JP2005180973A - In-furnace measuring instrument - Google Patents

In-furnace measuring instrument Download PDF

Info

Publication number
JP2005180973A
JP2005180973A JP2003418516A JP2003418516A JP2005180973A JP 2005180973 A JP2005180973 A JP 2005180973A JP 2003418516 A JP2003418516 A JP 2003418516A JP 2003418516 A JP2003418516 A JP 2003418516A JP 2005180973 A JP2005180973 A JP 2005180973A
Authority
JP
Japan
Prior art keywords
furnace
measurement
opening
light
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003418516A
Other languages
Japanese (ja)
Inventor
Akira Noma
野間  彰
Keita Inoue
敬太 井上
Tomohiro Harada
朋弘 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003418516A priority Critical patent/JP2005180973A/en
Publication of JP2005180973A publication Critical patent/JP2005180973A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Radiation Pyrometers (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-furnace measurement instrument capable of exact measurement, while preventing dirt from sticking to a noncontact instrument, in a system which can perform various measurement and cleaning through an in-furnace measurement opening. <P>SOLUTION: The in-furnace measuring instrument 10 is constituted that a noncontact measurement instrument 11 performs various measurement through the optical axis via a measurement opening 22 formed on a furnace wall and reflected by a metal mirror 12 arranged on a first cylindrical path 100 extending toward outside of the furnace along the axial line of the opening. An infrared window 13, arranged on the light incident path of the first cylindrical path 100 and a virgin gas feed means 15 for feeding the virgin gas on the opening side of the infrared window 13 are provided. The virgin gas feed means 15 are arranged around the light incident path. There is provided the stuck slag storage part 18 for storing stuck slag, by dropping the generated stuck slag, at the time of cleaning the opening, while preferably moving the metal mirror 12 and the infrared window 13 for cleaning. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炉壁に形成された計測用開口より炉内温度、炉内圧力を始めとする各種計測を行う炉内計測装置に関し、特に炉外に具備された非接触計測器により各種計測を行なう炉内計測装置に関する。   The present invention relates to an in-furnace measuring apparatus that performs various measurements including an in-furnace temperature and an in-furnace pressure from a measurement opening formed in a furnace wall, and in particular, various measurements are performed by a non-contact measuring instrument provided outside the furnace. The present invention relates to an in-furnace measuring apparatus.

廃棄物を処理する溶融炉や焼却炉等の熱処理炉は、円滑な運転が行なわれるように炉内の温度や圧力、炉内状況等を計測して運転監視をしている。一般的に各種計測を行なう際には、炉の側壁に炉内に連通する計測用開口を設けてこの開口から各種計測機器を挿入したり、開口を介して非接触により計測する方法等が用いられている。例えば、炉内温度計測をする際には、炉壁に形成された計測用開口を介して、炉外に設置した放射温度計により炉内温度を計測する方法等がある。また、赤外カメラを利用して炉内状況を映像化して監視する方法も利用されている。   Heat treatment furnaces such as melting furnaces and incinerators that process wastes are monitored for operation by measuring the temperature and pressure in the furnace, the state of the furnace, etc. so that smooth operation is performed. In general, when performing various measurements, a measurement opening that communicates with the inside of the furnace is provided on the side wall of the furnace, and various measuring devices are inserted from this opening, or a method of non-contact measurement through the opening is used It has been. For example, when measuring the temperature in the furnace, there is a method of measuring the temperature in the furnace with a radiation thermometer installed outside the furnace through a measurement opening formed in the furnace wall. In addition, a method of visualizing and monitoring the situation inside the furnace using an infrared camera is also used.

しかし、炉壁に設けられた計測用開口は炉の運転に伴い狭小化、閉塞してしまうという問題を有していた。これは、炉内に浮遊する煤塵、揮散物等が高温雰囲気下で溶融し、炉外と連通し比較的温度が低い計測用開口に付着して積層固化することが主な原因である。このように、計測用開口に付着物が積層すると開口が狭まったり閉塞してしまい、各種計測が正確に行なえなくなってしまう。   However, the measurement opening provided in the furnace wall has a problem that it narrows and closes with the operation of the furnace. The main reason for this is that dust, volatiles, etc. floating in the furnace melt in a high temperature atmosphere and adhere to the measurement opening which communicates with the outside of the furnace and has a relatively low temperature and solidifies. As described above, when the deposits are stacked on the measurement opening, the opening is narrowed or blocked, and various measurements cannot be performed accurately.

そこで、炉内計測用開口に固着した付着物を除去するようにした技術が特開平11−83001号公報(特許文献1)等に開示されている。特許文献1には、焼却炉の計測用開口にクリンカが付着したことを検知し、クリンカの存在が認められたらパージガスを圧送して除去するか、若しくは清掃手段によりクリンカを突き落として除去するようにした装置が記載されている。
また、特開平11−44581号公報(特許文献2)には、放射温度計等を用いて非接触温度測定を行なう装置が開示されており、炉壁開口部の軸線上に融着物を突き落とし除去する清掃棒を設け、開口部に対面する炉外にミラー設けることにより視準方向を屈曲させて放射温度計を設置している。これにより、開口部の融着物を除去できるとともに、清掃棒の存在に関わらず非接触温度測定を正確に行なうことができる。
In view of this, a technique for removing deposits fixed to the in-furnace measurement opening is disclosed in Japanese Patent Laid-Open No. 11-83001 (Patent Document 1) and the like. In Patent Document 1, it is detected that the clinker is attached to the measurement opening of the incinerator, and if the presence of the clinker is recognized, the purge gas is pumped and removed, or the clinker is pushed down and removed by the cleaning means. The device is described.
Japanese Patent Application Laid-Open No. 11-44581 (Patent Document 2) discloses a device that performs non-contact temperature measurement using a radiation thermometer or the like, and removes the fused material by dropping it on the axis of the furnace wall opening. The radiation thermometer is installed by bending the collimation direction by providing a cleaning rod to be mounted and providing a mirror outside the furnace facing the opening. Thereby, while being able to remove the fusion | melting matter of an opening part, a non-contact temperature measurement can be performed correctly irrespective of presence of a cleaning stick.

