JP2005180970A - Radar target identification system - Google Patents

Radar target identification system Download PDF

Info

Publication number
JP2005180970A
JP2005180970A JP2003418287A JP2003418287A JP2005180970A JP 2005180970 A JP2005180970 A JP 2005180970A JP 2003418287 A JP2003418287 A JP 2003418287A JP 2003418287 A JP2003418287 A JP 2003418287A JP 2005180970 A JP2005180970 A JP 2005180970A
Authority
JP
Japan
Prior art keywords
signal
band
radar
radar signal
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003418287A
Other languages
Japanese (ja)
Other versions
JP4079084B2 (en
Inventor
Kenji Kawabata
健二 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003418287A priority Critical patent/JP4079084B2/en
Publication of JP2005180970A publication Critical patent/JP2005180970A/en
Application granted granted Critical
Publication of JP4079084B2 publication Critical patent/JP4079084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To identify an object utilizing many singular points (characteristic resonance frequency) by attaining high resolution by widening the frequency band width of the radar signal into an ultra broad band without extinguishing information of secondary response signal of the received radar signal, at the time of widening frequency band of the received radar signal while transmitting the radar signal to the target and receiving the reflected waves from the target, regarding the system for identifying a target to be observated by the radar. <P>SOLUTION: Each of a first and a second radar signal is separated into a primary and a secondary response signal by a threshold value on the time axis and in the primary and the secondary response signals each of the first and the second radar signals are made coherent, and expanded in the band width by linear estimation. The band expanded primary and secondary response signals are incorporated, and the number of response, intensity, and the difference between the distance of the incorporated radar signals are verified with the data base. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レーダ(radar:radio detection and ranging)により観測対象となる目標を識別する装置に係り、特に目標に対してレーダ波を送信し該目標からの反射波を受信し、該受信したレーダ信号の周波数帯域を拡張し高分解能化を図ることで目標の識別を行うレーダ目標識別装置に関する。   The present invention relates to an apparatus for identifying a target to be observed by radar (radar: radio detection and ranging), and in particular, transmits a radar wave to the target, receives a reflected wave from the target, and receives the received radar. The present invention relates to a radar target identification device that identifies a target by expanding a frequency band of a signal to achieve high resolution.

レーダ装置は観測対象となる目標に対してレーダ波を送信し該目標からの反射波を受信し、該受信したレーダ信号を解析し処理することで、目標の有無、目標との距離を導き出しており、送信するレーダ波の帯域幅が距離分解能、位置標定能力に関係している。   The radar device transmits a radar wave to the target to be observed, receives a reflected wave from the target, analyzes and processes the received radar signal, and derives the presence / absence of the target and the distance from the target. Therefore, the bandwidth of the radar wave to be transmitted is related to the distance resolution and the positioning ability.

近年、米国FCC(Federal Communications Commission:連邦通信委員会)がUWB(ultra wideband:超広帯域)の民生利用を制限つきながらも認めたことで、UWBの特徴である極めて短いパルス継続時間により高距離分解能が得られ高精度の位置標定ができることを活かしたレーダへの適用が検討されている(例えば、非特許文献1参照)。   In recent years, the US FCC (Federal Communications Commission) has recognized the limited use of UWB (ultra wideband) for civilian use, but with the extremely short pulse duration characteristic of UWB, high range resolution Therefore, application to radar utilizing the fact that high-accuracy positioning can be performed is being studied (see, for example, Non-Patent Document 1).

また、超広帯域な信号をレーダ波として利用して目標探知する技術として、第1の周波数帯域のレーダ波と第2の周波数帯域のレーダ波を送受信し、それぞれの受信したレーダ信号から帯域拡張したレーダ信号を求める技術が開示されている(例えば、特許文献1参照)。   In addition, as a technology for detecting a target using an ultra-wideband signal as a radar wave, the radar wave of the first frequency band and the radar wave of the second frequency band are transmitted and received, and the band is expanded from each received radar signal. A technique for obtaining a radar signal is disclosed (see, for example, Patent Document 1).

図26は従来技術を説明する機能構成図であり、1は第1の周波数帯域である低い周波数帯域のレーダ波を送受信する低帯域レーダ波送受信手段であり、2は第2の周波数帯域である高い周波数帯域のレーダ波を送受信する高帯域レーダ波送受信手段であり、45は前記のそれぞれの周波数帯域の受信したレーダ信号(1)(2)をそれぞれコヒーレントにするコヒーレント処理手段であり、55は前記のコヒーレントされたレーダ信号(451)(452)をもとに線形予測し第1の周波数帯域と第2の周波数帯域の帯域間の信号を挿入(以降、内挿と記載する。)することで帯域を拡張する帯域拡張手段であり、7は帯域拡張された帯域拡張レーダ信号(55)から目標の識別を行う目標識別処理手段である。なお、図において、同一のものまたは類似するものについては同一の符号を記載する。また( )付き小文字数字は信号を示している。   FIG. 26 is a functional configuration diagram for explaining the prior art, wherein 1 is a low-band radar wave transmitting / receiving unit that transmits and receives radar waves in a low frequency band, which is the first frequency band, and 2 is a second frequency band. 45 is a high-bandwidth radar wave transmitting / receiving means for transmitting and receiving a radar wave in a high frequency band, 45 is a coherent processing means for making the received radar signals (1) and (2) in the respective frequency bands coherent, 55 Linear prediction is performed based on the coherent radar signals (451) and (452), and signals between the first frequency band and the second frequency band are inserted (hereinafter referred to as interpolation). Reference numeral 7 denotes a band extension means for extending the band, and reference numeral 7 denotes a target identification processing means for identifying a target from the band extended radar signal (55) whose band has been extended. In the drawings, the same or similar elements are denoted by the same reference numerals. The lower case numbers with () indicate signals.

図27は従来技術の機能動作を説明する図であり、従来のレーダ目標識別装置について図26、図27を参照して説明する。   FIG. 27 is a diagram for explaining the functional operation of the prior art. A conventional radar target identification apparatus will be described with reference to FIGS. 26 and 27. FIG.

低帯域レーダ送受信手段1と高帯域レーダ波送受信手段2はそれぞれ観測対象となる目標に対して異なる周波数帯域のレーダ波を送信し、該目標からの反射波を受信する。該受信したレーダ信号(1)(2)は図27(a)のようになる。コヒーレント処理手段45はレーダ信号(1)(2)を図27(b)に示すように位相を合わせ相互にコヒーレントになるように処理する。帯域拡張手段55は相互にコヒーレントに処理されたレーダ信号(451)(452)を用いてそれぞれの帯域間の信号を線形予測し、図27(c)に示すように該帯域間に内挿することで超広帯域な帯域拡張レーダ信号(55)を作成する。目標識別処理手段7は帯域拡張レーダ信号(55)から高分解能なレンジプロファイルを作成し、応答の数や強度、応答間の距離差等をデータベース(図示せず)と照合することにより目標識別を行う。
米国特許第5945940号明細書 小林,「レーダにおけるUWB技術について」,電子情報通信学会,MW/WBS共催研究会パネル討論,テーマ「UWBシステム」OHP資料,2003年5月22日
The low-band radar transmission / reception unit 1 and the high-band radar wave transmission / reception unit 2 transmit radar waves in different frequency bands to the target to be observed and receive the reflected wave from the target. The received radar signals (1) and (2) are as shown in FIG. The coherent processing means 45 processes the radar signals (1) and (2) so that they are phase-coherent with each other as shown in FIG. The band expanding means 55 linearly predicts signals between the respective bands using the radar signals (451) and (452) processed coherently with each other, and interpolates between the bands as shown in FIG. 27 (c). In this way, an ultra-wide band extended radar signal (55) is created. The target identification processing means 7 creates a high-resolution range profile from the band extended radar signal (55), and compares the number and intensity of responses, the difference in distance between responses, etc. with a database (not shown) to identify the target. Do.
US Pat. No. 5,945,940 Kobayashi, “About UWB technology in radar”, IEICE, MW / WBS co-sponsored panel discussion, theme “UWB system” OHP material, May 22, 2003

図28は従来技術の課題を説明する図(1)であり、送信されるレーダ波が目標にて反射して戻ってくる受信波を示している。該受信波には、レーダ波が目標にて反射する際に目標に直接当たって反射する波(正規反射波)、目標の縁に当たって回折し、回折を繰り返し目標を回り込んで戻ってくる波(クリーピング波)がある。よって、極めて短いパルス(インパルス)信号であるレーダ波を目標に対して送出した場合、受信波(受信信号)は正規反射波による一次応答波(一次応答信号)とクリーピング波による二次応答波(二次応答信号)から構成される。該正規反射波は目標に直接当たって反射するため目標の外観に依存するが、クリーピング波は目標を周回するため目標の外観には依存せずに目標の形状や材質により固有なものとなる。そのため、クリーピング波による二次応答信号には目標の特異点(固有共振周波数)が含まれており、該特異点を抽出しデータベースと照合することにより目標識別が可能となる。更に、受信したレーダ波を広帯域化することにより、目標のより多くの特異点が含まれた応答信号を得る事ができ、該応答信号から該特異点を抽出しデータベースと照合することによってより高精度な目標識別が可能となる。   FIG. 28 is a diagram (1) for explaining the problems of the prior art, and shows a received wave in which a transmitted radar wave is reflected by a target and returned. The received wave includes a wave (regular reflected wave) that directly reflects and reflects the target when the radar wave is reflected by the target, a wave that diffracts by hitting the edge of the target, repeatedly diffracts around the target, and returns ( Creeping waves). Therefore, when a radar wave, which is an extremely short pulse (impulse) signal, is transmitted to the target, the received wave (received signal) is a primary response wave (primary response signal) by a regular reflected wave and a secondary response wave by a creeping wave. (Secondary response signal). The regular reflected wave is reflected directly on the target and therefore depends on the target appearance. However, since the creeping wave circulates around the target, it does not depend on the target appearance and is specific to the target shape and material. . Therefore, the secondary response signal by the creeping wave includes a target singular point (natural resonance frequency), and the target can be identified by extracting the singular point and collating it with a database. Furthermore, by broadening the received radar wave, it is possible to obtain a response signal that includes more singular points of the target, and by extracting the singular points from the response signal and collating them with a database, Accurate target identification is possible.

図29は従来技術の課題を説明する図(2)であり、目標がRCS(radar cross section:レーダ散乱断面積)低減を図っていない、つまり目標形状がステルス(stealth)化していない場合(a)とRCS低減を図るために目標形状がステルス化している場合(b)の一次応答信号、二次応答信号を示したものである。RCS低減を図るために機体形状がステルス化された目標の場合、図29(b)の一次応答信号に示されているように目標の有無、目標との距離を探る目標探知が困難となる。一方、二次応答信号は機体形状がステルス化された目標の場合にも取得可能であるため、二次応答信号をも取得することは目標識別に有効な手段となる。   FIG. 29 is a diagram (2) for explaining the problems of the prior art. In the case where the target does not reduce the RCS (radar cross section), that is, the target shape is not stealth (a ) And the case where the target shape is stealthed in order to reduce the RCS, the primary response signal and the secondary response signal are shown in (b). In the case of a target whose body shape is made stealth in order to reduce the RCS, it is difficult to detect the target and search for the distance from the target as shown in the primary response signal in FIG. On the other hand, since the secondary response signal can be acquired even in the case of a target whose body shape is stealth, acquiring the secondary response signal is an effective means for target identification.

しかしながら、目標からの反射波全体(一次応答信号と二次応答信号を含んだ反射波)を使用した帯域拡張では、反射波のうち受信強度の小さい二次応答信号は切り捨てられてしまい、クリーピング波の成分である二次応答信号に含まれる目標の形状や材質に依存した特異点の抽出は困難となり、高精度な目標識別は期待できなくなる。   However, in the band expansion using the entire reflected wave from the target (the reflected wave including the primary response signal and the secondary response signal), the secondary response signal with low reception intensity is discarded from the reflected wave, and creeping is performed. It becomes difficult to extract a singular point depending on the shape and material of the target included in the secondary response signal that is a wave component, and high-precision target identification cannot be expected.

以上記載したように、第1の周波数帯域のレーダ信号と第2の周波数帯域のレーダ信号により帯域を拡張する従来の帯域拡張では、該レーダ信号のクリーピング波の成分である二次応答信号に含まれる目標の形状や材質に依存した特異点の抽出は困難となり、高精度な目標識別は期待できなくなる。   As described above, in the conventional band expansion in which the band is expanded by the radar signal of the first frequency band and the radar signal of the second frequency band, the secondary response signal that is a component of the creeping wave of the radar signal is applied. Extraction of singular points depending on the shape and material of the target included is difficult, and high-precision target identification cannot be expected.

本発明は、レーダにより観測対象となる目標を識別する装置に係り、特に目標に対してレーダ波を送信し該目標からの反射波を受信し、該受信したレーダ信号の周波数帯域を拡張する際に受信したレーダ信号の二次応答信号の情報を消滅させることなくレーダ信号の周波数帯域を超広帯域化させ、高分解能化を図ることにより目標のより多くの特異点(固有共振周波数)を利用した目標の識別を行うレーダ目標識別装置の提供を目的とする。   The present invention relates to an apparatus for identifying a target to be observed by a radar, particularly when a radar wave is transmitted to a target, a reflected wave from the target is received, and a frequency band of the received radar signal is expanded. The frequency response of the radar signal was made ultra-wide without extinguishing the information of the secondary response signal of the received radar signal, and more singular points (natural resonance frequencies) of the target were used by increasing the resolution. An object of the present invention is to provide a radar target identification device for identifying a target.

