JP2005183595A - Method and apparatus for polishing semiconductor device - Google Patents

Method and apparatus for polishing semiconductor device Download PDF

Info

Publication number
JP2005183595A
JP2005183595A JP2003420955A JP2003420955A JP2005183595A JP 2005183595 A JP2005183595 A JP 2005183595A JP 2003420955 A JP2003420955 A JP 2003420955A JP 2003420955 A JP2003420955 A JP 2003420955A JP 2005183595 A JP2005183595 A JP 2005183595A
Authority
JP
Japan
Prior art keywords
polishing
film
semiconductor device
silicon substrate
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003420955A
Other languages
Japanese (ja)
Inventor
Koichi Wada
康一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003420955A priority Critical patent/JP2005183595A/en
Publication of JP2005183595A publication Critical patent/JP2005183595A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that defective connection is established since a contact hole after etching at a place where a film is thick in thickness cannot reach metal wiring due to the characteristic of the distribution of the film thickness in a substrate surface at the silicon of an interlayer insulation film in a conventional manufacturing method of a conventional semiconductor. <P>SOLUTION: This method for polishing the semiconductor comprises a process of etching a part which belongs to a film formed on a semiconductor substrate and is thicker in thickness than the other part, prior to the other part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体装置の研磨方法、及び当該研磨方法を使用する研磨装置に関する。   The present invention relates to a semiconductor device polishing method and a polishing apparatus using the polishing method.

図5、6は、従来の半導体装置の研磨方法を示す断面図である。以下、従来の半導体装置の研磨方法について図5、6に沿って説明する。   5 and 6 are cross-sectional views showing a conventional method for polishing a semiconductor device. Hereinafter, a conventional method for polishing a semiconductor device will be described with reference to FIGS.

工程S20:シリコン基板100の表面を鏡面研磨する。前記シリコン基板100の直径方向の全面を断面として示しており、EL領域はシリコン基板外周左側領域、MEL領域はシリコン基板の中心と外周左の中間領域、CE領域はシリコン基板中心領域、MER領域はシリコン基板中心と外周右の中間領域、ER領域はシリコン基板外周右側領域を示す。   Step S20: The surface of the silicon substrate 100 is mirror-polished. The entire surface in the diameter direction of the silicon substrate 100 is shown as a cross section. The EL region is the left side region on the outer periphery of the silicon substrate, the MEL region is the middle region between the center and the left side of the silicon substrate, the CE region is the central region of the silicon substrate, and the MER region is The middle region between the silicon substrate center and the right outer periphery, and the ER region indicate the right outer region of the silicon substrate.

工程S21:シリコン基板100の表面に、ゲート絶縁膜を形成し(図示せず)、その上にゲート電極101a、101b、101c、101d、101e、101f、101g、101h,101i、101jを形成する。   Step S21: A gate insulating film is formed on the surface of the silicon substrate 100 (not shown), and gate electrodes 101a, 101b, 101c, 101d, 101e, 101f, 101g, 101h, 101i, and 101j are formed thereon.

工程S22:ゲート電極101a〜101jが形成されたシリコン基板100及びゲート電極101a〜101j上に、CVD(Chemical Vapor Deposition)法またはプラズマCVD法により酸化珪素のような層間絶縁膜102を成長させる。   Step S22: An interlayer insulating film 102 such as silicon oxide is grown on the silicon substrate 100 on which the gate electrodes 101a to 101j are formed and the gate electrodes 101a to 101j by a CVD (Chemical Vapor Deposition) method or a plasma CVD method.

工程S23:CVD法及びプラズマ法のような堆積方法により、層間絶縁膜102上に、後述する平坦な表面を得るべく行なうCMP(Chemical Mechanical Polishing)のために用いる、層間絶縁膜102と同一な組成、即ち酸化珪素からなる犠牲膜103を堆積する。   Step S23: The same composition as the interlayer insulating film 102 used for CMP (Chemical Mechanical Polishing) to obtain a flat surface to be described later on the interlayer insulating film 102 by a deposition method such as a CVD method and a plasma method. That is, a sacrificial film 103 made of silicon oxide is deposited.