さらに、特開2001−349535号公報(特許文献3)では、焼却炉の測定開口に連通するメイン通路を進退可能な清掃手段と、メイン通路と分岐する測定路との交差路に進退自在に配置される光屈折手段と、測定路に設けられた非接触式測温手段とを備え、清掃時には光屈折手段を退避させて清掃手段によりクリンカを除去し、測定時には清掃手段が後退して光屈折手段を介して非接触測温を行なう装置が提供されている。
これによれば、清掃と測温とをメイン通路を介して交互に行なうことができるため、装置全体をコンパクトに構成することを可能とした。
Further, in Japanese Patent Application Laid-Open No. 2001-349535 (Patent Document 3), the main passage communicating with the measurement opening of the incinerator is disposed so as to be able to advance and retreat in a crossing path between the main passage and the measurement passage branching. And a non-contact type temperature measuring means provided in the measurement path. During cleaning, the light refracting means is retracted and the clinker is removed by the cleaning means. There is provided an apparatus for performing non-contact temperature measurement via a means.
According to this, since cleaning and temperature measurement can be performed alternately via the main passage, the entire apparatus can be made compact.

特開平11−83001号公報Japanese Patent Laid-Open No. 11-83001 特開平11−44581号公報Japanese Patent Laid-Open No. 11-44581 特開2001−349535号公報JP 2001-349535 A

このように、炉壁に形成された計測用開口は、炉内を飛散する煤塵や揮散物等が溶融して付着し、堆積することによって狭小化、閉塞してしまう惧れがある。開口が狭小化、閉塞すると計測視野が徐々に欠け、計測誤差が生じて正確な計測ができず、延いては炉の運転を円滑に行なうことができなくなってしまう。
そこで、特許文献1乃至3のように計測用開口の付着物を除去することにより、正確な計測が可能となる。しかし特許文献1のように、パージガスを圧送して付着物を除去することは、付着物は強固に溶融固着しているため困難であり、また突き落とし除去する場合には、清掃手段と放射温度計とを併設して選択的に開口側に移動させて使用しているため、装置が大型化し、かつ制御が複雑化する。
As described above, the measurement opening formed in the furnace wall may be narrowed and blocked by melting and adhering dust and volatilized matter scattered in the furnace and accumulating. If the opening is narrowed or closed, the measurement field of view is gradually lost, a measurement error occurs and accurate measurement cannot be performed, and the furnace cannot be operated smoothly.
Therefore, accurate measurement is possible by removing the deposits in the measurement openings as in Patent Documents 1 to 3. However, as in Patent Document 1, it is difficult to remove the deposits by pumping a purge gas because the deposits are firmly melted and fixed. And the device is selectively moved to the opening side and used, which increases the size of the apparatus and complicates the control.

また特許文献2では、ミラーの中心部に孔が形成されており、ここから挿入された清掃棒の先端には防振部が備えられているため、放射温度計の視野を確保することが困難である。さらに特許文献2及び3では、光屈折手段及び非接触式測温手段が炉内と連通しているため、炉内ガスの拡散により粒子が付着して汚れてしまい、放射光が吸収または散乱し、計測誤差が生じてしまう。さらにまた、清掃時に清掃手段からの落下物により非接触式測温手段に汚れが付着してしまい、正確な計測が行なえなくなる惧れがある。特に、溶融炉のように炉内ガス中に煤塵、揮散物等を多く含む炉に適用する場合には、汚れが付着し易く、頻繁に非接触式測温手段のレンズ面を清掃しなければならない。
従って、本発明は上記従来技術の問題点に鑑み、小型化された装置で非接触計測と清掃とを行うことができ、非接触計測機器に汚れが付着することを防止し、正確な計測を行なうことを可能とした炉内計測装置を提供することを目的とする。
Further, in Patent Document 2, a hole is formed in the center of the mirror, and since a vibration isolator is provided at the tip of the cleaning rod inserted from here, it is difficult to ensure the field of view of the radiation thermometer. It is. Further, in Patent Documents 2 and 3, since the light refracting means and the non-contact type temperature measuring means communicate with the inside of the furnace, particles adhere and become dirty due to diffusion of the gas in the furnace, and the radiated light is absorbed or scattered. Measurement errors will occur. Furthermore, dirt may adhere to the non-contact temperature measuring means due to falling objects from the cleaning means during cleaning, and accurate measurement may not be performed. In particular, when applied to a furnace containing a large amount of dust, volatiles, etc. in the furnace gas, such as a melting furnace, dirt is likely to adhere and the lens surface of the non-contact temperature measuring means must be frequently cleaned. Don't be.
Therefore, in view of the above-mentioned problems of the prior art, the present invention can perform non-contact measurement and cleaning with a miniaturized apparatus, and prevents dirt from adhering to the non-contact measurement device, thereby enabling accurate measurement. An object of the present invention is to provide an in-furnace measuring apparatus that can be performed.