本発明は、観測対象となる目標に対してレーダ波を送信し該目標からの反射波を受信し、該受信したレーダ信号の周波数帯域を拡張し高分解能化を図ることで目標の識別を行うレーダ目標識別装置において、
第1の周波数帯域のレーダ波を送信し該反射波を受信する第1のレーダ波送受信手段と、第2の周波数帯域のレーダ波を送信し該反射波を受信する第2のレーダ波送受信手段と、前記の第1のレーダ波送受信手段の受信する第1のレーダ信号と第2のレーダ波送受信手段の受信する第2のレーダ信号のそれぞれについて、時間軸上の閾値を設けて目標からの反射波の一次応答と二次応答の信号に分離するレーダ信号分離手段と、前記の一次応答信号と二次応答信号のそれぞれについて、前記の第1のレーダ信号の位相を前記の第2のレーダ信号の位相に合わせるコヒーレント処理手段と、前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を線形予測により内挿することでレーダ信号の周波数帯域を拡張する帯域拡張手段と、前記の周波数帯域が拡張された一次応答のレーダ信号と二次応答のレーダ信号の振幅を時間軸上で加算して結合する帯域拡張レーダ信号結合手段と、前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該一次応答信号と二次応答信号における応答の数や強度、該応答間の距離差をデータベースとして照合することにより目標識別を行なう目標識別処理手段とを備えることを特徴とするレーダ目標識別装置である。
The present invention identifies a target by transmitting a radar wave to a target to be observed, receiving a reflected wave from the target, and expanding the frequency band of the received radar signal to increase the resolution. In the radar target identification device,
First radar wave transmitting / receiving means for transmitting a radar wave in the first frequency band and receiving the reflected wave, and second radar wave transmitting / receiving means for transmitting a radar wave in the second frequency band and receiving the reflected wave For each of the first radar signal received by the first radar wave transmitting / receiving unit and the second radar signal received by the second radar wave transmitting / receiving unit, a threshold on the time axis is provided to Radar signal separating means for separating the reflected wave into primary response and secondary response signals, and the phase of the first radar signal for each of the primary response signal and the secondary response signal, and the second radar. Coherent processing means for matching the phase of the signal, band extension means for extending the frequency band of the radar signal by interpolating the signal between the first frequency band and the second frequency band by linear prediction, Above A band extended radar signal combining means for adding and combining the amplitudes of the primary response radar signal and the secondary response radar signal having an extended wave number band on the time axis, and a radar signal by the band extended radar signal combining means. The target profile is identified by creating a range profile including the primary response component and the secondary response component, and collating the number and intensity of responses in the primary response signal and the secondary response signal, and the distance difference between the responses as a database. A radar target identification device comprising: target identification processing means for performing.

本発明によれば、レーダ信号について時間軸上の閾値を設けて目標からの反射波の一次応答と二次応答の信号に分離し、一次応答信号と二次応答信号それぞれに対して帯域拡張処理を行うため、二次応答信号に含まれる目標の形状や材質に依存した特異点の抽出が可能となり、レーダ信号の周波数帯域を超広帯域化させ、高分解能化を図ることにより目標のより多くの特異点(固有共振周波数)を利用した目標の識別を行うレーダ目標識別装置を提供することが可能となる。   According to the present invention, a threshold on the time axis is provided for a radar signal to separate the reflected wave from the target into a primary response signal and a secondary response signal, and band extension processing is performed on each of the primary response signal and the secondary response signal. Therefore, it is possible to extract singular points that depend on the shape and material of the target included in the secondary response signal. It is possible to provide a radar target identification device that performs target identification using a singular point (natural resonance frequency).

本発明のレーダ目標識別装置は、第1のレーダ波送受信手段にて受信した第1のレーダ信号と第2のレーダ波送受信手段にて受信した第2のレーダ信号のそれぞれについて、時間軸上の閾値を設けて目標からの反射波の一次応答と二次応答の信号に分離し、第1のレーダ信号と第2のレーダ信号のそれぞれの一次応答信号と二次応答信号のそれぞれに対して帯域拡張処理を行い、一次応答信号と二次応答信号を結合することにより、目標固有の形状や材質に依存した情報が含まれる二次応答信号を消滅させることなくデータベースとの多くの情報の照合により、高精度な目標識別が可能となる。また、目標に対する距離分解能の改善も可能となる。   The radar target identification apparatus according to the present invention provides a time axis for each of the first radar signal received by the first radar wave transmission / reception means and the second radar signal received by the second radar wave transmission / reception means. A threshold is provided to separate a primary response signal and a secondary response signal of a reflected wave from the target, and a band for each of the primary response signal and the secondary response signal of each of the first radar signal and the second radar signal. By performing extended processing and combining the primary response signal and the secondary response signal, it is possible to collate a lot of information with the database without erasing the secondary response signal that contains information dependent on the shape and material specific to the target. Highly accurate target identification is possible. Further, the distance resolution with respect to the target can be improved.

以降、図面を併用して本発明の詳細を説明する。ここでは、第1の周波数帯域を低帯域、第2の周波数帯域を高帯域と表現して説明する。   Hereinafter, the details of the present invention will be described with reference to the drawings. Here, the first frequency band is expressed as a low band, and the second frequency band is expressed as a high band.

図1は本発明に係る機能構成図(1)であり、1は低帯域レーダ波送受信手段、2は高帯域レーダ波送受信手段、3a,3bはレーダ信号分離手段、4a,4bはコヒーレント処理手段、5a,5bは帯域拡張手段、6は帯域拡張レーダ信号結合手段、7は目標識別処理手段である。   FIG. 1 is a functional block diagram (1) according to the present invention, wherein 1 is a low-band radar wave transmission / reception means, 2 is a high-band radar wave transmission / reception means, 3a and 3b are radar signal separation means, and 4a and 4b are coherent processing means. Reference numerals 5a and 5b denote band extension means, 6 denotes a band extension radar signal combining means, and 7 denotes a target identification processing means.

図2は本発明に係る機能動作を説明する図(1)である。   FIG. 2 is a diagram (1) for explaining the functional operation according to the present invention.

図3は本発明に係る機能動作を説明する図(2)である。   FIG. 3 is a diagram (2) for explaining the functional operation according to the present invention.

図4は本発明に係る機能動作を説明する図(3)である。   FIG. 4 is a diagram (3) for explaining the functional operation according to the present invention.

図5は本発明に係る機能動作を説明する図(4)である。   FIG. 5 is a diagram (4) for explaining the functional operation according to the present invention.

図1において、低帯域レーダ波送受信手段1は観測対象となる目標に対して低い周波数帯のレーダ波を送出し、該目標からの反射波を受信して低帯域レーダ信号(1)に変換する。また、高帯域レーダ波送受信手段2は観測対象となる目標に対して高い周波数帯のレーダ波を送出し、該目標からの反射波を受信して高帯域レーダ信号(2)に変換する。   In FIG. 1, a low-band radar wave transmission / reception means 1 transmits a low-frequency band radar wave to a target to be observed, receives a reflected wave from the target, and converts it to a low-band radar signal (1). . The high-band radar wave transmitting / receiving means 2 transmits a high-frequency band radar wave to the target to be observed, receives the reflected wave from the target, and converts it into a high-band radar signal (2).

レーダ信号分離手段3aは低帯域レーダ信号(1)を、図2に示すように、逆フーリエ変換(IFFT)により周波数領域のレーダ信号から時間領域のレーダ信号に変換し((a)(b)に示す)、後で説明する時間閾値により、正規反射波成分である一次応答信号とクリーピング波成分である二次応答信号に分離し((b1)(b2)に示す)、フーリエ変換(FFT)により周波数領域の一次応答信号(3a1)、二次応答信号(3a2)に変換する((c1)(c2)に示す)。同様に、レーダ信号分離手段3bは、高帯域レーダ信号(2)を逆フーリエ変換により周波数領域のレーダ信号から時間領域のレーダ信号に変換し、時間閾値により一次応答信号と二次応答信号に分離し、フーリエ変換により周波数領域の一次応答信号(3b1)、二次応答信号(3b2)に変換する。   As shown in FIG. 2, the radar signal separating means 3a converts the low-band radar signal (1) from a frequency domain radar signal to a time domain radar signal by inverse Fourier transform (IFFT) ((a) (b). In accordance with a time threshold described later, a primary response signal that is a normal reflected wave component and a secondary response signal that is a creeping wave component are separated (shown in (b1) and (b2)), and a Fourier transform (FFT) ) Is converted into a primary response signal (3a1) and a secondary response signal (3a2) in the frequency domain (shown in (c1) and (c2)). Similarly, the radar signal separation means 3b converts the high-band radar signal (2) from a frequency domain radar signal to a time domain radar signal by inverse Fourier transform, and separates it into a primary response signal and a secondary response signal by a time threshold. The frequency domain primary response signal (3b1) and secondary response signal (3b2) are converted by Fourier transform.

ここで、該時間閾値は目標の大きさと正規反射波の受信開始時間により設定され、
(時間閾値)=(正規反射波の受信開始時間)+2×(想定する目標の大きさ)/(光速)
となる。
Here, the time threshold is set by the target size and the reception start time of the regular reflected wave,
(Time threshold) = (Regular reflected wave reception start time) + 2 × (Assumed target size) / (Speed of light)
It becomes.

コヒーレント処理手段4aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)において、図3に示すように、低帯域レーダ信号の位相を高帯域レーダ信号の位相に合わせる((d1)(d2)(e)に示す)。同様に、コヒーレント処理手段4bは低帯域レーダ信号の二次応答信号(3a2)を高帯域レーダ信号の二次応答信号(3b2)の位相に合わせる。   As shown in FIG. 3, the coherent processing means 4a uses the primary response signal (3a1) of the low-band radar signal and the primary response signal (3b1) of the high-band radar signal to change the phase of the low-band radar signal to that of the high-band radar signal. Match the phase (shown in (d1) (d2) (e)). Similarly, the coherent processing means 4b matches the secondary response signal (3a2) of the low-band radar signal with the phase of the secondary response signal (3b2) of the high-band radar signal.

帯域拡張手段5aは、コヒーレントされた低帯域レーダ信号の一次応答信号(4a1)と高帯域レーダ信号の一次応答信号(4a2)に、図3に示すように、低帯域と高帯域の帯域間の信号を線形予測により低帯域レーダ信号で内挿する((e)(f)に示す)ことで広帯域化された一次応答の帯域拡張レーダ信号(5a)を作成する。同様に、帯域拡張手段5bはコヒーレントされた低帯域レーダ信号の二次応答信号(4b1)と高帯域レーダ信号の二次応答信号(4b2)に、低帯域と高帯域の帯域間の信号を線形予測により低帯域レーダ信号で内挿することで広帯域化された二次応答の帯域拡張レーダ信号(5b)を作成する。   As shown in FIG. 3, the band extending means 5a is configured to convert the primary response signal (4a1) of the coherent low band radar signal and the primary response signal (4a2) of the high band radar signal between the low band and the high band. By interpolating the signal with a low-band radar signal by linear prediction (shown in (e) and (f)), a band-expanded radar signal (5a) having a primary response with a wide band is created. Similarly, the band extension means 5b linearly converts the signal between the low band and the high band into a secondary response signal (4b1) of the coherent low band radar signal and a secondary response signal (4b2) of the high band radar signal. A wide band extended radar signal (5b) with a secondary response is generated by interpolation with a low-band radar signal by prediction.

帯域拡張レーダ信号結合手段6は、一次応答の帯域拡張レーダ信号(5a)を図4に示すように、周波数領域のレーダ信号から時間領域のレーダ信号に変換する((g1)(h1)に示す)。同様に、二次応答の帯域拡張レーダ信号(5b)を周波数領域のレーダ信号から時間領域のレーダ信号に変換する((g2)(h2)に示す)。そして、一次応答の帯域拡張レーダ信号と二次応答の帯域拡張レーダ信号の時間スケールを一致させて振幅加算することで結合させ((h1)(h2)(i)に示す)、フーリエ変換(FFT)により周波数領域の結合帯域拡張レーダ信号(6)に変換する((i)(j)に示す)。よって、結合帯域拡張レーダ信号(6)には、正規反射波による一次応答成分とクリーピング波による二次応答成分の両方の成分を含んだ超広帯域化されたレーダ信号となる。   The band extension radar signal combining means 6 converts the primary response band extension radar signal (5a) from a frequency domain radar signal to a time domain radar signal as shown in FIG. 4 (shown in (g1) and (h1)). ). Similarly, the secondary response band extension radar signal (5b) is converted from a frequency domain radar signal to a time domain radar signal (shown in (g2) and (h2)). Then, the time scales of the band extension radar signal of the primary response and the band extension radar signal of the secondary response are matched and combined by adding the amplitude (shown in (h1) (h2) (i)), and Fourier transform (FFT) ) To convert the frequency band into a combined band extended radar signal (6) (shown in (i) and (j)). Therefore, the combined-band extended radar signal (6) is a radar signal with an ultra-wideband that includes both the primary response component of the regular reflected wave and the secondary response component of the creeping wave.

目標識別処理手段7は、図5に示すように、結合帯域拡張レーダ信号(6)を逆フーリエ変換(IFFT)により時間領域に変換し超高分解レンジプロファイルを作成する((j)(k)に示す)。(k)の横軸は距離を示している。そして、該超高分解レンジプロファイルから一次応答信号と二次応答信号の応答の数量、応答の強度、応答間の距離差を読み取り、データベースと照合する((l)に示す)ことで目標を識別する。   As shown in FIG. 5, the target identification processing means 7 converts the combined band-extended radar signal (6) into the time domain by inverse Fourier transform (IFFT) to create an ultra-high resolution range profile ((j) (k) To show). The horizontal axis of (k) indicates the distance. Then, from the ultra-high resolution range profile, the number of responses of the primary response signal and the secondary response signal, the strength of the response, and the distance difference between the responses are read and collated with the database (shown in (l)) to identify the target To do.

