JP2005181760A - Holding structure for optical element, and optical isolator using the same - Google Patents

Holding structure for optical element, and optical isolator using the same Download PDF

Info

Publication number
JP2005181760A
JP2005181760A JP2003423725A JP2003423725A JP2005181760A JP 2005181760 A JP2005181760 A JP 2005181760A JP 2003423725 A JP2003423725 A JP 2003423725A JP 2003423725 A JP2003423725 A JP 2003423725A JP 2005181760 A JP2005181760 A JP 2005181760A
Authority
JP
Japan
Prior art keywords
optical
optical element
holding structure
faraday rotator
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003423725A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Shigeoka
義之 重岡
Michitaka Okuda
通孝 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003423725A priority Critical patent/JP2005181760A/en
Publication of JP2005181760A publication Critical patent/JP2005181760A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a holding structure for optical elements which can easily be manufactured with a high yield, without causing adhesion of an inorganic adhesive between each optical element, and which can be further miniaturized, as a whole. <P>SOLUTION: The holding structure has a constitution with at least one plate-like polarizer and at least one plate-like Faraday rotator are disposed side-by-side, and both of their end parts are held by a pair of substrates, wherein the main surface of at least one of the substrates has a groove-like recessed part, communicating with the side face, the end parts of the polarizer and the Faraday rotator are held in the recessed parts and fixed by adhesive. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として光通信機器、光情報処理機器、光計測等に用いられる光学素子の保持構造及びこれを用いた光アイソレータに関するものである。   The present invention relates to an optical element holding structure mainly used for optical communication equipment, optical information processing equipment, optical measurement, and the like, and an optical isolator using the same.

光通信システムで、半導体レーザから発した光はレンズを介して光ファイバ端面に投影され伝送されるが、一部の光はレンズや光ファイバの端面で表面反射して半導体レーザまで戻り、ノイズとなってしまう。このノイズは半導体レーザの動作を不安定にするという悪影響を与える。そこでこの戻り光を除去するために光アイソレータが使用されている。   In an optical communication system, light emitted from a semiconductor laser is projected and transmitted to the end face of an optical fiber through a lens, but some light is reflected from the surface of the end face of the lens or optical fiber and returns to the semiconductor laser. turn into. This noise has an adverse effect of destabilizing the operation of the semiconductor laser. Therefore, an optical isolator is used to remove the return light.

一般に、光アイソレータは、光増幅器、半導体レーザ装置等に使用されている。この光学機構部品は、2枚の偏光子の相対角度が45°に設定し、それらの間にファラデー回転角が約45°のファラデー回転子を挿入して互いに固定したものであり、順方向の光は透過させ、逆方向の光は遮断する作用を有するものである。近年この光学機構部品に対しては、小型化、量産化、低価格化が強く要望されており、その対策として例えば、特許文献1参照に開示されたような光アイソレータの開発利用が盛んになってきた。   In general, optical isolators are used in optical amplifiers, semiconductor laser devices, and the like. In this optical mechanism component, a relative angle between two polarizers is set to 45 °, and a Faraday rotator having a Faraday rotation angle of about 45 ° is inserted between them and fixed to each other. It has a function of transmitting light and blocking light in the reverse direction. In recent years, there has been a strong demand for miniaturization, mass production, and cost reduction for these optical mechanism components. For example, optical isolators disclosed in Patent Document 1 are actively used and developed as countermeasures. I came.

図5に、従来の光アイソレータ20は基本構成を示した斜視図である。この光アイソレータ20は、一枚の配置基準とする同一な取り付け基板24上における一方向に2枚の偏光子21の間にファラデー回転子22が配置されるように各光学素子を有機接着剤で接合・固定すると共に、取り付け基板24上における各光学素子の周囲の一方向とは垂直な他方向に各光学素子を挟み込むようにファラデー回転子22へ印加する磁界を発生する2個の磁石23を有機接着剤で接合・固定した構造を有している。ここでは、各光学素子の外形を正確に切断形成した上で取り付け基板24上に配置する構成において、取り付け基板24の厚さ方向における全体の寸法を低背化すると共に、全体の小型化および低コスト化および高信頼性を計るために各光学素子の主面の形状を正方形にし、前期各光学素子の間隔を狭めて配置するように工夫している。   FIG. 5 is a perspective view showing a basic configuration of a conventional optical isolator 20. In this optical isolator 20, each optical element is made of an organic adhesive so that the Faraday rotator 22 is arranged between two polarizers 21 in one direction on the same mounting substrate 24 as one arrangement reference. Two magnets 23 that generate a magnetic field to be applied to the Faraday rotator 22 so as to sandwich and fix each optical element in another direction perpendicular to one direction around each optical element on the mounting substrate 24 are bonded and fixed. It has a structure bonded and fixed with an organic adhesive. Here, in the configuration in which the outer shape of each optical element is accurately cut and arranged on the mounting substrate 24, the overall dimensions in the thickness direction of the mounting substrate 24 are reduced, and the overall size and size of the optical element are reduced. In order to achieve cost reduction and high reliability, the shape of the main surface of each optical element is made to be a square, and the interval between the optical elements in the previous period is narrowed.