そこで、本発明はかかる課題を解決するために、
炉壁に形成された計測用開口を通り、該開口の軸線上炉外側に配設された屈折手段により屈折された光軸を介して非接触計測器により各種計測を行なう炉内計測装置において、
前記計測用開口から前記屈折手段に向かう光入射路上に該屈折手段と対面するごとく配置した光透過窓と、該光透過窓の前記開口側の面にパージガスを供給するパージガス供給手段とを設け、該パージガス供給手段を、前記光入射路の周囲に配置したことを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
In the in-furnace measuring device that performs various measurements with a non-contact measuring instrument through an optical axis that is refracted by a refracting means disposed on the outside of the furnace on the axis of the opening through the opening for measurement formed in the furnace wall,
A light transmission window disposed so as to face the refraction means on a light incident path from the measurement opening toward the refraction means, and a purge gas supply means for supplying a purge gas to the opening-side surface of the light transmission window; The purge gas supply means is arranged around the light incident path.

このように、前記屈折手段を前記光透過窓によりシールして炉内雰囲気から隔離することで、該屈折手段に汚れが付着して計測誤差が生じることを防ぐことができる。また、前記光透過窓の開口側面にはパージガスを供給しているため、炉内から流れてくる煤塵や揮散物等の付着による汚れを防止し、計測視野を十分に確保することができ、正確な計測が可能となる。尚、かかる発明において各種計測とは、例えば炉内温度計測、耐火壁温度計測、及び受光した赤外線等を分析して画像変換し、炉内状況を画像として検出することも含む。   Thus, by sealing the refracting means with the light transmitting window and isolating it from the furnace atmosphere, it is possible to prevent the refracting means from being contaminated and causing measurement errors. In addition, since purge gas is supplied to the opening side of the light transmission window, it is possible to prevent contamination due to adhesion of dust and volatiles flowing from the inside of the furnace, and to ensure a sufficient measurement visual field. Measurement is possible. In this invention, various measurements include, for example, furnace temperature measurement, fire wall temperature measurement, and analysis of received infrared rays and the like to convert the image and detect the furnace condition as an image.

また、屈折手段と前記光透過窓を一体化して光屈折ユニットとし、該光屈折ユニットが前記計測用開口の軸線より上方に移動可能な退避手段を有するとともに、前記光屈折ユニットの退避時に、前記計測用開口の清掃により発生した付着物滓を落下させて収納する付着物滓収納部を前記軸線より下方に設けたことを特徴とする。
かかる発明によれば、前記光屈折ユニットを軸線より上方に移動することで、清掃時に該光屈折ユニットが炉内と通じて汚れることがない。さらに、前記付着物滓収納部を設けることにより、清掃時に発生した付着物滓のために清掃手段の円滑な駆動が妨げられたり、清掃手段が故障したりすることを防止する。
このとき、前記光屈折ユニットの下方にシール手段を設け、前記計測用開口の清掃時に、前記光屈折ユニットが清掃域と隔絶されるように構成することが好適である。これにより、清掃による剥離した付着物の滓が光屈折ユニットに付着することがない。
Further, the refraction means and the light transmission window are integrated into a light refraction unit, and the light refraction unit has a retreat means that can move above the axis of the measurement opening, and when the light refraction unit is retracted, It is characterized in that an adhering soot storage unit for dropping and storing the adhering soot generated by cleaning the measurement opening is provided below the axis.
According to this invention, by moving the photorefractive unit above the axis, the photorefractive unit does not become contaminated through the furnace during cleaning. Furthermore, by providing the deposit bag storage unit, it is possible to prevent the cleaning unit from being hindered from being hindered by the deposit bag generated at the time of cleaning or from being damaged.
At this time, it is preferable that a sealing means is provided below the light refraction unit so that the light refraction unit is isolated from the cleaning area when the measurement opening is cleaned. Thereby, the wrinkle of the deposit | attachment which peeled by cleaning does not adhere to a photorefractive unit.

また、前記光透過窓を赤外線透過窓材で形成するとともに、前記屈折手段を金属若しくは石英ガラスで形成したことを特徴とし、さらに前記非接触計測器を、放射温度計若しくは長波長赤外カメラとすることが好適である。これによれば、煤塵等の飛散物が多い炉内雰囲気であっても赤外線を介して各種計測が可能となり、前記材料を夫々用いることにより前記非接触計測器における受光率を向上させることができる。   Further, the light transmission window is formed of an infrared transmission window material, and the refraction means is formed of metal or quartz glass, and the non-contact measuring instrument is a radiation thermometer or a long wavelength infrared camera. It is preferable to do. According to this, various measurements can be performed via infrared rays even in an atmosphere in a furnace where there are many scattered matters such as dust, and the light receiving rate in the non-contact measuring instrument can be improved by using each of the materials. .

さらにまた、これらの発明において前記炉内計測装置が溶融炉に設置されていることが好ましい。前記溶融炉では、炉内ガス中に煤塵や揮散物等の飛散物が多く、前記屈折手段を露出して設置すると直ぐに汚れが付着して計測不可能となってしまう。従って、前記した発明を溶融炉に適用することにより、飛散物が多い溶融炉であっても正確な計測を行なうことができ、好適である。   Furthermore, in these inventions, it is preferable that the in-furnace measuring device is installed in a melting furnace. In the melting furnace, there are many scattered matters such as dust and volatile matter in the gas in the furnace, and when the refracting means is exposed and installed, dirt is immediately attached and measurement becomes impossible. Therefore, by applying the above-described invention to a melting furnace, accurate measurement can be performed even in a melting furnace with a lot of scattered matter, which is preferable.

