部電極に取り付ける板状端子の形状を表す図であり、(a)はコの字状、(b)はC字状、(c)は4個の太鼓状の開口部が形成されている。It is a figure showing the shape of the plate-shaped terminal attached to the external electrode of FIG. 3, (a) is U-shaped, (b) is C-shaped, (c) is four drum-shaped openings. ing.

符号の説明Explanation of symbols

1 金属化フィルム
1a 金属蒸着部
1b 誘電体フィルム
2 後巻用プラスチックフィルム
3 コンデンサ素子
4a 第1電極層
4b 第2電極層
5 外部電極(板状端子)
6 開口部
7 抵抗溶接部
DESCRIPTION OF SYMBOLS 1 Metallized film 1a Metal vapor deposition part 1b Dielectric film 2 Plastic film for back winding 3 Capacitor element 4a 1st electrode layer 4b 2nd electrode layer 5 External electrode (plate-shaped terminal)
6 Opening 7 Resistance weld

Claims (5)

一対の金属化フィルムを巻回した素子に、後巻用プラスチックフィルムを重ね巻きしてコンデンサ素子を形成し、該コンデンサ素子の両端面に電極引出部の第1電極層を形成した後、第2電極層を形成し、外部電極を取り付ける金属化フィルムコンデンサおよびその製造方法において、
第1電極層を形成して樹脂含浸し、硬化した後、第2電極層を形成することを特徴とする金属化フィルムコンデンサおよびその製造方法。
A capacitor film is formed by overlappingly winding a plastic film for subsequent winding on an element in which a pair of metallized films is wound, and after forming first electrode layers of electrode lead portions on both end faces of the capacitor element, a second In a metallized film capacitor for forming an electrode layer and attaching an external electrode and a manufacturing method thereof,
A metallized film capacitor comprising: forming a first electrode layer; impregnating with resin; curing; and then forming a second electrode layer.
請求項1記載の第1電極層形成後、含浸する樹脂が粘度1〜1000mPa・sのエポキシ樹脂またはシリコーン樹脂であることを特徴とする金属化フィルムコンデンサ。   2. The metallized film capacitor according to claim 1, wherein the resin to be impregnated after forming the first electrode layer is an epoxy resin or a silicone resin having a viscosity of 1 to 1000 mPa · s. 請求項1記載の第1電極層は銅60〜70%残亜鉛からなる合金、アルミニウム40〜56%とケイ素4%以上と亜鉛40%以上からなる合金、亜鉛90%以上で残アルミニウムからなる合金、亜鉛単体のいずれかで構成され、第2電極層は錫80%以上で残亜鉛、銅から構成されることを特徴とする金属化フィルムコンデンサ。   The first electrode layer according to claim 1 is an alloy composed of 60 to 70% residual zinc of copper, an alloy composed of 40 to 56% aluminum, 4% or more of silicon and 40% or more of zinc, and an alloy composed of residual aluminum containing 90% or more of zinc. The metallized film capacitor is composed of any one of zinc and the second electrode layer is composed of 80% or more of tin and remaining zinc and copper. 請求項1記載の第1および第2電極層を金属溶射により形成したことを特徴とする金属化フィルムコンデンサ。   A metallized film capacitor, wherein the first and second electrode layers according to claim 1 are formed by metal spraying. 請求項1記載の外部電極として板状端子を使用したことを特徴とする金属化フィルムコンデンサ。   A metalized film capacitor using a plate-like terminal as the external electrode according to claim 1.
JP2003422241A 2003-12-19 2003-12-19 Metallized film capacitor and its manufacturing method Pending JP2005183665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422241A JP2005183665A (en) 2003-12-19 2003-12-19 Metallized film capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422241A JP2005183665A (en) 2003-12-19 2003-12-19 Metallized film capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005183665A true JP2005183665A (en) 2005-07-07

Family

ID=34783178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422241A Pending JP2005183665A (en) 2003-12-19 2003-12-19 Metallized film capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005183665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080908A (en) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd Metallized film capacitor and case mold capacitor using same
JP2013171989A (en) * 2012-02-21 2013-09-02 Toyota Motor Corp Capacitor and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080908A (en) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd Metallized film capacitor and case mold capacitor using same
JP2013171989A (en) * 2012-02-21 2013-09-02 Toyota Motor Corp Capacitor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR102212642B1 (en) Multilayered capacitor
KR102443777B1 (en) Chip-type electronic components
JP5897247B2 (en) Electronic component and method for manufacturing electronic component
US11532436B2 (en) Multilayer ceramic electronic component including outer electrodes connected to metal terminals
JPH06168845A (en) Chip type laminated film capacitor
JP5075466B2 (en) Electrolytic capacitor manufacturing method
US10366830B2 (en) Surface mount electronic component
JP2005183665A (en) Metallized film capacitor and its manufacturing method
JP7310877B2 (en) Manufacturing method of electrolytic capacitor
JP2018142609A (en) Surface mounted electronic component
JP3760642B2 (en) Electronic components
JP2004319799A (en) Film capacitor device and its manufacturing method
JP2008135460A (en) Chip solid electrolytic capacitor
JP2004128470A (en) Ceramic electronic parts
JP2006012988A (en) Metallized film capacitor and manufacturing method therefor
JP2000058369A (en) Film capacitor
JP2003243245A (en) Ceramic electronic component and its manufacturing method
JPS59127828A (en) Chip film capacitor
US20230108549A1 (en) Multilayer ceramic electronic component
JP5516331B2 (en) Metallized film capacitors
JP2018148059A (en) Multilayer ceramic electronic component with heat-shrinkable tube and mounting method thereof
JP2007250923A (en) Metallized film capacitor and its manufacturing method
JPH0547585A (en) Electronic part
JP2870179B2 (en) Chip type metallized film capacitor and manufacturing method thereof
JPH03241804A (en) Chip type metallized film capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721