図6は本発明の実施例を説明する図(1)であり、図7は本発明の実施例を説明する図(2)であり、上記の図1〜図5で説明した本発明の機能動作を実施例として説明する。   FIG. 6 is a diagram (1) for explaining an embodiment of the present invention, FIG. 7 is a diagram (2) for explaining an embodiment of the present invention, and the functions of the present invention explained in FIGS. 1 to 5 above. The operation will be described as an example.

低帯域レーダ波送受信手段1より8.0〜8.2GHzの周波数帯域のレーダ波を図6(e)の目標に対して送出する。また、同様に、高帯域レーダ波送受信手段2より8.8〜9.0GHzの周波数帯域のレーダ波を図6(e)の目標に対して送出する。目標からの反射波をそれぞれ受信し変換したレーダ信号は図6(a)に示すようになる。ここで、低帯域レーダ信号と高帯域レーダ信号をフーリエ逆変換(IFFT)して時間領域に変換し、光速(3×108m/s)を乗算することにより図6(b)に示すレンジプロファイルを作成することができる。図6(b)の低帯域レーダ信号と高帯域レーダ信号のレンジプロファイルのピーク値によって、距離20m近傍に目標が存在することが判定できる。しかしながら、低帯域レーダ信号と高帯域レーダ信号はそれぞれ周波数帯域幅が200MHzであるため、距離分解能は、
(3×10)/(200×10×2)=0.75m
となるため詳細な目標情報の取得は困難となる。
The radar wave in the frequency band of 8.0 to 8.2 GHz is transmitted from the low band radar wave transmitting / receiving means 1 to the target shown in FIG. Similarly, a radar wave having a frequency band of 8.8 to 9.0 GHz is transmitted from the high-band radar wave transmitting / receiving unit 2 to the target shown in FIG. A radar signal obtained by receiving and converting each reflected wave from the target is as shown in FIG. Here, the low-band radar signal and the high-band radar signal are converted into the time domain by performing Fourier inverse transform (IFFT), and multiplied by the speed of light (3 × 10 8 m / s) to obtain the range shown in FIG. You can create a profile. Based on the peak value of the range profile of the low-band radar signal and the high-band radar signal in FIG. However, since the low bandwidth radar signal and the high bandwidth radar signal each have a frequency bandwidth of 200 MHz, the distance resolution is
(3 × 10 8 ) / (200 × 10 6 × 2) = 0.75 m
Therefore, it is difficult to obtain detailed target information.

ここで、前記で説明したように低帯域と高帯域の帯域間(空き帯域)のレーダ信号を帯域拡張すると、図6(c)に示すような結合帯域拡張レーダ信号(図1では(6))が得られ、周波数帯域は1GHzとなる。上記と同様に結合帯域拡張レーダ信号のレンジプロファイルを作成すると図6(d)に示すようになり、距離分解能は、
(3×10)/(1×10×2)=0.15m
となるため距離分解能が改善できる。
Here, when the radar signal between the low band and the high band (vacant band) is band-extended as described above, a combined band expansion radar signal ((6) in FIG. 1) is obtained. ) Is obtained, and the frequency band is 1 GHz. When the range profile of the combined band extended radar signal is created in the same manner as described above, the result is as shown in FIG.
(3 × 10 8 ) / (1 × 10 9 × 2) = 0.15 m
Therefore, the distance resolution can be improved.

また、図6(c)に示す広帯域化されたレーダ信号には一次応答信号と二次応答信号が含まれるため、各応答の散乱応答の数、振幅強度、応答間の距離差等の目標の詳細情報の取得が可能となる。該目標情報を図7(g)に示すようにデータベースの目標となる機種毎の目標情報と照合することにより、高精度な目標識別が可能となる。   In addition, since the broadband radar signal shown in FIG. 6C includes a primary response signal and a secondary response signal, the number of scattered responses of each response, the amplitude intensity, a target difference such as a distance difference between responses, and the like. Detailed information can be acquired. As shown in FIG. 7G, the target information is collated with the target information for each model that is the target of the database, thereby enabling highly accurate target identification.

一方、一次応答信号と二次応答信号の分離・結合を行わず、低帯域と高帯域の帯域間の信号を従来の装置で帯域拡張すると、図6(f)に示すようなレンジプロファイルが作成できる。この場合は、二次応答信号に含まれる情報が取得できないため、目標の形状や材質等の目標固有情報がなく、高精度な目標識別は期待できない。   On the other hand, when the signal between the low band and the high band is expanded by the conventional apparatus without separating and combining the primary response signal and the secondary response signal, a range profile as shown in FIG. 6 (f) is created. it can. In this case, since the information included in the secondary response signal cannot be acquired, there is no target specific information such as the target shape and material, and high-precision target identification cannot be expected.

図8は本発明に係る機能動作を説明する図(5)である。   FIG. 8 is a diagram (5) for explaining the functional operation according to the present invention.

実施例1で説明したコヒーレント処理手段4a,4bと帯域拡張手段5a,5bの機能動作が異なるものであり、本実施例では、高帯域レーダ信号の位相を低帯域レーダ信号の位相に合わせ、帯域間の信号を高帯域レーダ信号で内挿する。   The functional operations of the coherent processing means 4a, 4b and the band extending means 5a, 5b described in the first embodiment are different. In this embodiment, the phase of the high-band radar signal is matched with the phase of the low-band radar signal. The signal between is interpolated with a high-bandwidth radar signal.

コヒーレント処理手段4aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)において、図8に示すように、高帯域レーダ信号の位相を低帯域レーダ信号の位相に合わせる((d1)(d2)(e2)に示す)。同様に、コヒーレント処理手段4bは高帯域レーダ信号の二次応答信号(3b2)の位相を低帯域レーダ信号の二次応答信号(3a2)の位相に合わせる。   As shown in FIG. 8, the coherent processing means 4a uses the primary response signal (3a1) of the low-band radar signal and the primary response signal (3b1) of the high-band radar signal to change the phase of the high-band radar signal to that of the low-band radar signal. Match the phase (shown in (d1) (d2) (e2)). Similarly, the coherent processing unit 4b matches the phase of the secondary response signal (3b2) of the high-band radar signal with the phase of the secondary response signal (3a2) of the low-band radar signal.

帯域拡張手段5aは、コヒーレントされた低帯域レーダ信号の一次応答信号(4a1)と高帯域レーダ信号の一次応答信号(4a2)に、図8に示すように、低帯域と高帯域の帯域間の信号を線形予測により高帯域レーダ信号で内挿する((e2)(f2)に示す)ことで広帯域化された一次応答の帯域拡張レーダ信号(5a)を作成する。同様に、帯域拡張手段5bはコヒーレントされた低帯域レーダ信号の二次応答信号(4b1)と高帯域レーダ信号の二次応答信号(4b2)に、低帯域と高帯域の帯域間の信号を線形予測により高帯域レーダ信号で内挿することで広帯域化された二次応答の帯域拡張レーダ信号(5b)を作成する。   As shown in FIG. 8, the band extending means 5a is configured to convert the primary response signal (4a1) of the coherent low band radar signal and the primary response signal (4a2) of the high band radar signal between the low band and the high band. By interpolating the signal with a high-bandwidth radar signal by linear prediction (shown in (e2) and (f2)), a band-expanded radar signal (5a) with a primary response that has been widened is created. Similarly, the band extension means 5b linearly converts the signal between the low band and the high band into a secondary response signal (4b1) of the coherent low band radar signal and a secondary response signal (4b2) of the high band radar signal. By interpolating with a high-bandwidth radar signal by prediction, a broadband extended-band radar signal (5b) having a broadened secondary response is created.

図9は本発明に係る機能動作を説明する図(6)である。   FIG. 9 is a diagram (6) for explaining the functional operation according to the present invention.

実施例1で説明したコヒーレント処理手段4a,4bと帯域拡張手段5a,5bの機能動作が異なるものであり、本実施例では、低帯域レーダ信号と高帯域レーダ信号の位相を任意の位相に合わせ、帯域間の信号を低帯域レーダ信号と高帯域レーダ信号のそれぞれで内挿する。   The functional operations of the coherent processing means 4a and 4b and the band extending means 5a and 5b described in the first embodiment are different. In this embodiment, the phases of the low-band radar signal and the high-band radar signal are adjusted to an arbitrary phase. The inter-band signal is interpolated with each of the low-band radar signal and the high-band radar signal.

コヒーレント処理手段4aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)において、図9に示すように、低帯域レーダ信号の位相と高帯域レーダ信号の位相を任意の位相に合わせる((d1)(d2)(e3)に示す)。同様に、コヒーレント処理手段4bは低帯域レーダ信号の二次応答信号(3a2)と高帯域レーダ信号の二次応答信号(3b2)の位相を任意の位相に合わせる。   As shown in FIG. 9, the coherent processing means 4 a uses the primary response signal (3 a 1) of the low-band radar signal and the primary response signal (3 b 1) of the high-band radar signal to change the phase of the low-band radar signal and the high-band radar signal. The phase is adjusted to an arbitrary phase (shown in (d1), (d2), and (e3)). Similarly, the coherent processing means 4b matches the phase of the secondary response signal (3a2) of the low-band radar signal and the secondary response signal (3b2) of the high-band radar signal to an arbitrary phase.

帯域拡張手段5aは、コヒーレントされた低帯域レーダ信号の一次応答信号(4a1)と高帯域レーダ信号の一次応答信号(4a2)に、図9に示すように、低帯域と高帯域の帯域間の信号を線形予測により低帯域レーダ信号、高帯域レーダ信号のそれぞれで内挿する((e3)(f3)に示す)ことで広帯域化された一次応答の帯域拡張レーダ信号(5a)を作成する。同様に、帯域拡張手段5bはコヒーレントされた低帯域レーダ信号の二次応答信号(4b1)と高帯域レーダ信号の二次応答信号(4b2)に、低帯域と高帯域の帯域間の信号を線形予測により低帯域レーダ信号、高帯域レーダ信号のそれぞれで内挿することで広帯域化された二次応答の帯域拡張レーダ信号(5b)を作成する。   As shown in FIG. 9, the band extending means 5a is configured to convert the primary response signal (4a1) of the coherent low band radar signal and the primary response signal (4a2) of the high band radar signal between the low band and the high band. The signal is interpolated by linear prediction with each of the low-band radar signal and the high-band radar signal (shown in (e3) and (f3)) to create a band-expanded radar signal (5a) having a broadened primary response. Similarly, the band extension means 5b linearly converts the signal between the low band and the high band into a secondary response signal (4b1) of the coherent low band radar signal and a secondary response signal (4b2) of the high band radar signal. By interpolating with each of the low-band radar signal and the high-band radar signal by prediction, a band-extended radar signal (5b) having a secondary response with a wide band is created.

図10は本発明に係る機能構成図(2)であり、実施例1で説明した帯域拡張手段5a,5bの内挿による帯域拡張する手段を外挿(帯域間のレーダ信号を帯域外に挿入)による帯域拡張する手段にする。   FIG. 10 is a functional block diagram (2) according to the present invention. Extrapolating means for extending the band by interpolating the band extending means 5a and 5b described in the first embodiment (inserting a radar signal between bands outside the band) ) To expand the bandwidth.

図11は本発明に係る機能動作を説明する図(7)である。   FIG. 11 is a diagram (7) for explaining the functional operation according to the present invention.

コヒーレント処理手段41aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)において、図11に示すように、低帯域レーダ信号の位相を高帯域レーダ信号の位相に合わせる((d1)(d2)(e4)に示す)。同様に、コヒーレント処理手段41bは低帯域レーダ信号の二次応答信号(3a2)の位相を高帯域レーダ信号の二次応答信号(3b2)の位相に合わせる。   As shown in FIG. 11, the coherent processing means 41a uses the primary response signal (3a1) of the low-band radar signal and the primary response signal (3b1) of the high-band radar signal to change the phase of the low-band radar signal to that of the high-band radar signal. Match the phase (shown in (d1) (d2) (e4)). Similarly, the coherent processing means 41b matches the phase of the secondary response signal (3a2) of the low-band radar signal with the phase of the secondary response signal (3b2) of the high-band radar signal.

帯域拡張手段81aは、コヒーレントされた低帯域レーダ信号の一次応答信号(41a1)と高帯域レーダ信号の一次応答信号(41a2)に、図11に示すように、低帯域と高帯域の帯域間の信号を低帯域レーダ信号での線形予測により外挿する((e4)(f4)に示す)ことで広帯域化された一次応答の帯域拡張レーダ信号(81a)を作成する。同様に、帯域拡張手段81bはコヒーレントされた低帯域レーダ信号の二次応答信号(41b1)と高帯域レーダ信号の二次応答信号(41b2)に、低帯域と高帯域の帯域間の信号を低帯域レーダ信号での線形予測により外挿することで広帯域化された二次応答の帯域拡張レーダ信号(81b)を作成する。   As shown in FIG. 11, the band extending means 81a generates a primary response signal (41a1) and a primary response signal (41a2) of the coherent low band radar signal between the low band and the high band. The signal is extrapolated by linear prediction with a low-band radar signal (shown in (e4) and (f4)) to create a band-expanded radar signal (81a) with a primary response that has been widened. Similarly, the band extension means 81b reduces the signal between the low band and the high band to the secondary response signal (41b1) of the coherent low band radar signal and the secondary response signal (41b2) of the high band radar signal. A band-expanded radar signal (81b) having a secondary response with a wider bandwidth is generated by extrapolation by linear prediction with a band radar signal.