以上記載のごとく本発明によれば、前記屈折手段を前記光透過窓によりシールして炉内雰囲気から隔離し、さらに前記光透過窓の開口側面にはパージガスを供給しているため、前記屈折手段及び光透過窓に対して炉内から流れてくる煤塵や揮散物等の付着による汚れを防止し、計測視野を十分に確保することができ、正確な計測が可能となる。
また、前記光屈折ユニットを軸線より上方に移動可能とし、さらに清掃時に該光屈折ユニットと清掃域とを隔絶することで、該光屈折ユニットが炉内と通じて汚れることがない。さらにまた、前記付着物滓収納部を設けることにより、清掃時に発生した付着物滓のために清掃手段の円滑な駆動が妨げられたり、清掃手段が故障したりすることが防止できる。
As described above, according to the present invention, the refracting means is sealed by the light transmission window to be isolated from the furnace atmosphere, and a purge gas is supplied to the opening side surface of the light transmission window. In addition, it is possible to prevent contamination due to adhesion of dust and volatile matter flowing from the inside of the furnace to the light transmission window, and to ensure a sufficient measurement visual field, thereby enabling accurate measurement.
In addition, the light refraction unit can be moved above the axis, and the light refraction unit and the cleaning area are separated from each other at the time of cleaning, so that the light refraction unit is not contaminated through the furnace. Furthermore, by providing the deposit bag storage part, it is possible to prevent the cleaning unit from being hindered from being smoothly driven due to the deposit bag generated at the time of cleaning or from being damaged.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施形態では、一例として本炉内計測装置をプラズマ式溶融炉に適用した場合につき説明するが、これに限定されず、他にもバーナ式溶融炉、電気抵抗式溶融炉等の各種溶融炉や、焼却炉等にも適用可能である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
In this embodiment, the case where the in-furnace measuring device is applied to a plasma melting furnace will be described as an example. However, the present invention is not limited to this, and various other melting furnaces such as a burner melting furnace, an electric resistance melting furnace, etc. It can also be applied to incinerators.

まず、図3を参照して本実施例に係る炉内計測装置10が設置されたプラズマ式溶融炉20につき説明する。かかるプラズマ式溶融炉20は、炉蓋に貫設された主電極24と、該主電極24と対向して炉底に配設された炉底電極25とを有し、これらの電極間に直流電圧を印加してプラズマアーク26を発生させ、焼却灰等の被溶融物を加熱溶融する。溶融した被溶融物は、比重差により溶融スラグ27と溶融メタル28とに分離して炉底部に層状に溜まり、オーバーフローにより排出される。   First, the plasma melting furnace 20 in which the in-core measuring device 10 according to the present embodiment is installed will be described with reference to FIG. The plasma melting furnace 20 has a main electrode 24 penetrating through the furnace lid, and a furnace bottom electrode 25 disposed on the furnace bottom facing the main electrode 24, and a direct current is provided between these electrodes. A voltage is applied to generate a plasma arc 26 to heat and melt an object to be melted such as incineration ash. The molten material to be melted is separated into a molten slag 27 and a molten metal 28 due to a difference in specific gravity, accumulated in a layered manner at the bottom of the furnace, and discharged by overflow.

かかるプラズマ式溶融炉20では、円滑で適正な運転を行なうために各種計測器を具備し、これにより取得した計測値に基づいて運転及び炉内監視を行なっている。指標とされる計測項目には、主として炉内温度、耐火壁温度、スラグ温度、炉内圧力、スラグ溶融状況及びアーク火炎状況(画像認識)等が挙げられる。
本実施例では、これらのうち非接触で計測可能な項目を対象とする。炉壁21に炉内外を貫通する計測用開口22を形成し、炉外側に前記計測項目を検出する計測装置10を設置している。該計測装置10は各種計測を行なう非接触計測器11を具備し、該計測器11は例えば、炉内から発せられる放射赤外線を検出し、該検出した赤外線量に基づき温度を算出する放射温度計や、受光した放射赤外線を分析して画像変換する長波長赤外カメラ等である。尚、本実施例における計測とは、赤外カメラ等により画像を取得する場合を含む。
そして、これら計測装置10の出力に基づき被溶融物の投入量、スラグの出滓量、直流電源電圧値、アーク長等を制御して好適な運転状態となるようにする。
The plasma melting furnace 20 includes various measuring instruments for smooth and proper operation, and performs operation and in-furnace monitoring based on the measured values obtained thereby. The measurement items used as indices include furnace temperature, fire wall temperature, slag temperature, furnace pressure, slag melting condition, arc flame condition (image recognition), and the like.
In this embodiment, items that can be measured in a non-contact manner are targeted. A measurement opening 22 that penetrates the inside and outside of the furnace is formed in the furnace wall 21, and the measuring device 10 that detects the measurement item is installed outside the furnace. The measuring device 10 includes a non-contact measuring device 11 that performs various measurements. The measuring device 11 detects, for example, radiant infrared rays emitted from the furnace and calculates a temperature based on the detected amount of infrared rays. Or a long-wavelength infrared camera that analyzes received infrared radiation and converts the image. In addition, the measurement in a present Example includes the case where an image is acquired with an infrared camera etc.
Then, based on the output of these measuring devices 10, the amount of molten material input, the amount of slag output, the DC power supply voltage value, the arc length, etc. are controlled so as to achieve a suitable operating state.

