JP2005181179A - Method of measuring oxygen consumption rate in membrane material - Google Patents

Method of measuring oxygen consumption rate in membrane material Download PDF

Info

Publication number
JP2005181179A
JP2005181179A JP2003424513A JP2003424513A JP2005181179A JP 2005181179 A JP2005181179 A JP 2005181179A JP 2003424513 A JP2003424513 A JP 2003424513A JP 2003424513 A JP2003424513 A JP 2003424513A JP 2005181179 A JP2005181179 A JP 2005181179A
Authority
JP
Japan
Prior art keywords
oxygen
parts
consumption rate
membrane material
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003424513A
Other languages
Japanese (ja)
Inventor
Shuji Kanayama
修二 金山
Kazumori Minami
一守 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003424513A priority Critical patent/JP2005181179A/en
Publication of JP2005181179A publication Critical patent/JP2005181179A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Photolithography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-membrane oxygen consumption rate measuring method for a membrane material, capable of measuring easily and quickly an oxygen consumption rate consumed, by imparting energy in the inorganic or organic membrane material. <P>SOLUTION: In this in-membrane oxygen consumption rate measuring method for the membrane material for measuring the oxygen consumption rate consumed in the membrane material, by imparting a means for changing an in-membrane oxygen permeation rate in the membrane material; the membrane material is bonded onto a tip of an oxygen electrode; the oxygen permeation rate is found, based on a numeral value varied, in response to oxygen amounts in the membrane material, measured by the oxygen electrode, before and after imparting the means, and the difference between the oxygen permeation rates before and after imparting the means is determined as the oxygen consumption rate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、無機膜材料、有機膜材料などの膜材料中における酸素消費速度の測定方法に関する。   The present invention relates to a method for measuring an oxygen consumption rate in a film material such as an inorganic film material or an organic film material.

例えば、感材、高分子膜中などの無機膜材料、有機膜材料中の添加剤、色材による光酸素消費挙動は、高分子の劣化、画像耐光性、ステイン解析等において重要であるが、従来において、該膜材料中での酸素収支に関する解析は、酸素消費速度が不明であるため不可能であった。微生物、植物等による土壌中、水中の酸素消費速度の測定は一般的に行われており、また、大麦などの種子が消費する酸素の消費速度を自動的に測定する酸素消費速度自動測定装置は知られている(例えば、特許文献1参照。)。しかし、前記膜材料中での酸素消費挙動を迅速かつ簡便に見積もる方法はこれまで知られていなかった。特に、膜材料中でかつエネルギーを付与した場合における酸素消費速度を解析した例はこれまで知られていない。
特開2003−4721号公報
For example, photo-oxygen consumption behavior due to light sensitive materials, inorganic film materials such as polymer films, additives in organic film materials, and color materials is important in polymer degradation, image light resistance, stain analysis, etc. Conventionally, analysis of the oxygen balance in the film material has not been possible because the oxygen consumption rate is unknown. The measurement of oxygen consumption rate in soil and water by microorganisms, plants, etc. is generally performed, and the oxygen consumption rate automatic measuring device that automatically measures the consumption rate of oxygen consumed by seeds such as barley is It is known (for example, refer to Patent Document 1). However, a method for quickly and simply estimating the oxygen consumption behavior in the film material has not been known. In particular, there has been no known example of analyzing the oxygen consumption rate in the case of applying energy in a film material.
Japanese Patent Laid-Open No. 2003-4721

本発明の課題は、無機膜材料又は有機膜材料での膜中酸素透過速度を変化せしめる手段付与によって消費される酸素の消費速度を簡便、迅速に測定することができる膜材料の酸素消費速度の測定方法を提供することにある。   An object of the present invention is to provide an oxygen consumption rate of a membrane material that can easily and quickly measure the consumption rate of oxygen consumed by providing a means for changing the oxygen transmission rate in the membrane of an inorganic film material or an organic film material. It is to provide a measurement method.

前記課題を解決するための手段は以下の通りである。
<1> 膜材料に膜中酸素透過速度を変化せしめる手段を付与することにより、該膜材料中において消費される酸素の消費速度を測定する膜材料の膜中酸素消費速度の測定方法であって、前記膜材料を酸素電極の先端に貼付し、該酸素電極により計測される、前記手段の付与前と付与後とにおける前記膜材料中の酸素量に応じて変動する数値から酸素透過速度を求め、さらに、前記手段付与前後の酸素透過速度の差を膜中酸素消費速度とすることを特徴とする膜材料の酸素消費速度の測定方法である。
Means for solving the above-mentioned problems are as follows.
<1> A method for measuring an in-film oxygen consumption rate of a film material by measuring a consumption rate of oxygen consumed in the film material by providing a means for changing the oxygen transmission rate in the film material to the film material. The membrane material is affixed to the tip of an oxygen electrode, and the oxygen permeation rate is obtained from a numerical value measured by the oxygen electrode, which varies depending on the amount of oxygen in the membrane material before and after application of the means. Furthermore, the oxygen consumption rate measurement method of the membrane material is characterized in that a difference in oxygen transmission rate before and after the provision of the means is defined as an oxygen consumption rate in the membrane.

<2> 前記酸素電極として、ポーラログラフ方式の酸素電極を用いることを特徴とする前記<1>に記載の膜材料の酸素消費速度の測定方法である。 <2> The method for measuring an oxygen consumption rate of a film material according to <1>, wherein a polarographic oxygen electrode is used as the oxygen electrode.

<3> 前記膜中酸素透過速度を変化せしめる手段が、エネルギー、外部刺激、又は添加剤であることを特徴とする前記<1>または<2>に記載の膜材料の酸素消費速度の測定方法である。 <3> The method for measuring an oxygen consumption rate of a membrane material according to <1> or <2>, wherein the means for changing the oxygen transmission rate in the membrane is energy, an external stimulus, or an additive It is.

<4> 前記膜中酸素透過速度を変化せしめる手段がエネルギーであることを特徴とする前記<3>に記載の膜材料の酸素消費速度の測定方法である。 <4> The method for measuring an oxygen consumption rate of a film material according to <3>, wherein the means for changing the oxygen transmission rate in the film is energy.

<5> 前記エネルギーとして光を用いることを特徴とする前記<4>に記載の膜材料の酸素消費速度の測定方法である。 <5> The method for measuring an oxygen consumption rate of a film material according to <4>, wherein light is used as the energy.

本発明によれば、無機膜材料又は有機膜材料での前記膜中酸素透過速度を変化せしめる手段付与によって消費される酸素の消費速度を簡便、迅速に測定することができる膜材料の酸素消費速度の測定方法を提供することができる。   According to the present invention, the oxygen consumption rate of the membrane material that can easily and quickly measure the consumption rate of oxygen consumed by providing means for changing the oxygen transmission rate in the membrane in the inorganic membrane material or the organic membrane material. Can be provided.

以下、本発明について詳述する。
本発明の膜材料の酸素消費速度の測定方法は、膜材料に前記膜中酸素透過速度を変化せしめる手段を付与することにより、該膜材料中において消費される酸素の消費速度を測定する膜材料の膜中酸素消費速度の測定方法であって、前記膜材料を酸素電極の先端に貼付し、該酸素電極により計測される、前記手段の付与前と付与後とにおける前記膜材料中の酸素量に応じて変動する数値から酸素透過速度を求め、さらに、前記手段付与前後の酸素透過速度の差を膜中酸素消費速度とすることを特徴としている。
ここで、前記「膜材料中の酸素量に応じて変動する数値」とは、酸素濃度値や、酸素電極が示す電圧などである。酸素濃度値や電圧などの数値は酸素電極により計測される。
以下、本発明の膜材料の酸素消費速度の測定方法について詳述する。
Hereinafter, the present invention will be described in detail.
The method for measuring the oxygen consumption rate of a membrane material according to the present invention provides a membrane material for measuring the consumption rate of oxygen consumed in the membrane material by providing the membrane material with means for changing the oxygen transmission rate in the membrane. A method for measuring an oxygen consumption rate in a film, wherein the amount of oxygen in the film material before and after application of the means is measured by applying the film material to the tip of an oxygen electrode and measuring with the oxygen electrode The oxygen permeation rate is obtained from a numerical value that varies according to the above, and the difference in oxygen permeation rate before and after applying the means is defined as the oxygen consumption rate in the film.
Here, the “numerical value varying according to the amount of oxygen in the film material” refers to an oxygen concentration value, a voltage indicated by the oxygen electrode, and the like. Numerical values such as oxygen concentration value and voltage are measured by an oxygen electrode.
Hereinafter, a method for measuring the oxygen consumption rate of the film material of the present invention will be described in detail.

まず、本発明の膜材料の酸素消費速度の測定方法におけるプロセスの一例について図面を参照して説明する。図1は、膜材料10を貼付した酸素電極12を示す概念図である。図1においては膜材料10と酸素電極12の寸法は誇張して描いており、実際の寸法比に対応していない。酸素電極12はポーラログラフ方式の酸素電極であり、内部に電極隔膜12aが配設されるとともに、不図示の電圧を印加する電源装置や、酸素濃度値などをモニターする表示装置(記録計)などに接続されている。図1に示す状態で、膜材料10中の酸素量に比例する電流(電圧)に基づいた酸素濃度値が表示装置に表示される。なお、図1において、最も太い矢線は、膜材料10に対する酸素の透過を示している。   First, an example of the process in the method for measuring the oxygen consumption rate of the film material of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing an oxygen electrode 12 to which a membrane material 10 is attached. In FIG. 1, the dimensions of the membrane material 10 and the oxygen electrode 12 are exaggerated and do not correspond to the actual dimension ratio. The oxygen electrode 12 is a polarographic oxygen electrode, and an electrode diaphragm 12a is disposed therein. The oxygen electrode 12 is used in a power supply device that applies a voltage (not shown), a display device (recorder) that monitors an oxygen concentration value, and the like. It is connected. In the state shown in FIG. 1, an oxygen concentration value based on a current (voltage) proportional to the amount of oxygen in the film material 10 is displayed on the display device. In FIG. 1, the thickest arrow line indicates the permeation of oxygen to the membrane material 10.