工程S24:犠牲膜103に上記のCMPを行なうことにより、犠牲膜103の表面を概ね平坦化する。   Step S24: The surface of the sacrificial film 103 is substantially planarized by performing the above CMP on the sacrificial film 103.

工程S25:フォトリソグラフィを行ない、並びに、層間絶縁膜102の厚さ、犠牲膜103の厚さ、及びCMPにより研磨する厚さに基づき予め定められた深さdのエッチングを施すことにより、ゲート電極101a〜101jと、平坦化された犠牲膜103の表面上に後の工程で形成すべき金属配線(図示せず)とを接続するために用いるコンタクトホール104a、104b、104c、104d、104e、104f、104g、104h、104i、104jを形成する。   Step S25: photolithography is performed, and the gate electrode is etched by a predetermined depth d based on the thickness of the interlayer insulating film 102, the thickness of the sacrificial film 103, and the thickness polished by CMP. Contact holes 104a, 104b, 104c, 104d, 104e, and 104f used to connect 101a to 101j and metal wiring (not shown) to be formed in a later step on the surface of the planarized sacrificial film 103. , 104g, 104h, 104i, and 104j.

しかしながら、上記した従来の半導体装置の研磨方法では、犠牲膜103の表面に、CMPを施された後であっても、図6の工程S24に示されるように、シリコン基板全体でみれば、絶縁膜の厚さが異なっている。これにより、図6の工程S25に図示のように、膜厚が厚くなっている領域、即ち、103bでは、上記した深さdのエッチングを行なった後のコンタクトホール104a、104bが金属配線101a、101bに到達することができないという接続不良を生じるという問題があった。あるいは、深さLの部分、即ちコンタクトホール104c、104dが金属配線101c、101dの表面を過剰にエッチングしてしまう、あるいは、上述の逆の現象が発生してコンタクト不良を生じる問題があった。   However, in the above-described conventional method for polishing a semiconductor device, even if the surface of the sacrificial film 103 is subjected to CMP, as shown in step S24 of FIG. The film thickness is different. Thereby, as shown in step S25 of FIG. 6, in the region where the film thickness is large, that is, 103b, the contact holes 104a and 104b after the etching of the depth d described above are formed into the metal wiring 101a, There is a problem that a connection failure occurs in which the terminal 101b cannot be reached. Alternatively, there is a problem that the portion of the depth L, that is, the contact holes 104c and 104d excessively etch the surfaces of the metal wirings 101c and 101d, or the reverse phenomenon described above occurs to cause contact failure.

本発明に係る半導体装置の研磨方法は、上記した課題を解決すべく、前記半導体基板上に形成された膜のうちの一の部分であって厚さが他の部分より大きい前記一の部分を前記他の部分より優先的に研磨する工程を含む。   According to another aspect of the present invention, there is provided a method for polishing a semiconductor device, comprising: one part of a film formed on the semiconductor substrate having a thickness larger than the other part. A step of polishing preferentially over the other portion.

本発明に係る半導体装置の研磨方法によれば、前記半導体基板上に形成された前記膜のうち、前記他の部分より厚さが大きい前記一の部分を前記他の部分より優先的に研磨することから、当該優先的な研磨を行なわない従来の半導体装置の研磨方法に比して、前記膜の表面の平坦性を向上させることができる。これにより、前記膜中に形成するコンタクトホール及び前記半導体基板上の金属配線間で上記した接続不良が生じることを回避することが可能となる。   According to the semiconductor device polishing method of the present invention, the one portion having a thickness larger than that of the other portion of the film formed on the semiconductor substrate is preferentially polished over the other portion. Therefore, the flatness of the surface of the film can be improved as compared with the conventional method for polishing a semiconductor device in which the preferential polishing is not performed. Thereby, it is possible to avoid the above-described connection failure between the contact hole formed in the film and the metal wiring on the semiconductor substrate.