炉内23は前記プラズマアーク26により約1100℃以上の高温雰囲気に維持されており、溶融された被溶融物から発生した低沸点のナトリウム、カリウム等の塩化物や重金属類を含む揮散物や煤塵等31が浮遊した状態となっており、これらの塩化物等が炉壁で冷却されて付着物30として炉壁に堆積する。特に、開口部22近傍は炉外と連通しているため温度降下が著しく、溶融付着物30が開口部付近まで流下すると付着物が冷却されて固化し、開口部22を狭小化、閉塞してしまい、非接触計測器11の視野が欠けたり、該計測器11のレンズ等に汚れが付着して正確な計測ができなくなる惧れがある。   The furnace 23 is maintained in a high temperature atmosphere of about 1100 ° C. or more by the plasma arc 26, and volatilized substances and dust containing chlorides and heavy metals such as low boiling point sodium and potassium generated from the molten material to be melted. Etc. 31 are in a floating state, and these chlorides and the like are cooled by the furnace wall and deposited as deposits 30 on the furnace wall. In particular, since the temperature near the opening 22 communicates with the outside of the furnace, the temperature drop is significant. When the molten deposit 30 flows down to the vicinity of the opening, the deposit is cooled and solidified, narrowing and closing the opening 22. Therefore, there is a possibility that the field of view of the non-contact measuring instrument 11 is lost, or dirt is attached to the lens of the measuring instrument 11 and accurate measurement cannot be performed.

そこで、本実施例では図1及び図2に示す炉内計測装置10を炉壁21に設置して正確な計測を行なうようにしている。図1は本発明の実施例に係る計測時の炉内計測装置の側面断面図で、図2は清掃時の炉内計測装置の側面断面図である。本実施例では一例として赤外線を利用しているが、これに限定するものではなく他にもマイクロ波等のように適宜好適な光を利用する。
図1及び図2において、本実施例に係る炉内計測装置10の主要構成は、非接触計測器11と、金属ミラー12と、赤外窓13と、該赤外窓13をシールするパージガス供給手段15とから構成される。
Therefore, in this embodiment, the in-furnace measuring apparatus 10 shown in FIGS. 1 and 2 is installed on the furnace wall 21 to perform accurate measurement. FIG. 1 is a side sectional view of an in-furnace measuring apparatus at the time of measurement according to an embodiment of the present invention, and FIG. 2 is a side sectional view of the in-furnace measuring apparatus at the time of cleaning. In this embodiment, infrared light is used as an example, but the present invention is not limited to this, and other suitable light such as microwaves is also used.
1 and 2, the main configuration of the in-furnace measuring apparatus 10 according to the present embodiment includes a non-contact measuring instrument 11, a metal mirror 12, an infrared window 13, and a purge gas supply that seals the infrared window 13. And means 15.

前記計測用開口22の同軸上には炉外に延設する第1の筒状経路100が設けられ、さらに炉外で該筒状経路100との交差部を有する第2の筒状経路200が設けられている。これらの筒状経路100、200は何れも外部から密閉され、炉内ガス、煤塵等が炉外に漏出しない構成としている。
前記非接触計測器11は、前記第2の経路200の上方端部に設けられ、赤外線を受光して各種計測を行なう放射温度計、長波長赤外カメラ等を用いることができる。
A first cylindrical path 100 extending outside the furnace is provided on the same axis as the measurement opening 22, and a second cylindrical path 200 having an intersection with the cylindrical path 100 outside the furnace is further provided. Is provided. Both of these cylindrical paths 100 and 200 are sealed from the outside so that the gas in the furnace, dust, etc. do not leak out of the furnace.
The non-contact measuring instrument 11 may be a radiation thermometer, a long wavelength infrared camera, or the like that is provided at the upper end of the second path 200 and receives infrared rays and performs various measurements.

前記金属ミラー12は前記計測用開口22に対面するごとく前記交差部に所定角度で設置され、前記計測用開口22から前記筒状経路100を介して伝達される放射光を該ミラー12で屈曲させ、前記非接触計測器11に伝達するようになっている。該金属ミラー12は、前記第2の筒状経路200上をスライド可能に構成され、計測時には交差部に位置し、清掃時には交差部より上方に退避するようにする。
本実施例のように赤外線を利用する場合には赤外線の拡散を最小限に抑えることができる金属製のミラーを用い、非接触計測器11での受光率を向上させることが好ましい。尚、本実施例では前記ミラー12を金属製材料で形成したが、他にも石英ガラス等を用いることができる。
The metal mirror 12 is installed at a predetermined angle at the intersection so as to face the measurement opening 22, and radiated light transmitted from the measurement opening 22 through the cylindrical path 100 is bent by the mirror 12. The non-contact measuring instrument 11 is transmitted. The metal mirror 12 is configured to be slidable on the second cylindrical path 200, and is positioned at the intersection during measurement, and retracts upward from the intersection during cleaning.
When using infrared rays as in the present embodiment, it is preferable to improve the light receiving rate of the non-contact measuring instrument 11 by using a metal mirror that can minimize the diffusion of infrared rays. In this embodiment, the mirror 12 is made of a metal material, but quartz glass or the like can also be used.