膜材料の酸素消費速度を測定する前に、膜材料中の酸素濃度値から膜材料の酸素透過速度に換算するため、酸素濃度値に対する酸素透過速度が既知の膜サンプルを用意する。この膜サンプルの酸素濃度値に対する酸素透過速度に基づき、後述する酸素電極が示す酸素濃度値から、測定しようとする膜材料の酸素透過速度を一意的に求めることができる。この膜サンプルの酸素濃度値と酸素透過速度との関係は、予め、関数としておいても、検量線として作成しておいてもよく、いずれの場合であっても、酸素濃度値から酸素透過速度が瞬時に求められるようにすることが好ましい。   Before measuring the oxygen consumption rate of the membrane material, in order to convert the oxygen concentration value in the membrane material into the oxygen transmission rate of the membrane material, a membrane sample having a known oxygen transmission rate with respect to the oxygen concentration value is prepared. Based on the oxygen transmission rate with respect to the oxygen concentration value of the membrane sample, the oxygen transmission rate of the membrane material to be measured can be uniquely determined from the oxygen concentration value indicated by the oxygen electrode described later. The relationship between the oxygen concentration value and the oxygen transmission rate of the membrane sample may be previously set as a function or a calibration curve. In any case, the oxygen transmission rate is calculated from the oxygen concentration value. Is preferably obtained instantaneously.

次いで、図2に示すダイアグラムを参照して本発明における酸素消費速度の測定プロセスについて好ましい態様であるエネルギー付与を用いた例で説明する。なお、以下の(1)〜(9)は、図2における(1)〜(9)のステップに対応している。
(1)酸素電極先端への膜材料貼付
図1に示すように、酸素消費速度を測定しようとする膜材料10を、シリコングリスなどを介して酸素電極12の先端に貼付する。
(2)酸素濃度が定常状態に達するまで待機
酸素電極12に膜材料10を貼付した状態で、酸素電極12に接続された酸素濃度値などを表示する表示装置(不図示)により酸素濃度値をモニターし、膜材料10中の酸素濃度が一定(経時変化しない)となる定常状態に達するまで待機する。
(3)酸素濃度が定常状態になるのを確認
酸素濃度値が定常状態となるのを確認し、そのときの酸素濃度値を前記表示装置によって計測する。
Next, with reference to the diagram shown in FIG. 2, the measurement process of the oxygen consumption rate in the present invention will be described with an example using energy application, which is a preferred embodiment. The following (1) to (9) correspond to the steps (1) to (9) in FIG.
(1) Affixing the membrane material to the tip of the oxygen electrode As shown in FIG. 1, the membrane material 10 whose oxygen consumption rate is to be measured is affixed to the tip of the oxygen electrode 12 via silicon grease or the like.
(2) Wait until the oxygen concentration reaches a steady state With the membrane material 10 applied to the oxygen electrode 12, the oxygen concentration value is displayed by a display device (not shown) that displays the oxygen concentration value connected to the oxygen electrode 12. Monitor and wait until a steady state is reached where the oxygen concentration in the membrane material 10 is constant (does not change over time).
(3) Confirmation that oxygen concentration is in steady state It is confirmed that the oxygen concentration value is in a steady state, and the oxygen concentration value at that time is measured by the display device.

(4)定常状態における酸素濃度値から酸素透過速度(A)に換算
定常状態における膜材料10の酸素濃度値を、前述の膜サンプルに基づき酸素透過速度に換算する。具体的には、計測した酸素濃度値と膜サンプルの酸素濃度値とが同じとなる膜サンプルの酸素濃度値に対する膜サンプルの酸素透過速度を、膜材料10の酸素透過速度とする。そして、このようにして換算した値を酸素透過速度(A)(エネルギー付与前の酸素透過速度)とする。
(5)エネルギー付与開始
定常状態において、膜材料10の酸素電極に貼付された側とは反対側から、光(エネルギー)(図1において3本の矢線で示す。)を照射(付与)する。すると、付与したエネルギー(光)により膜材料10中に含まれる酸素を消費する物質により酸素が消費され、酸素電極12に到達する酸素が減少、すなわち膜材料10の酸素透過速度が低下する。
(6)酸素濃度が定常状態に達するまで待機
さらに、エネルギーの付与を継続するとともに、酸素濃度値のモニターを継続し、膜材料10の酸素濃度値が定常状態に達するまで待機する。
(4) Conversion from the oxygen concentration value in the steady state to the oxygen transmission rate (A) The oxygen concentration value of the membrane material 10 in the steady state is converted into the oxygen transmission rate based on the above-described membrane sample. Specifically, the oxygen transmission rate of the membrane material with respect to the oxygen concentration value of the membrane sample in which the measured oxygen concentration value and the oxygen concentration value of the membrane sample are the same is defined as the oxygen transmission rate of the membrane material 10. The value thus converted is defined as oxygen transmission rate (A) (oxygen transmission rate before energy application).
(5) Start of energy application In a steady state, light (energy) (indicated by three arrows in FIG. 1) is irradiated (applied) from the side opposite to the side of the membrane material 10 attached to the oxygen electrode. . Then, oxygen is consumed by the substance that consumes oxygen contained in the film material 10 by the applied energy (light), and oxygen reaching the oxygen electrode 12 decreases, that is, the oxygen transmission rate of the film material 10 decreases.
(6) Wait until the oxygen concentration reaches a steady state Further, while continuing to give energy, the oxygen concentration value is continuously monitored, and waits until the oxygen concentration value of the film material 10 reaches the steady state.

(7)酸素濃度が定常状態になるのを確認
酸素濃度値が定常状態となるのを確認し、そのときの酸素濃度値を前記表示装置のよって計測する。
(8)定常状態における酸素濃度値から酸素透過速度(B)に換算
定常状態において計測した酸素濃度値を、前記(4)のステップと同様にして、前述の膜サンプルに基づきエネルギー付与後における酸素透過速度に換算する。そして、このようにして換算した値を酸素透過速度(B)(エネルギー付与後の酸素透過速度)とする。
(9)エネルギー付与前後の酸素透過速度の差(A−B)の計算値を膜中酸素消費速度とする
前記(4)のステップにおいて算出したエネルギー付与前の膜材料の酸素透過速度(A)から、前記(8)のステップにおいて算出したエネルギー付与後の膜材料の酸素透過速度(B)を引き、その計算値を膜中酸素消費速度とする。
(7) Confirm that the oxygen concentration is in a steady state Confirm that the oxygen concentration value is in a steady state, and measure the oxygen concentration value at that time using the display device.
(8) Conversion from the oxygen concentration value in the steady state to the oxygen transmission rate (B) The oxygen concentration value measured in the steady state is the oxygen after energy application based on the above-mentioned film sample in the same manner as in the step (4). Convert to transmission speed. And the value converted in this way is defined as oxygen transmission rate (B) (oxygen transmission rate after energy application).
(9) The calculated value of the difference in oxygen permeation rate before and after energy application (AB) is the oxygen consumption rate in the film. The oxygen permeation rate of the membrane material before energy application calculated in step (4) (A) Then, the oxygen transmission rate (B) of the membrane material after energy application calculated in the step (8) is subtracted, and the calculated value is used as the oxygen consumption rate in the membrane.

以上は、酸素電極に接続した表示装置に表示された酸素濃度値を計測し、該酸素濃度値を酸素透過速度に換算して酸素消費速度を求める手法を示したが、例えば、酸素電極の出力電圧からも一意的に膜材料中の酸素量を知ることができるため、該出力電圧から酸素透過速度を求め、その酸素透過速度から酸素消費速度を求めてもよい。   The above is a method for measuring the oxygen concentration value displayed on the display device connected to the oxygen electrode, and converting the oxygen concentration value into the oxygen transmission rate to obtain the oxygen consumption rate. Since the amount of oxygen in the membrane material can be uniquely known from the voltage, the oxygen transmission rate may be obtained from the output voltage, and the oxygen consumption rate may be obtained from the oxygen transmission rate.

エネルギー付与前の酸素透過速度とは、前述のように、酸素電極に膜材料を貼付した後、該膜材料の酸素透過速度が定常状態に達したときの酸素透過速度であり、エネルギー付与後の酸素透過速度とはエネルギーを付与し続けて定常状態に達したときの酸素透過速度である。ここで、前記定常状態とは、酸素透過速度が必ずしも一定であることを意味するのではなく、一定の変化率をもって低下している状態をも含むものとする。   As described above, the oxygen transmission rate before energy application is the oxygen transmission rate when the oxygen transmission rate of the film material reaches a steady state after the membrane material is attached to the oxygen electrode. The oxygen transmission rate is the oxygen transmission rate when a steady state is reached by continuously applying energy. Here, the steady state does not mean that the oxygen permeation rate is necessarily constant, but also includes a state where the oxygen permeation rate decreases at a constant rate of change.

酸素電極に膜材料が貼付された状態における酸素透過速度と酸素消費速度とについて考察する。膜材料の酸素透過速度は、図3に示すように、時間の経過に伴い低下し、一定時間経過すると定常状態となる。いま、膜材料に光を照射すると(図3中on)、膜材料中で酸素が消費され酸素透過速度が低下する。図3の定常状態における酸素透過速度とエネルギー付与時における酸素透過速度との差が酸素消費速度(単位時間当たりの酸素消費量)である。   The oxygen permeation rate and oxygen consumption rate in the state where the membrane material is attached to the oxygen electrode will be considered. As shown in FIG. 3, the oxygen permeation rate of the membrane material decreases with the passage of time, and reaches a steady state after a certain period of time. Now, when the film material is irradiated with light (on in FIG. 3), oxygen is consumed in the film material and the oxygen transmission rate decreases. The difference between the oxygen transmission rate in the steady state of FIG. 3 and the oxygen transmission rate at the time of energy application is the oxygen consumption rate (oxygen consumption per unit time).

図4は、膜材料として感熱記録材料のシアン層(層厚:8.0μm)を用い、該シアン層に5000luxの照度の光を照射した場合における酸素透過速度(cm3/m2・day)の経時的変化を示している。定常状態では、酸素透過速度は、一定の傾き(変化率)で低下しているが、光の照射を開始すると(図4においてON)急激に低下し、一定時間経過後定常状態となり、光の照射を中止すると(図4においてOFF)再び上昇し定常状態となる。光照射前の酸素透過速度と光照射後の酸素透過速度との差(図4においてd)が酸素消費速度である。 FIG. 4 shows the oxygen transmission rate (cm 3 / m 2 · day) when a cyan layer (layer thickness: 8.0 μm) of a thermosensitive recording material is used as a film material and the cyan layer is irradiated with light having an illuminance of 5000 lux. The change with time is shown. In the steady state, the oxygen transmission rate decreases at a constant slope (rate of change). However, when light irradiation is started (ON in FIG. 4), the oxygen transmission rate rapidly decreases and becomes a steady state after a certain period of time. When the irradiation is stopped (OFF in FIG. 4), it rises again and becomes a steady state. The difference between the oxygen transmission rate before light irradiation and the oxygen transmission rate after light irradiation (d in FIG. 4) is the oxygen consumption rate.