本発明に係る半導体装置の研磨装置は、表面に膜が形成された半導体基板を、当該表面を下向きにした状態で保持しつつ移動可能な保持機構と、エッチング液を流出し当該エッチング液を前記膜に当接させることにより前記膜を研磨する研磨機構とを含み、前記研磨機構は、前記保持機構による移動の助勢下で、前記膜のうちの一の部分であって厚さが他の部分より大きい前記一の部分を前記他の部分より優先的に研磨する。   A polishing apparatus for a semiconductor device according to the present invention includes a holding mechanism capable of moving while holding a semiconductor substrate having a film formed on a surface thereof in a state in which the surface is faced down, and an etching solution that flows out to remove the etching solution. A polishing mechanism that polishes the film by contacting the film, and the polishing mechanism is one part of the film and the other part of the film with the assistance of movement by the holding mechanism. The larger one part is polished preferentially over the other part.

上記した本発明に係る半導体装置の研磨装置では、前記研磨機構は、前記エッチング液を表面張力により凝集可能な程度に流出し、当該前記表面張力により凝集したエッチング液を前記膜に当接させる。   In the above-described polishing apparatus for a semiconductor device according to the present invention, the polishing mechanism causes the etching solution to flow out to the extent that it can be aggregated by surface tension, and causes the etching solution aggregated by the surface tension to contact the film.

上記した本発明に係る半導体装置の研磨装置では、前記膜のうち前記半導体基板の周縁の近傍に位置する部分を研磨する、筒状の形状を有する筒状研磨機構を更に含む。   The above-described polishing apparatus for a semiconductor device according to the present invention further includes a cylindrical polishing mechanism having a cylindrical shape that polishes a portion of the film located near the periphery of the semiconductor substrate.

本発明に係る半導体装置の研磨装置について図面を参照して説明する。   A semiconductor device polishing apparatus according to the present invention will be described with reference to the drawings.

図1は、実施例の半導体装置の研磨装置の構成を示す側面図である。実施例の半導体装置の研磨装置1は、シリコン基板10を全体として平坦にするために用いられる犠牲膜2を平坦に研磨すべく、より正確には、犠牲膜2のうちの相対的に凸形状の度合いが顕著である部分を優先的に平坦化すべく、保持部3と、吐出部4とを有する。   FIG. 1 is a side view illustrating a configuration of a polishing apparatus for a semiconductor device according to an embodiment. More specifically, the polishing apparatus 1 for a semiconductor device according to the embodiment is configured so that the sacrificial film 2 used for flattening the silicon substrate 10 as a whole is polished flatly. The holding part 3 and the discharge part 4 are provided to preferentially flatten the part where the degree of the above is remarkable.

保持機構である保持部3は、上記したようなシリコン基板10上の顕著な隆起部分の位置と吐出部4の位置とを一致させるべく、その接触面3a及びシリコン基板10の接触面10a間の接触により、例えば、物理的な把持又は真空チャックにより保持し、かつ、シリコン基板10を上下逆さに保持した状態で、シリコン基板10の接触面10aに垂直な方向に上下の移動を行うと共に、接触面10aに平行な方向に前後及び左右の移動を行なう。また、保持部3は、後述のようなシリコン基板10の乾燥のために、接触面10aに垂直な方向を回転軸としてシリコン基板10を回転させる。   The holding unit 3 serving as a holding mechanism is arranged between the contact surface 3a and the contact surface 10a of the silicon substrate 10 so that the position of the prominent raised portion on the silicon substrate 10 and the position of the discharge unit 4 coincide with each other. By contact, for example, with physical gripping or vacuum chucking and with the silicon substrate 10 held upside down, the contact is made in the direction perpendicular to the contact surface 10a of the silicon substrate 10 and the contact is made. Move back and forth and right and left in a direction parallel to the surface 10a. In addition, the holding unit 3 rotates the silicon substrate 10 about a direction perpendicular to the contact surface 10a as a rotation axis in order to dry the silicon substrate 10 as described later.

研磨機構である吐出部4は、吐出口4aから弗酸等のエッチング液6を吐出し、より正確には、流出する。吐出部4は、詳しくは、エッチング液5が当該液5の表面張力により、上方に凸な円弧の形状を維持できるような流量のエッチング液5、又は特定の一箇所を集中的に液を当てるという指向性を有する吐出状態になるような流量及び流速のエッチング液5を吐出する。   The discharge unit 4 serving as a polishing mechanism discharges an etching solution 6 such as hydrofluoric acid from the discharge port 4a, and more accurately flows out. Specifically, the discharge unit 4 intensively applies the etching solution 5 at a flow rate such that the etching solution 5 can maintain an upwardly convex arc shape by the surface tension of the solution 5 or a specific place. The etching solution 5 having a flow rate and a flow velocity that causes a discharge state having such directivity is discharged.