図12は本発明に係る機能動作を説明する図(8)である。   FIG. 12 is a diagram (8) for explaining the functional operation according to the present invention.

実施例4で説明したコヒーレント処理手段41a,41bと帯域拡張手段81a,81bの機能動作が異なるものであり、本実施例では、高帯域レーダ信号の位相を低帯域レーダ信号の位相に合わせ、帯域間の信号を高帯域レーダ信号で外挿する。   The functional operations of the coherent processing means 41a and 41b and the band extending means 81a and 81b described in the fourth embodiment are different. In this embodiment, the phase of the high-band radar signal is adjusted to the phase of the low-band radar signal. The signal between them is extrapolated with a high-bandwidth radar signal.

コヒーレント処理手段41aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)において、図12に示すように、高帯域レーダ信号の位相を低帯域レーダ信号の位相に合わせる((d1)(d2)(e5)に示す)。同様に、コヒーレント処理手段41bは高帯域レーダ信号の二次応答信号(3b2)の位相を低帯域レーダ信号の二次応答信号(3a2)の位相に合わせる。   As shown in FIG. 12, the coherent processing means 41a converts the phase of the high-band radar signal into the low-band radar signal phase in the primary response signal (3a1) of the low-band radar signal and the primary response signal (3b1) of the high-band radar signal. Match the phase (shown in (d1) (d2) (e5)). Similarly, the coherent processing means 41b matches the phase of the secondary response signal (3b2) of the high-band radar signal with the phase of the secondary response signal (3a2) of the low-band radar signal.

帯域拡張手段81aは、コヒーレントされた低帯域レーダ信号の一次応答信号(41a1)と高帯域レーダ信号の一次応答信号(41a2)に、図12に示すように、低帯域と高帯域の帯域間の信号を高帯域レーダ信号での線形予測により外挿する((e5)(f5)に示す)ことで広帯域化された一次応答の帯域拡張レーダ信号(81a)を作成する。同様に、帯域拡張手段81bはコヒーレントされた低帯域レーダ信号の二次応答信号(41b1)と高帯域レーダ信号の二次応答信号(41b2)に、低帯域と高帯域の帯域間の信号を高帯域レーダ信号での線形予測により外挿することで広帯域化された二次応答の帯域拡張レーダ信号(81b)を作成する。   As shown in FIG. 12, the band extension means 81a generates a primary response signal (41a1) and a primary response signal (41a2) of the coherent low-band radar signal between the low-band and high-band bands. The signal is extrapolated by linear prediction with a high-bandwidth radar signal (shown in (e5) and (f5)) to create a band-expanded radar signal (81a) with a primary response that has been widened. Similarly, the band extension means 81b increases the signal between the low band and the high band to the secondary response signal (41b1) of the coherent low band radar signal and the secondary response signal (41b2) of the high band radar signal. A band-expanded radar signal (81b) having a secondary response with a wider bandwidth is generated by extrapolation by linear prediction with a band radar signal.

図13は本発明に係る機能動作を説明する図(9)である。   FIG. 13 is a diagram (9) for explaining the functional operation according to the present invention.

実施例4で説明したコヒーレント処理手段41a,41bと帯域拡張手段81a,81bの機能動作が異なるものであり、本実施例では、低帯域レーダ信号と高帯域レーダ信号の位相を任意の位相に合わせ、帯域間の信号を低帯域レーダ信号と高帯域レーダ信号のそれぞれで外挿する。   The functional operations of the coherent processing means 41a and 41b and the band extending means 81a and 81b described in the fourth embodiment are different. In this embodiment, the phases of the low-band radar signal and the high-band radar signal are adjusted to an arbitrary phase. The signal between the bands is extrapolated by each of the low-band radar signal and the high-band radar signal.

コヒーレント処理手段41aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)において、図13に示すように、低帯域レーダ信号の位相と高帯域レーダ信号の位相を任意の位相に合わせる((d1)(d2)(e6)に示す)。同様に、コヒーレント処理手段41bは低帯域レーダ信号の二次応答信号(3a2)と高帯域レーダ信号の二次応答信号(3b2)の位相を任意の位相に合わせる。   As shown in FIG. 13, the coherent processing means 41a uses the primary response signal (3a1) of the low-band radar signal and the primary response signal (3b1) of the high-band radar signal as shown in FIG. The phase is adjusted to an arbitrary phase (shown in (d1), (d2), and (e6)). Similarly, the coherent processing means 41b matches the phase of the secondary response signal (3a2) of the low-band radar signal and the secondary response signal (3b2) of the high-band radar signal to an arbitrary phase.

帯域拡張手段81aは、コヒーレントされた低帯域レーダ信号の一次応答信号(41a1)と高帯域レーダ信号の一次応答信号(41a2)に、図13に示すように、低帯域と高帯域の帯域間の信号を低帯域レーダ信号、高帯域レーダ信号のそれぞれでの線形予測により外挿する((e6)(f6)に示す)ことで広帯域化された一次応答の帯域拡張レーダ信号(81a)を作成する。同様に、帯域拡張手段81bはコヒーレントされた低帯域レーダ信号の二次応答信号(41b1)と高帯域レーダ信号の二次応答信号(41b2)に、低帯域と高帯域の帯域間の信号を低帯域レーダ信号、高帯域レーダ信号のそれぞれでの線形予測により外挿することで広帯域化された二次応答の帯域拡張レーダ信号(81b)を作成する。   As shown in FIG. 13, the band extension means 81a generates a primary response signal (41a1) and a primary response signal (41a2) of the high band radar signal between the low band and the high band. The signal is extrapolated by linear prediction for each of the low-band radar signal and the high-band radar signal (shown in (e6) and (f6)) to generate a band-expanded radar signal (81a) having a broadened primary response. . Similarly, the band extension means 81b reduces the signal between the low band and the high band to the secondary response signal (41b1) of the coherent low band radar signal and the secondary response signal (41b2) of the high band radar signal. A band-expanded radar signal (81b) having a widened secondary response is generated by extrapolation by linear prediction for each of the band radar signal and the high band radar signal.

図14は本発明に係る機能構成図(3)であり、実施例4では低帯域レーダ信号と高帯域レーダ信号のそれぞれの一次応答信号をコヒーレント処理手段41aにてコヒーレント化し帯域拡張手段81aにて帯域拡張して帯域拡張レーダ信号(81a)を作成しているが、本実施例では、帯域拡張した一次応答信号をコヒーレント化することで帯域拡張レーダ信号を作成する。   FIG. 14 is a functional configuration diagram (3) according to the present invention. In the fourth embodiment, the primary response signals of the low-band radar signal and the high-band radar signal are made coherent by the coherent processing means 41a and the band extending means 81a. Although the band extension radar signal (81a) is created by band extension, in this embodiment, the band extension radar signal is created by coherentizing the band-expanded primary response signal.

図15は本発明に係る機能動作を説明する図(10)である。   FIG. 15 is a diagram (10) for explaining the functional operation according to the present invention.

帯域拡張手段82aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)に、図15に示すように、低帯域と高帯域の帯域間の信号を低帯域レーダ信号での線形予測により外挿する((d1)(d2)(e7)に示す)ことで広帯域化された低帯域レーダ信号の一次応答の帯域拡張レーダ信号(82a1)、高帯域レーダ信号の一次応答の帯域拡張レーダ信号(82a2)を作成する。同様に、帯域拡張手段82bは低帯域レーダ信号の二次応答信号(3a2)と高帯域レーダ信号の二次応答信号(3b2)に、低帯域と高帯域の帯域間の信号を低帯域レーダ信号での線形予測により外挿することで広帯域化された二次応答の帯域拡張レーダ信号(82b1)(82b2)を作成する。   As shown in FIG. 15, the band extending means 82a reduces the signal between the low band and the high band to the primary response signal (3a1) of the low band radar signal and the primary response signal (3b1) of the high band radar signal. The band extended radar signal (82a1) of the primary response of the low-band radar signal that has been widened by extrapolation by linear prediction with the band radar signal (shown in (d1), (d2), and (e7)), the high-band radar signal The band extension radar signal (82a2) of the primary response is generated. Similarly, the band extension means 82b converts the signal between the low band and the high band into the secondary response signal (3a2) of the low band radar signal and the secondary response signal (3b2) of the high band radar signal. The second-order band extended radar signals (82b1) and (82b2) are generated by extrapolation by linear prediction at.

コヒーレント処理手段42aは、広帯域化された低帯域レーダ信号の一次応答信号(82a1)と高帯域レーダ信号の一次応答信号(82a2)において、図15に示すように、低帯域レーダ信号と外挿されたレーダ信号の位相を高帯域レーダ信号の位相に合わせる((e7)(f7)に示す)。同様に、コヒーレント処理手段42bは、広帯域化された低帯域レーダ信号の二次応答信号(82b1)と高帯域レーダ信号の二次応答信号(82b2)において、低帯域レーダ信号と外挿されたレーダ信号の位相を高帯域レーダ信号の位相に合わせる。   As shown in FIG. 15, the coherent processing means 42a is extrapolated from the low-band radar signal in the primary response signal (82a1) of the low-band radar signal and the primary response signal (82a2) of the high-band radar signal. The phase of the radar signal is matched with the phase of the high-band radar signal (shown in (e7) and (f7)). Similarly, the coherent processing means 42b uses a radar that is extrapolated from the low-band radar signal in the secondary response signal (82b1) of the low-band radar signal and the secondary response signal (82b2) of the high-band radar signal. Match the phase of the signal to that of the high-bandwidth radar signal.

図16は本発明に係る機能動作を説明する図(11)である。   FIG. 16 is a diagram (11) for explaining the functional operation according to the present invention.

実施例7で説明した帯域拡張手段82a,82bとコヒーレント処理手段42a,42bの機能動作が異なるものであり、本実施例では、帯域間の信号を低帯域レーダ信号と高帯域レーダ信号のそれぞれで外挿することで帯域拡張し、低帯域レーダ信号と該低帯域レーダ信号により外挿されたレーダ信号の位相を高帯域レーダ信号と該高帯域レーダ信号により外挿されたレーダ信号の位相に合わせる。   The functional operations of the band extension means 82a and 82b and the coherent processing means 42a and 42b described in the seventh embodiment are different. In this embodiment, signals between bands are divided into low-band radar signals and high-band radar signals, respectively. The band is expanded by extrapolation, and the phase of the low-band radar signal and the radar signal extrapolated by the low-band radar signal is matched to the phase of the high-band radar signal and the radar signal extrapolated by the high-band radar signal. .

帯域拡張手段82aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)に、図16に示すように、低帯域と高帯域の帯域間の信号を低帯域レーダ信号、高帯域レーダ信号のそれぞれでの線形予測により外挿する((d1)(d2)(e8)に示す)。同様に、帯域拡張手段81bは低帯域レーダ信号の二次応答信号(3a2)と高帯域レーダ信号の二次応答信号(3b2)に、低帯域と高帯域の帯域間の信号を低帯域レーダ信号、高帯域レーダ信号のそれぞれでの線形予測により外挿する。   As shown in FIG. 16, the band extension means 82a reduces the signal between the low band and the high band to the primary response signal (3a1) of the low band radar signal and the primary response signal (3b1) of the high band radar signal. Extrapolation is performed by linear prediction for each of the band radar signal and the high band radar signal (shown in (d1), (d2), and (e8)). Similarly, the band extension means 81b converts the signal between the low band and the high band into the secondary response signal (3a2) of the low band radar signal and the secondary response signal (3b2) of the high band radar signal. And extrapolation by linear prediction on each of the high-band radar signals.

コヒーレント処理手段42aは、広帯域化された低帯域レーダ信号の一次応答信号(82a1)と高帯域レーダ信号の一次応答信号(82a2)において、図16に示すように、低帯域レーダ信号と該低帯域レーダ信号により外挿されたレーダ信号の位相を高帯域レーダ信号と該高帯域レーダ信号により外挿されたレーダ信号の位相に合わせる((e8)(f8)に示す)。同様に、コヒーレント処理手段42bは、帯域拡張された低帯域レーダ信号の二次応答信号(82b1)と高帯域レーダ信号の二次応答信号(82b2)において、低帯域レーダ信号と該低帯域レーダ信号により外挿されたレーダ信号の位相を高帯域レーダ信号と該高帯域レーダ信号により外挿されたレーダ信号の位相に合わせる。   As shown in FIG. 16, the coherent processing means 42a uses a first response signal (82a1) and a first response signal (82a2) of the wideband low-band radar signal. The phase of the radar signal extrapolated by the radar signal is matched with the phase of the high-band radar signal and the radar signal extrapolated by the high-band radar signal (shown in (e8) and (f8)). Similarly, the coherent processing means 42b uses the low-band radar signal and the low-band radar signal in the secondary response signal (82b1) of the low-band radar signal whose band is extended and the secondary response signal (82b2) of the high-band radar signal. The phase of the radar signal extrapolated by is matched with the phase of the high-band radar signal and the radar signal extrapolated by the high-band radar signal.

図17は本発明に係る機能動作を説明する図(12)である。   FIG. 17 is a diagram (12) for explaining the functional operation according to the present invention.

実施例7で説明した帯域拡張手段82a,82bとコヒーレント処理手段42a,42bの機能動作が異なるものであり、本実施例では、帯域間の一部の信号を低帯域レーダ信号で外挿し、該帯域間の残りの信号を高帯域レーダ信号で外挿することで帯域拡張し、低帯域レーダ信号と該低帯域レーダ信号により外挿されたレーダ信号の位相を高帯域レーダ信号と該高帯域レーダ信号により外挿されたレーダ信号の位相に合わせる。   The functional operations of the band extension means 82a and 82b and the coherent processing means 42a and 42b described in the seventh embodiment are different. In this embodiment, a part of signals between bands is extrapolated with a low-band radar signal, The band is expanded by extrapolating the remaining signal between the bands with the high-band radar signal, and the phase of the low-band radar signal and the radar signal extrapolated by the low-band radar signal is set to the high-band radar signal and the high-band radar. Match the phase of the radar signal extrapolated by the signal.