また、前記赤外窓13は、前記計測用開口22から前記金属ミラー12に向かう入射経路上に該金属ミラー12と対面させて配設される。該赤外窓13はZnSeやGe等の赤外線透過率の高い材料を用いることが好適である。前記金属ミラー12と同様に、該赤外窓13もスライド可能に構成され、計測時には交差部に位置し、清掃時には前記第2の筒状経路200上を交差部より上方に退避するようにする。
前記金属ミラー12と前記赤外窓13は一体化して光屈折ユニットとしても良く、清掃時には一体的に上方に退避させる。このとき、該光屈折ユニットの下部にシール手段14を設けることが好適で、清掃時に前記第1の経路100と光屈折ユニットとを隔絶して、付着物の滓により該ユニットが汚染されることを防止する。
The infrared window 13 is disposed on the incident path from the measurement opening 22 toward the metal mirror 12 so as to face the metal mirror 12. The infrared window 13 is preferably made of a material having high infrared transmittance such as ZnSe or Ge. Similar to the metal mirror 12, the infrared window 13 is also configured to be slidable, and is positioned at the intersection during measurement, and retracts above the second cylindrical path 200 above the intersection during cleaning. .
The metal mirror 12 and the infrared window 13 may be integrated to form a light refraction unit, and are retracted upward together during cleaning. At this time, it is preferable to provide the sealing means 14 at the lower part of the light refraction unit, so that the first path 100 and the light refraction unit are isolated at the time of cleaning, and the unit is contaminated by fouling. To prevent.

前記パージガス供給手段15は前記光入射路の周囲に配置され、前記赤外窓13の炉側窓面に向けてパージガス16を噴出するノズル15aを有する。該ノズル15aは、前記第1の筒状経路100の周囲に設けられたフランジ部に貯留されたパージガスを噴出する構成となっており、ノズル開口は前記炉側窓面に向けられている。このように、炉内に連通する炉側窓面にパージガスを噴出してシールすることにより、赤外窓13が汚れることがなく、さらに前記ミラー12は該赤外窓13により遮蔽されているため該ミラー12に汚れが付着することも防止でき、前記放射温度計11における赤外線受光率が向上し、正確な計測が可能となる。   The purge gas supply means 15 has a nozzle 15 a that is disposed around the light incident path and ejects the purge gas 16 toward the furnace side window surface of the infrared window 13. The nozzle 15a is configured to eject a purge gas stored in a flange portion provided around the first cylindrical path 100, and the nozzle opening is directed to the furnace-side window surface. In this way, the purge window is ejected and sealed on the furnace side window surface communicating with the inside of the furnace so that the infrared window 13 is not contaminated and the mirror 12 is shielded by the infrared window 13. It is possible to prevent dirt from adhering to the mirror 12, and the infrared light receiving rate in the radiation thermometer 11 is improved, thereby enabling accurate measurement.

さらに本実施例では、前記計測用開口22に垂下した付着物30を突き落とし除去する清掃用ロッド17を備えた構成とすることもできる。該清掃用ロッド17は前記第1の筒状経路100の炉外側端部から挿入され、該第1の筒状経路100上を往復動可能に構成され、計測用開口22に垂下した付着物30を該ロッド17により突き落とすようになっている。
このとき、前記第2の筒状経路200の下方には付着物滓収納部18を設けている。これは、前記清掃用ロッド17の往復動により前記計測用開口22及び前記第1の筒状経路100の内面に固着した付着物が擦り落とされ、該経路100内に堆積してロッドの往復動を阻害するため、前記付着物滓収納部18を設けることにより、付着物滓19が該経路100より取り除かれ、清掃装置の故障等を防止することができる。
また、清掃時に前記付着物滓収納部18の上方に清掃用ロッド17を移動させ、ここで該清掃用ロッド17を回転させることにより、付着物滓19が付着物滓収納部18に落下して集積されるため、第2の筒状経路200内が汚れることがなく有効である。
Furthermore, in the present embodiment, the cleaning rod 17 for dropping and removing the deposit 30 hanging from the measurement opening 22 can also be provided. The cleaning rod 17 is inserted from the furnace outer end of the first cylindrical path 100, is configured to be able to reciprocate on the first cylindrical path 100, and deposits 30 hanging from the measurement opening 22. Is pushed down by the rod 17.
At this time, the deposit bag storage part 18 is provided below the second cylindrical path 200. This is because the adhering matter fixed to the measurement opening 22 and the inner surface of the first cylindrical path 100 is scraped off by the reciprocating movement of the cleaning rod 17 and is accumulated in the path 100 to reciprocate the rod. Therefore, by providing the deposit bag storage part 18, the deposit bag 19 is removed from the path 100, and a failure of the cleaning device can be prevented.
Further, during cleaning, the cleaning rod 17 is moved above the deposit bag storage unit 18 and the cleaning rod 17 is rotated here, whereby the deposit rod 19 falls into the deposit bag storage unit 18. Since they are accumulated, the inside of the second cylindrical path 200 is not contaminated and effective.

尚、前記清掃用ロッド17に回転機構をもたせ、回転しながら往復動するようにしても良い。これにより、硬固な付着物も確実に除去できる。また、前記清掃用ロッド17に、軸の途中で屈曲する機構をもたせることもできる。これは径が異なる計測用開口22若しくは第1の筒状経路100に対して好適に適用できる。前記回転機構と屈曲機構とを同時に具備することにより、往復動して径が異なる位置に到達した時に軸を曲げ、回転しながら内面の付着物を清掃することにより、前記内面の付着物を確実に除去することができる。
また、別の方法として、前記清掃用ロッド17を角度をもって挿入し、往復動した後に次の位置に移動させるようにしても良い。
The cleaning rod 17 may be provided with a rotation mechanism so as to reciprocate while rotating. Thereby, a hard deposit can also be removed reliably. In addition, the cleaning rod 17 can be provided with a mechanism that bends in the middle of the shaft. This can be suitably applied to the measurement opening 22 or the first cylindrical path 100 having different diameters. By providing both the rotating mechanism and the bending mechanism at the same time, the shaft is bent when the reciprocating motion reaches a position where the diameters are different, and the deposit on the inner surface is reliably cleaned by rotating and rotating the shaft. Can be removed.
As another method, the cleaning rod 17 may be inserted at an angle and moved to the next position after reciprocating.