このうち、ファラデー回転子22にはGdBi系やTbBi系の磁性ガーネット厚膜が使用されるが、こうした場合、磁性ガーネット厚膜の磁気モーメントを配列させるために磁石23の材料には通常Sm Co17系やNd−Fe−B系の希土類磁石が使用されている。この希土類磁石は、高い磁気特性(残留磁束密度,保磁力等)を有する反面、希土類元素を多量に含有することにより、原材料費が高価になってしまうこと、容易に酸化され易いために磁石特性が劣化され易いこと、酸化物粒子の飛散を招き易いこと、材料が硬くて脆いために加工が容易でないこと等の短所を有している。それ故、希土類磁石を使用する場合には加工時に研削液や浸漬時間の制約を受け、しかも光アイソレータへの装着に際してはメッキ等の耐酸化被覆処理が必須となっている。 Of these, a GdBi-based or TbBi-based magnetic garnet thick film is used for the Faraday rotator 22. In such a case, the material of the magnet 23 is usually Sm 2 Co in order to align the magnetic moment of the magnetic garnet thick film. 17 type or Nd—Fe—B type rare earth magnets are used. While this rare earth magnet has high magnetic properties (residual magnetic flux density, coercive force, etc.), it contains a large amount of rare earth elements, which increases the cost of raw materials and easily oxidizes. Have disadvantages such as being easily deteriorated, being liable to cause scattering of oxide particles, and being difficult to process because the material is hard and brittle. Therefore, when a rare earth magnet is used, there are restrictions on the grinding fluid and immersion time during processing, and in addition, an oxidation resistant coating treatment such as plating is indispensable for mounting on an optical isolator.

最近では磁石23の材料として、希土類磁石に代わりフェライト磁石を使用することが実施されている。このフェライト磁石は、BaO,SrOとFeとにより構成される酸化物磁石であり、希土類磁石と比べた場合、低い磁気特性を示す反面、原材料費が安価であること、極めて高い耐蝕性を有すること、材料の結晶粒子が小さいために加工が容易であること等の長所を有している。それ故、フェライト磁石を使用する場合には加工時に研削液や浸漬時間の制約が少なく、耐酸化被覆処理が不要となっている。
特開平10−227996号公報
Recently, as a material of the magnet 23, a ferrite magnet is used instead of a rare earth magnet. This ferrite magnet is an oxide magnet composed of BaO, SrO and Fe 2 O 3, and exhibits low magnetic properties when compared with rare earth magnets, but has low raw material costs and extremely high corrosion resistance. And having advantages such as easy processing due to the small crystal grains of the material. Therefore, when a ferrite magnet is used, there are few restrictions on the grinding fluid and immersion time during processing, and no oxidation-resistant coating treatment is required.
JP-A-10-227996

以上のように本発明によれば、上述した既存の光学素子の保持構造及びこれを用いた光アイソレータの場合、作製に際して取り付け基板の厚さ方向における全体の寸法を低背化すると共に、全体の小型化および低コスト化および高信頼性を計るために各光学素子の主面の形状を正方形にし、各光学素子の間隔を狭めて配置しているが、こうした構成であれば各光学素子を取り付け基板に対して有機接着剤を用いて接合・固定するとき、前期有機接着剤が表面張力によって本来付着してはならない前期各光学素子間に付着してしまうことがあり、結果として有機接着剤が各光学素子間の光路を塞いだ不良品となって歩留まりを劣化させてしまうという問題がある。   As described above, according to the present invention, in the case of the above-described existing optical element holding structure and an optical isolator using the same, the overall size in the thickness direction of the mounting substrate is reduced in the manufacturing process, and the entire structure is reduced. In order to achieve miniaturization, cost reduction, and high reliability, the shape of the main surface of each optical element is made square and the distance between each optical element is narrowed. In such a configuration, each optical element is attached. When bonding and fixing to the substrate using an organic adhesive, the organic adhesive may adhere between the optical elements in the previous period, which should not be attached due to surface tension. There is a problem that the yield is deteriorated due to a defective product that blocks the optical path between the optical elements.