帯域拡張手段82aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)に、図17に示すように、低帯域と高帯域の帯域間の一部の信号を低帯域レーダ信号での線形予測により外挿し、該帯域間の残りの信号を高帯域レーダ信号での線形予測により外挿する((d1)(d2)(e9)に示す)。同様に、帯域拡張手段81bは低帯域レーダ信号の二次応答信号(3a2)と高帯域レーダ信号の二次応答信号(3b2)に、低帯域と高帯域の帯域間の一部の信号を低帯域レーダ信号での線形予測により外挿し、該帯域間の残りの信号を高帯域レーダ信号での線形予測により外挿する。   As shown in FIG. 17, a part of the band extension means 82a between the low-band radar signal primary response signal (3a1) and the high-band radar signal primary response signal (3b1). The signal is extrapolated by linear prediction with a low-band radar signal, and the remaining signals between the bands are extrapolated by linear prediction with a high-band radar signal (shown in (d1) (d2) (e9)). Similarly, the band extension means 81b lowers some signals between the low band and the high band to the secondary response signal (3a2) of the low band radar signal and the secondary response signal (3b2) of the high band radar signal. Extrapolation is performed by linear prediction with a band radar signal, and the remaining signals between the bands are extrapolated by linear prediction with a high band radar signal.

コヒーレント処理手段42aは、広帯域化された低帯域レーダ信号の一次応答信号(82a1)と高帯域レーダ信号の一次応答信号(82a2)において、図17に示すように、低帯域レーダ信号と該低帯域レーダ信号により外挿されたレーダ信号の位相を高帯域レーダ信号と該高帯域レーダ信号により外挿されたレーダ信号の位相に合わせる((e9)(f9)に示す)。同様に、コヒーレント処理手段42bは、帯域拡張された低帯域レーダ信号の二次応答信号(82b1)と高帯域レーダ信号の二次応答信号(82b2)において、低帯域レーダ信号と該低帯域レーダ信号により外挿されたレーダ信号の位相を高帯域レーダ信号と該高帯域レーダ信号により外挿されたレーダ信号の位相に合わせる。   As shown in FIG. 17, the coherent processing means 42a uses a low-band radar signal and a low-band radar signal in the primary response signal (82a1) and the high-band radar signal primary response signal (82a2). The phase of the radar signal extrapolated by the radar signal is matched with the phase of the high-band radar signal and the radar signal extrapolated by the high-band radar signal (shown in (e9) and (f9)). Similarly, the coherent processing means 42b uses the low-band radar signal and the low-band radar signal in the secondary response signal (82b1) of the low-band radar signal whose band is extended and the secondary response signal (82b2) of the high-band radar signal. The phase of the radar signal extrapolated by is matched with the phase of the high-band radar signal and the radar signal extrapolated by the high-band radar signal.

図18は本発明に係る機能動作を説明する図(13)であり、実施例1での帯域拡張レーダ信号結合手段6では図4で説明したように周波数領域の一次応答の帯域拡張レーダ信号と二次応答の帯域拡張レーダ信号を時間領域に変換し、時間領域において振幅を加算することで一次応答と二次応答の帯域拡張レーダ信号を結合しているが、本実施例では、周波数領域の一次応答の帯域拡張レーダ信号と二次応答の帯域拡張レーダ信号の振幅を周波数領域において加算することで一次応答と二次応答の帯域拡張レーダ信号を結合する((g1)(g2)(i2)に示す)。   FIG. 18 is a diagram (13) for explaining the functional operation according to the present invention. In the band extension radar signal combining means 6 in the first embodiment, as described in FIG. The secondary response band-extended radar signal is converted into the time domain, and the amplitude is added in the time domain to combine the primary response and the secondary response band-extended radar signal. In this embodiment, in the frequency domain, The primary response and secondary response band extension radar signals are combined by adding the amplitudes of the primary response band extension radar signal and the secondary response band extension radar signal in the frequency domain ((g1) (g2) (i2) To show).

帯域拡張レーダ信号結合手段6は、図18に示すように、一次応答の帯域拡張レーダ信号(5a)と二次応答の帯域拡張レーダ信号(5b)の周波数スケールを一致させて振幅を加算することで、一次応答と二次応答の帯域拡張レーダ信号を結合させる((g1)(g2)(i2)に示す)。   As shown in FIG. 18, the band extension radar signal combining means 6 adds the amplitudes by matching the frequency scales of the primary response band extension radar signal (5a) and the secondary response band extension radar signal (5b). Then, the band extension radar signals of the primary response and the secondary response are combined (shown in (g1), (g2), and (i2)).

図19は本発明に係る機能動作を説明する図(14)であり、実施例1での目標識別処理手段7では図5で説明したように、超高分解レンジプロファイルから一次応答信号と二次応答信号の応答の数量、応答の強度、応答間の距離差を読み取り、データベースと照合することで目標を識別しているが、本実施例では一次応答信号に関する情報のみによって目標を識別する。   FIG. 19 is a diagram (14) for explaining the functional operation according to the present invention. In the target identification processing means 7 in the first embodiment, as explained in FIG. 5, the primary response signal and the secondary are obtained from the ultra-high resolution range profile. The target is identified by reading the response quantity of the response signal, the strength of the response, and the distance difference between the responses and collating with the database. In this embodiment, the target is identified only by the information about the primary response signal.

目標識別処理手段7は、図19に示すように、結合帯域拡張レーダ信号(6)を逆フーリエ変換(IFFT)により時間領域に変換し超高分解レンジプロファイルを作成し、該超高分解レンジプロファイルから一次応答信号のみを抽出する((j)(k)(k2)に示す)。(k)(k2)の横軸は距離を示している。そして、該超高分解レンジプロファイル(一次応答)から一次応答信号の応答の数量、応答の強度、応答間の距離差を読み取り、データベースと照合する((l2)に示す)ことで目標を識別する。   As shown in FIG. 19, the target identification processing means 7 converts the combined band-extended radar signal (6) into the time domain by inverse Fourier transform (IFFT) to create an ultra-high resolution range profile. Only the primary response signal is extracted from (shown in (j) (k) (k2)). The horizontal axis of (k) (k2) indicates the distance. Then, from the ultra-high resolution range profile (primary response), the number of responses of the primary response signal, the strength of the response, and the distance difference between the responses are read and collated with the database (shown in (l2)) to identify the target. .

図20は本発明に係る機能動作を説明する図(15)であり、実施例1での目標識別処理手段7では図5で説明したように、超高分解レンジプロファイルから一次応答信号と二次応答信号の応答の数量、応答の強度、応答間の距離差を読み取り、データベースと照合することで目標を識別していたが、本実施例では二次応答信号に関する情報のみによって目標を識別する。   FIG. 20 is a diagram (15) for explaining the functional operation according to the present invention. In the target identification processing means 7 in the first embodiment, as described in FIG. 5, the primary response signal and the secondary response are obtained from the ultra-high resolution range profile. The target is identified by reading the number of responses of the response signal, the strength of the response, and the distance difference between the responses and collating with the database. In this embodiment, the target is identified only by the information on the secondary response signal.

目標識別処理手段7は、図20に示すように、結合帯域拡張レーダ信号(6)を逆フーリエ変換(IFFT)により時間領域に変換し超高分解レンジプロファイルを作成し、該超高分解レンジプロファイルから二次応答信号のみを抽出する((j)(k)(k3)に示す)。(k)(k3)の横軸は距離を示している。そして、該超高分解レンジプロファイル(二次応答)から二次応答信号の応答の数量、応答の強度、応答間の距離差を読み取り、データベースと照合する((l3)に示す)ことで目標を識別する。   As shown in FIG. 20, the target identification processing means 7 converts the combined band extended radar signal (6) into the time domain by inverse Fourier transform (IFFT) to create an ultra-high resolution range profile. Only the secondary response signal is extracted from (shown in (j) (k) (k3)). The horizontal axis of (k) (k3) indicates the distance. Then, from the ultra-high resolution range profile (secondary response), the number of responses of the secondary response signal, the strength of the response, and the distance difference between responses are read and collated with the database (shown in (l3)). Identify.

図21は本発明に係る機能動作を説明する図(16)であり、実施例1での目標識別処理手段7では図5で説明したように、超高分解レンジプロファイルから時間領域での特異点である一次応答信号と二次応答信号の応答に関してデータベースと照合することで目標を識別していたが、本実施例では一次応答信号と二次応答信号における周波数領域での特異点に関してデータベースと照合することで目標を識別する。   FIG. 21 is a diagram (16) for explaining the functional operation according to the present invention. In the target identification processing means 7 in the first embodiment, as described in FIG. 5, the singular point in the time domain from the ultra-high resolution range profile is shown. In this embodiment, the target is identified by collating the database with respect to the responses of the primary response signal and the secondary response signal, but in this embodiment, the singular points in the frequency domain of the primary response signal and the secondary response signal are collated with the database. To identify goals.

目標識別処理手段7は、図21に示すように、結合帯域拡張レーダ信号(6)を逆フーリエ変換(IFFT)により時間領域に変換し超高分解レンジプロファイルを作成する((j)(k)に示す)。(k)の横軸は距離を示している。そして、該超高分解レンジプロファイルから一次応答信号と二次応答信号をそれぞれ抽出し、該一次応答信号、二次応答信号のそれぞれを時系列解析し周波数領域における特異点に関する数量、位相、そして特異点間の位相差を読み取り、データベースと照合する((k41)(k42)(l4)に示す)ことで目標を識別する。   As shown in FIG. 21, the target identification processing means 7 converts the combined band-extended radar signal (6) into the time domain by inverse Fourier transform (IFFT) to create an ultra-high resolution range profile ((j) (k) To show). The horizontal axis of (k) indicates the distance. Then, a primary response signal and a secondary response signal are respectively extracted from the ultra-high resolution range profile, and each of the primary response signal and the secondary response signal is analyzed in time series, and the quantity, phase, and singularity relating to the singular point in the frequency domain are analyzed. The target is identified by reading the phase difference between the points and collating with the database (shown in (k41) (k42) (l4)).

図22は本発明に係る機能動作を説明する図(17)であり、実施例13での目標識別処理手段7のデータベースと照合する対象として、一次応答信号における特異点のみを対象としている。   FIG. 22 is a diagram (17) illustrating the functional operation according to the present invention, and only the singular point in the primary response signal is the target to be compared with the database of the target identification processing means 7 in the thirteenth embodiment.

目標識別処理手段7は、図22に示すように、結合帯域拡張レーダ信号(6)を逆フーリエ変換(IFFT)により時間領域に変換し超高分解レンジプロファイルを作成する((j)(k)に示す)。(k)の横軸は距離を示している。そして、該超高分解レンジプロファイルから一次応答信号と二次応答信号をそれぞれ抽出し、該一次応答信号、二次応答信号のそれぞれを時系列解析し、周波数領域における一次応答信号の特異点に関する数量、位相、そして特異点間の位相差を読み取り、データベースと照合する((k41)(k42)(l5)に示す)ことで目標を識別する。   As shown in FIG. 22, the target identification processing means 7 converts the combined band-extended radar signal (6) into the time domain by inverse Fourier transform (IFFT) to create an ultra-high resolution range profile ((j) (k) To show). The horizontal axis of (k) indicates the distance. Then, a primary response signal and a secondary response signal are respectively extracted from the ultra-high resolution range profile, each of the primary response signal and the secondary response signal is analyzed in time series, and a quantity related to a singular point of the primary response signal in the frequency domain The target is identified by reading the phase difference between the singular points and the phase and comparing it with the database (shown in (k41) (k42) (l5)).

図23は本発明に係る機能動作を説明する図(18)であり、実施例13での目標識別処理手段7のデータベースと照合する対象として、二次応答信号における特異点のみを対象としている。   FIG. 23 is a diagram (18) illustrating the functional operation according to the present invention, and only the singular point in the secondary response signal is the target to be checked against the database of the target identification processing means 7 in the thirteenth embodiment.

目標識別処理手段7は、図23に示すように、結合帯域拡張レーダ信号(6)を逆フーリエ変換(IFFT)により時間領域に変換し超高分解レンジプロファイルを作成する((j)(k)に示す)。(k)の横軸は距離を示している。そして、該超高分解レンジプロファイルから一次応答信号と二次応答信号をそれぞれ抽出し、該一次応答信号、二次応答信号のそれぞれを時系列解析し、周波数領域における二次応答信号の特異点に関する数量、位相、そして特異点間の位相差を読み取り、データベースと照合する((k41)(k42)(l6)に示す)ことで目標を識別する。   As shown in FIG. 23, the target identification processing means 7 converts the combined band-extended radar signal (6) into the time domain by inverse Fourier transform (IFFT) to create an ultra-high resolution range profile ((j) (k) To show). The horizontal axis of (k) indicates the distance. Then, a primary response signal and a secondary response signal are respectively extracted from the ultra-high resolution range profile, each of the primary response signal and the secondary response signal is analyzed in time series, and a singular point of the secondary response signal in the frequency domain is obtained. The target is identified by reading the quantity, the phase, and the phase difference between the singular points and comparing them with the database (shown in (k41) (k42) (16)).