図2、3は、実施例の半導体装置の研磨装置の動作を示す断面図である。以下、実施例の半導体装置の研磨装置の動作を図2、3に沿って説明する。説明及び理解を容易にすべく、図2、3に図示のシリコン基板10と図1に図示のシリコン基板10とは、正立及び倒立の関係にある。   2 and 3 are cross-sectional views illustrating the operation of the polishing apparatus for a semiconductor device according to the embodiment. Hereinafter, the operation of the polishing apparatus of the semiconductor device of the embodiment will be described with reference to FIGS. In order to facilitate explanation and understanding, the silicon substrate 10 illustrated in FIGS. 2 and 3 and the silicon substrate 10 illustrated in FIG. 1 are in an upright and inverted relationship.

工程S10:シリコン基板10の表面10bを鏡面研磨する。   Step S10: The surface 10b of the silicon substrate 10 is mirror-polished.

工程S11:シリコン基板10の表面10bに、従来知られた方法によりゲート絶縁膜(図示せず)を形成した後、CVD(Chemical Vapor Deposition)法により、シリコン基板10の表面10bの全体にポリシリコン膜(図示せず)を形成し、さらに、当該ポリシリコン膜にフォトリソグラフィ及びエッチングを行なうことにより、図示のような概ね矩形状の複数のゲート電極11を形成する。   Step S11: After forming a gate insulating film (not shown) on the surface 10b of the silicon substrate 10 by a conventionally known method, polysilicon is deposited on the entire surface 10b of the silicon substrate 10 by a CVD (Chemical Vapor Deposition) method. A film (not shown) is formed, and the polysilicon film is further subjected to photolithography and etching to form a plurality of substantially rectangular gate electrodes 11 as shown.

工程S12:CVD法により、シリコン基板10及びゲート電極11上に、ゲート電極11の上方に形成されるべき金属配線(図示せず)とゲート電極11との間の層間絶縁膜として機能すべきILD(Inter-Level(Layer) Dielectric)膜12を堆積する。   Step S12: ILD to function as an interlayer insulating film between the gate electrode 11 and a metal wiring (not shown) to be formed on the silicon substrate 10 and the gate electrode 11 above the gate electrode 11 by the CVD method. (Inter-Level (Layer) Dielectric) film 12 is deposited.

工程S13:CVD法により、ILD膜12上に、当該ILD膜12と同一な組成を有する犠牲膜13を成長させる。シリコン基板全体でみると、図示のような膜厚差Kが存在することになる。これはCVD法の特性であり同心円状に膜厚分布が変化する。一例として、図示のような膜厚の面内傾向であるとする。また、ミクロ的に見ると各パターンによる凹凸が生じるが、前期膜厚差Kと比較すれば十分無視できる大きさである。   Step S13: A sacrificial film 13 having the same composition as the ILD film 12 is grown on the ILD film 12 by a CVD method. When looking at the entire silicon substrate, there is a film thickness difference K as shown in the figure. This is a characteristic of the CVD method, and the film thickness distribution changes concentrically. As an example, it is assumed that the in-plane tendency of the film thickness is as shown. Further, when viewed microscopically, unevenness due to each pattern occurs, but it is a size that can be sufficiently ignored compared with the film thickness difference K in the previous period.

工程S14:シリコン基板10を保持している保持部3は、最も膜厚が厚いシリコン基板外周部の13b、13cの位置と吐出部4の位置とが合致するように、上記の左右移動又は前後移動を移動を行なう。保持部3による上記移動の後、吐出部4は、エッチング液5を、表面張力を維持することができる、又は上記した志向性ある突出状態を実現することができる条件に調整する。   Step S14: The holding unit 3 holding the silicon substrate 10 moves or moves back and forth as described above so that the position of the outer peripheral portion 13b, 13c of the silicon substrate having the largest film thickness matches the position of the discharge unit 4. Move to move. After the movement by the holding unit 3, the discharge unit 4 adjusts the etching solution 5 to a condition capable of maintaining the surface tension or realizing the above-described directed protruding state.

吐出部4によるエッチング液5の流出状態の調整後、保持部3は、上記した上下移動を行なうことにより、犠牲膜13の凸領域13b、13cを、吐出部4のエッチング液5に当接させ、当該当接を計算及び経験則等に基づき予め定められた所定時間だけ維持する。これにより、隆起部分13b、13cを、膜厚が薄い領域13a、13d、13eに優先して研磨することにより、凸状の部分13c、13dを他の部分13a、13d、13eと概ね同一の高さにする。   After adjusting the outflow state of the etching solution 5 by the discharge unit 4, the holding unit 3 makes the convex regions 13 b and 13 c of the sacrificial film 13 abut on the etching solution 5 of the discharge unit 4 by performing the above-described vertical movement. The contact is maintained for a predetermined time based on calculation and empirical rules. Thus, the raised portions 13b and 13c are polished in preference to the thin regions 13a, 13d and 13e, so that the convex portions 13c and 13d are approximately the same height as the other portions 13a, 13d and 13e. Say it.

領域部分13bの研磨の終了後、吐出部4は、エッチング液5を純水に切り換え、シリコン基板10上に残留するエッチング液5を洗い流し、さらに、保持部は、シリコン基板10の接触面10aに垂直な方向を軸としてシリコン基板10を回転させることにより、シリコン基板10を乾燥させる。   After the polishing of the region portion 13b, the discharge unit 4 switches the etching solution 5 to pure water, washing away the etching solution 5 remaining on the silicon substrate 10, and the holding unit is applied to the contact surface 10a of the silicon substrate 10. The silicon substrate 10 is dried by rotating the silicon substrate 10 around the vertical direction.

工程S15:CMPを施すことにより犠牲膜13の表面を全体的に研磨することによって、犠牲膜13の表面を全面的に平坦化する。   Step S15: The surface of the sacrificial film 13 is entirely polished by performing CMP, thereby planarizing the entire surface of the sacrificial film 13.

工程S16:フォトリソグラフィ及びエッチングを施すことにより、ILD膜12及び犠牲膜13に、ゲート電極11との接続を確立するためのコンタクトホール14を形成する。   Step S16: Contact holes 14 for establishing connection with the gate electrode 11 are formed in the ILD film 12 and the sacrificial film 13 by performing photolithography and etching.

上述したように、実施例の半導体装置の研磨装置1では、吐出部4が、犠牲膜13の表面のうちシリコン基板全体として膜厚が相対的に厚い部分13b、13cを優先的にエッチングすることから、従来の研磨装置による研磨に比して、犠牲膜13の表面の平坦度を向上させることができ、これにより、ゲート電極11及びコンタクトホール14間の接続不良を低減することが可能になる。   As described above, in the polishing apparatus 1 of the semiconductor device of the embodiment, the discharge unit 4 preferentially etches the portions 13b and 13c having a relatively large thickness as the entire silicon substrate in the surface of the sacrificial film 13. As a result, the flatness of the surface of the sacrificial film 13 can be improved as compared with the polishing by the conventional polishing apparatus, thereby reducing the connection failure between the gate electrode 11 and the contact hole 14. .

図4は、変形例の半導体装置の研磨装置の構成を示す。図2の工程S13に示されるように、シリコン基板10上に形成される絶縁膜12、犠牲膜13の膜厚が相対的に厚い領域が13b、13d、13cである、図4に示されるように、例えば、高密度プラズマCVD法により製造される絶縁膜12、犠牲膜13の表面上での略中心に位置する隆起部分、及び略周縁に位置するリング状の隆起部分の凸状の度合いが著しいときには、研磨装置1は、上述した吐出部4に代えて、図4に図示のような、筒状研磨機構である筒状の第1の吐出部8、当該第1の吐出部7の概ね中央に設けられた第2の吐出部9を用いることが望ましい。第1の吐出部7及び第2の吐出部8を用いて犠牲膜13を研磨することにより、上記したシリコン基板の中心に位置する隆起部分及び周縁に位置する隆起部分を優先的にかつ同時的に平坦化することが可能になる。
ここでは、CVD法により成膜される絶縁膜のシリコン基板内での膜厚面内分布の調整に関する記述を行なったが、加えてCMPの研磨特性、シリコン基板面内での研磨レート分布も含めた本発明の半導体装置のノズル位置、エッチング時間による処理をすることも、同様の効果が得られることは明白である。
FIG. 4 shows a configuration of a polishing apparatus for a semiconductor device according to a modification. As shown in step S13 of FIG. 2, regions where the thicknesses of the insulating film 12 and the sacrificial film 13 formed on the silicon substrate 10 are relatively thick are 13b, 13d, and 13c, as shown in FIG. In addition, for example, the degree of convexity of the insulating film 12 manufactured by the high-density plasma CVD method, the raised portion located at the approximate center on the surface of the sacrificial film 13, and the ring-like raised portion located at the substantially peripheral edge. When it is remarkable, the polishing apparatus 1 replaces the discharge unit 4 described above with a cylindrical first discharge unit 8 and a first discharge unit 7 as shown in FIG. It is desirable to use the second discharge unit 9 provided in the center. By polishing the sacrificial film 13 using the first discharge portion 7 and the second discharge portion 8, the above-described raised portion located at the center and the raised portion located at the periphery of the silicon substrate are preferentially and simultaneously provided. Can be flattened.
Here, we have described the adjustment of the in-plane distribution of the film thickness in the silicon substrate of the insulating film formed by the CVD method. In addition, the polishing characteristics of CMP and the polishing rate distribution in the silicon substrate surface are also included. It is obvious that the same effect can be obtained by performing the processing based on the nozzle position and etching time of the semiconductor device of the present invention.

実施例の半導体装置の研磨装置の構成を示す図。The figure which shows the structure of the grinding | polishing apparatus of the semiconductor device of an Example. 実施例の半導体装置の研磨装置の動作を示す図(その1)。The figure which shows operation | movement of the polisher of the semiconductor device of an Example (the 1). 実施例の半導体装置の研磨装置の動作を示す図(その2)。The figure which shows operation | movement of the grinding | polishing apparatus of the semiconductor device of an Example (the 2). 実施例の半導体装置の他の研磨装置の構成を示す図。The figure which shows the structure of the other grinding | polishing apparatus of the semiconductor device of an Example. 従来の半導体装置の研磨方法を示す図(その1)。The figure which shows the grinding | polishing method of the conventional semiconductor device (the 1). 従来の半導体装置の研磨方法を示す図(その2)。FIG. 2 is a diagram illustrating a conventional method for polishing a semiconductor device (part 2);

符号の説明Explanation of symbols

1 研磨装置 2 犠牲膜 3 保持部 4 吐出部 5 エッチング液 10 シリコン基板。
DESCRIPTION OF SYMBOLS 1 Polishing apparatus 2 Sacrificial film 3 Holding part 4 Discharge part 5 Etching liquid 10 Silicon substrate.

Claims (4)