ここで、本実施例における作用を説明すると、炉内計測時には、図1に示されるように前記清掃用ロッド17を後方に退避させ、前記金属ミラー12及び赤外窓13からなる光屈折ユニットを交差部に移動して、炉内から発せられる放射赤外線を、該赤外窓13を透過させて金属ミラー12により屈曲させ、光経路Aにより非接触計測器11にて検出する。そして、検出された赤外線量等に基づき、炉内温度を算出したり、画像変換して炉内状況を視認可能とする。
一方、清掃時には前記光屈折ユニットを上方に退避させ、前記清掃用ロッド17を適宜回転させながら往復動し、前記計測用開口22に垂下した付着物30及び該開口22及び第1の筒状経路100の内面の付着物を除去、清掃する。除去された付着物滓19は、前記付着物滓収納部18に落下して集められ、廃棄される。
Here, the operation of the present embodiment will be described. At the time of in-furnace measurement, the cleaning rod 17 is retracted backward as shown in FIG. 1, and the photorefractive unit including the metal mirror 12 and the infrared window 13 is moved. The infrared rays emitted from the furnace after moving to the intersection are transmitted through the infrared window 13, bent by the metal mirror 12, and detected by the non-contact measuring instrument 11 through the optical path A. Then, based on the detected amount of infrared rays or the like, the temperature in the furnace is calculated or the image is converted so that the state in the furnace can be visually recognized.
On the other hand, during cleaning, the photorefractive unit is retracted upward, and the cleaning rod 17 is reciprocated while appropriately rotating, and the deposit 30 hanging from the measurement opening 22 and the opening 22 and the first cylindrical path The deposit on the inner surface of 100 is removed and cleaned. The removed deposits 19 are collected by dropping into the deposits storage unit 18 and discarded.

このように、前記金属ミラー12を前記赤外窓13によりシールして炉内雰囲気から隔離し、さらに前記計測用開口22側の面にはパージガスを供給する構成としたため、前記金属ミラー12及び赤外窓13に対して炉内から流れてくる煤塵や揮散物等の付着による汚れを防止し、計測視野を十分に確保することができ、正確な計測が可能となる。
また、前記光屈折ユニットを軸線より上方に移動することで、清掃時に該光屈折ユニットが炉内と通じて汚れることがない。さらに、前記付着物滓収納部18を設けることにより、清掃時に発生した付着物滓のために清掃手段の円滑な駆動が妨げられたり、清掃手段が故障したりすることが防止できる。
As described above, the metal mirror 12 is sealed by the infrared window 13 to be isolated from the furnace atmosphere, and the purge gas is supplied to the surface on the measurement opening 22 side. The outer window 13 can be prevented from being contaminated by dust or volatile matter flowing from the inside of the furnace, and a sufficient measurement visual field can be secured, thereby enabling accurate measurement.
Further, by moving the light refracting unit above the axis, the light refracting unit does not become contaminated through the furnace during cleaning. Further, by providing the deposit bag storage unit 18, it is possible to prevent the cleaning unit from being hindered from being prevented from being smoothly driven due to the deposit bag generated at the time of cleaning or from being damaged.

本実施形態において、赤外窓に吹き付けるパージガス量を制御する手段を設けて、赤外窓をパージするとともに、計測用開口をパージするようにしても良く、これにより第1の筒状経路内に侵入する煤塵等の量を低減し、清掃の回数を低減することができる。   In this embodiment, a means for controlling the amount of purge gas blown to the infrared window may be provided so as to purge the infrared window and purge the measurement opening. The amount of dust and the like that enters can be reduced, and the number of cleanings can be reduced.

本発明の実施例に係る計測時の炉内計測装置の側面断面図である。It is side surface sectional drawing of the measuring device in a furnace at the time of the measurement which concerns on the Example of this invention. 本発明の実施例に係る清掃時の炉内計測装置の側面断面図である。It is side surface sectional drawing of the measuring device in a furnace at the time of the cleaning which concerns on the Example of this invention. 本発明の実施例に係る炉内計測装置を備えた溶融炉の全体構成図である。1 is an overall configuration diagram of a melting furnace including an in-furnace measuring device according to an embodiment of the present invention.

符号の説明Explanation of symbols

10 計測装置
11 非接触計測器
12 金属ミラー
13 赤外窓
14 シール手段
15a ノズル
16 パージガス
17 清掃用ロッド
18 付着物滓収納部
19 付着物滓
21 炉壁
22 計測用開口
23 炉内
30 付着物
DESCRIPTION OF SYMBOLS 10 Measuring apparatus 11 Non-contact measuring device 12 Metal mirror 13 Infrared window 14 Sealing means 15a Nozzle 16 Purge gas 17 Cleaning rod 18 Deposited soot storage part 19 Deposited soot 21 Furnace wall 22 Measurement opening 23 Furnace 30 Deposited

Claims (6)

炉壁に形成された計測用開口を通り、該開口の軸線上炉外側に配設された屈折手段により屈折された光軸を介して非接触計測器により各種計測を行なう炉内計測装置において、
前記計測用開口から前記屈折手段に向かう光入射路上に該屈折手段と対面するごとく配置した光透過窓と、該光透過窓の前記開口側の面にパージガスを供給するパージガス供給手段とを設け、該パージガス供給手段を、前記光入射路の周囲に配置したことを特徴とする炉内計測装置。
In the in-furnace measuring device that performs various measurements with a non-contact measuring instrument through an optical axis that is refracted by a refracting means disposed on the outside of the furnace on the axis of the opening through the opening for measurement formed in the furnace wall,
A light transmission window disposed so as to face the refraction means on a light incident path from the measurement opening toward the refraction means, and a purge gas supply means for supplying a purge gas to the opening-side surface of the light transmission window; An in-furnace measuring apparatus characterized in that the purge gas supply means is disposed around the light incident path.
前記屈折手段と前記光透過窓を一体化して光屈折ユニットとし、該光屈折ユニットが前記計測用開口の軸線より上方に移動可能な退避手段を有するとともに、前記光屈折ユニットの退避時に、前記計測用開口の清掃により発生した付着物滓を落下させて収納する付着物滓収納部を前記軸線より下方に設けたことを特徴とする請求項1記載の炉内計測装置。   The refraction means and the light transmission window are integrated into a light refraction unit, and the light refraction unit has retreat means that can move above the axis of the measurement opening, and the measurement is performed when the light refraction unit is retracted. The in-furnace measuring device according to claim 1, further comprising a deposit bag storage unit for dropping and storing the deposit bag generated by cleaning the opening for opening. 前記光透過窓を赤外線透過窓材で形成するとともに、前記屈折手段を金属若しくは石英ガラスで形成したことを特徴とする請求項1若しくは2記載の炉内計測装置。   The in-furnace measuring device according to claim 1 or 2, wherein the light transmitting window is formed of an infrared transmitting window material, and the refracting means is formed of metal or quartz glass. 前記非接触計測器を、放射温度計若しくは長波長赤外カメラとしたことを特徴とする請求項1若しくは2記載の炉内計測装置。   The in-furnace measuring apparatus according to claim 1 or 2, wherein the non-contact measuring instrument is a radiation thermometer or a long wavelength infrared camera. 前記光屈折ユニットの下方にシール手段を設け、前記計測用開口の清掃時に、前記光屈折ユニットが清掃域と隔絶されるようにしたことを特徴とする請求項2記載の炉内計測装置。   The in-furnace measuring device according to claim 2, wherein a sealing means is provided below the light refraction unit, and the light refraction unit is isolated from a cleaning area when the measurement opening is cleaned. 請求項1乃至5の何れかに記載の炉内計測装置が溶融炉に設置されていることを特徴とする炉内計測装置。   An in-furnace measuring apparatus, wherein the in-furnace measuring apparatus according to any one of claims 1 to 5 is installed in a melting furnace.
JP2003418516A 2003-12-16 2003-12-16 In-furnace measuring instrument Withdrawn JP2005180973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418516A JP2005180973A (en) 2003-12-16 2003-12-16 In-furnace measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418516A JP2005180973A (en) 2003-12-16 2003-12-16 In-furnace measuring instrument

Publications (1)

Publication Number Publication Date
JP2005180973A true JP2005180973A (en) 2005-07-07

Family

ID=34780717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418516A Withdrawn JP2005180973A (en) 2003-12-16 2003-12-16 In-furnace measuring instrument

Country Status (1)

Country Link
JP (1) JP2005180973A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002150A (en) * 2008-06-23 2010-01-07 Takuma Co Ltd Furnace monitoring device, furnace monitoring method and furnace operation control method using the device and method
KR101058740B1 (en) 2009-05-14 2011-08-24 주식회사 한셀테크 Ignition confirmation window cleaning device and boiler
JP2013036742A (en) * 2011-08-03 2013-02-21 Kobe Steel Ltd Facility monitoring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002150A (en) * 2008-06-23 2010-01-07 Takuma Co Ltd Furnace monitoring device, furnace monitoring method and furnace operation control method using the device and method
KR101058740B1 (en) 2009-05-14 2011-08-24 주식회사 한셀테크 Ignition confirmation window cleaning device and boiler
JP2013036742A (en) * 2011-08-03 2013-02-21 Kobe Steel Ltd Facility monitoring device

Similar Documents

Publication Publication Date Title
US20240059019A1 (en) Optics in three-dimensional printing
JP6632528B2 (en) Apparatus for separately applying solder material deposits
JP5702164B2 (en) Extreme ultraviolet light source device, control method of extreme ultraviolet light source device, and target supply device
US8414281B2 (en) Method and device for producing a 3D object by means of a generative 3D-method
EP3636415B1 (en) Apparatus for additively manufacturing three-dimensional objects
JP2008096433A (en) Immersion lance for analysis of melt and liquid
CN108326449A (en) Laser processing
JP2005180973A (en) In-furnace measuring instrument
JP6068044B2 (en) Target supply device control method and target supply device
CN109421275B (en) Apparatus for manufacturing three-dimensional objects
JPH0933028A (en) Ash melting furnace
US11003085B2 (en) Extreme ultraviolet light generating apparatus
KR102105097B1 (en) Laser protect glass monitoring unit for laser process apparatus
JP7158094B1 (en) Closed space observation device
KR102240095B1 (en) Process monitoring device in deposition welding method
WO2020039612A1 (en) Laser beam emission head and laser machining device using same
JP4188214B2 (en) Exhaust duct monitoring device and monitoring method
JP2007065711A (en) Fire detecting/extinguishing system in flammable material reservoir pit
CN113950614B (en) Method for using shell and processing device
JP5860890B2 (en) Laser cutting method optimized for aerosol volume
JP2010071542A (en) Refuse supplying device
JP7337427B1 (en) Closed space monitoring system
JP2011075226A (en) Piping interior monitoring device and incinerator
IT9020747A1 (en) OVEN BOX WITH TRANSPARENT EXAMINATION PATH
RU2353879C2 (en) Facility for observations of reaction space of high-temperature reactor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306