図24は本発明に係る機能構成図(4)であり、実施例1での低帯域レーダ波送受信手段1と高帯域レーダ波送受信手段2の構成を、本実施例では、1つの周波数帯域のレーダ波を送信し該反射波を受信するレーダ波受信手段として該低帯域と高帯域の中間の帯域を使用する中間帯域レーダ波送受信手段を用いる構成とする。   FIG. 24 is a functional configuration diagram (4) according to the present invention. The configurations of the low-band radar wave transmission / reception means 1 and the high-band radar wave transmission / reception means 2 in the first embodiment are shown in FIG. As a radar wave receiving means for transmitting a radar wave and receiving the reflected wave, an intermediate band radar wave transmitting / receiving means using an intermediate band between the low band and the high band is used.

図24において、中間帯域レーダ波送受信手段9は観測対象となる目標に対して中間周波数帯のレーダ波を送出し、該目標からの反射波を受信して中間帯域レーダ信号(9)に変換する。   In FIG. 24, the intermediate band radar wave transmission / reception means 9 transmits an intermediate frequency band radar wave to the target to be observed, receives the reflected wave from the target, and converts it to an intermediate band radar signal (9). .

レーダ信号分離手段3cは中間帯域レーダ信号(9)を、逆フーリエ変換により周波数領域のレーダ信号から時間領域のレーダ信号に変換し、正規反射波成分である一次応答信号とクリーピング波成分である二次応答信号に分離し、フーリエ変換により周波数領域の一次応答信号(3c1)、二次応答信号(3c2)に変換する。   The radar signal separation means 3c converts the intermediate-band radar signal (9) from a frequency domain radar signal to a time domain radar signal by inverse Fourier transform, and is a primary response signal and a creeping wave component which are normal reflected wave components. The signal is separated into secondary response signals and converted into a primary response signal (3c1) and a secondary response signal (3c2) in the frequency domain by Fourier transform.

帯域拡張手段83aは、中間帯域レーダ信号の一次応答信号(3c1)に、低帯域と高帯域の信号を該中間帯域レーダ信号での線形予測により外挿することで広帯域化された一次応答の帯域拡張レーダ信号(83a)を作成する。同様に、中間帯域拡張手段83bは中間帯域レーダ信号の二次応答信号(3c2)に、低帯域と高帯域の信号を該中間帯域レーダ信号での線形予測により外挿することで広帯域化された二次応答の帯域拡張レーダ信号(83b)を作成する。   The band extension means 83a is configured to extrapolate the low-band and high-band signals to the primary response signal (3c1) of the intermediate-band radar signal by linear prediction using the intermediate-band radar signal, thereby increasing the bandwidth of the primary response. Create an extended radar signal (83a). Similarly, the intermediate band extension means 83b is widened by extrapolating low band and high band signals to the secondary response signal (3c2) of the intermediate band radar signal by linear prediction with the intermediate band radar signal. A secondary response band extension radar signal (83b) is created.

帯域拡張レーダ信号結合手段6は、一次応答の帯域拡張レーダ信号(83a)を周波数領域のレーダ信号から時間領域のレーダ信号に変換する。同様に、二次応答の帯域拡張レーダ信号(83b)を周波数領域のレーダ信号から時間領域のレーダ信号に変換する。そして、一次応答の帯域拡張レーダ信号と二次応答の帯域拡張レーダ信号の時間スケールを一致させて振幅を加算することで結合させ、フーリエ変換により周波数領域の結合帯域拡張レーダ信号(6)に変換する。よって、結合帯域拡張レーダ信号(6)には、正規反射波による一次応答成分とクリーピング波による二次応答成分の両方の成分を含んだ超広帯域化されたレーダ信号となる。   The band extension radar signal combining means 6 converts the primary response band extension radar signal (83a) from a frequency domain radar signal to a time domain radar signal. Similarly, the secondary response band expansion radar signal (83b) is converted from a frequency domain radar signal to a time domain radar signal. Then, the time scales of the primary response band extension radar signal and the secondary response band extension radar signal are matched and combined by adding the amplitude, and converted to the frequency domain combined band extension radar signal (6) by Fourier transform To do. Therefore, the combined-band extended radar signal (6) is a radar signal with an ultra-wideband that includes both the primary response component of the regular reflected wave and the secondary response component of the creeping wave.

目標識別処理手段7は、結合帯域拡張レーダ信号(6)を逆フーリエ変換により時間領域に変換し超高分解レンジプロファイルを作成する。そして、該超高分解レンジプロファイルから一次応答信号と二次応答信号の応答の数量、応答の強度、応答間の距離差を読み取り、データベースと照合することで目標を識別する。   The target identification processing means 7 converts the combined band extended radar signal (6) into the time domain by inverse Fourier transform and creates an ultra-high resolution range profile. Then, the number of responses of the primary response signal and the secondary response signal, the strength of the response, and the distance difference between the responses are read from the ultra-high resolution range profile, and the target is identified by collating with the database.

図25は本発明に係る機能構成図(5)であり、実施例1での帯域拡張手段5a,5bの動作として、低帯域の下限周波数以下の周波数帯域の信号を低帯域レーダ信号での線形予測により外挿し、高帯域の上限周波数以上の周波数帯域の信号を高帯域レーダ信号で線形予測により外挿することでより広帯域化した帯域拡張レーダ信号を作成する構成とする。   FIG. 25 is a functional block diagram (5) according to the present invention. As an operation of the band expanding means 5a and 5b in the first embodiment, a signal in a frequency band equal to or lower than the lower limit frequency of the low band is linearly expressed by a low band radar signal. Extrapolation is performed by prediction, and a band expansion radar signal having a wider band is created by extrapolating a signal in a frequency band higher than the upper limit frequency of the high band by high-frequency radar signal by linear prediction.

図25において、低帯域レーダ波送受信手段1は観測対象となる目標に対して低い周波数帯のレーダ波を送出し、該目標からの反射波を受信して低帯域レーダ信号(1)に変換する。また、高帯域レーダ波送受信手段2は観測対象となる目標に対して高い周波数帯のレーダ波を送出し、該目標からの反射波を受信して高帯域レーダ信号(2)に変換する。   In FIG. 25, the low-band radar wave transmission / reception means 1 transmits a radar wave of a low frequency band to the target to be observed, receives the reflected wave from the target, and converts it into a low-band radar signal (1). . The high-band radar wave transmitting / receiving means 2 transmits a high-frequency band radar wave to the target to be observed, receives the reflected wave from the target, and converts it into a high-band radar signal (2).

レーダ信号分離手段3aは低帯域レーダ信号(1)を逆フーリエ変換により周波数領域のレーダ信号から時間領域のレーダ信号に変換し、正規反射波成分である一次応答信号とクリーピング波成分である二次応答信号に分離し、フーリエ変換により周波数領域の一次応答信号(3a1)、二次応答信号(3a2)に変換する。同様に、レーダ信号分離手段3bは高帯域レーダ信号(2)を周波数領域の一次応答信号(3b1)、二次応答信号(3b2)に変換する。   The radar signal separating means 3a converts the low-band radar signal (1) from a frequency domain radar signal to a time domain radar signal by inverse Fourier transform, and a primary response signal which is a normal reflected wave component and a second component which is a creeping wave component. Separated into secondary response signals, and converted into primary response signals (3a1) and secondary response signals (3a2) in the frequency domain by Fourier transform. Similarly, the radar signal separation means 3b converts the high-band radar signal (2) into a primary response signal (3b1) and a secondary response signal (3b2) in the frequency domain.

コヒーレント処理手段4aは、低帯域レーダ信号の一次応答信号(3a1)と高帯域レーダ信号の一次応答信号(3b1)において、低帯域レーダ信号の位相を高帯域レーダ信号の位相に合わせる。同様に、コヒーレント処理手段4bは低帯域レーダ信号の二次応答信号(3a2)を高帯域レーダ信号の二次応答信号(3b2)の位相に合わせる。   The coherent processing unit 4a matches the phase of the low-band radar signal with the phase of the high-band radar signal in the primary response signal (3a1) of the low-band radar signal and the primary response signal (3b1) of the high-band radar signal. Similarly, the coherent processing means 4b matches the secondary response signal (3a2) of the low-band radar signal with the phase of the secondary response signal (3b2) of the high-band radar signal.

帯域拡張手段54aは、コヒーレントされた低帯域レーダ信号の一次応答信号(4a1)と高帯域レーダ信号の一次応答信号(4a2)に、低帯域と高帯域の帯域間の信号を低帯域レーダ信号での線形予測により内挿する。帯域拡張手段84aは、低帯域の下限周波数以下の周波数帯域の信号をコヒーレントされた低帯域レーダ信号の一次応答信号(4a1)での線形予測により外挿し、また高帯域の上限周波数以上の周波数帯域の信号をコヒーレントされた高帯域レーダ信号の一次応答信号(4a2)での線形予測により外挿する。同様に、帯域拡張手段54bは、コヒーレントされた低帯域レーダ信号の二次応答信号(4b1)と高帯域レーダ信号の二次応答信号(4b2)に、低帯域と高帯域の帯域間の信号を低帯域レーダ信号での線形予測により内挿する。帯域拡張手段84bは、低帯域の下限周波数以下の周波数帯域の信号をコヒーレントされた低帯域レーダ信号の二次応答信号(4b1)での線形予測により外挿し、また高帯域の上限周波数以上の周波数帯域の信号をコヒーレントされた高帯域レーダ信号の二次応答信号(4b2)での線形予測により外挿する。よって、帯域拡張手段54aによる帯域拡張レーダ信号(54a)と帯域拡張手段84aによる帯域拡張レーダ信号(84a)の結合により更に広帯域化された一次応答の帯域拡張レーダ信号が作成できる。また、帯域拡張手段54bによる帯域拡張レーダ信号(54b)と帯域拡張手段84bによる帯域拡張レーダ信号(84b)の結合により更に広帯域化された二次応答の帯域拡張レーダ信号が作成できる。   The band extending means 54a converts the signal between the low band and the high band into a primary response signal (4a1) and a primary response signal (4a2) of the coherent low band radar signal as a low band radar signal. Is interpolated by linear prediction. The band extension means 84a extrapolates a signal of a frequency band below the lower limit frequency of the low band by linear prediction with the primary response signal (4a1) of the coherent low band radar signal, and a frequency band above the upper limit frequency of the high band Are extrapolated by linear prediction with the primary response signal (4a2) of the coherent high-bandwidth radar signal. Similarly, the band extension means 54b applies a signal between the low band and the high band to the secondary response signal (4b1) of the coherent low band radar signal and the secondary response signal (4b2) of the high band radar signal. Interpolate by linear prediction with low-band radar signal. The band extension means 84b extrapolates the signal in the frequency band below the lower limit frequency of the low band by linear prediction with the secondary response signal (4b1) of the coherent low band radar signal, and the frequency above the upper limit frequency of the high band. The signal in the band is extrapolated by linear prediction with the secondary response signal (4b2) of the coherent high-band radar signal. Accordingly, a band extension radar signal having a primary response that is further broadened by combining the band extension radar signal (54a) by the band extension means 54a and the band extension radar signal (84a) by the band extension means 84a can be created. Further, a band extended radar signal having a secondary response with a wider bandwidth can be created by combining the band extended radar signal (54b) by the band extending means 54b and the band extended radar signal (84b) by the band extending means 84b.

帯域拡張レーダ信号結合手段6は、前記の更に広帯域化された一次応答の帯域拡張レーダ信号を周波数領域のレーダ信号から時間領域のレーダ信号に変換する。同様に、前記の更に広帯域化された二次応答の帯域拡張レーダ信号を周波数領域のレーダ信号から時間領域のレーダ信号に変換する。そして、該一次応答の帯域拡張レーダ信号と該二次応答の帯域拡張レーダ信号の時間スケールを一致させて振幅を加算することで結合させ、フーリエ変換により周波数領域の結合帯域拡張レーダ信号(6)に変換する。よって、結合帯域拡張レーダ信号(6)には、正規反射波による一次応答成分とクリーピング波による二次応答成分の両方の成分を含んだ超広帯域化されたレーダ信号となる。   The band extension radar signal combining means 6 converts the band extension radar signal of the primary response having a wider bandwidth from a frequency domain radar signal into a time domain radar signal. Similarly, the band extension radar signal of the secondary response having a wider bandwidth is converted from a frequency domain radar signal to a time domain radar signal. The primary response band-extended radar signal and the secondary response band-extended radar signal are combined by matching the time scales and adding the amplitudes, and the frequency domain combined-band-extended radar signal (6) Convert to Therefore, the combined-band extended radar signal (6) is a radar signal with an ultra-wideband that includes both the primary response component of the regular reflected wave and the secondary response component of the creeping wave.

目標識別処理手段7は、結合帯域拡張レーダ信号(6)を逆フーリエ変換により時間領域に変換し超高分解レンジプロファイルを作成する。そして、該超高分解レンジプロファイルから一次応答信号と二次応答信号の応答の数量、応答の強度、応答間の距離差を読み取り、データベースと照合することで目標を識別する。   The target identification processing means 7 converts the combined band extended radar signal (6) into the time domain by inverse Fourier transform and creates an ultra-high resolution range profile. Then, the number of responses of the primary response signal and the secondary response signal, the strength of the response, and the distance difference between the responses are read from the ultra-high resolution range profile, and the target is identified by collating with the database.

以上の実施例1〜17を含む実施形態に関し、更に以下の付記を開示する。   Regarding the embodiment including the above Examples 1 to 17, the following additional notes are disclosed.