前記半導体基板上に形成された膜のうちの一の部分であって厚さが他の部分より大きい前記一の部分を前記他の部分より優先的に研磨する工程を含むことを特徴とする半導体装置の研磨方法。   Polishing a portion of the film formed on the semiconductor substrate, the portion having a thickness greater than that of the other portion, with priority over the other portion. Polishing method of the apparatus. 表面に膜が形成された半導体基板を、当該表面を下向きにした状態で保持しつつ移動可能な保持機構と、
エッチング液を流出し当該エッチング液を前記膜に当接させることにより前記膜を研磨する研磨機構とを含み、
前記研磨機構は、前記保持機構による移動の助勢下で、前記膜のうちの一の部分であって厚さが他の部分より大きい前記一の部分を前記他の部分より優先的に研磨することを特徴とする半導体装置の研磨装置。
A holding mechanism capable of moving while holding a semiconductor substrate having a film formed on the surface with the surface facing down;
A polishing mechanism for polishing the film by flowing out the etching liquid and bringing the etching liquid into contact with the film;
The polishing mechanism is configured to preferentially polish one portion of the film that is thicker than the other portion, with the assistance of movement by the holding mechanism, over the other portion. An apparatus for polishing a semiconductor device.
前記研磨機構は、前記エッチング液を表面張力により凝集可能な程度に流出し、当該前記表面張力により凝集したエッチング液を前記膜に当接させることを特徴とする請求項2記載の半導体装置の研磨装置。   3. The polishing of a semiconductor device according to claim 2, wherein the polishing mechanism causes the etching solution to flow out to an extent that can be aggregated by surface tension, and causes the etching solution aggregated by the surface tension to contact the film. apparatus. 前記膜のうち前記半導体基板の周縁の近傍に位置する部分を研磨する、筒状の形状を有する筒状研磨機構を更に含むことを特徴とする請求項2記載の半導体装置の研磨装置。
3. The polishing apparatus for a semiconductor device according to claim 2, further comprising a cylindrical polishing mechanism having a cylindrical shape for polishing a portion of the film located in the vicinity of the periphery of the semiconductor substrate.
JP2003420955A 2003-12-18 2003-12-18 Method and apparatus for polishing semiconductor device Withdrawn JP2005183595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420955A JP2005183595A (en) 2003-12-18 2003-12-18 Method and apparatus for polishing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420955A JP2005183595A (en) 2003-12-18 2003-12-18 Method and apparatus for polishing semiconductor device

Publications (1)

Publication Number Publication Date
JP2005183595A true JP2005183595A (en) 2005-07-07

Family

ID=34782325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420955A Withdrawn JP2005183595A (en) 2003-12-18 2003-12-18 Method and apparatus for polishing semiconductor device

Country Status (1)

Country Link
JP (1) JP2005183595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082430A (en) * 2009-10-09 2011-04-21 Mitsubishi Electric Corp Substrate surface-processing apparatus and apparatus for manufacturing solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082430A (en) * 2009-10-09 2011-04-21 Mitsubishi Electric Corp Substrate surface-processing apparatus and apparatus for manufacturing solar cell

Similar Documents

Publication Publication Date Title
JP7343543B2 (en) Removal methods for high aspect ratio structures
US6232228B1 (en) Method of manufacturing semiconductor devices, etching composition for manufacturing semiconductor devices, and semiconductor devices made using the method
KR100271769B1 (en) Method for manufacturing semiconductor device, etchant composition and semiconductor device for manufacturing semiconductor device therefor
TWI781757B (en) Systems and methods for aluminum-containing film removal
WO2015172442A1 (en) Copper interconnection manufacturing method
TWI512890B (en) Semiconductor device and manufacturing method thereof
JPH08222630A (en) Multilayer interconnection forming method
TWI233180B (en) Method of producing semiconductor device
JP2005183595A (en) Method and apparatus for polishing semiconductor device
KR100413493B1 (en) Polishing Platen of Chemical Mechanical Polishing Equipment and method for plating
JP2002134466A (en) Method of manufacturing semiconductor device
JP2007208161A (en) Manufacturing method of semiconductor device and semiconductor substrate
CN114751367A (en) Micro-system film planarization method
US7312157B2 (en) Methods and apparatus for cleaning semiconductor devices
TW202213459A (en) Methods for etching structures with oxygen pulsing
US6979641B2 (en) Methods of forming a conductive contact through a dielectric
KR100605584B1 (en) Method for manufacturing semiconductor device prevented scratch
KR100829598B1 (en) Method of high planarity chemical mechanical polishing and method of manufacturing semiconductor device
US20070066056A1 (en) Method of removing a photoresist and method of manufacturing a semiconductor device using the same
JPH09153487A (en) Manufacture of semiconductor device
JP4245446B2 (en) Manufacturing method of semiconductor device
JPH07297187A (en) Manufacture of semiconductor device
KR0176195B1 (en) Method for forming wiring of semiconductor device
WO2006085423A1 (en) Cmp method, cmp apparatus, method for manufacturing laminated board having sti structure and method for manufacturing semiconductor device
KR100693785B1 (en) Method for forming interlayer dielectric in semiconductor memory device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306