図6は、上述した光学素子の保持構造及びこれを用いた光アイソレータの作製に際しての問題点を説明するために示した要部を抜粋した側面図である。ここでは、偏光子21及びファラデー回転子22を取り付け基板24に対して有機接着剤としてのエポキシ樹脂接着剤25を用いて固定した際、エポキシ樹脂接着剤25が表面張力によって偏光子21及びファラデー回転子22の間に付着した様子を示している。このような、有機接着剤の固着時には幾分の轢けを生じるが、有機接着剤が逃げ場無く各光学素子間で表面張力により吸い寄せられると、轢けにより図6に示されるような略U字形の形状が形成され易くなる。   FIG. 6 is a side view of an excerpt of the essential parts shown to explain the problems in manufacturing the optical element holding structure and the optical isolator using the optical element holding structure. Here, when the polarizer 21 and the Faraday rotator 22 are fixed to the mounting substrate 24 using an epoxy resin adhesive 25 as an organic adhesive, the epoxy resin adhesive 25 is rotated by the surface tension. It shows a state of being attached between the children 22. Such an organic adhesive is somewhat distorted at the time of fixing, but when the organic adhesive is sucked by surface tension between the optical elements without escape, it becomes substantially U-shaped as shown in FIG. It becomes easy to form.

又、上述した光学素子の保持構造及びこれを用いた光アイソレータの場合、基本的に各光学素子,磁石,及び取り付け基板の3点による構成部品を必要としており、特に各光学素子や磁石を配置するための取り付け基板の寸法面積に或る程度の大きさを要するめ、全体として一層の小型化を具現し難いという問題がある。   In addition, in the case of the optical element holding structure and the optical isolator using the optical element, the optical element, the magnet, and the mounting substrate basically require three components, and in particular, the optical elements and magnets are arranged. Therefore, there is a problem in that it is difficult to realize further downsizing as a whole because the dimensional area of the mounting substrate for this purpose requires a certain size.

本発明は、このような問題点に鑑みてなされたもので、その技術的課題は、各光学素子間に無機接着剤が付着すること無く歩留まり良く容易に作製でき、さらに全体における一層の小型化及び低コスト化及び高信頼性を具現し得る光学機構部品を提供することにある。   The present invention has been made in view of such problems, and its technical problem is that it can be easily manufactured with good yield without adhesion of an inorganic adhesive between the optical elements, and further downsizing of the whole is further achieved. It is another object of the present invention to provide an optical mechanism component that can realize low cost and high reliability.

上記課題を解決するために、本発明は、少なくとも一つの板状の偏光子と、少なくとも一つの板状のファラデー回転子とを並べてその両端部を一対の基板で保持する構造であって、少なくとも一方の上記基板の主面に、一つの側面に連通する断面コの字形の溝の凹部を有し、該凹部に上記偏光子、ファラデー回転子の端部を保持して接着剤で固定したことを特徴とする。   In order to solve the above problems, the present invention is a structure in which at least one plate-like polarizer and at least one plate-like Faraday rotator are arranged and held at both ends by a pair of substrates, The main surface of one of the substrates has a concave portion with a U-shaped groove communicating with one side surface, and the ends of the polarizer and the Faraday rotator are held in the concave portion and fixed with an adhesive. It is characterized by.

更に、本発明は、少なくとも一つの板状の偏光子と、少なくとも一つの板状のファラデー回転子とを並べてその両端部を一対の基板で保持する構造であって、少なくとも一方の上記基板の主面に、側面に連通しない矩形状の凹部を有し、該凹部に上記偏光子、ファラデー回転子の端部を保持して接着剤で固定したことを特徴とする。   Furthermore, the present invention is a structure in which at least one plate-like polarizer and at least one plate-like Faraday rotator are arranged side by side and held at both ends by a pair of substrates. The surface has a rectangular recess not communicating with the side, and the end of the polarizer and Faraday rotator is held in the recess and fixed with an adhesive.

また、上記溝部の深さが0.05mm〜0.28mmであることを特徴とする。   Further, the depth of the groove is 0.05 mm to 0.28 mm.

更に、上記基板は永久磁石からなることを特徴とする。   Further, the substrate is made of a permanent magnet.

また、本発明は、上記光学素子の保持構造を用いて光アイソレータを構性したことを特徴とする。   Further, the present invention is characterized in that an optical isolator is structured using the holding structure of the optical element.

以上に述べた通り、本発明の光学素子の保持構造及びこれを用いた光アイソレータによれば、既存の少なくとも一つの板状の偏光子と、少なくとも一つの板状のファラデー回転子とを並べてその両端部を取り付けるための一対の基板を対向基板として、前記各光学素子を無機接着剤を用いて、基板の凹部に保持したことによって、それぞれの各光学素子の光透過面がZ軸方向を端面として、垂直面がX軸方向を側面として基板に対して位置決めすることができる。これによって、光学素子の保持構造の作製に際して無機接着剤が過剰にあっても凹部の隔壁によって流出が阻止されるか、凹部に流れ込む構造となっているためにその影響が排除され、結果として全体における一層の小型化及び低コスト化及び高信頼性を具現し得るとともに、該各光学素子間に無機接着剤が付着すること無く歩留まり良く容易に作製できるようになる。   As described above, according to the optical element holding structure of the present invention and the optical isolator using the optical element holding structure, the existing at least one plate-shaped polarizer and at least one plate-shaped Faraday rotator are arranged side by side. By using a pair of substrates for attaching both ends as opposing substrates, and holding each optical element in a concave portion of the substrate using an inorganic adhesive, the light transmission surface of each optical element has an end surface in the Z-axis direction. As a result, the vertical surface can be positioned with respect to the substrate with the X-axis direction as the side surface. As a result, even when the inorganic adhesive is excessive when producing the holding structure of the optical element, the outflow is prevented by the partition walls of the recesses, or the influence is eliminated because the structure flows into the recesses. In addition, it is possible to realize further miniaturization, cost reduction, and high reliability, and it is possible to easily manufacture with good yield without adhesion of the inorganic adhesive between the optical elements.

以下、本発明の実施の形態を図面に基づいて説明するが、本発明はこれらに限定されるものではない。図1及び図3は、本発明の実施の形態を示す光学素子の保持構造を示す斜視図である。この光アイソレータ10は、2枚の対向する対向基板として用いられた取り付け基板3間に対して2個の偏光子1と、これらの各偏光子1間に配置される一枚のファラデー回転子2とによる総計3個の光学素子をそれぞれの光透過面がZ軸方向を端面として、垂直面AがX軸方向を側面として、該基板3の側面と各光学素子の側面と組み合わせて無機接着剤としてのハンダを用いて接合・固定して配備して成っている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. 1 and 3 are perspective views showing a holding structure for an optical element according to an embodiment of the present invention. The optical isolator 10 includes two polarizers 1 with respect to a mounting substrate 3 used as two opposing substrates, and one Faraday rotator 2 disposed between the polarizers 1. A total of three optical elements, each having a light transmission surface as the end surface in the Z-axis direction and a vertical surface A as the side surface in the X-axis direction, combined with the side surface of the substrate 3 and the side surfaces of the optical elements It is constructed by joining and fixing using solder as a.

図2及び図4に接合部分の断面を示す。図1、2に示す実施形態では、基板3の主面には、一つの側面に連通する断面コの字型の溝状の凹部4が3個形成され、各凹部4に各光学素子の端部を挿入し、ハンダ5などの接着剤を用いて固定してある。図2に示すように、上記凹部4は、幅t、t、長さH、間隔lであり、図2上での左右の側面からの距離l、下の側面との距離Hとなっている。 2 and 4 show cross sections of the joint portion. In the embodiment shown in FIGS. 1 and 2, three groove-shaped recesses 4 having a U-shaped cross section communicating with one side surface are formed on the main surface of the substrate 3, and the end of each optical element is formed in each recess 4. The part is inserted and fixed using an adhesive such as solder 5. As shown in FIG. 2, the recess 4 has widths t 1 , t 2 , length H 0 , and distance l 1 , a distance l 0 from the left and right side surfaces in FIG. 2, and a distance from the lower side surface and it has a H 1.

また他の実施形態である図3,4の例では、基板3には側面に連通しない矩形状の凹部4が形成され、各凹部4に各光学素子の端部を挿入し、ハンダ5などの接着剤を用いて固定してある。図4に示すように、上記凹部4は、幅t、t、長さH、間隔lであり、図2上での左右の側面からの距離l、上下の側面との距離Hとなっている。 In the example of FIGS. 3 and 4, which is another embodiment, the substrate 3 is formed with a rectangular recess 4 that does not communicate with the side surface. The end of each optical element is inserted into each recess 4, and solder 5 or the like is inserted. It is fixed using an adhesive. As shown in FIG. 4, the recess 4 has widths t 1 , t 2 , length H 0 , and distance l 1 , a distance l 0 from the left and right side surfaces in FIG. 2, and a distance from the upper and lower side surfaces. and it has a H 1.

いずれの実施形態においても、基板3自体はSm−Co磁石などの永久磁石から成っていることが好ましい。   In any of the embodiments, the substrate 3 itself is preferably made of a permanent magnet such as an Sm-Co magnet.

上記2個の偏光子1間には、空隙寸法lをもってファラデー回転子2が配備されることになるが、このファラデー回転子2には従来通りにGdBi系やTbBi系の磁性ガーネット厚膜が使用されている。 A Faraday rotator 2 is provided between the two polarizers 1 with a gap size l 1 , and a GdBi-based or TbBi-based magnetic garnet thick film is conventionally provided on the Faraday rotator 2. in use.

ここで、偏光子1を保持する凹部4の幅tは0.15mm〜0.25mm、ファラデー回転子2を保持する凹部4の幅tは0.3mm〜0.45mm、高さHが0.7mm〜1.1mm、Hが0.1mm〜0.5mm、凹部4の間隔l、側面との距離lは0.05mm〜0.2mmとすることが好ましい。 Here, the width t 1 of the recess 4 that holds the polarizer 1 is 0.15 mm to 0.25 mm, the width t 2 of the recess 4 that holds the Faraday rotator 2 is 0.3 mm to 0.45 mm, and the height H 0. There 0.7mm~1.1mm, H 1 is 0.1 mm to 0.5 mm, distance l 1 of the recess 4, the distance l 0 between the side surface is preferably set to 0.05 mm to 0.2 mm.

また、凹部4の深さは0.05mm〜0.28mmとすることが好ましい。この範囲とすることにより、各光学素子1,2の間にハンダ5が表面張力によって付着されることが無く、結果としてハンダ5が該各光学素子1,2間の光路を塞ぐことの無い良品となって歩留まりが向上することが好まれる。   Moreover, it is preferable that the depth of the recessed part 4 shall be 0.05 mm-0.28 mm. By setting it within this range, the solder 5 is not attached between the optical elements 1 and 2 due to surface tension, and as a result, the solder 5 does not block the optical path between the optical elements 1 and 2. It is preferred that the yield be improved.

本発明においては、従来に見られるように、平板状の金属材料またはガラス、セラミック等で形成された基板上に各光学素子と磁石が接合・固定されて無い構造であることによって全体が小型されている。   In the present invention, as seen in the prior art, the overall size is reduced by having a structure in which each optical element and magnet are not bonded and fixed on a substrate formed of a flat metal material, glass, ceramic or the like. ing.

即ち、こうした構成の場合、ハンダ5の塗布を要しての光学素子の保持構造の作製に際して、各凹部4内で各光学素子1、2の側面が取り付けられ、このときに特定の光学素子用の凹部4から隣接する凹部4との間に形成された隔壁を超えてハンダ5が流れ出ることを防止できる(ハンダ5が過剰にあっても凹部4間の隔壁によって流出が阻止される)ため、各光学素子間にハンダ5が付着されることが無く、結果としてハンダ5が各光学素子1、2間の光路を塞ぐことの無い良品となって歩留まりが向上する。   That is, in the case of such a configuration, the side surfaces of the optical elements 1 and 2 are attached in the concave portions 4 when the optical element holding structure requiring application of the solder 5 is produced. Since the solder 5 can be prevented from flowing out beyond the partition wall formed between the recess 4 and the adjacent recess 4 (even if the solder 5 is excessive, the partition wall between the recesses 4 prevents outflow). The solder 5 is not adhered between the optical elements, and as a result, the solder 5 becomes a non-defective product that does not block the optical path between the optical elements 1 and 2, and the yield is improved.

本発明の光学素子の保持構造及びこれを用いた光アイソレータの実施例として図1、2の光アイソレータ10を作成した。2個の偏光子1と1個のファラデー回転子2を互いに空隙寸法l、l、高さHとをもって、基板3のl位置にコの字形の溝部4の幅t、tと高さH0に接合した。 As an example of the optical element holding structure of the present invention and an optical isolator using the same, the optical isolator 10 shown in FIGS. Two polarizers 1 and one Faraday rotator 2 are mutually spaced with gap dimensions l 0 , l 1 and height H 1, and the widths t 1 , t of the U-shaped groove 4 at the l 0 position of the substrate 3. 2 and height H 0 were joined.

各偏光子1が1mm×1mm×t0.2mm、ファラデー回転子2が1mm×1mm×t0.4mm、基板(磁石)3が1.39mm×1.2mm×t0.6mmの寸法となっており、所定箇所に各光学素子1、2の側面がハンダ5により取り付け接合・固定するための凹部4が深さ0.25mmで形成されている。   Each polarizer 1 has a size of 1 mm × 1 mm × t 0.2 mm, a Faraday rotator 2 has a size of 1 mm × 1 mm × t 0.4 mm, and a substrate (magnet) 3 has a size of 1.39 mm × 1.2 mm × t 0.6 mm. A concave portion 4 is formed at a predetermined position at a depth of 0.25 mm for attaching, bonding, and fixing the side surfaces of the optical elements 1 and 2 with the solder 5.

各光学素子1、2の空隙寸法lが0.1mmであり、空隙寸法lが0.12mmである。各凹部4の幅tが0.25mmであり、幅tが0.45mmであり、高さHが1.025mmである。 The gap dimension l 1 of each of the optical elements 1 and 2 is 0.1 mm, and the gap dimension l 0 is 0.12 mm. The width t 1 of each recess 4 is 0.25 mm, the width t 2 is 0.45 mm, and the height H 0 is 1.025 mm.

一方、各光学素子1、2のそれぞれの両端面に対空気反射防止膜(AlO/SiO)を施した。なお、これら反射防止膜は、波長1.55μmで最適化した。 On the other hand, an anti-air reflection film (Al 2 O 3 / SiO 2 ) was applied to each end face of each optical element 1, 2 . These antireflection films were optimized at a wavelength of 1.55 μm.

次に、各光学素子1、2を基板3の表面に各コの字形の溝部4に接合・固定する工程を行った。まず基板3の各コの字形の溝部4内に金メッキを施しハンダ5付が可能になるようにした。また、基板3の各コの字形の溝部4に各光学素子1、2の側面が固定される場所に金90%、錫10%を含むハンダ5の箔(融点:280℃)を載せ、これを高周波加熱で350℃に加熱し融解した。ハンダ5の箔が融けたら高周波加熱を中止し、ハンダ5の温度が下がって行く過程で、各光学素子1、2を融解したハンダ5で各コの字形の溝部4に接合・固定し光アイソレータを完成させた。この光アイソレータの光透過方向の長さは1.10mmとすることができた。   Next, a process of bonding and fixing the optical elements 1 and 2 to the U-shaped groove 4 on the surface of the substrate 3 was performed. First, each U-shaped groove 4 of the substrate 3 was plated with gold so that the solder 5 could be attached. Further, a solder foil (melting point: 280 ° C.) containing 90% gold and 10% tin is placed on each U-shaped groove portion 4 of the substrate 3 where the side surfaces of the optical elements 1 and 2 are fixed. Was melted by heating to 350 ° C. with high frequency heating. When the foil of the solder 5 melts, the high-frequency heating is stopped, and in the process where the temperature of the solder 5 is lowered, the optical elements 1 and 2 are joined and fixed to the U-shaped grooves 4 with the solder 5 melted. Was completed. The length of this optical isolator in the light transmission direction could be 1.10 mm.

一方、比較例として図5のように用いた光アイソレータ20は、これらの各光学素子21、22、一枚の配置基準とする同一な取り付け基板24上における一方向に2枚の偏光子21の間に45°ファラデー回転子22を設け、エポキシ樹脂接着剤25で接合・固定が可能になるようにした、また、基板24にはステンレス(SUS304)製平板1.39mm×3.2mm×t0.5mmの寸法である。各光学素子21、22と磁石23は本発明の各光学素子1、2と基板3が同一のものを用いて光アイソレータ20を完成させた。   On the other hand, the optical isolator 20 used as a comparative example as shown in FIG. 5 includes these optical elements 21 and 22 and two polarizers 21 in one direction on the same mounting substrate 24 as one arrangement reference. A 45 ° Faraday rotator 22 is provided in between, and it is possible to bond and fix with an epoxy resin adhesive 25. Further, a flat plate made of stainless steel (SUS304) 1.39 mm × 3.2 mm × t0. The dimension is 5 mm. The optical isolator 20 was completed using the optical elements 21 and 22 and the magnet 23 having the same optical elements 1 and 2 and the substrate 3 of the present invention.

この光アイソレータ20の光透過方向の長さは1.22mmであったが、これは各光学素子21、22をそれぞれ個別に基板24上に固定溝部なしで接合・固定しているための寸法である。 The length of the optical isolator 20 in the light transmission direction was 1.22 mm, but this is a dimension for individually bonding and fixing the optical elements 21 and 22 on the substrate 24 without a fixing groove. is there.

本発明実施例と比較例の光アイソレータ10、20のサンプルをそれぞれ11個作製し、それらについて光学特性(順方向挿入損失、逆方向挿入損失)を測定した。光学特性の測定条件は、光波長λoを1550nm、レーザの光出力強度を0dBmまたは1mWで行った。   Eleven samples of the optical isolators 10 and 20 of the embodiment of the present invention and the comparative example were produced, and the optical characteristics (forward insertion loss and reverse insertion loss) were measured. The optical characteristics were measured under the conditions of a light wavelength λo of 1550 nm and a laser light output intensity of 0 dBm or 1 mW.

測定系には、パワーメータとしてHewlett Packard社のHP8153A光マルチメータ、固定レーザ光源モジュールとしてHP81553SMシリーズ、光パワー・センサ・モジュールとしてHP81531Aシリーズを使用して測定を行った。   For the measurement system, measurement was performed using a Hewlett Packard HP8153A optical multimeter as a power meter, a HP81553SM series as a fixed laser light source module, and a HP81531A series as an optical power sensor module.

以上の測定条件で本発明の実施例、比較例の光学デバイスの光学特性評価結果を表1にしめした。

Figure 2005181760
Table 1 shows the optical property evaluation results of the optical devices of the examples and comparative examples of the present invention under the above measurement conditions.
Figure 2005181760

これにより、本発明の実施例の11個の順方向挿入損失の平均は、0.10dBであり、逆方向挿入損失の平均は45dBであった。また、比較例の11個の順方向挿入損失の平均は、0.13dBであり、逆方向挿入損失の平均は38dBであった。したがって、本発明実施例は、比較例よりも十分に良好な光学特性を有し、それらの値も安定していることが確認できた。   Thereby, the average of 11 forward insertion losses of the Example of this invention was 0.10 dB, and the average of backward insertion loss was 45 dB. In addition, the average of 11 forward insertion losses of the comparative example was 0.13 dB, and the average of backward insertion loss was 38 dB. Therefore, it was confirmed that the examples of the present invention had sufficiently better optical characteristics than those of the comparative examples, and those values were also stable.

以上の結果から明らかな様に、偏光子及びファラデー回転子を取り付け基板に対して有機接着剤としてのエポキシ樹脂接着剤を用いて固定した際、エポキシ樹脂接着剤が表面張力によって偏光子及びファラデー回転子の間に付着した様子を示している。このような、有機接着剤の固着時には幾分の轢けを生じ、有機接着剤が逃げ場無く各光学素子間で表面張力により吸い寄せられると、轢けにより図6に示されるような略U字形の形状が形成され易くなった。その結果、光学機構部品のアイソレーション特性が著しく劣化した。   As is clear from the above results, when the polarizer and the Faraday rotator are fixed to the mounting substrate using an epoxy resin adhesive as an organic adhesive, the epoxy resin adhesive is rotated by the surface tension. It shows a state of attachment between the children. When the organic adhesive is fixed, some blurring occurs, and when the organic adhesive is sucked by the surface tension between the optical elements without escape, a substantially U-shape as shown in FIG. The shape became easier to form. As a result, the isolation characteristics of the optical mechanism parts were significantly degraded.

また、偏光子とファラデー回転子の角度ずれが顕著に表れる逆方向挿入損失の値は、実施例の結果よりもかなり悪くなっており、また光学機構部品個々の値もばらつきが大きかった。これはエポキシ樹脂接着剤で偏光子とファラデー回転子の角度調整がずれたためだと考えられる。   In addition, the value of the reverse insertion loss at which the angular deviation between the polarizer and the Faraday rotator appears remarkably worse than the result of the example, and the values of the individual optical mechanism components also vary widely. This is considered to be because the angle adjustment of the polarizer and the Faraday rotator was shifted by the epoxy resin adhesive.

また、本発明による光学機構部品では、偏光子とファラデー回転子の角度調整の精度が確保されているため、光学特性は良好でありかつ安定していることが判る。   Moreover, in the optical mechanism component according to the present invention, it is understood that the optical characteristics are good and stable because the angle adjustment accuracy of the polarizer and the Faraday rotator is ensured.

さらに、偏光子、ファラデー回転子を基板上(ステンレス(SUS304))に接合・固定して無いため、特に光透過方向での小型化が可能になった。   Furthermore, since the polarizer and the Faraday rotator are not bonded and fixed on the substrate (stainless steel (SUS304)), it is possible to reduce the size particularly in the light transmission direction.

以上により、各光学素子が取り付け基板に凹部により接合・固定して成る光学素子の保持構造の長期安定性の光学特性が実現した。   As described above, the optical characteristics of long-term stability of the holding structure of the optical element in which each optical element is bonded and fixed to the mounting substrate by the recess are realized.

本発明の光学素子の保持構造を示す斜視図である。It is a perspective view which shows the holding structure of the optical element of this invention. 本発明の光学素子の保持構造を示す断面図である。It is sectional drawing which shows the holding structure of the optical element of this invention. 本発明の他の光学素子の保持構造を示す斜視図である。It is a perspective view which shows the holding structure of the other optical element of this invention. 本発明の他の光学素子の保持構造を示す断面図である。It is sectional drawing which shows the holding structure of the other optical element of this invention. 従来の光アイソレータを示す斜視図である。It is a perspective view which shows the conventional optical isolator. 従来の光アイソレータを示す断面図である。It is sectional drawing which shows the conventional optical isolator.

符号の説明Explanation of symbols

1、21 偏光子
2、22 ファラデー回転子
3 基板
4 凹部
5 ハンダ
10、20 光アイソレータ
23 磁石
24 基板
25 エポキシ樹脂接着剤
X 側面
Z 端面
凹部と側面の距離
凹部の間隔
、t 凹部の幅
H0 基板側面から凹部までの距離
H1 凹部の長さ
DESCRIPTION OF SYMBOLS 1, 21 Polarizer 2, 22 Faraday rotator 3 Substrate 4 Recessed part 5 Solder 10, 20 Optical isolator 23 Magnet 24 Substrate 25 Epoxy resin adhesive
X side
Z End surface l 0 Distance between recess and side surface l 1 Distance between recesses t 1 , t 2 Width of recess
H 0 Distance from substrate side to recess
H 1 Recess length

Claims (5)

少なくとも一つの板状の偏光子と、少なくとも一つの板状のファラデー回転子とを並べてその両端部を一対の基板で保持する構造であって、少なくとも一方の上記基板の主面に、一つの側面に連通する断面コの字形の溝状の凹部を有し、該凹部に上記偏光子、ファラデー回転子の端部を保持して接着剤で固定したことを特徴とする光学素子の保持構造。 A structure in which at least one plate-like polarizer and at least one plate-like Faraday rotator are arranged side by side and held at both ends by a pair of substrates, and at least one main surface of the substrate has one side surface A holding structure for an optical element, which has a U-shaped groove-shaped concave portion communicating with each other, the ends of the polarizer and the Faraday rotator being held in the concave portion and fixed with an adhesive. 少なくとも一つの板状の偏光子と、少なくとも一つの板状のファラデー回転子とを並べてその両端部を一対の基板で保持する構造であって、少なくとも一方の上記基板の主面に、側面に連通しない矩形状の凹部を有し、該凹部に上記偏光子、ファラデー回転子の端部を保持して接着剤で固定したことを特徴とする光学素子の保持構造。 A structure in which at least one plate-like polarizer and at least one plate-like Faraday rotator are arranged side by side and held at both ends by a pair of substrates, and communicated with the main surface of at least one of the above-mentioned substrates on the side surface A holding structure for an optical element, which has a rectangular concave portion that is not held, and holds the end portions of the polarizer and the Faraday rotator in the concave portion and is fixed with an adhesive. 上記凹部の深さが0.05mm〜0.28mmであることを特徴とする請求項1または2記載の光学素子の保持構造。 3. The optical element holding structure according to claim 1, wherein a depth of the concave portion is 0.05 mm to 0.28 mm. 上記基板は永久磁石からなることを特徴とする請求項1〜3のいずれかに記載の光学素子の保持構造。 The optical element holding structure according to claim 1, wherein the substrate is made of a permanent magnet. 請求項1〜4のいずれかに記載の光学素子の保持構造からなる光アイソレータ。 An optical isolator comprising the optical element holding structure according to claim 1.
JP2003423725A 2003-11-27 2003-12-19 Holding structure for optical element, and optical isolator using the same Pending JP2005181760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423725A JP2005181760A (en) 2003-11-27 2003-12-19 Holding structure for optical element, and optical isolator using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003398223 2003-11-27
JP2003423725A JP2005181760A (en) 2003-11-27 2003-12-19 Holding structure for optical element, and optical isolator using the same

Publications (1)

Publication Number Publication Date
JP2005181760A true JP2005181760A (en) 2005-07-07

Family

ID=34797329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423725A Pending JP2005181760A (en) 2003-11-27 2003-12-19 Holding structure for optical element, and optical isolator using the same

Country Status (1)

Country Link
JP (1) JP2005181760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157103A (en) * 2015-01-26 2016-09-01 カール・ツァイス・エスエムティー・ゲーエムベーハー Constituent body and lithography device with constituent body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157103A (en) * 2015-01-26 2016-09-01 カール・ツァイス・エスエムティー・ゲーエムベーハー Constituent body and lithography device with constituent body
US9632421B2 (en) 2015-01-26 2017-04-25 Carl Zeiss Smt Gmbh Arrangement and lithography apparatus with arrangement

Similar Documents

Publication Publication Date Title
JP5792832B2 (en) Optical isolator
JP4600660B2 (en) Faraday rotator for high power laser
EP0757275A1 (en) Optical isolator
AU2321800A (en) Optical isolator comprising a faraday rotator
JP2005181760A (en) Holding structure for optical element, and optical isolator using the same
JP4548988B2 (en) Receptacle with optical isolator and its assembly method
JP2003255269A (en) Optical isolator
US20010036010A1 (en) Optical Isolator
JP4491530B2 (en) Optical isolator
JP4403239B2 (en) Optical isolator
JP4456223B2 (en) Optical isolator
JP2000249983A (en) Production of optical non-reciprocal device
JP4150310B2 (en) Receptacle with optical isolator
JP2004354647A (en) Fixing structure and fixing method for optical element
WO2003001276A1 (en) Optical isolator
JP3990088B2 (en) Optical isolator
JP4683916B2 (en) Optical isolator
JP4683852B2 (en) Optical isolator
JP2003222824A (en) Optical isolator
JP2538914Y2 (en) Optical isolator
JP2006267434A (en) Optical isolator and manufacturing method thereof
JP4550209B2 (en) Optical isolator
JP4666931B2 (en) Optical isolator
JP2003255137A (en) Optical component
JP2004233592A (en) Pigtail with optical isolator