(付記1)
観測対象となる目標に対してレーダ波を送信し該目標からの反射波を受信し、該受信したレーダ信号の周波数帯域を拡張し高分解能化を図ることで目標の識別を行うレーダ目標識別装置において、
第1の周波数帯域のレーダ波を送信し該反射波を受信する第1のレーダ波送受信手段と、第2の周波数帯域のレーダ波を送信し該反射波を受信する第2のレーダ波送受信手段と、前記の第1のレーダ波送受信手段の受信する第1のレーダ信号と第2のレーダ波送受信手段の受信する第2のレーダ信号のそれぞれについて、時間軸上の閾値を設けて目標からの反射波の一次応答と二次応答の信号に分離するレーダ信号分離手段と、前記の一次応答信号と二次応答信号のそれぞれについて、前記の第1のレーダ信号の位相を前記の第2のレーダ信号の位相に合わせるコヒーレント処理手段と、前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を線形予測により内挿することでレーダ信号の周波数帯域を拡張する帯域拡張手段と、前記の周波数帯域が拡張された一次応答のレーダ信号と二次応答のレーダ信号の振幅を時間軸上で加算して結合する帯域拡張レーダ信号結合手段と、前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該一次応答信号と二次応答信号における応答の数や強度、該応答間の距離差をデータベースとして照合することにより目標識別を行なう目標識別処理手段とを備えることを特徴とするレーダ目標識別装置。
(Appendix 1)
Radar target identification device for identifying a target by transmitting a radar wave to a target to be observed, receiving a reflected wave from the target, and expanding the frequency band of the received radar signal to increase the resolution. In
First radar wave transmitting / receiving means for transmitting a radar wave in the first frequency band and receiving the reflected wave, and second radar wave transmitting / receiving means for transmitting a radar wave in the second frequency band and receiving the reflected wave For each of the first radar signal received by the first radar wave transmitting / receiving unit and the second radar signal received by the second radar wave transmitting / receiving unit, a threshold on the time axis is provided to Radar signal separating means for separating the reflected wave into primary response and secondary response signals, and the phase of the first radar signal for each of the primary response signal and the secondary response signal, and the second radar. Coherent processing means for matching the phase of the signal, band extension means for extending the frequency band of the radar signal by interpolating the signal between the first frequency band and the second frequency band by linear prediction, Above A band extended radar signal combining means for adding and combining the amplitudes of the primary response radar signal and the secondary response radar signal having an extended wave number band on the time axis, and a radar signal by the band extended radar signal combining means. The target profile is identified by creating a range profile including the primary response component and the secondary response component, and collating the number and intensity of responses in the primary response signal and the secondary response signal, and the distance difference between the responses as a database. A radar target identification device comprising: target identification processing means for performing.

(付記2)
コヒーレント処理手段は前記の一次応答信号と二次応答信号のそれぞれについて前記の第2のレーダ信号の位相を前記の第1のレーダ信号の位相に合わせることを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 2)
The radar target according to appendix 1, wherein the coherent processing means matches the phase of the second radar signal with the phase of the first radar signal for each of the primary response signal and the secondary response signal. Identification device.

(付記3)
コヒーレント処理手段は前記の一次応答信号と二次応答信号のそれぞれについて前記の第1のレーダ信号の位相と第2のレーダ信号の位相を任意の同じ位相に合わせることを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 3)
The coherent processing means adjusts the phase of the first radar signal and the phase of the second radar signal to arbitrarily the same phase for each of the primary response signal and the secondary response signal. Radar target identification device.

(付記4)
帯域拡張手段は前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を第1のレーダ信号を用いて線形予測することにより外挿することを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 4)
The radar according to appendix 1, wherein the band extending means extrapolates the signal between the first frequency band and the second frequency band by performing a linear prediction using the first radar signal. Target identification device.

(付記5)
帯域拡張手段は前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を第2のレーダ信号を用いて線形予測することにより外挿することを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 5)
The radar according to appendix 1, wherein the band extending means extrapolates the signal between the first frequency band and the second frequency band by performing a linear prediction using a second radar signal. Target identification device.

(付記6)
帯域拡張手段は前記の第1の周波数帯域と第2の周波数帯域の帯域間の一部の信号を第1のレーダ信号を用いて線形予測することにより外挿し、該第1の周波数帯域と第2の周波数帯域の帯域間の一部の信号の残りを第2のレーダ信号を用いて線形予測することにより外挿することを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 6)
The band extending means extrapolates a part of the signal between the first frequency band and the second frequency band by linear prediction using the first radar signal, and the first frequency band and the second frequency band are extrapolated. 2. The radar target identification device according to appendix 1, wherein the remaining part of the signal between the two frequency bands is extrapolated by performing linear prediction using the second radar signal.

(付記7)
帯域拡張手段は前記の一次応答信号と二次応答信号のそれぞれについて前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を前記の第1のレーダ信号を用いて線形予測することにより外挿し、コヒーレント処理手段は該第1のレーダ信号と該第1のレーダ信号により外挿されたレーダ信号の位相を前記の第2のレーダ信号の位相に合わせることを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 7)
The band extending means linearly predicts a signal between the first frequency band and the second frequency band for each of the primary response signal and the secondary response signal using the first radar signal. And the coherent processing means matches the phase of the first radar signal and the radar signal extrapolated by the first radar signal to the phase of the second radar signal. The radar target identification device described.

(付記8)
帯域拡張手段は、前記の一次応答信号と二次応答信号のそれぞれについて前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を、前記の第1のレーダ信号と第2のレーダ信号を用いてそれぞれについて線形予測することにより外挿し、コヒーレント処理手段は、該第1のレーダ信号と該第1のレーダ信号により外挿されたレーダ信号の位相を、該第2のレーダ信号と該第2のレーダ信号により外挿されたレーダ信号の位相に合わせることを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 8)
The band extension means converts the signal between the first frequency band and the second frequency band for each of the primary response signal and the secondary response signal into the first radar signal and the second radar signal. And extrapolating by linearly predicting each of the signals, and the coherent processing means determines the phase of the first radar signal and the radar signal extrapolated by the first radar signal as the second radar signal. The radar target identification device according to appendix 1, wherein the radar target phase is matched with the phase of the radar signal extrapolated by the second radar signal.

(付記9)
帯域拡張手段は、前記の一次応答信号と二次応答信号のそれぞれについて前記の第1の周波数帯域と第2の周波数帯域の帯域間の一部の信号を、前記の第1のレーダ信号を用いて線形予測することにより外挿し、該第1の周波数帯域と第2の周波数帯域の帯域間の一部の信号の残りを、前記の第2のレーダ信号を用いて線形予測することにより外挿し、コヒーレント処理手段は、該第1のレーダ信号と該第1のレーダ信号により外挿されたレーダ信号の位相を、該第2のレーダ信号と該第2のレーダ信号により外挿されたレーダ信号の位相に合わせることを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 9)
Band extension means uses the first radar signal as a partial signal between the first frequency band and the second frequency band for each of the primary response signal and the secondary response signal. And extrapolating by linearly predicting the remainder of the signal between the first frequency band and the second frequency band using the second radar signal. The coherent processing means converts the phase of the radar signal extrapolated from the first radar signal and the first radar signal into the radar signal extrapolated from the second radar signal and the second radar signal. The radar target identification device according to appendix 1, wherein the radar target identification device is adapted to the phase of the radar.

(付記10)
帯域拡張レーダ信号結合手段は前記の周波数帯域が拡張された一次応答のレーダ信号と二次応答のレーダ信号の振幅を周波数軸上で加算して結合することを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 10)
The radar according to appendix 1, wherein the band extension radar signal combining means adds and combines the amplitudes of the primary response radar signal and the secondary response radar signal whose frequency band are extended on the frequency axis. Target identification device.

(付記11)
目標識別処理手段は、前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該一次応答信号における応答の数や強度、該応答間の距離差をデータベースとして照合することにより目標識別を行なうことを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 11)
The target identification processing means creates a range profile including a primary response component and a secondary response component based on the radar signal from the band extension radar signal combining means, and determines the number and intensity of responses in the primary response signal, 2. The radar target identification apparatus according to appendix 1, wherein target identification is performed by collating the difference in distance as a database.

(付記12)
目標識別処理手段は、前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該二次応答信号における応答の数や強度、該応答間の距離差をデータベースとして照合することにより目標識別を行なうことを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 12)
The target identification processing means creates a range profile including a primary response component and a secondary response component based on the radar signal from the band extension radar signal combining means, and the number and intensity of responses in the secondary response signal, the response 2. The radar target identification apparatus according to appendix 1, wherein target identification is performed by collating a distance difference between them as a database.

(付記13)
目標識別処理手段は、前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該一次応答信号と二次応答信号における特異点の数や位相、該特異点間の位相差をデータベースとして照合することにより目標識別を行なうことを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 13)
The target identification processing means creates a range profile including a primary response component and a secondary response component from the radar signal by the band extension radar signal combining means, and the number of singular points in the primary response signal and the secondary response signal. 2. The radar target identification apparatus according to appendix 1, wherein target identification is performed by collating the phase difference between the singular point and the phase as a database.

(付記14)
目標識別処理手段は、前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該一次応答信号における特異点の数や位相、該特異点間の位相差をデータベースとして照合することにより目標識別を行なうことを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 14)
The target identification processing means creates a range profile including a primary response component and a secondary response component based on the radar signal from the band-extended radar signal combining means, and determines the number and phase of singular points in the primary response signal and the singularity. The radar target identification apparatus according to appendix 1, wherein target identification is performed by comparing phase differences between points as a database.

(付記15)
目標識別処理手段は、前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該二次応答信号における特異点の数や位相、該特異点間の位相差をデータベースとして照合することにより目標識別を行なうことを特徴とする付記1に記載のレーダ目標識別装置。
(Appendix 15)
The target identification processing means creates a range profile including a primary response component and a secondary response component based on the radar signal from the band extension radar signal combining means, and the number and phase of singular points in the secondary response signal, The radar target identification apparatus according to appendix 1, wherein target identification is performed by collating a phase difference between singular points as a database.

(付記16)
観測対象となる目標に対してレーダ波を送信し該目標からの反射波を受信し、該受信したレーダ信号の周波数帯域を拡張し高分解能化を図ることで目標の識別を行うレーダ目標識別装置において、
1つの周波数帯域のレーダ波を送信し該反射波を受信するレーダ波送受信手段と、前記のレーダ波送受信手段の受信するレーダ信号について、時間軸上の閾値を設けて目標からの反射波の一次応答と二次応答の信号に分離するレーダ信号分離手段と、前記の一次応答信号と二次応答信号のそれぞれについて、前記の1つの周波数帯域外の信号を線形予測により外挿することでレーダ信号の周波数帯域を拡張する帯域拡張手段と、前記の周波数帯域が拡張された一次応答のレーダ信号と二次応答のレーダ信号の振幅を時間軸上で加算して結合する帯域拡張レーダ信号結合手段と、前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該一次応答信号と二次応答信号における応答の数や強度、該応答間の距離差をデータベースとして照合することにより目標識別を行なう目標識別処理手段とを備えることを特徴とするレーダ目標識別装置。
(Appendix 16)
Radar target identification device for identifying a target by transmitting a radar wave to a target to be observed, receiving a reflected wave from the target, and expanding the frequency band of the received radar signal to increase the resolution. In
A radar wave transmission / reception unit that transmits a radar wave of one frequency band and receives the reflected wave, and a radar signal received by the radar wave transmission / reception unit is provided with a threshold on the time axis and the primary of the reflected wave from the target Radar signal separating means for separating a response signal and a secondary response signal; and a radar signal obtained by extrapolating the signal outside the one frequency band by linear prediction for each of the primary response signal and the secondary response signal. Band extending means for extending the frequency band of the signal, and band extending radar signal combining means for adding and combining the amplitudes of the primary response radar signal and the secondary response radar signal on the time axis. A range profile including a primary response component and a secondary response component is created from the radar signal by the band extension radar signal combining means, and the primary response signal and the secondary response signal are generated. Takes the number and intensity of the response, the radar target identification system, characterized in that it comprises a target identification processing means for performing a target identified by matching the distance difference between the response as a database.

(付記17)
観測対象となる目標に対してレーダ波を送信し該目標からの反射波を受信し、該受信したレーダ信号の周波数帯域を拡張し高分解能化を図ることで目標の識別を行うレーダ目標識別装置において、
第1の周波数帯域のレーダ波を送信し該反射波を受信する第1のレーダ波送受信手段と、第2の周波数帯域のレーダ波を送信し該反射波を受信する第2のレーダ波送受信手段と、前記の第1のレーダ波送受信手段の受信する第1のレーダ信号と第2のレーダ波送受信手段の受信する第2のレーダ信号のそれぞれについて、時間軸上の閾値を設けて目標からの反射波の一次応答と二次応答の信号に分離するレーダ信号分離手段と、前記の一次応答信号と二次応答信号のそれぞれについて、前記の第1のレーダ信号の位相を前記の第2のレーダ信号の位相に合わせるコヒーレント処理手段と、前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を線形予測により内挿し第1の周波数帯域と第2の周波数帯域の帯域外の信号を線形予測により外挿することでレーダ信号の周波数帯域を拡張する帯域拡張手段と、前記の周波数帯域が拡張された一次応答のレーダ信号と二次応答のレーダ信号の振幅を時間軸上で加算して結合する帯域拡張レーダ信号結合手段と、前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該一次応答信号と二次応答信号における応答の数や強度、該応答間の距離差をデータベースとして照合することにより目標識別を行なう目標識別処理手段とを備えることを特徴とするレーダ目標識別装置。
(Appendix 17)
Radar target identification device for identifying a target by transmitting a radar wave to a target to be observed, receiving a reflected wave from the target, and expanding the frequency band of the received radar signal to increase the resolution. In
First radar wave transmitting / receiving means for transmitting a radar wave in the first frequency band and receiving the reflected wave, and second radar wave transmitting / receiving means for transmitting a radar wave in the second frequency band and receiving the reflected wave For each of the first radar signal received by the first radar wave transmitting / receiving unit and the second radar signal received by the second radar wave transmitting / receiving unit, a threshold on the time axis is provided to Radar signal separating means for separating the reflected wave into primary response and secondary response signals, and the phase of the first radar signal for each of the primary response signal and the secondary response signal, and the second radar. Coherent processing means for matching the phase of the signal, and a signal outside the first frequency band and the second frequency band by interpolating the signal between the first frequency band and the second frequency band by linear prediction. By linear prediction Band extension means for extending the frequency band of the radar signal by extrapolation, and combining the amplitudes of the primary response radar signal and the secondary response radar signal with the frequency band extended on the time axis. A range profile including a primary response component and a secondary response component is created by the band extended radar signal combining means and the radar signal by the band extended radar signal combining means, and the response of the response in the primary response signal and the secondary response signal is generated. A radar target identification device comprising: target identification processing means for performing target identification by collating the number, intensity, and distance difference between the responses as a database.