以下、本発明の酸素消費速度の測定方法における各構成要素について詳述する。   Hereinafter, each component in the measuring method of the oxygen consumption rate of this invention is explained in full detail.

[膜材料]
本発明において、酸素消費速度を測定可能な膜材料としては、例えば、感熱記録材料の感熱記録層、写真用感材、レジスト材料、包装材料などが挙げられ、単層でも多層でもよい。本発明は、特に、酸素を消費する物質が含有している膜材料が特に有効である。
膜材料の厚みとしては、例えば、1〜20μmの範囲内とすることができる。
[Membrane material]
In the present invention, examples of the film material capable of measuring the oxygen consumption rate include a heat-sensitive recording layer of a heat-sensitive recording material, a photographic light-sensitive material, a resist material, and a packaging material, and may be a single layer or a multilayer. The present invention is particularly effective for a film material containing a substance that consumes oxygen.
As thickness of film | membrane material, it can be set within the range of 1-20 micrometers, for example.

[酸素電極]
酸素電極としては、大別して、ポーラログラフ方式及び空気電池方式が挙げられ、前者は外部から電圧を印加し酸化還元反応を行わせ、そのとき流れる酸素濃度に比例する電流(電圧)を測定するタイプであり、後者は外部から電圧を印加せず、酸素量に対応して流れる電流を測定するタイプである。本発明においては、特に、ポーラログラフ方式の酸素電極が好ましい。
また、酸素電極内部に配設される電極隔膜としては、応答速度が速く、感度が高いものを用いることが好ましい。
[Oxygen electrode]
The oxygen electrode can be broadly classified into a polarographic system and an air battery system. The former is a type in which a voltage is applied from the outside to cause an oxidation-reduction reaction, and a current (voltage) proportional to the oxygen concentration flowing at that time is measured. The latter is a type that measures the current flowing in accordance with the amount of oxygen without applying a voltage from the outside. In the present invention, a polarographic oxygen electrode is particularly preferable.
Moreover, it is preferable to use an electrode diaphragm disposed inside the oxygen electrode that has a high response speed and high sensitivity.

[酸素透過速度を変化せしめる手段]
本発明において、酸素透過速度を変化せしめる手段としては、光などのエネルギー付与、pHや湿度などの外部刺激付与、酸素吸収剤や好気性菌などの添加剤含有などが挙げられる。好ましくはエネルギーである。
本発明において、酸素電極に貼付した膜材料に付与するエネルギーしては、例えば、電磁波、すなわち熱線・可視光線・紫外線・X線などの輻射線、熱などが挙げられる。このようなエネルギーを出力する機器としては、具体的には、蛍光灯、紫外線照射ランプ、超音波発生器、レーザー光源、X線源等が挙げられる。特に、本発明においては、エネルギーとしては光が有効である。
本発明においては、任意の膜材料のエネルギー付与下における酸素消費速度を測定するのであるから、付与するエネルギーについては特に限定はなく、測定しようとする膜材料に対して任意にエネルギーを選択して膜材料に付与すればよい。ただし、付与することにより、酸素の消費が促進されるエネルギーが好ましい。
また、エネルギーとして熱を付与する場合、熱により膜材料の酸素透過速度が変化する場合がある。この場合、酸素を消費する物質を添加しない膜の熱による酸素透過速度変化を事前に調べておく必要がある。
[Means for changing oxygen transmission rate]
In the present invention, examples of means for changing the oxygen transmission rate include application of energy such as light, application of external stimuli such as pH and humidity, and inclusion of additives such as oxygen absorbers and aerobic bacteria. Preferably it is energy.
In the present invention, examples of the energy applied to the film material attached to the oxygen electrode include electromagnetic waves, that is, radiation rays such as heat rays, visible rays, ultraviolet rays, and X-rays, and heat. Specific examples of devices that output such energy include fluorescent lamps, ultraviolet irradiation lamps, ultrasonic generators, laser light sources, and X-ray sources. In particular, in the present invention, light is effective as energy.
In the present invention, since the oxygen consumption rate under the energy application of an arbitrary film material is measured, the energy to be applied is not particularly limited, and the energy is arbitrarily selected for the film material to be measured. What is necessary is just to provide to film | membrane material. However, the energy which promotes consumption of oxygen by giving is preferable.
In addition, when heat is applied as energy, the oxygen transmission rate of the film material may change due to heat. In this case, it is necessary to examine in advance the oxygen permeation rate change due to the heat of the film to which no oxygen consuming substance is added.

以上の本発明の膜材料の酸素消費速度の測定方法は、例えば、包装材料などのフィルムに用いる、酸素による劣化を防止する劣化防止剤の消費速度の測定に適用することができる。または、塗膜中おける色材などの分解速度測定にも適用することができる。   The above method for measuring the oxygen consumption rate of the membrane material of the present invention can be applied to the measurement of the consumption rate of a deterioration inhibitor that prevents deterioration due to oxygen, for example, used for a film such as a packaging material. Or it can apply also to the decomposition rate measurement of the coloring material etc. in a coating film.

以上、説明したように、本発明においては、膜材料中の酸素消費速度の測定を、複雑な測定装置などを用いることなく、汎用的な酸素電極を用いるため、簡便、迅速に酸素消費速度の測定を実行することができる。   As described above, in the present invention, the measurement of the oxygen consumption rate in the film material uses a general-purpose oxygen electrode without using a complicated measuring apparatus, so that the oxygen consumption rate can be adjusted easily and quickly. Measurements can be performed.

以下、実施例により本発明の膜材料の酸素消費速度の測定方法について具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、下記実施例中「部」は、特に限定のない限り「質量部」を意味し、「%」は特に限定のない限り「質量%」を意味する。   Hereinafter, although the measuring method of the oxygen consumption rate of the film | membrane material of this invention is concretely demonstrated by an Example, this invention is not limited to a following example. In the examples below, “part” means “part by mass” unless otherwise specified, and “%” means “% by mass” unless otherwise specified.

[実施例1]
<膜材料の作製>
まず、酸素消費速度の測定に用いる膜材料として、シアンに発色する感熱記録材料Aを作製した。以下に感熱記録材料Aの作製方法を示す。
[Example 1]
<Production of membrane material>
First, as a film material used for measuring the oxygen consumption rate, a heat-sensitive recording material A that develops cyan was produced. A method for producing the thermosensitive recording material A will be described below.

−感熱記録層用塗布液の調製−
(フタル化ゼラチン溶液の調製)
フタル化ゼラチン(商品名;MGPゼラチン,ニッピコラーゲン(株)製)32部、1,2−ベンゾチアゾリン−3−オン(3.5%メタノール溶液,大東化学工業所(株)製)0.9143部、イオン交換水367.1部を混合し、40℃にて溶解し、フタル化ゼラチン水溶液を得た。
(アルカリ処理ゼラチン溶液の調製)
アルカリ処理低イオンゼラチン(商品名;#750ゼラチン,新田ゼラチン (株)製)25.5部、1,2−ベンゾチアゾリン−3−オン(3.5%メタノール溶液,大東化学工業所(株)製)0.7286部、水酸化カルシウム0.153部、イオン交換水143.6部を混合し、50℃にて溶解し、アルカリ処理ゼラチン溶液を得た。
-Preparation of coating solution for thermosensitive recording layer-
(Preparation of phthalated gelatin solution)
Phthalated gelatin (trade name: MGP gelatin, manufactured by Nippi Collagen Co., Ltd.) 32 parts, 1,2-benzothiazolin-3-one (3.5% methanol solution, manufactured by Daito Chemical Industry Co., Ltd.) 0.9143 Part and 367.1 parts of ion-exchanged water were mixed and dissolved at 40 ° C. to obtain a phthalated gelatin aqueous solution.
(Preparation of alkali-treated gelatin solution)
25.5 parts of alkali-treated low ion gelatin (trade name; # 750 gelatin, manufactured by Nitta Gelatin Co., Ltd.), 1,2-benzothiazolin-3-one (3.5% methanol solution, Daito Chemical Industry Co., Ltd.) )) 0.7286 parts, calcium hydroxide 0.153 parts, and ion-exchanged water 143.6 parts were mixed and dissolved at 50 ° C. to obtain an alkali-treated gelatin solution.

(電子供与性染料前駆体内包マイクロカプセル液(c)の調製)
酢酸エチル18.1部に、下記電子供与性染料(H)7.6部、1−メチルプロピルフェニル−フェニルメタンおよび1−(1−メチルプロピルフェニル)−2−フェニルエタンの混合物(商品名;ハイゾールSAS−310,新日本石油化学(株)製)8.0部、下記化合物(I)(商品名;Irgaperm2140 チバガイギー(株)製)8.0部を添加し、加熱して、均一に溶解した。前記混合液にカプセル壁材としてキシリレンジイソシアネート/トリメチロールプロパン付加物(商品名;タケネートD110N(75%酢酸エチル溶液),三井武田ケミカル(株)製)7.2部とポリメチレンポリフェニルポリイソシアネート(商品名;ミリオネートMR−200,日本ポリウレタン工業(株)製)5.3部とを添加し、均一に攪拌し混合液(IX)を得た。
(Preparation of electron-donating dye precursor-encapsulated microcapsule solution (c))
A mixture of 7.6 parts of the following electron donating dye (H), 1-methylpropylphenyl-phenylmethane and 1- (1-methylpropylphenyl) -2-phenylethane (trade name; Hysol SAS-310 (manufactured by Shin Nippon Petrochemical Co., Ltd.) 8.0 parts, 8.0 parts of the following compound (I) (trade name; Irgaperm 2140 Ciba Geigy Co., Ltd.) was added, heated and dissolved uniformly. did. 7.2 parts of xylylene diisocyanate / trimethylolpropane adduct (trade name; Takenate D110N (75% ethyl acetate solution), manufactured by Mitsui Takeda Chemical Co., Ltd.) as a capsule wall material and polymethylene polyphenyl polyisocyanate (Product name: Millionate MR-200, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 5.3 parts thereof were added and stirred uniformly to obtain a liquid mixture (IX).

Figure 2005181179
Figure 2005181179

別途、前記フタル化ゼラチン水溶液28.8部にイオン交換水9.5部、Scraph AG−8(50%;日本精化(株)製)0.17部およびドデシルベンゼンスルフォン酸ナトリウム(10%水溶液)4.3部を添加混合し、混合液(X)を得た。
混合液(X)に混合液(IX)を添加し、ホモジナイザー(日本精機製作所(株)製)を用いて40℃の下で乳化分散した。得られた乳化液に水50部、テトラエチレンペンタミン0.12部を加え均一化し、65℃下で攪拌し酢酸エチルを除去しながら3時間カプセル化反応を行いカプセル液の固形分濃度が33%になるように濃度調節しマイクロカプセル液を得た。得られたマイクロカプセルの粒径は粒径測定(LA−700,堀場製作所(株)製で測定)の結果、メジアン径で1.00μmであった。
更に前記マイクロカプセル液100部に対して、ドデシルベンゼンスルフォン酸ナトリウム25%水溶液(商品名;ネオペレックスF−25、花王(株)製)3.7部と4,4’−ビストリアジニルアミノスチルベン−2,2’−ジスルフォン誘導体を含む蛍光増白剤(商品名;Kaycoll BXNL、日本曹達(株)製)4.2部を添加して均一に撹拌してマイクロカプセル分散液(c)を得た。
Separately, 28.8 parts of the above aqueous phthalated gelatin solution, 9.5 parts of ion-exchanged water, 0.17 part of Scraph AG-8 (50%; manufactured by Nippon Seika Co., Ltd.) and sodium dodecylbenzenesulfonate (10% aqueous solution) ) 4.3 parts were added and mixed to obtain a mixed solution (X).
The mixed solution (IX) was added to the mixed solution (X), and the mixture was emulsified and dispersed at 40 ° C. using a homogenizer (manufactured by Nippon Seiki Seisakusho). To the obtained emulsion, 50 parts of water and 0.12 part of tetraethylenepentamine are homogenized, and the mixture is stirred at 65 ° C. for 3 hours while removing ethyl acetate, so that the solid content concentration of the capsule liquid is 33. The microcapsule solution was obtained by adjusting the concentration so that the concentration became%. The obtained microcapsules had a median diameter of 1.00 μm as a result of particle size measurement (LA-700, measured by Horiba, Ltd.).
Furthermore, with respect to 100 parts of the microcapsule solution, 3.7 parts of sodium dodecylbenzenesulfonate 25% aqueous solution (trade name: Neoperex F-25, manufactured by Kao Corporation) and 4,4′-bistriazinylaminostilbene A fluorescent whitening agent (trade name: Kaycoll BXNL, manufactured by Nippon Soda Co., Ltd.) containing -2,2'-disulfone derivative was added and stirred uniformly to obtain a microcapsule dispersion (c). It was.

(電子受容性化合物分散液(c)の調製)
前記フタル化ゼラチン水溶液11.3部にイオン交換水30.1部、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール(商品名;ビスフェノールP、三井石油化学(株)製)15部、2%−2−エチルヘキシルコハク酸ナトリウム水溶液3.8部を加えて、ボールミルにて一晩分散し、分散液を得た。この分散液の、固形分濃度は26.6%であった。
前記分散液100部に、前記アルカリ処理ゼラチン水溶液45.2部を加えて、30分攪拌した後、分散液の固形分濃度が23.5%となるようにイオン交換水を加えて電子受容性化合物分散液(c)を得た。
(Preparation of electron-accepting compound dispersion (c))
11.3 parts of the phthalated gelatin aqueous solution, 30.1 parts of ion-exchanged water, 15 parts of 4,4 ′-(p-phenylenediisopropylidene) diphenol (trade name; bisphenol P, manufactured by Mitsui Petrochemical Co., Ltd.) 3.8 parts of 2% -2-ethylhexyl sodium succinate aqueous solution was added and dispersed overnight with a ball mill to obtain a dispersion. The solid content concentration of this dispersion was 26.6%.
After adding 45.2 parts of the alkali-treated gelatin aqueous solution to 100 parts of the dispersion and stirring for 30 minutes, ion-exchanged water was added so that the solids concentration of the dispersion was 23.5%. A compound dispersion (c) was obtained.

(感熱記録層用塗布液の調製)
前記電子供与性染料前駆体内包マイクロカプセル液(c)および前記電子受容性化合物分散液(c)を、電子受容性化合物/電子供与性染料前駆体の質量比が10/1になるように混合し、感熱記録層用塗布液を得た。
(Preparation of coating solution for thermosensitive recording layer)
The electron-donating dye precursor-encapsulated microcapsule liquid (c) and the electron-accepting compound dispersion liquid (c) are mixed so that the mass ratio of the electron-accepting compound / electron-donating dye precursor is 10/1. Thus, a thermal recording layer coating solution was obtained.

<膜材料の作製>
前記シアン層塗布液をポリエチレンベースに塗布乾燥して、剥離し膜材料とした。膜材料の厚みは5〜20μmの範囲のものを使用した。測定温湿度は25℃50%RHで行った。
<Production of membrane material>
The cyan layer coating solution was applied to a polyethylene base and dried, and peeled to obtain a film material. A film material having a thickness in the range of 5 to 20 μm was used. The measurement temperature and humidity were 25 ° C. and 50% RH.

<測定準備>
酸素電極として、オービスフェアラボラトリーズジャパンインク製model3600を使用した。電極隔膜としては、最も応答速度が速く感度が高いポリフルオロアルコキシ(PFA)2956Aを使用した。電極隔膜にシリコーングリス(SH111、東レ・ダウコーニング・シリコーン(株)製)を薄く塗布し、その上に前記膜材料を貼付した。なお、シリコングリスの塗布膜は、酸素透過速度、消費速度に影響を与えないことが確認されている。
<Measurement preparation>
As an oxygen electrode, model 3600 manufactured by Orbis Fair Laboratories Japan Inc. was used. As the electrode diaphragm, polyfluoroalkoxy (PFA) 2956A having the fastest response speed and high sensitivity was used. Silicone grease (SH111, manufactured by Toray Dow Corning Silicone Co., Ltd.) was thinly applied to the electrode diaphragm, and the film material was adhered thereon. It has been confirmed that the coating film of silicon grease does not affect the oxygen transmission rate and the consumption rate.

<データ処理方法>
酸素濃度値に対する酸素透過速度が既知の膜サンプル(ポリエチレンテレフタレート)により、電極が示す酸素濃度値を、酸素透過速度(cm3/m2・day)に換算した。
<Data processing method>
An oxygen concentration value indicated by the electrode was converted into an oxygen transmission rate (cm 3 / m 2 · day) using a membrane sample (polyethylene terephthalate) having a known oxygen transmission rate relative to the oxygen concentration value.

<測定>
酸素消費速度の測定を図2に示すダイアグラムに従って実施した。
酸素電極先端に膜材料を貼付し(ステップ(1))、計測される酸素濃度が定常状態に達するまで待機した(ステップ(2))。酸素濃度が定常状態になるのを確認し(ステップ(3))、この定常状態における酸素濃度値を、前記データ処理方法に基づいて酸素透過速度に換算した(ステップ(4))。この酸素透過速度をエネルギー付与(蛍光灯照射)前の酸素透過速度(A)とした。その後、酸素電極に貼付した膜サンプルに蛍光灯にて光照射(エネルギー付与)を開始した(ステップ(5))。照度範囲は0〜15000luxとした。照射による温度上昇に起因する誤差を防ぐ目的で、酸素電極の空冷を行うとともに、酸素電極温度のモニターも併せて行った。光照射後、酸素濃度が定常状態に達するまで待機した(ステップ(6))。酸素濃度が定常状態になるのを確認し(ステップ(7))、この定常状態における酸素濃度値を、前記データ処理方法に基づいて酸素透過速度に換算した(ステップ(8))。この酸素透過速度をエネルギー付与(蛍光灯照射)後の酸素透過速度(B)とした。次いで、蛍光灯照射を停止し、酸素濃度値が元に戻っていることを確認した。最後に、酸素透過速度(A)から酸素透過速度(B)を減じ、膜中酸素消費速度を求めた(ステップ(9))。図5に、照射した光の照度光量に対する酸素消費速度をグラフで示す。
<Measurement>
Measurement of the oxygen consumption rate was carried out according to the diagram shown in FIG.
A membrane material was affixed to the tip of the oxygen electrode (step (1)) and waited until the measured oxygen concentration reached a steady state (step (2)). It was confirmed that the oxygen concentration reached a steady state (step (3)), and the oxygen concentration value in the steady state was converted to an oxygen transmission rate based on the data processing method (step (4)). This oxygen transmission rate was defined as the oxygen transmission rate (A) before energy application (fluorescent lamp irradiation). Thereafter, light irradiation (energy application) was started on the membrane sample attached to the oxygen electrode with a fluorescent lamp (step (5)). The illuminance range was 0 to 15000 lux. In order to prevent errors due to temperature rise due to irradiation, the oxygen electrode was air-cooled and the oxygen electrode temperature was also monitored. After light irradiation, it waited until the oxygen concentration reached a steady state (step (6)). It was confirmed that the oxygen concentration reached a steady state (step (7)), and the oxygen concentration value in the steady state was converted to an oxygen transmission rate based on the data processing method (step (8)). This oxygen transmission rate was defined as the oxygen transmission rate (B) after energy application (fluorescence lamp irradiation). Subsequently, the fluorescent lamp irradiation was stopped, and it was confirmed that the oxygen concentration value was restored. Finally, the oxygen transmission rate (B) was subtracted from the oxygen transmission rate (A) to determine the oxygen consumption rate in the film (step (9)). In FIG. 5, the oxygen consumption rate with respect to the illumination light quantity of the irradiated light is shown with a graph.

以上の酸素消費速度の測定方法の主要ステップを具体的数値で示す。まず、被測定膜の貼付前における酸素電極は、空気中の酸素濃度値21%前後を示した。膜材料貼付により酸素濃度値は6180ppmまで低下し、定常状態となった。検量線によりこの値は透過量76.0cm3/m2・dayに相当する。この状態で5000luxの蛍光灯光照射したら、酸素濃度値は41ppm低下し、6139ppmで定常状態となった。同様に、検量線により、この値は75.5cm3/m2・dayに相当する。よって、光照射有無での差0.5cm3/m2・dayが酸素消費速度である。 The main steps of the above method for measuring the oxygen consumption rate are shown by specific numerical values. First, the oxygen electrode before application of the film to be measured exhibited an oxygen concentration value in air of around 21%. By attaching the membrane material, the oxygen concentration value decreased to 6180 ppm and became a steady state. According to the calibration curve, this value corresponds to a transmission amount of 76.0 cm 3 / m 2 · day. When 5,000 lux fluorescent light was irradiated in this state, the oxygen concentration value decreased by 41 ppm and reached a steady state at 6139 ppm. Similarly, this value corresponds to 75.5 cm 3 / m 2 · day according to the calibration curve. Therefore, a difference of 0.5 cm 3 / m 2 · day with or without light irradiation is the oxygen consumption rate.

[実施例2]
実施例1で作製した膜材料と同様にして膜材料を作製し、該膜材料に160℃の熱スタンプにより1〜10秒まで時間を変え、加熱することにより、種々の発色濃度の印画部を有する膜材料を作製した。そして、印画部の発色濃度(O.D.)をマクベス濃度計により測定した。この膜材料の各発色濃度と、厚み80μm、蛍光灯5000luxでの酸素消費速度との関係を図6においてグラフで示す。図6より、印画後の膜材料の発色部の発色濃度が高くなるにつれ酸素消費速度が低下することが分かる。
[Example 2]
A film material was produced in the same manner as the film material produced in Example 1, and the film material was changed to a time of 1 to 10 seconds with a heat stamp at 160 ° C. The film | membrane material which has was produced. Then, the color density (OD) of the printed portion was measured with a Macbeth densitometer. FIG. 6 is a graph showing the relationship between the color density of this film material and the oxygen consumption rate at a thickness of 80 μm and a fluorescent lamp 5000 lux. FIG. 6 shows that the oxygen consumption rate decreases as the color density of the color development portion of the film material after printing increases.

[実施例3]
<膜材料の作製>
本実施例では、ベース上に、マゼンタ層、中間層、イエロー層、中間層、光透過率調整層、保護層、を積層した感熱記録材料Bを膜材料とした。先ず、各層用の塗布液の調製について以下に示す。
[Example 3]
<Production of membrane material>
In this embodiment, the heat-sensitive recording material B in which a magenta layer, an intermediate layer, a yellow layer, an intermediate layer, a light transmittance adjusting layer, and a protective layer are laminated on a base is used as a film material. First, preparation of the coating solution for each layer is shown below.

(1)イエロー層用塗布液の調製
<ジアゾニウム塩化合物内包マイクロカプセル液(a)の調製>
酢酸エチル16.1部に、下記ジアゾニウム化合物(A)(最大吸収波長420nm)2.2部、下記ジアゾニウム化合物(B)(最大吸収波長420nm)2.2部、モノイソプロピルビフェニル7.2部、フタル酸ジフェニル2.4部およびジフェニル−(2,4,6−トリメチルベンゾイル)フォスフィンオキサイド(商品名:ルシリンTPO,BASFジャパン(株)製)0.4部を添加し、40℃に加熱して均一に溶解した。該混合液にカプセル壁材としてキシリレンジイソシアネート/トリメチロールプロパン付加物とキシリレンジイソシアネート/ビスフェノールA付加物との混合物(商品名;タケネートD119N(50%酢酸エチル溶液),武田薬品工業(株)製)8.6部を添加し、均一に攪拌し混合液(I)を得た。
(1) Preparation of coating solution for yellow layer <Preparation of microcapsule liquid (a) encapsulating diazonium salt compound>
To 16.1 parts of ethyl acetate, 2.2 parts of the following diazonium compound (A) (maximum absorption wavelength 420 nm), 2.2 parts of the following diazonium compound (B) (maximum absorption wavelength 420 nm), 7.2 parts of monoisopropylbiphenyl, Add 2.4 parts of diphenyl phthalate and 0.4 part of diphenyl- (2,4,6-trimethylbenzoyl) phosphine oxide (trade name: Lucillin TPO, manufactured by BASF Japan Ltd.) and heat to 40 ° C. And evenly dissolved. A mixture of xylylene diisocyanate / trimethylolpropane adduct and xylylene diisocyanate / bisphenol A adduct as a capsule wall material (trade name; Takenate D119N (50% ethyl acetate solution), manufactured by Takeda Pharmaceutical Co., Ltd.) 8.6 parts was added and stirred uniformly to obtain a mixture (I).

Figure 2005181179
Figure 2005181179

別途、実施例1で示したフタル化ゼラチン水溶液58.6部にイオン交換水16.3部、Scraph AG−8(50%;日本精化(株)製)0.34部添加し、混合液(II)を得た。
混合液(II)に混合液(I)を添加し、ホモジナイザー(日本精機製作所(株)製)を用いて40℃の下で乳化分散した。得られた乳化液に水20部を加え均一化した後、40℃下で攪拌し酢酸エチルを除去しながら3時間カプセル化反応をおこなった。この後、イオン交換樹脂アンバーライトIRA68(オルガノ(株)製)4.1部、アンバーライトIRC50(オルガノ(株)製)8.2部を加え、更に1時間攪拌した。その後、イオン交換樹脂を濾過して取り除き、カプセル液の固形分濃度が20.0%になるように濃度調節しジアゾニウム塩化合物内包マイクロカプセル液(a)を得た。得られたマイクロカプセルの粒径は粒径測定(LA−700,堀場製作所(株)製で測定)の結果、メジアン径で0.36μmであった。
Separately, 16.3 parts of ion-exchanged water and 0.34 part of Scraph AG-8 (50%; manufactured by Nippon Seika Co., Ltd.) were added to 58.6 parts of the phthalated gelatin aqueous solution shown in Example 1, and the mixture was mixed. (II) was obtained.
The mixed solution (I) was added to the mixed solution (II), and the mixture was emulsified and dispersed at 40 ° C. using a homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd.). After adding 20 parts of water to the obtained emulsion and homogenizing it, the mixture was stirred at 40 ° C. to carry out an encapsulation reaction for 3 hours while removing ethyl acetate. Thereafter, 4.1 parts of ion exchange resin Amberlite IRA68 (manufactured by Organo Corp.) and 8.2 parts of Amberlite IRC50 (manufactured by Organo Corp.) were added and further stirred for 1 hour. Thereafter, the ion exchange resin was removed by filtration, and the concentration was adjusted so that the solid content concentration of the capsule liquid was 20.0% to obtain a diazonium salt compound-encapsulating microcapsule liquid (a). The obtained microcapsules had a median diameter of 0.36 μm as a result of particle size measurement (LA-700, manufactured by Horiba, Ltd.).

<カプラー化合物乳化液(a)の調製>
酢酸エチル33.0部に下記カプラー化合物(C)9.9部と、トリフェニルグアニジン(保土ヶ谷化学(株)製)13.9部、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(商品名;ビスフェノールM(三井石油化学(株)製))16.8部、3,3,3’,3’−テトラメチル−5,5’,6,6’−テトラ(1−プロピロキシ)−1,1’−スピロビスインダン3.3部、4−(2−エチルヘキシルオキシ)ベンゼンスルホン酸アミド(マナック(株)製)13.6部、4−n−ペンチルオキシベンゼンスルホン酸アミド(マナック(株)製)6.8部、およびドデシルベンゼンスルホン酸カルシウム(商品名パイオニンA−41−C,70%メタノール溶液,竹本油脂(株)製)4.2部とを溶解し、混合液(III)を得た。
<Preparation of coupler compound emulsion (a)>
33.0 parts of ethyl acetate, 9.9 parts of the following coupler compound (C), 13.9 parts of triphenylguanidine (manufactured by Hodogaya Chemical Co., Ltd.), 4,4 ′-(m-phenylenediisopropylidene) diphenol (Brand name; Bisphenol M (Mitsui Petrochemical Co., Ltd.)) 16.8 parts, 3,3,3 ′, 3′-tetramethyl-5,5 ′, 6,6′-tetra (1-propyloxy) -1,1'-spirobisindane 3.3 parts, 4- (2-ethylhexyloxy) benzenesulfonic acid amide (manac) 13.6 parts, 4-n-pentyloxybenzenesulfonic acid amide (Manac And 6.8 parts calcium dodecylbenzenesulfonate (trade name: Pionein A-41-C, 70% methanol solution, Takemoto Yushi Co., Ltd.) 4.2 parts. III)

Figure 2005181179
Figure 2005181179

別途実施例1で示した上記アルカリ処理ゼラチン水溶液206.3部にイオン交換水107.3部を混合し、混合液(IV)を得た。
混合液(IV)に混合液(III)を添加し、ホモジナイザー(日本精機製作所(株)製)を用いて40℃の下で乳化分散した。得られたカプラー化合物乳化物を減圧、加熱し、酢酸エチルを除去した後、固形分濃度が26.5%になるように濃度調節をおこなった。得られたカプラー化合物乳化物の粒径は粒径測定(LA−700,堀場製作所(株)製で測定)の結果、メジアン径で0.21μmであった。
更に上記カプラー化合物乳化物100部に対して、SBRラテックス(商品名SN−307,48%液、住化エイビーエスラテックス(株)製)を26.5%に濃度調整したものを9部添加して均一に撹拌してカプラー化合物乳化液(a)を得た。
Separately, 107.3 parts of ion-exchanged water was mixed with 206.3 parts of the alkali-treated gelatin aqueous solution shown in Example 1 to obtain a mixed liquid (IV).
The mixed solution (III) was added to the mixed solution (IV), and the mixture was emulsified and dispersed at 40 ° C. using a homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd.). The obtained coupler compound emulsion was heated under reduced pressure to remove ethyl acetate, and then the concentration was adjusted so that the solid content concentration was 26.5%. The particle size of the obtained coupler compound emulsion was 0.21 μm in median diameter as a result of particle size measurement (LA-700, measured by HORIBA, Ltd.).
Further, 9 parts of SBR latex (trade name: SN-307, 48% solution, manufactured by Sumika Aves Latex Co., Ltd.) adjusted to 26.5% are added to 100 parts of the above coupler compound emulsion. The mixture was stirred uniformly to obtain a coupler compound emulsion (a).

<イエロー層塗布液(a)の調製>
上記ジアゾニウム塩化合物内包マイクロカプセル液(a)および上記カプラー化合物分乳化液(a)を、内包しているカプラー化合物/ジアゾ化合物の質量比が2.2/1になるように混合し、イエロー層塗布液(a)を得た。
<Preparation of yellow layer coating solution (a)>
The diazonium salt compound-encapsulating microcapsule liquid (a) and the coupler compound-emulsified liquid (a) are mixed so that the mass ratio of the encapsulating coupler compound / diazo compound is 2.2 / 1, and the yellow layer A coating solution (a) was obtained.

(2)マゼンタ層用塗布液の調製
<ジアゾニウム塩化合物内包マイクロカプセル液(b)の調製>
酢酸エチル15.1部に、下記ジアゾニウム化合物(D)(最大吸収波長365nm)2.8部、フタル酸ジフェニル3.0部、フェニル2−ベンゾイロキシ安息香酸エステル4.7部および下記エステル化合物(商品名;ライトエステルTMP,共栄油脂化学(株)製)4.2部およびドデシルベンゼンスルホン酸カルシウム(商品名パイオニンA−41−C,70%メタノール溶液,竹本油脂(株)製)0.1部を添加し、加熱して、均一に溶解した。該混合液にカプセル壁材としてキシリレンジイソシアネート/トリメチロールプロパン付加物とキシリレンジイソシアネート/ビスフェノールA付加物との混合物(商品名;タケネートD119N(50%酢酸エチル溶液),武田薬品工業(株)製)2.5部とキシリレンジイソシアネート/トリメチロールプロパン付加物(商品名;タケネートD110N(75%酢酸エチル溶液),武田薬品工業(株)製)6.8部を添加し、均一に攪拌し混合液(V)を得た。
(2) Preparation of coating solution for magenta layer <Preparation of diazonium salt compound-encapsulated microcapsule solution (b)>
15.1 parts of ethyl acetate, 2.8 parts of the following diazonium compound (D) (maximum absorption wavelength 365 nm), 3.0 parts of diphenyl phthalate, 4.7 parts of phenyl 2-benzoyloxybenzoate and the following ester compound (product) Name: 4.2 parts of light ester TMP, manufactured by Kyoei Yushi Chemical Co., Ltd.) and 0.1 parts of calcium dodecylbenzenesulfonate (trade name: Pionein A-41-C, 70% methanol solution, Takemoto Yushi Co., Ltd.) Was added and heated to dissolve uniformly. A mixture of xylylene diisocyanate / trimethylolpropane adduct and xylylene diisocyanate / bisphenol A adduct as a capsule wall material (trade name; Takenate D119N (50% ethyl acetate solution), manufactured by Takeda Pharmaceutical Co., Ltd.) ) 2.5 parts and 6.8 parts of xylylene diisocyanate / trimethylolpropane adduct (trade name; Takenate D110N (75% ethyl acetate solution), Takeda Pharmaceutical Co., Ltd.) are added and stirred uniformly. A liquid (V) was obtained.

Figure 2005181179
Figure 2005181179

別途、実施例1で示したフタル化ゼラチン水溶液55.3部にイオン交換水21.0部添加、混合し、混合液(VI)を得た。
混合液(VI)に混合液(V)を添加し、ホモジナイザー(日本精機製作所(株)製)を用いて40℃の下で乳化分散した。得られた乳化液に水24部を加え均一化した後、40℃下で攪拌し酢酸エチルを除去しながら3時間カプセル化反応をおこなった。この後、イオン交換樹脂アンバーライトIRA68(オルガノ(株)製)4.1部、アンバーライトIRC50(オルガノ(株)製)8.2部を加え、更に1時間攪拌した。その後、イオン交換樹脂を濾過して取り除き、カプセル液の固形分濃度が20.0%になるように濃度調節しジアゾニウム塩化合物内包マイクロカプセル液(b)を得た。得られたマイクロカプセルの粒径は粒径測定(LA−700,堀場製作所(株)製で測定)の結果、メジアン径で0.43μmであった。
Separately, 21.0 parts of ion-exchanged water was added to and mixed with 55.3 parts of the phthalated gelatin aqueous solution shown in Example 1 to obtain a mixed liquid (VI).
The mixed solution (V) was added to the mixed solution (VI), and the mixture was emulsified and dispersed at 40 ° C. using a homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd.). After adding 24 parts of water to the obtained emulsion and homogenizing it, the mixture was stirred at 40 ° C. for 3 hours while removing ethyl acetate. Thereafter, 4.1 parts of ion exchange resin Amberlite IRA68 (manufactured by Organo Corp.) and 8.2 parts of Amberlite IRC50 (manufactured by Organo Corp.) were added and further stirred for 1 hour. Thereafter, the ion exchange resin was removed by filtration, and the concentration was adjusted so that the solid content of the capsule liquid was 20.0%, whereby a diazonium salt compound-encapsulating microcapsule liquid (b) was obtained. The obtained microcapsules had a median diameter of 0.43 μm as a result of particle size measurement (LA-700, manufactured by Horiba, Ltd.).

<カプラー化合物乳化液(b)の調製>
酢酸エチル36.9部に下記カプラー化合物(E)11.9部とトリフェニルグアニジン(保土ヶ谷化学(株)製)10.0部、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(商品名;ビスフェノールM(三井石油化学(株)製))18.0部、1,1−(p−ヒドロキシフェニル)−2−エチルヘキサン14部、3,3,3’,3’−テトラメチル−5,5’,6,6’−テトラ(1−プロピロキシ)−1,1’−スピロビスインダン3.5部、下記化合物(G)3.5部、リン酸トリクレジル1.7部、マレイン酸ジエチル0.8部、ドデシルベンゼンスルホン酸カルシウム(商品名パイオニンA−41−C,70%メタノール溶液,竹本油脂(株)製)4.5部を溶解し、混合液(VII)を得た。
<Preparation of coupler compound emulsion (b)>
16.9 parts of the following coupler compound (E) and 10.0 parts of triphenylguanidine (manufactured by Hodogaya Chemical Co., Ltd.), 4,4 ′-(m-phenylenediisopropylidene) diphenol (36.9 parts of ethyl acetate) Product Name: Bisphenol M (Mitsui Petrochemical Co., Ltd.) 18.0 parts, 1,1- (p-hydroxyphenyl) -2-ethylhexane 14 parts, 3,3,3 ′, 3′-tetramethyl -5,5 ', 6,6'-tetra (1-propyloxy) -1,1'-spirobisindane 3.5 parts, 3.5 parts of the following compound (G), tricresyl phosphate 1.7 parts, malein 0.8 parts of diethyl acid and 4.5 parts of calcium dodecylbenzenesulfonate (trade name: Piionin A-41-C, 70% methanol solution, Takemoto Yushi Co., Ltd.) were dissolved to obtain a mixture (VII). .

Figure 2005181179
Figure 2005181179

別途実施例1で示したアルカリ処理ゼラチン水溶液206.3部にイオン交換水107.3部を混合し、混合液(VIII)を得た。
混合液(VIII)に混合液(VII)を添加し、ホモジナイザー(日本精機製作所(株)製)を用いて40℃の下で乳化分散した。得られたカプラー化合物乳化物を減圧、加熱し、酢酸エチルを除去した後、固形分濃度が24.5%になるように濃度調節をおこない、カプラー化合物乳化液(b)を得た。得られたカプラー化合物乳化液の粒径は粒径測定(LA−700,堀場製作所(株)製で測定)の結果、メジアン径で0.22μmであった。
Separately, 107.3 parts of ion-exchanged water was mixed with 206.3 parts of the alkali-treated gelatin aqueous solution shown in Example 1 to obtain a mixed liquid (VIII).
The mixed solution (VII) was added to the mixed solution (VIII), and the mixture was emulsified and dispersed at 40 ° C. using a homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd.). The resulting coupler compound emulsion was heated under reduced pressure to remove ethyl acetate, and then the concentration was adjusted so that the solid content concentration was 24.5% to obtain a coupler compound emulsion (b). The obtained coupler compound emulsion had a median diameter of 0.22 μm as a result of particle size measurement (LA-700, measured by Horiba, Ltd.).

<塗布液(b)の調製>
上記ジアゾニウム塩化合物内包マイクロカプセル液(b)および上記カプラー化合物分乳化液(b)を、内包しているカプラー化合物/ジアゾ化合物の質量比が3.5/1になるように混合した。さらに、ポリスチレンスルホン酸(一部水酸化カリウム中和型)水溶液(5%)をカプセル液量10部に対し、0.2部になるように混合し、マゼンタ層塗布液(b)を得た。
<Preparation of coating liquid (b)>
The diazonium salt compound-encapsulated microcapsule liquid (b) and the coupler compound-emulsified liquid (b) were mixed so that the mass ratio of the encapsulated coupler compound / diazo compound was 3.5 / 1. Further, an aqueous solution (5%) of polystyrene sulfonic acid (partially potassium hydroxide neutralized) was mixed so as to be 0.2 parts with respect to 10 parts of the capsule liquid amount to obtain a magenta layer coating liquid (b). .

(3)中間層用塗布液の調製
アルカリ処理低イオンゼラチン(商品名;#750ゼラチン,新田ゼラチン(株)製)100.0部、1,2−ベンゾチアゾリン−3−オン(3.5%メタノール溶液,大東化学工業所(株)製)2.857部、水酸化カルシウム0.5部、イオン交換水521.643部を混合し、50℃にて溶解し、中間層作製用ゼラチン水溶液を得た。
(3) Preparation of coating solution for intermediate layer Alkali-treated low ion gelatin (trade name; # 750 gelatin, manufactured by Nitta Gelatin Co., Ltd.) 100.0 parts, 1,2-benzothiazoline-3-one (3.5 % Methanol solution, manufactured by Daito Chemical Industry Co., Ltd.) 2.857 parts, calcium hydroxide 0.5 parts, and ion-exchanged water 521.643 parts were mixed and dissolved at 50 ° C. to prepare an intermediate layer gelatin aqueous solution. Got.

上記中間層作製用ゼラチン水溶液10.0部、(4−ノニルフェノキシトリオキシエチレン)ブチルスルホン酸ナトリウム(三協化学(株)製,2.0%水溶液)0.05部、ホウ酸(4.0%水溶液)2.07部、ポリスチレンスルホン酸(一部水酸化カリウム中和型)水溶液(5%)0.19部、下記化合物(J)(和光純薬(株)製)の4%水溶液3.42部、下記化合物(J’)(和光純薬(株)製)の4%水溶液1.13部、イオン交換水0.67部を混合し、中間層用塗布液とした。   10.0 parts gelatin aqueous solution for preparing the intermediate layer, 0.05 parts sodium (4-nonylphenoxytrioxyethylene) butyl sulfonate (manufactured by Sankyo Chemical Co., Ltd., 2.0% aqueous solution), boric acid (4. 2.07 parts of 0% aqueous solution), 0.19 parts of polystyrenesulfonic acid (partially potassium hydroxide neutralized) aqueous solution (5%), 4% aqueous solution of the following compound (J) (manufactured by Wako Pure Chemical Industries, Ltd.) 3.42 parts, 1.13 parts of a 4% aqueous solution of the following compound (J ′) (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.67 parts of ion-exchanged water were mixed to obtain an intermediate layer coating solution.

Figure 2005181179
Figure 2005181179

(4)光透過率調整用塗布液の調製
<紫外線吸収剤前駆体マイクロカプセル液の調製>
酢酸エチル71部に紫外線吸収剤前駆体として[2−アリル−6−(2H−ベンゾトリアゾール−2−イル)−4−t−オクチルフェニル]ベンゼンスルホナート14.5部、2,2'−t−オクチルハイドロキノン4.0部、燐酸トリクレジル2.9部、α−メチルスチレンダイマー(商品名:MSD−100,三井化学(株)製)5.7部、ドデシルベンゼンスルホン酸カルシウム(商品名パイオニンA−41−C(70%メタノール溶液),竹本油脂(株)製)0.45部を溶解し均一に溶解した。上記混合液にカプセル壁材としてキシリレンジイソシアネート/トリメチロールプロパン付加物(商品名;タケネートD110N(75%酢酸エチル溶液),武田薬品工業(株)製)54.7部を添加し、均一に攪拌し紫外線吸収剤前駆体混合液を得た。
(4) Preparation of coating solution for adjusting light transmittance <Preparation of UV absorber precursor microcapsule solution>
14.5 parts of [2-allyl-6- (2H-benzotriazol-2-yl) -4-t-octylphenyl] benzenesulfonate as an ultraviolet absorber precursor in 71 parts of ethyl acetate, 2,2′-t -4.0 parts of octyl hydroquinone, 2.9 parts of tricresyl phosphate, 5.7 parts of α-methylstyrene dimer (trade name: MSD-100, manufactured by Mitsui Chemicals, Inc.), calcium dodecylbenzenesulfonate (trade name: Pionein A) 0.45 part of -41-C (70% methanol solution), Takemoto Yushi Co., Ltd.) was dissolved and dissolved uniformly. Add 54.7 parts of xylylene diisocyanate / trimethylolpropane adduct (trade name; Takenate D110N (75% ethyl acetate solution), Takeda Pharmaceutical Co., Ltd.) as a capsule wall material to the above mixture and stir uniformly. An ultraviolet absorber precursor mixture was obtained.

別途、イタコン酸変性ポリビニルアルコール(商品名:KL−318,クラレ(株)製)52部に30%燐酸水溶液8.9部、イオン交換水532.6部を混合し、紫外線吸収剤前駆体マイクロカプセル液用PVA水溶液を調製した。   Separately, 8.9 parts of 30% phosphoric acid aqueous solution and 532.6 parts of ion-exchanged water were mixed with 52 parts of itaconic acid-modified polyvinyl alcohol (trade name: KL-318, manufactured by Kuraray Co., Ltd.), and ultraviolet absorber precursor micro A PVA aqueous solution for capsule liquid was prepared.

上記紫外線吸収剤前駆体マイクロカプセル液用PVA水溶液516.06部に上記紫外線吸収剤前駆体混合液を添加し、ホモジナイザー(日本精機製作所(株)製)を用いて20℃の下で乳化分散した。得られた乳化液にイオン交換水254.1部を加え均一化した後、40℃下で攪拌しながら3時間カプセル化反応をおこなった。この後、イオン交換樹脂アンバーライトMB−3(オルガノ(株)製)94.3部を加え、更に1時間攪拌した。その後、イオン交換樹脂を濾過して取り除きカプセル液の固形分濃度が13.5%になるように濃度調節した。得られたマイクロカプセルの粒径は粒径測定(LA−700,堀場製作所(株)製で測定)の結果、メジアン径で0.23±0.05μmであった。このカプセル液859.1部にカルボキシ変性スチレンブタジエンラテックス(商品名:SN−307,(48%水溶液),住友ノーガタック(株)製)2.416部、イオン交換水39.5部を混合し、紫外線吸収剤前駆体マイクロカプセル液を得た。   The UV absorber precursor mixed solution was added to 516.06 parts of the PVA aqueous solution for the UV absorber precursor microcapsule solution, and the mixture was emulsified and dispersed at 20 ° C. using a homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd.). . After adding 254.1 parts of ion-exchanged water to the obtained emulsion and homogenizing it, an encapsulation reaction was carried out for 3 hours with stirring at 40 ° C. Thereafter, 94.3 parts of ion exchange resin Amberlite MB-3 (manufactured by Organo Corporation) was added, and the mixture was further stirred for 1 hour. Thereafter, the ion exchange resin was removed by filtration, and the concentration was adjusted so that the solid concentration of the capsule liquid was 13.5%. The obtained microcapsules had a median diameter of 0.23 ± 0.05 μm as a result of particle size measurement (LA-700, manufactured by Horiba, Ltd.). To this capsule solution 859.1 parts, carboxy-modified styrene butadiene latex (trade name: SN-307, (48% aqueous solution), manufactured by Sumitomo Nougatac Co., Ltd.) 2.416 parts and ion-exchanged water 39.5 parts were mixed. An ultraviolet absorber precursor microcapsule solution was obtained.

<光透過率調整層用塗布液の調製>
上記紫外線吸収剤前駆体マイクロカプセル液1000部、下記化合物(K)(商品名:メガファックF−120,5%水溶液,大日本インキ化学工業(株))5.2部、4%水酸化ナトリウム水溶液7.75部、(4−ノニルフェノキシトリオキシエチレン)ブチルスルホン酸ナトリウム(三協化学(株)製,2.0%水溶液)73.39部を混合し、光透過率調整層用塗布液を得た。
<Preparation of coating solution for light transmittance adjusting layer>
1000 parts of the above-mentioned ultraviolet absorber precursor microcapsule liquid, the following compound (K) (trade name: Megafax F-120, 5% aqueous solution, Dainippon Ink & Chemicals, Inc.) 5.2 parts, 4% sodium hydroxide 7.75 parts of aqueous solution and 73.39 parts of sodium (4-nonylphenoxytrioxyethylene) butyl sulfonate (manufactured by Sankyo Chemical Co., Ltd., 2.0% aqueous solution) are mixed, and the coating solution for light transmittance adjusting layer Got.

Figure 2005181179
Figure 2005181179

(5)保護層用塗布液の調製
<保護層用ポリビニルアルコール溶液の調製>
4%ビニルアルコール−アルキルビニルエーテル共重合物(商品名:EP−130,電気化学工業(株)製)160部、アルキルスルホン酸ナトリウムとポリオキシエチレンアルキルエーテル燐酸エステルとの混合液(商品名:ネオスコアCM−57,(54%水溶液),東邦化学工業(株)製)8.74部、イオン交換水3832部を混合し、90℃のもとで1時間溶解し均一な保護層用ポリビニルアルコール溶液を得た。
(5) Preparation of protective layer coating solution <Preparation of protective layer polyvinyl alcohol solution>
160 parts of 4% vinyl alcohol-alkyl vinyl ether copolymer (trade name: EP-130, manufactured by Denki Kagaku Kogyo Co., Ltd.), mixed solution of sodium alkyl sulfonate and polyoxyethylene alkyl ether phosphate (trade name: Neoscore) CM-57, (54% aqueous solution), manufactured by Toho Chemical Industry Co., Ltd.) 8.74 parts and 3832 parts of ion-exchanged water were mixed and dissolved at 90 ° C. for 1 hour to obtain a uniform polyvinyl alcohol solution for a protective layer. Got.

<保護層用顔料分散液の調製>
硫酸バリウム(商品名:BF−21F,硫酸バリウム含有量93%以上,堺化学工業(株)製)8部に陰イオン性特殊ポリカルボン酸型高分子活性剤(商品名:ポイズ532A(40%水溶液),花王(株)製)0.2部、イオン交換水11.8部を混合し、ダイノミルにて分散して硫酸バリウム分散液を調製した。この分散液は粒径測定(LA−910,堀場製作所(株)製で測定)の結果、メジアン径で0.15μm以下であった。
上記硫酸バリウム分散液45.6部に対し、コロイダルシリカ(商品名:スノーテックスO(20%水分散液)、日産化学(株)製、平均粒径20nm)10.1部を添加して目的の保護層用顔料分散液を得た。
<Preparation of pigment dispersion for protective layer>
Barium sulfate (trade name: BF-21F, barium sulfate content 93% or more, manufactured by Sakai Chemical Industry Co., Ltd.) 8 parts anionic special polycarboxylic acid type polymer activator (trade name: Poise 532A (40% Aqueous solution), produced by Kao Co., Ltd.) 0.2 part and ion-exchanged water 11.8 parts were mixed and dispersed by dynomill to prepare a barium sulfate dispersion. As a result of particle size measurement (LA-910, manufactured by HORIBA, Ltd.), this dispersion was found to have a median diameter of 0.15 μm or less.
10.1 parts of colloidal silica (trade name: Snowtex O (20% aqueous dispersion), manufactured by Nissan Chemical Co., Ltd., average particle size 20 nm) is added to 45.6 parts of the barium sulfate dispersion. A pigment dispersion for protective layer was obtained.

<保護層用マット剤分散液の調製>
小麦澱粉(商品名:小麦澱粉S,新進食料工業(株)製)190部に1−2ベンズイソチアゾリン3オンの水分散物(商品名:PROXEL B.D,I.C.I(株)製)3.81部、イオン交換水1976.19部を混合し、均一に分散し、保護層用マット剤分散液を得た。
<Preparation of protective layer matting agent dispersion>
190 parts of wheat starch (trade name: Wheat Starch S, manufactured by Shinshin Food Industry Co., Ltd.) and an aqueous dispersion of 1-2 benzisothiazoline 3-one (trade names: PROXEL BD, manufactured by IC Corporation) ) 3.81 parts and 1976.19 parts of ion exchange water were mixed and dispersed uniformly to obtain a protective layer matting agent dispersion.

<保護層用塗布液の調製>
上記保護層用ポリビニルアルコール溶液1000部に上記化合物(K)(商品名:メガファックF−120,5%水溶液,大日本インキ化学工業(株))40部、(4−ノニルフェノキシトリオキシエチレン)ブチルスルホン酸ナトリウム(三協化学(株)製,2.0%水溶液)50部、上記保護層用顔料分散液49.87部、上記保護層用マット剤分散液16.65部、ステアリン酸亜鉛分散液(商品名:ハイミクロンLIII,21.5%水溶液,中京油脂(株)製)48.7部、アクリルシリコーン変性エマルション(商品名:ARJ−2A,44質量%分散液、日本純薬(株)製)4.65部、イオン交換水275.35部を均一に混合し保護層用塗布液を得た。
<Preparation of coating solution for protective layer>
1000 parts of the polyvinyl alcohol solution for the protective layer is mixed with the above compound (K) (trade name: Megafax F-120, 5% aqueous solution, Dainippon Ink & Chemicals, Inc.), 40 parts (4-nonylphenoxytrioxyethylene) 50 parts of sodium butyl sulfonate (manufactured by Sankyo Chemical Co., Ltd., 2.0% aqueous solution), 49.87 parts of the pigment dispersion for protective layer, 16.65 parts of the matting agent dispersion for protective layer, zinc stearate Dispersion (trade name: Hymicron LIII, 21.5% aqueous solution, manufactured by Chukyo Yushi Co., Ltd.) 48.7 parts, acrylic silicone modified emulsion (trade name: ARJ-2A, 44 mass% dispersion, Nippon Pure Chemical ( Co., Ltd.) 4.65 parts and ion-exchanged water 275.35 parts were uniformly mixed to obtain a protective layer coating solution.

(6)膜材料の作製
PET100μm未下塗りベースの表面に、下から、前記マゼンタ層用塗布液(b)、上記中間層(中間層B)用塗布液、前記イエロー層用塗布液(a)、前記光透過率調整層用塗布液、前記保護層用塗布液の順に5層同時に連続塗布し、30℃・湿度30%、および40℃・湿度30%の条件で乾燥した。乾燥後、塗膜をベースから剥離して膜材料とした。膜材料の厚みは20μmであった。
この際、前記イエロー層用塗布液(a)の塗布量は液中に含まれるジアゾニウム化合物(A)の塗布量が固形分塗布量で0.078g/m2となるように調整し、同様に前記マゼンタ層用塗布液(b)の塗布量は液中に含まれるジアゾニウム化合物(D)の塗布量が固形分塗布量で0.206g/m2となるように調整して塗布を行った。
(6) Production of film material From the bottom to the surface of the PET 100 μm unprimed base, the magenta layer coating solution (b), the intermediate layer (intermediate layer B) coating solution, the yellow layer coating solution (a), Five layers of the light transmittance adjusting layer coating solution and the protective layer coating solution were successively applied in this order, and dried under conditions of 30 ° C./humidity 30% and 40 ° C./humidity 30%. After drying, the coating film was peeled from the base to obtain a film material. The thickness of the film material was 20 μm.
At this time, the coating amount of the yellow layer coating liquid (a) was adjusted so that the coating amount of the diazonium compound (A) contained in the liquid was 0.078 g / m 2 in terms of solid coating amount. The coating amount of the magenta layer coating solution (b) was adjusted such that the coating amount of the diazonium compound (D) contained in the solution was 0.206 g / m 2 in terms of solid coating amount.

また、前記中間層B用塗布液は固形分塗布量が2.38g/m2、前記光透過率調整層用塗布液は固形分塗布量が2.35g/m2、保護層用塗布液は固形分塗布量が1.70g/m2となるように塗布を行った。 The coating solution for the intermediate layer B has a solid content coating amount of 2.38 g / m 2 , the light transmittance adjusting layer coating solution has a solid content coating amount of 2.35 g / m 2 , and the protective layer coating solution has Application was performed so that the solid content application amount was 1.70 g / m 2 .

次いで、実施例1と同様にして、得られた膜材料に、蛍光灯により光照射を行い酸素消費速度を測定した。図7に、蛍光灯照射光量と酸素透過速度(黒丸プロット)及び酸素消費速度(黒四角プロット)との関係を示す。図7は、光照射により電極へ酸素がほとんど透過しない、すなわち5000luxで1cm3/m2・day程度の膜中酸素消費が発生することを示している。 Next, in the same manner as in Example 1, the obtained film material was irradiated with light with a fluorescent lamp, and the oxygen consumption rate was measured. FIG. 7 shows the relationship between the amount of fluorescent lamp irradiation, the oxygen transmission rate (black circle plot), and the oxygen consumption rate (black square plot). FIG. 7 shows that oxygen is hardly transmitted to the electrode by light irradiation, that is, oxygen consumption of about 1 cm 3 / m 2 · day occurs at 5000 lux.

酸素電極と該酸素電極に貼付した膜材料とを示す概略図である。It is the schematic which shows an oxygen electrode and the film | membrane material affixed on this oxygen electrode. 本発明の膜材料の酸素消費速度の測定方法における測定手順をダイアグラムで示す図である。It is a figure which shows the measurement procedure in the measuring method of the oxygen consumption rate of the film | membrane material of this invention with a diagram. 膜材料の酸素透過速度の経時的遷移をグラフで示す図である。It is a figure which shows the transition with time of the oxygen permeation rate of a membrane material in a graph. 膜材料の酸素透過速度の経時的遷移をグラフで示す図である。It is a figure which shows the transition with time of the oxygen permeation rate of a membrane material in a graph. 実施例1における膜材料に照射した光の照射光量に対する酸素消費速度をグラフで示す図である。It is a figure which shows the oxygen consumption rate with respect to the irradiation light quantity of the light irradiated to the film | membrane material in Example 1 with a graph. 実施例2における膜材料の発色濃度と、厚み8.0μm、蛍光灯5000luxでの酸素消費速度との関係をグラフで示す図である。It is a figure which shows the relationship between the coloring density of the film | membrane material in Example 2, the thickness of 8.0 micrometers, and the oxygen consumption rate in the fluorescent lamp 5000lux. 実施例3における蛍光灯照射光量と、酸素透過速度及びそれから求めた酸素消費速度との関係をグラフで示す図である。It is a figure which shows the relationship between the fluorescent lamp irradiation light quantity in Example 3, an oxygen transmission rate, and the oxygen consumption rate calculated | required from it with a graph.

符号の説明Explanation of symbols

10 膜材料
12 酸素電極
12a 電極隔膜
10 membrane material 12 oxygen electrode 12a electrode diaphragm

Claims (5)

膜材料に膜中酸素透過速度を変化せしめる手段を付与することにより、該膜材料中において消費される酸素の消費速度を測定する膜材料の膜中酸素消費速度の測定方法であって、
前記膜材料を酸素電極の先端に貼付し、該酸素電極により計測される、前記手段の付与前と付与後とにおける前記膜材料中の酸素量に応じて変動する数値から酸素透過速度を求め、さらに、前記手段付与前後の酸素透過速度の差を膜中酸素消費速度とすることを特徴とする膜材料の酸素消費速度の測定方法。
A method for measuring an oxygen consumption rate in a membrane material, which measures a consumption rate of oxygen consumed in the membrane material by providing a means for changing the oxygen transmission rate in the membrane to the membrane material,
The membrane material is affixed to the tip of an oxygen electrode, and the oxygen permeation rate is determined from a numerical value that varies according to the amount of oxygen in the membrane material before and after application of the means, measured by the oxygen electrode, Furthermore, the method for measuring the oxygen consumption rate of a membrane material is characterized in that a difference in oxygen transmission rate before and after the application of the means is an oxygen consumption rate in the membrane.
前記酸素電極として、ポーラログラフ方式の酸素電極を用いることを特徴とする請求項1に記載の膜材料の酸素消費速度の測定方法。   The method for measuring an oxygen consumption rate of a film material according to claim 1, wherein a polarographic oxygen electrode is used as the oxygen electrode. 前記膜中酸素透過速度を変化せしめる手段が、エネルギー、外部刺激、又は添加剤であることを特徴とする請求項1または2に記載の膜材料の酸素消費速度の測定方法。   The method for measuring the oxygen consumption rate of a membrane material according to claim 1 or 2, wherein the means for changing the oxygen transmission rate in the membrane is energy, an external stimulus, or an additive. 前記膜中酸素透過速度を変化せしめる手段がエネルギーであることを特徴とする請求項3に記載の膜材料の酸素消費速度の測定方法。   The method for measuring the oxygen consumption rate of a membrane material according to claim 3, wherein the means for changing the oxygen transmission rate in the membrane is energy. 前記エネルギーとして光を用いることを特徴とする請求項4に記載の膜材料の酸素消費速度の測定方法。   5. The method for measuring an oxygen consumption rate of a film material according to claim 4, wherein light is used as the energy.
JP2003424513A 2003-12-22 2003-12-22 Method of measuring oxygen consumption rate in membrane material Pending JP2005181179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424513A JP2005181179A (en) 2003-12-22 2003-12-22 Method of measuring oxygen consumption rate in membrane material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424513A JP2005181179A (en) 2003-12-22 2003-12-22 Method of measuring oxygen consumption rate in membrane material

Publications (1)

Publication Number Publication Date
JP2005181179A true JP2005181179A (en) 2005-07-07

Family

ID=34784684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424513A Pending JP2005181179A (en) 2003-12-22 2003-12-22 Method of measuring oxygen consumption rate in membrane material

Country Status (1)

Country Link
JP (1) JP2005181179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108514417A (en) * 2018-02-13 2018-09-11 浙江大学 A kind of respiration oxygen consumption real-time monitoring device with tortuous oxygen consumption monitoring slot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108514417A (en) * 2018-02-13 2018-09-11 浙江大学 A kind of respiration oxygen consumption real-time monitoring device with tortuous oxygen consumption monitoring slot
CN108514417B (en) * 2018-02-13 2020-11-03 浙江大学 Respiration oxygen consumption real-time monitoring device with coiling oxygen consumption monitoring groove

Similar Documents

Publication Publication Date Title
CA1203108A (en) Photosensitive material employing encapsulated radiation sensitive composition and process for improving sensitivity by sequestering oxygen
JP2005181179A (en) Method of measuring oxygen consumption rate in membrane material
JPH02205842A (en) Multicolor recording material
US20040161693A1 (en) Thermal recording material
JP2996996B2 (en) Photocurable composition
JP3127067B2 (en) Diazo thermal recording material
JP2607685B2 (en) Thermal recording method
JP2554913B2 (en) Multicolor recording material
JP2006248203A (en) Thermal recording material
JP4179755B2 (en) Polyfunctional isocyanate compound, microcapsule and thermosensitive recording material
JP4159176B2 (en) Color recording medium and recording method therefor
JP2004090408A (en) Heat-sensitive recording material and pressure-sensitive recording material
JP3553199B2 (en) Diazo thermal recording material
JPH0455497B2 (en)
JP2004233614A (en) Optical-image forming material
EP0361898B1 (en) Image-forming by heating recording material containing light-sensitive organic substance
JP2004017479A (en) Thermosensitive recording material
JP2004114522A (en) Heat-sensitive recording material
JPH0645259B2 (en) Thermal recording material
JP2000141904A (en) Water resistant protective layer, photofixable thermal recording medium and its manufacture
JP2003237245A (en) Heat-sensitive recording material
JP2003159877A (en) Thermal recording material
JP2003136839A (en) Multicolor heat-sensitive recording material
JP2003136838A (en) Heat-sensitive recording material
JPH02179633A (en) Temperature adjusting method and apparatus for image formation process