本発明に係る機能構成図(1)Functional configuration diagram according to the present invention (1) 本発明に係る機能動作を説明する図(1)FIG. (1) for explaining functional operations according to the present invention 本発明に係る機能動作を説明する図(2)FIG. (2) for explaining the functional operation according to the present invention 本発明に係る機能動作を説明する図(3)FIG. 3 is a diagram for explaining a functional operation according to the present invention. 本発明に係る機能動作を説明する図(4)FIG. 4 is a diagram for explaining a functional operation according to the present invention. 本発明の実施例を説明する図(1)FIG. 1 illustrates an embodiment of the present invention. 本発明の実施例を説明する図(2)FIG. 2 illustrates an embodiment of the present invention. 本発明に係る機能動作を説明する図(5)FIG. 5 is a diagram for explaining a functional operation according to the present invention. 本発明に係る機能動作を説明する図(6)FIG. 6 illustrates functional operations according to the present invention. 本発明に係る機能構成図(2)Functional configuration diagram according to the present invention (2) 本発明に係る機能動作を説明する図(7)FIG. 7 is a diagram for explaining a functional operation according to the present invention. 本発明に係る機能動作を説明する図(8)FIG. 8 is a diagram for explaining a functional operation according to the present invention. 本発明に係る機能動作を説明する図(9)FIG. 9 is a diagram for explaining the functional operation according to the present invention. 本発明に係る機能構成図(3)Functional configuration diagram according to the present invention (3) 本発明に係る機能動作を説明する図(10)FIG. 10 is a diagram for explaining a functional operation according to the present invention. 本発明に係る機能動作を説明する図(11)FIG. 11 illustrates functional operations according to the present invention. 本発明に係る機能動作を説明する図(12)FIG. 12 is a diagram for explaining a functional operation according to the present invention. 本発明に係る機能動作を説明する図(13)FIG. 13 is a diagram for explaining a functional operation according to the present invention. 本発明に係る機能動作を説明する図(14)FIG. 14 is a diagram for explaining a functional operation according to the present invention. 本発明に係る機能動作を説明する図(15)FIG. 15 is a diagram for explaining the functional operation according to the present invention. 本発明に係る機能動作を説明する図(16)FIG. 16 is a diagram for explaining the functional operation according to the present invention. 本発明に係る機能動作を説明する図(17)FIG. 17 is a diagram for explaining a functional operation according to the present invention. 本発明に係る機能動作を説明する図(18)FIG. 18 illustrates functional operations according to the present invention. 本発明に係る機能構成図(4)Functional configuration diagram according to the present invention (4) 本発明に係る機能構成図(5)Functional configuration diagram according to the present invention (5) 従来技術を説明する機能構成図Functional configuration diagram explaining conventional technology 従来技術の機能動作を説明する図The figure explaining the functional operation of the prior art 従来技術の課題を説明する図(1)FIG. (1) for explaining the problems of the prior art 従来技術の課題を説明する図(2)FIG. (2) explaining the problem of the prior art

符号の説明Explanation of symbols

1 低帯域レーダ波送受信手段
2 高帯域レーダ波送受信手段
3a,3b,3c レーダ信号分離手段
4a,4b,41a,41b,42a,42b,45 コヒーレント処理手段
5a,5b,54a,54b,55,81a,81b,82a,82b,83a,83b,84a,84b 帯域拡張手段
6 帯域拡張レーダ信号結合手段
7 目標識別処理手段
9 中間帯域レーダ波送受信手段
DESCRIPTION OF SYMBOLS 1 Low band radar wave transmission / reception means 2 High band radar wave transmission / reception means 3a, 3b, 3c Radar signal separation means 4a, 4b, 41a, 41b, 42a, 42b, 45 Coherent processing means 5a, 5b, 54a, 54b, 55, 81a , 81b, 82a, 82b, 83a, 83b, 84a, 84b Band expanding means 6 Band extending radar signal combining means 7 Target identification processing means 9 Intermediate band radar wave transmitting / receiving means

Claims (5)

観測対象となる目標に対してレーダ波を送信し該目標からの反射波を受信し、該受信したレーダ信号の周波数帯域を拡張し高分解能化を図ることで目標の識別を行うレーダ目標識別装置において、
第1の周波数帯域のレーダ波を送信し該反射波を受信する第1のレーダ波送受信手段と、
第2の周波数帯域のレーダ波を送信し該反射波を受信する第2のレーダ波送受信手段と、
前記の第1のレーダ波送受信手段の受信する第1のレーダ信号と第2のレーダ波送受信手段の受信する第2のレーダ信号のそれぞれについて、時間軸上の閾値を設けて目標からの反射波の一次応答と二次応答の信号に分離するレーダ信号分離手段と、
前記の一次応答信号と二次応答信号のそれぞれについて、前記の第1のレーダ信号の位相を前記の第2のレーダ信号の位相に合わせるコヒーレント処理手段と、
前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を線形予測により内挿することでレーダ信号の周波数帯域を拡張する帯域拡張手段と、
前記の周波数帯域が拡張された一次応答のレーダ信号と二次応答のレーダ信号の振幅を時間軸上で加算して結合する帯域拡張レーダ信号結合手段と、
前記の帯域拡張レーダ信号結合手段によるレーダ信号により、一次応答成分と二次応答成分を含んだレンジプロファイルを作成し、該一次応答信号と二次応答信号における応答の数や強度、該応答間の距離差をデータベースとして照合することにより目標識別を行なう目標識別処理手段と、
を備えることを特徴とするレーダ目標識別装置。
Radar target identification device for identifying a target by transmitting a radar wave to a target to be observed, receiving a reflected wave from the target, and expanding the frequency band of the received radar signal to increase the resolution. In
First radar wave transmitting / receiving means for transmitting a radar wave of a first frequency band and receiving the reflected wave;
Second radar wave transmitting / receiving means for transmitting a radar wave of the second frequency band and receiving the reflected wave;
For each of the first radar signal received by the first radar wave transmission / reception means and the second radar signal received by the second radar wave transmission / reception means, a reflected wave from the target is provided by providing a threshold on the time axis. Radar signal separating means for separating the first response signal and the second response signal;
Coherent processing means for adjusting the phase of the first radar signal to the phase of the second radar signal for each of the primary response signal and the secondary response signal;
Band extending means for extending the frequency band of the radar signal by interpolating a signal between the first frequency band and the second frequency band by linear prediction;
Band extension radar signal combining means for adding and combining the amplitudes of the primary response radar signal and the secondary response radar signal with the frequency band extended on the time axis;
A range profile including a primary response component and a secondary response component is created by a radar signal by the band extension radar signal combining means, and the number and intensity of responses in the primary response signal and the secondary response signal, and between the responses Target identification processing means for performing target identification by collating the distance difference as a database;
A radar target identification device comprising:
コヒーレント処理手段は、前記の一次応答信号と二次応答信号のそれぞれについて、前記の第2のレーダ信号の位相を前記の第1のレーダ信号の位相に合わせることを特徴とする請求項1に記載のレーダ目標識別装置。   The coherent processing means matches the phase of the second radar signal with the phase of the first radar signal for each of the primary response signal and the secondary response signal. Radar target identification device. コヒーレント処理手段は、前記の一次応答信号と二次応答信号のそれぞれについて、前記の第1のレーダ信号の位相と第2のレーダ信号の位相を任意の同じ位相に合わせることを特徴とする請求項1に記載のレーダ目標識別装置。   The coherent processing means adjusts the phase of the first radar signal and the phase of the second radar signal to arbitrary same phases for each of the primary response signal and the secondary response signal. The radar target identification device according to 1. 帯域拡張手段は、前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を、第1のレーダ信号を用いて線形予測することにより外挿することを特徴とする請求項1に記載のレーダ目標識別装置。   The band extension means extrapolates the signal between the first frequency band and the second frequency band by performing a linear prediction using the first radar signal. The radar target identification device described. 帯域拡張手段は、前記の第1の周波数帯域と第2の周波数帯域の帯域間の信号を、第2のレーダ信号を用いて線形予測することにより外挿することを特徴とする請求項1に記載のレーダ目標識別装置。
The band extending means extrapolates the signal between the first frequency band and the second frequency band by performing a linear prediction using a second radar signal. The radar target identification device described.
JP2003418287A 2003-12-16 2003-12-16 Radar target identification device Expired - Fee Related JP4079084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418287A JP4079084B2 (en) 2003-12-16 2003-12-16 Radar target identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418287A JP4079084B2 (en) 2003-12-16 2003-12-16 Radar target identification device

Publications (2)

Publication Number Publication Date
JP2005180970A true JP2005180970A (en) 2005-07-07
JP4079084B2 JP4079084B2 (en) 2008-04-23

Family

ID=34780538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418287A Expired - Fee Related JP4079084B2 (en) 2003-12-16 2003-12-16 Radar target identification device

Country Status (1)

Country Link
JP (1) JP4079084B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225442A (en) * 2006-02-23 2007-09-06 Mitsubishi Electric Corp Radar device
JP2009543073A (en) * 2006-07-07 2009-12-03 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Method and apparatus for discriminating objects in a feedback signal
JP2013124888A (en) * 2011-12-13 2013-06-24 Fujitsu Ltd Radar system and detection method
RU2589737C1 (en) * 2015-07-06 2016-07-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства Обороны Российской Федерации Method for extraction from doppler portraits of aerial objects identification features using superresolution method
RU2611720C1 (en) * 2016-04-25 2017-02-28 Георгий Галиуллович Валеев Method for radar target identification (alternatives)
JP2018132523A (en) * 2017-02-13 2018-08-23 国立大学法人電気通信大学 Discrete frequency synthesis rader device, and distance estimation method and program
CN113009469A (en) * 2021-03-05 2021-06-22 中国科学院空天信息创新研究院 Cooperative target direction-finding positioning system and method based on coded metamaterial

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225442A (en) * 2006-02-23 2007-09-06 Mitsubishi Electric Corp Radar device
JP2009543073A (en) * 2006-07-07 2009-12-03 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Method and apparatus for discriminating objects in a feedback signal
JP2013224956A (en) * 2006-07-07 2013-10-31 Exelis Inc Method and apparatus for target discrimination within return signals
JP2013124888A (en) * 2011-12-13 2013-06-24 Fujitsu Ltd Radar system and detection method
RU2589737C1 (en) * 2015-07-06 2016-07-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства Обороны Российской Федерации Method for extraction from doppler portraits of aerial objects identification features using superresolution method
RU2611720C1 (en) * 2016-04-25 2017-02-28 Георгий Галиуллович Валеев Method for radar target identification (alternatives)
JP2018132523A (en) * 2017-02-13 2018-08-23 国立大学法人電気通信大学 Discrete frequency synthesis rader device, and distance estimation method and program
JP7011305B2 (en) 2017-02-13 2022-01-26 国立大学法人電気通信大学 Separation frequency synthesis radar device, distance estimation method and program
CN113009469A (en) * 2021-03-05 2021-06-22 中国科学院空天信息创新研究院 Cooperative target direction-finding positioning system and method based on coded metamaterial

Also Published As

Publication number Publication date
JP4079084B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US11327166B2 (en) Low complexity super-resolution technique for object detection in frequency modulation continuous wave radar
CN110031805B (en) Radar apparatus
JP5519132B2 (en) Radar equipment
CN108885254B (en) Object detection device
JP5623338B2 (en) Car radar system and method for determining a sweep pattern transmitted by an automobile radar as an output radar waveform
EP2983007A1 (en) Radar apparatus and object sensing method
JP6415288B2 (en) Radar equipment
US9768895B2 (en) Multipath time delay estimation apparatus and method and receiver
JP6951276B2 (en) Wireless receiver, wireless reception method and wireless system
JP4079084B2 (en) Radar target identification device
US10852389B2 (en) Interference-tolerant multiple-user radar system
JP5752481B2 (en) Passive radar device, guidance device, and radio wave detection method
JP6079709B2 (en) Radar equipment
JP4815840B2 (en) Sound wave propagation distance estimation method and sound wave propagation distance estimation apparatus
JP2010038744A (en) Radar system for target identification
Hussain et al. Auto-regressive spectral gap filling algorithms for photonics-based highly sparse coherent multi-band radars in complex scenarios
JP6822492B2 (en) Object detection device, object detection method, and program
Karmakar et al. Short Time Fourier Transform (STFT) for collision detection in chipless RFID systems
RU2524399C1 (en) Method of detecting small-size mobile objects
JP6747688B2 (en) Source estimation method and source estimation apparatus using the same
KR20160043437A (en) Method and apparatus for detecting an impulsive radar interference
JP5933346B2 (en) Oscillator identification apparatus and oscillator identification method
JP2008281517A (en) Identification device of pulse modulation signal string
US11231495B2 (en) Signal processing device and signal processing method
JP2909535B1 (en) Pulse compression method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4079084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees