JP2005180892A - Structure of waste feeding part - Google Patents

Structure of waste feeding part Download PDF

Info

Publication number
JP2005180892A
JP2005180892A JP2003436700A JP2003436700A JP2005180892A JP 2005180892 A JP2005180892 A JP 2005180892A JP 2003436700 A JP2003436700 A JP 2003436700A JP 2003436700 A JP2003436700 A JP 2003436700A JP 2005180892 A JP2005180892 A JP 2005180892A
Authority
JP
Japan
Prior art keywords
waste
melting furnace
throat
sensor
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003436700A
Other languages
Japanese (ja)
Inventor
Masatsugu Yamagata
昌継 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Machinery Co Ltd
Original Assignee
Taiyo Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Machinery Co Ltd filed Critical Taiyo Machinery Co Ltd
Priority to JP2003436700A priority Critical patent/JP2005180892A/en
Publication of JP2005180892A publication Critical patent/JP2005180892A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily surely prevent the intrusion of the outside air in a waste feeding part to a furnace in a waste treatment furnace (a furnace particularly including a thermal decomposition process). <P>SOLUTION: A substantially vertical throat part is provided in the waste feeding part to the furnace, and level gauges for detecting the position of the waste in the throat part are provided in two upper and lower stages with a predetermined space within the throat part. A waste feeder is controlled so that supplied waste is regularly present between the upper and lower level gauges during the operation of the furnace. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は固形廃棄物の少なくとも熱分解等の熱反応の工程を含み可燃性ガスが炉外へ取出される廃棄物処理用炉なかんずく堅型溶融炉の廃棄物供給部の構造に関するものである。The present invention relates to the structure of a waste supply section of a solid melting furnace, particularly a waste processing furnace in which a combustible gas is taken out of the furnace including a thermal reaction step such as thermal decomposition of solid waste.

従来の堅型溶融炉の上部の廃棄物供給構造の代表的な例を図2の(イ)及び(ロ)に示す。図2の(イ)の場合、堅型溶融炉上部供給構造はスロート部に取付けられた二重ダンパの下段(D1)及び上段(D2)の二段のダンパの交互開閉構造で外気が上部ホッパを通して、溶融炉内に流入するのを防ぐように意図されている。
また、他の例としては図2の(ロ)に示すように廃棄物をスクリューフィーダを使用し、特にスクリュとケーシングの間に廃棄物を圧縮、輸送しながら廃棄物の炉内への供給と炉内への外気の通気を妨げて気密性を維持するようにした構造のものもある。また廃棄物の供給と気密性維持のために前記スクリュの代わりにプレス機構を用いた方式も数多く採用されている。
A typical example of a waste supply structure in the upper part of a conventional solid melting furnace is shown in FIGS. In the case of FIG. 2 (a), the solid melting furnace upper supply structure is an open / close structure of two stages of lower dampers (D1) and upper (D2) double dampers attached to the throat part, and the outside air is in the upper hopper. And is intended to prevent flow into the melting furnace.
As another example, as shown in FIG. 2 (b), a screw feeder is used for waste, and in particular, waste is supplied into the furnace while being compressed and transported between the screw and the casing. There is also a structure in which the airtightness is maintained by preventing the outside air from flowing into the furnace. In order to supply waste and maintain airtightness, many systems using a press mechanism instead of the screw are employed.

いずれにしても従来方式の廃棄物の溶融炉内への供給と気密性維持には改善点を残していた。
例えば二重ダンパによる機密性維持と廃棄物の供給とは上段ダンパが「閉」の状態で上段ダンパ上にクレーン等により廃棄物が供給され、次に下段ダンパ上には廃棄物がなく「閉」の状態で上段ダンパが「開」きながら上段ダンパ上の廃棄物を下段ダンパ上に落下させる。この落下状態が終わったことを確認して、上段ダンパは「閉」じた状態に戻して後、下段ダンパを「開」きながら下段ダンパ上の廃棄物を溶融炉内へ落下、供給した後下段ダンパを「閉」に戻す。この動作の繰り返しでホッパから供給された廃棄物は溶融炉内へ供給されるがこの二重ダンパ方式は必ず、いつの時点でもダンパ装置上・下段の2台ダンパの内、1台は閉じているため外気の溶融炉内への流入を妨げるとしている。
またスクリュ方式の場合、スクリュとそのスクリュを囲むケーシングとの隙間を狭くしスクリュで廃棄物の供給を行ないながらスクリュにより送られる廃棄物によりスクリュとケーシング間のすき間が廃棄物で充填されて気密性が維持されるように工夫されていた。
特開昭54−68077号公報 特開平5−346217号公報 特開平8−121726号公報 特開平8−121727号公報 化学装置1995年2月号「廃棄物焼却炉飛灰の溶融無害化回収システム」 生活と環境平成8年3月号「熱分解溶融システムによるごみ処理」 日立造船技報平成7年7月(第56巻第2号)「都市ごみ焼却灰のツイントーチプラズマ溶融処理」 第5回廃棄物学会研究発表会後援論文集1994「廃棄物の直接溶融処理技術の改善研究(第一報)」
In any case, improvements were left in the supply of waste in the conventional method into the melting furnace and maintenance of airtightness.
For example, to maintain confidentiality and supply waste with a double damper, waste is supplied to the upper damper by a crane or the like with the upper damper closed, and then there is no waste on the lower damper. In this state, the waste on the upper damper is dropped onto the lower damper while the upper damper is “open”. After confirming that the falling state has ended, the upper damper is returned to the “closed” state, and the waste on the lower damper is dropped and supplied into the melting furnace while the lower damper is opened. Return the lower damper to “closed”. The waste supplied from the hopper by the repetition of this operation is supplied into the melting furnace, but this double damper system always closes one of the upper and lower dampers of the damper device at any time. Therefore, the inflow of outside air into the melting furnace is prevented.
In the case of the screw method, the gap between the screw and the casing is filled with waste by the waste sent by the screw while the gap between the screw and the casing surrounding the screw is narrowed and the waste is supplied with the screw. Has been devised to maintain.
JP 54-68077 A JP-A-5-346217 JP-A-8-121726 JP-A-8-121727 Chemical equipment February 1995 issue “Fused waste incinerator fly ash detoxification recovery system” Life and environment March, 1996 issue "Waste disposal by pyrolysis melting system" Hitachi Zosen Technical Report July 1995 (Vol. 56, No. 2) “Twin torch plasma melting treatment of municipal waste incineration ash” 1994 "Study on Improvement of Direct Melt Processing Technology for Waste (First Report)"

しかしながら従来の溶融炉の廃棄物の供給構造では次のような課題を有していた。ここでは代表例の二重ダンパ方式について説明する。
この上記方式では前述のように上段又は下段のどれか一つのダンパの閉じた状態によって、気密性(通気の遮断の程度)が確実に確保されるように意図されているため、ダンパを閉じた状態の時、ダンパの周囲とダンパを囲むケーシング板とが密着せねばならないが、ダンパ上に乗る物が物性も形状も千差万別の廃棄物のために絶えず密着させる事は非常に難しいのが現実である。例えば、長いヒモ上のものがホッパからぶら下がっていると、ダンパが閉じてもダンパはそのヒモ状物を挟んでしまい、ダンパを確実に閉じることが出来なくなる。
ダンパの周辺に湿った砂や廃棄物が付着しやすいが、それらの 付着によってもまた同じようにダンパを閉じた時ダンパとケーシング間とに付着物を挟んで間隙を形成するため確実にダンパを閉じることが出来なくなる。また、ダンパが閉じる時木や金属等をダンパとケーシング間とに挟んだ時シール性の確保が出来ないのみならずまたそれらの噛み込みによってダンパが開かなくなる等のトラブルが往々にして発生することである。更にダンパには廃棄物の落下衝撃荷重や静荷重が絶えず作用すること及び時として炉内の高温の輻射熱にさらされるため、長時間使用している間にダンパがひずみ変形を生じ易く、ダンパを閉じた時、何も噛み込んでいなくともシール性を確保が出来ないとかスムーズな開閉が出来なくなりがちとなる。
However, the conventional melting furnace waste supply structure has the following problems. Here, a representative example of a double damper system will be described.
In the above method, as described above, the damper is closed because any one of the dampers in the upper stage or the lower stage is intended to ensure airtightness (degree of blockage of ventilation). In this state, the damper and the casing plate surrounding the damper must be in close contact, but it is very difficult to keep the objects on the damper in close contact with each other due to the various physical properties and shapes. Is the reality. For example, if an object on a long string is hanging from the hopper, even if the damper is closed, the damper sandwiches the string-like object, and the damper cannot be reliably closed.
Wet sand and waste are likely to adhere to the periphery of the damper, but when the damper is closed in the same way, the damper is securely attached to form a gap between the damper and the casing. It cannot be closed. Also, when the damper closes, not only can the sealing performance be secured when wood or metal is sandwiched between the damper and the casing, but troubles such as the damper not opening due to their biting often occur. It is. In addition, the impact and static load of the waste always acts on the damper and sometimes it is exposed to the high temperature radiant heat in the furnace. When closed, there is a tendency that even if nothing is bitten, the sealing performance cannot be ensured or smooth opening and closing cannot be performed.

更に困難な課題は、ダンパの開閉が出来なくなった時もしくはダンパを閉じてもシール性が確保出来なくなった時には溶融炉の運転を停止しなければならないことである。そしてその故障を修理するために前記スロート部に人が入らなければならないこと等が発生することである。
溶融炉の運転休止によって当然その休止期間中は廃棄物処理が出来ないためこの間が数日以上続くと外部へ費用を払ってその廃棄物の処理を依頼する必要が発生する。
またダンパ部の修理の場合その場所は往々にして溶融炉内上部の足場の悪い高所でかつ煤塵・すす等が付着や堆積しているため作業の危険や作業中有害物質の人体への吸引等の危険等が伴っていることである。
更に、ダンパ構造は強度、耐久性、気密性を確保するため、重量もあり、装置も大きく補修、取替等も容易ではなく、そのため補修、改造費用も高いものになっていた。
上記の状況から補修、点検の容易な構造の簡単かつ確実なシール性が出来る安価な構造が求められていた。
この状態はプッシャ方式の場合にもスクリュ方式の場合にも廃棄物の供給部での「かみこみ」と言う大同小異の問題があった。
A more difficult problem is that the operation of the melting furnace must be stopped when the damper cannot be opened or closed, or when the seal cannot be secured even when the damper is closed. In addition, a person must enter the throat portion in order to repair the failure.
Naturally, the waste furnace cannot be disposed of during the suspension period due to the suspension of operation of the melting furnace. Therefore, if this period continues for several days or more, it is necessary to pay the cost to the outside to request the disposal of the waste.
In the case of repairing the damper section, the location is often a high place with a poor scaffolding in the upper part of the melting furnace, and dust and soot are attached and accumulated, causing danger of work and sucking harmful substances to the human body during work. It is accompanied by dangers such as.
Furthermore, the damper structure is heavy in order to ensure strength, durability, and airtightness, and the equipment is large and repair and replacement are not easy. Therefore, repair and remodeling costs are high.
In view of the above situation, there has been a demand for an inexpensive structure capable of simple and reliable sealing with a structure that is easy to repair and inspect.
In this state, both the pusher method and the screw method have the same problem of “clogging” in the waste supply section.

上記課題を解決するために、本発明の堅型溶融炉はその炉の上部にホッパに続く筒状の比較的長いスロート部をほぼ鉛直に設け、該スロート部には任意の間隔のある上下二段にセンサを取付けた構造とした。該センサは該センサが取付けてある位置(高さ)のスロート部内の廃棄物の有・無が検出出来かつ廃棄物の有無の状況の検出によってその信号を伝達表示もしくはその信号に基づいて廃棄物供給用装置を手動もしくは自動操作出来るようにした。また前記上下二段のセンサのうち、下方のセンサの該スロート部への取付位置は溶融炉運転中外気が廃棄物供給部(ホッパ及びスロート部)を通して、吸引されない程に廃棄物がスロート部に充填された最低の高さ以上としている。また上段センサの取付位置はこの上段のセンサの位置で廃棄物がない状態の「空」を検出した時に仮にこの上段センサの「空」の信号をもとに廃棄物供給装置が手動もしくは自動での供給作動を行い廃棄物をスロート部へホッパを通して供給した時該スロート部の廃棄物の位置が下段センサの位置以下になっていない場所としている。
そして、前記スロート部に設けられた上下二段のセンサの 使用方法は前記下段センサがスロート部内の廃棄物が「空」を検知した時廃棄物供給の操作員に「空」の信号を発信するか、「空」の信号をもとに廃棄物の供給を自動で投入作業を行い、また、上段のセンサがスロート部内の廃棄物が存在する「充」を検知した時は廃棄物の供給操作員に「充」の信号を発信するか、「充」の信号をもとに廃棄物の供給を自動操作で停止するようにしたことにある。上記の構造と操作方法によって、上記ホッパに続くスロート部の上下二段のセンサ間には溶融炉運転中絶えず被処理対象物である廃棄物で充填されるようにしたことにある。
In order to solve the above-mentioned problems, the solid melting furnace of the present invention is provided with a relatively long cylindrical throat portion following the hopper in the upper portion of the furnace, and the throat portion has two upper and lower portions with arbitrary intervals. A sensor was attached to the stage. The sensor can detect the presence / absence of waste in the throat portion at the position (height) where the sensor is attached and transmits the signal by detecting the presence / absence of the waste, or the waste based on the signal The supply device can be operated manually or automatically. Of the two upper and lower sensors, the position of the lower sensor attached to the throat part is such that the waste air is moved to the throat part so that outside air is not sucked through the waste supply part (hopper and throat part) during operation of the melting furnace. More than the minimum height filled. In addition, when the upper sensor is installed at the position of the upper sensor and “empty” is detected when there is no waste, the waste feeder is manually or automatically operated based on the “empty” signal of the upper sensor. When the waste is supplied to the throat part through the hopper, the position of the waste in the throat part is not below the position of the lower sensor.
And, the usage method of the upper and lower two-stage sensors provided in the throat part is that the lower sensor sends an “empty” signal to the waste supply operator when the waste in the throat part detects “empty”. In addition, the waste supply operation is performed automatically based on the “empty” signal, and when the upper sensor detects the “charge” in the throat, waste supply operation In other words, a “charge” signal is sent to the employee, or the waste supply is automatically stopped based on the “charge” signal. According to the above structure and operation method, the upper and lower two-stage sensors of the throat section following the hopper are constantly filled with the waste to be treated during the operation of the melting furnace.

上記の溶融炉の廃棄物供給部の構造とその操作方法によって従来の課題を解決することが可能となった。
まず溶融炉の上部に筒状のほぼ鉛直のスロート部を設け、このスロート部には上下二段のセンサを設け、下段のセンサの位置は下段センサ以上に廃棄物が存在する操作によって溶融炉運転中に外気がホッパ部より炉内に吸引されなくなった。この下段センサの位置よりスロート部内の廃棄物の表面が下がると下段センサが「空」を検知して、廃棄物の供給操作員に廃棄物供給の信号を送るため、操作員が廃棄物を供給するか、もしくは下段センサと廃棄物の供給装置との自動操作プログラムを組んでおくことによって廃棄物の自動供給が行われるため、廃棄物は下段センサ付近以上に絶えず充填されているようになった。従来のように大きい構造物の二重ダンパやスクリューコンベヤ等を採用しなくとも処理対象の廃棄物の充填高さを一定の範囲に、廃棄物検出センサのスロート部への上下二段の取付とそのセンサによる廃棄物供給操作で、維持出来るため溶融炉内の気密性が簡単に保持出来るようになった。
The conventional problems can be solved by the structure of the waste supply section of the melting furnace and the operation method thereof.
First, a cylindrical almost vertical throat part is provided at the top of the melting furnace, and two tiers of sensors are installed on the throat part. The position of the lower sensor is the operation of the melting furnace by an operation in which waste is present beyond the lower sensor. Outside air was no longer drawn into the furnace from the hopper. When the surface of the waste in the throat section is lowered from the position of the lower sensor, the lower sensor detects "empty" and sends a waste supply signal to the waste supply operator, so the operator supplies the waste. Or the automatic operation program of the lower sensor and the waste supply device is set up to automatically supply the waste, so that the waste is constantly filled more than the vicinity of the lower sensor. . Without using double dampers or screw conveyors with large structures as in the past, the height of filling of the waste to be treated is kept within a certain range, and the upper and lower stages are attached to the throat part of the waste detection sensor. Since it can be maintained by the waste supply operation using the sensor, the airtightness in the melting furnace can be easily maintained.

また、本発明は上記のように上下二段のセンサをスロート部の外周に取りつけて、スロート部内の廃棄物の有・無を超音波等の手段で検出する方法のため従来のようにスロート部内には構造物がなく廃棄物供給に伴うスロート部内での廃棄物のかみこみ、つっかえ等の従来のようなトラブルは解消した。該センサが不調になって点検等が必要になっても該スロート部の外で該センサを外して簡単に点検なり交換できるため溶融炉を従来のように長時間停止せずとも済むようになった。
また前記のように簡単な構造の上下二段のセンサのスロート部への設置で溶融炉内の気密性が維持出来るようになったため、非常に装置費が安く出来るようになった。
さらにスロート部のトラブルのためにセンサの取替、補修等が生じても溶融炉の外部での歩廊上での作業が行えるために従来のような溶融炉内の高所の作業でないため危険性も大幅に改善される結果となった。
Further, the present invention is a method for attaching the two upper and lower sensors to the outer periphery of the throat portion as described above, and detecting the presence / absence of waste in the throat portion by means of ultrasonic waves or the like as in the prior art. Has no structure, so conventional troubles such as entrapment and refilling of waste in the throat section associated with waste supply have been solved. Even if the sensor becomes unstable and needs to be inspected, it can be easily inspected and replaced by removing the sensor outside the throat, so the melting furnace does not have to be stopped for a long time as in the prior art. It was.
In addition, since the airtightness in the melting furnace can be maintained by installing the two-stage sensor with a simple structure as described above at the throat portion, the apparatus cost can be greatly reduced.
In addition, even if the sensor is replaced or repaired due to a trouble in the throat, the work on the corridor outside the melting furnace can be performed, so it is not a conventional work at a high place in the melting furnace. The result was also greatly improved.

本発明の一実施例を図1を中心に記述する。
堅型溶融炉(1)の炉天井(7)に、上方にホッパ(2)付のスロート部(3)を設け、該スロート部(3)にはスロート部内の廃棄物の存在が検知できるセンサをS1,S2を上下二段設けている。下段のセンサ(S1)はスロート部(3)に溶融対象の廃棄物を充填し、前記溶融炉(1)を定常運転した時、前記ホッパ(2)及びスロート部(3)を通して外気が吸引されない高さの中で、最も低い廃棄物の基準レベルをS0とした時それより上方で余裕を見た高さ(例えば1m位)の上方の位置に取り付けられている。即ち、廃棄物の特性、組成等が時間の経過によって変化しても確実に供給廃棄物によってスロート部(3)で気密性を維持出来る高さを下段センサ(S1)の位置としている。
また上段センサ(S2)の位置は下段センサ(S1)より上方で、この上段センサの位置で廃棄物がない状態の「空」を検出した時に、仮にこの上段センサの「空」の信号をもとに廃棄物を供給した時にスロート部の廃棄物の位置が下段センサ以下にならない場所に設けられるが、簡単には少なくとも該溶融炉の廃棄物の時間平均処理能力の約15分間分以上の容積が前記上・下二段センサ間で確保出来る位置に設けられている。そして廃棄物供給装置、例えばクレーン(8)によって供給された廃棄物はスロート部(3)で所定時間滞留した後、溶融炉内に自重で落下していく。そして炉天井(7)の位置より下方に落下しながら、乾燥(イ)熱分解(ロ)、最終的に溶融炉の底部で廃棄物中の熱分解カーボンと、外部より羽口(10)より供給された酸素と必要なら補助燃料の供給を受けて、高温燃焼し、残渣は溶融スラグとなり、出澤口(6)を通して外部へ取り出される。
このときの高温の燃焼ガスは前記廃棄物の流れとは逆に溶融炉内を上昇し、溶融炉を落下する廃棄物を順次、熱分解、乾燥した後、水分を含んだ可燃性ガスとなり、煙道出口(4)より溶融炉(1)の後方に設けられた誘引排風機により該溶融炉より吸引排出される。
前記可燃性ガスは煙道出口(4)でやや大気より負圧のマイナス3〜5mmHOに、前記誘引排風機の回転数もしくはダンパ開度調整で制御されるが廃棄物はほぼスロート部の下段センサ(S1)と上段センサ(S2)との間に制御されているため、ホッパ(2)、スロート部(3)を通して外気が溶融炉内に吸引されることは防がれる。
即ち、堅型溶融炉(1)の上部にホッパ(2)と上段、下段の2段の廃棄物センサをスロート部の外部につけたスロート部を設け、上段センサと下段センサの間に前記上下2段のセンサ信号によって上段センサと下段センサの間にほぼ廃棄物の位置を制御する結果簡単に溶融炉内の気密性が制御することが出来るようになった。
そのため、外気が溶融炉内へ吸引され、可燃性ガスと溶融炉上部間の煙道出口(4)付近で接触し爆発することの防止が容易に、確実に出来るようになった。
そして、従来、この爆発の防止の根絶と溶融システムの安定運転を図るために溶融炉内圧を出来るだけマイナスの小さい値に安定的に維持することに苦労していた従来のスクリューフィーダ、プッシャ、二段ダンパ等の各方式での課題が本発明によって一挙に簡単な構造で解決した。
尚、この上、下の2段レベルセンサ方式は上記のように竪型溶融炉への適用だけでなく廃棄物を熱分解して可塑性ガスが発生する各種の炉への適用は当然の事ながら焼却炉への、廃棄物の供給構造としても適用出来るのである。
上記のように各種の炉内の反応を理想的に行うためには外気の進入を防ぐことが重要な条件の1つであり、本発明はそのことが出来る技術である。
One embodiment of the present invention will be described with reference to FIG.
A throat part (3) with a hopper (2) is provided above the furnace ceiling (7) of the solid melting furnace (1), and the throat part (3) can detect the presence of waste in the throat part. S1 and S2 are provided in two upper and lower stages. The lower sensor (S1) is filled with waste to be melted in the throat section (3), and when the melting furnace (1) is in steady operation, no outside air is sucked through the hopper (2) and the throat section (3). When the reference level of the lowest waste is set to S0 among the heights, it is attached at a position above the height (for example, about 1 m) with a margin above it. That is, the height of the lower sensor (S1) is a height at which the throat portion (3) can reliably maintain the airtightness by the supplied waste even if the characteristics, composition, etc. of the waste change over time.
The upper sensor (S2) is positioned above the lower sensor (S1), and when an “empty” state with no waste is detected at the upper sensor position, an “empty” signal from the upper sensor is temporarily output. When the waste is supplied to the throat, the position of the waste in the throat portion is not lower than the lower sensor, but it is simply a volume of at least about 15 minutes of the time average processing capacity of the waste in the melting furnace. Is provided at a position that can be secured between the upper and lower two-stage sensors. Then, the waste supplied by the waste supply device, for example, the crane (8) stays in the throat section (3) for a predetermined time, and then falls by its own weight into the melting furnace. And while falling downward from the position of the furnace ceiling (7), drying (ii) pyrolysis (b), finally pyrolytic carbon in waste at the bottom of the melting furnace, and from the tuyere (10) from the outside The supplied oxygen and, if necessary, supplementary fuel are supplied, and high temperature combustion is performed, and the residue becomes molten slag, which is taken out through Dezawaguchi (6).
The high-temperature combustion gas at this time rises in the melting furnace contrary to the flow of the waste, and the waste falling in the melting furnace is sequentially pyrolyzed and dried, and then becomes a combustible gas containing moisture, It is sucked and discharged from the melting furnace by an induction exhaust fan provided at the rear of the melting furnace (1) from the flue outlet (4).
The combustible gas is controlled at the flue outlet (4) to minus 3 to 5 mmH 2 O, which is slightly negative from the atmosphere, by adjusting the rotational speed of the induction exhaust fan or the damper opening, but the waste is almost in the throat part. Since control is performed between the lower sensor (S1) and the upper sensor (S2), outside air is prevented from being sucked into the melting furnace through the hopper (2) and the throat part (3).
In other words, a throat portion with a hopper (2) and two upper and lower waste sensors attached to the outside of the throat portion is provided in the upper part of the solid melting furnace (1), and the upper and lower sensors are disposed between the upper and lower sensors. As a result of controlling the position of the waste between the upper sensor and the lower sensor by the sensor signal of the stage, the airtightness in the melting furnace can be easily controlled.
Therefore, it has become possible to easily and reliably prevent the outside air from being sucked into the melting furnace and coming into contact with the combustible gas near the flue outlet (4) between the upper part of the melting furnace and exploding.
In the past, conventional screw feeders, pushers, and two-way compressors that had been struggling to stably maintain the internal pressure of the melting furnace as small as possible to eradicate the prevention of this explosion and ensure stable operation of the melting system. The problems in each system such as a step damper are solved by the present invention with a simple structure.
In addition, the above two-level sensor system is not only applicable to vertical melting furnaces as described above but also to various furnaces in which waste gas is pyrolyzed to generate plastic gas. It can also be applied as a waste supply structure to an incinerator.
As described above, in order to ideally carry out reactions in various furnaces, it is one of the important conditions to prevent the ingress of outside air, and the present invention is a technique that can do so.

本発明の廃棄物の供給部の構造  Structure of waste supply part of the present invention 背景技術の廃棄物の供給部の構造 (イ) 2重ダンパ方式の場合 (ロ) スクリューフィーダ方式の場合  Structure of waste supply section of background technology (a) In case of double damper method (b) In case of screw feeder method

符号の説明Explanation of symbols

1 竪型溶融炉
2 ホッパ
3 スロート部
4 煙道出口
5 廃棄物
6 出滓口
7 炉天井
8 クレーン(廃棄物供給装置)
9 スラグ
10 羽口
下段羽口
上段羽口
下段ダンパ
上段ダンパ
基準レベル
下段センサ
上段センサ
スクリューフィーダ
DESCRIPTION OF SYMBOLS 1 Vertical melting furnace 2 Hopper 3 Throat part 4 Flue exit 5 Waste 6 Outlet 7 Furnace ceiling 8 Crane (waste supply apparatus)
9 Slug 10 Tuyere d 1 Lower tuyere d 2 Upper tuyere D 1 Lower damper D 2 Upper damper S 0 Reference level S 1 Lower sensor S 2 Upper sensor S 3 Screw feeder

Claims (3)

廃棄物供給用ホッパとそれに続く、重力で廃棄物が落下するスロート部とを溶融炉の上部に設け、廃棄物は前期スロート部から順次下方へ自重で落下しながら乾燥、熱分解と、最終的に外部からの酸素含有ガス及び必要なら補助燃料とを受けて高温燃焼し、残渣は溶融スラグ化され外部に排出され、他方、高温燃焼ガスは、溶融炉内を前記廃棄物の流れとは逆に上昇しながら順次廃棄物の熱分解、乾燥を行い、溶融炉上部より排出される構造の堅型溶融炉に於いて、前記スロート部に、スロート部内の廃棄物の存在を検知できるセンサを最少上、下二段に一定間隔をおいて設け、少なくとも下段のセンサの位置付近以上に被処理対象廃棄物を常時充填して、溶融炉内の気密性を維持して運転をするようにしたことを特徴とする堅型溶融炉の供給部の構造A waste supply hopper followed by a throat where the waste falls due to gravity is installed in the upper part of the melting furnace. In response to the oxygen-containing gas from the outside and auxiliary fuel if necessary, it burns at a high temperature, and the residue is melted into slag and discharged to the outside, while the high-temperature combustion gas is opposite to the waste flow in the melting furnace. In a solid-type melting furnace with a structure in which wastes are pyrolyzed and dried sequentially while being raised and discharged from the upper part of the melting furnace, the number of sensors that can detect the presence of waste in the throat part is minimized in the throat part. The upper and lower two stages are provided at regular intervals, and the waste to be treated is always filled at least near the position of the sensor on the lower stage to maintain the airtightness in the melting furnace. Of a solid melting furnace characterized by The structure of the Department 廃棄物を自重で溶融炉へ供給するホッパの下方にスロート部を設け前記スロート部に最少上下二段一定間隔を設けて取付けられた廃棄物検出用センサの取付位置につき、下段センサは下段センサの位置の廃棄物がない状態の「空」検知したとき供給装置が作動し廃棄物の供給を行うが、スロート部へ廃棄物が到達するまでに廃棄物により廃棄物の位置が溶融炉内の機密性を保つ位置よりは下にならない位置とし、即ち溶融炉運転中に外気がスロート部を通して溶融炉内に吸引されない廃棄物の充填の高さ以上に調整されていて、そして上段センサはこの上段センサの位置で廃棄物がない状態の「空」を検出したときに仮にこの上段センサの「空」の信号をもとに廃棄物供給装置が供給作動を行って廃棄物をスロート部へホッパを通して供給した時に、既に充填されているスロート部の廃棄物の位置が下段センサの位置以下にならに位置以上としての位置としたことを特徴とする請求項1の堅型溶融炉の供給部の構造The throat part is provided below the hopper that supplies waste to the melting furnace by its own weight, and the lower sensor is the position of the lower sensor with respect to the attachment position of the waste detection sensor attached to the throat part with a minimum of two steps above and below. When there is no waste at the position, it is detected that there is no waste, and the supply device operates to supply waste. However, the waste is placed in the melting furnace by the waste before the waste reaches the throat. The position of the upper sensor is adjusted so as not to be lower than the position to maintain the characteristics, that is, the height of the filling of the waste that is not sucked into the melting furnace through the throat during the operation of the melting furnace. When the “empty” state where there is no waste at the position is detected, the waste supply device performs a supply operation based on the “empty” signal of the upper sensor and supplies the waste to the throat through the hopper. Shi Sometimes, already a supply of hardwood type melting furnace according to claim 1, characterized in that the position of the waste throat portion being filled is the position of the above positions in the fall below the position of the lower sensor structure 廃棄物処理用堅型溶融炉の上方に廃棄物供給及び溶融炉内の気密性保持用のための、スロート部が設けられた最少上下二段の廃棄物レベル検出用センサの使用方法は、前記下段センサがスロート部内の廃棄物がない「空」を検知した時、廃棄物供給の操作員に「空」の信号を発信するか、「空」の信号をもとに廃棄物供給装置の自動操作で廃棄物の投入を行い、また上段のセンサがスロート部内の廃棄物が存在する「充」を検知した時、前述の操作員に「充」の信号を発信するか、「充」の信号をもとに供給装置の自動操作で廃棄物の投入作業を停止するようにしたことを特徴とする請求項1及び2の堅型溶融炉の供給部の構造The method for using the waste level detection sensor having a minimum of two upper and lower stages provided with a throat portion for supplying waste and maintaining airtightness in the melting furnace above the solid melting furnace for waste treatment, When the lower sensor detects that there is no waste in the throat, it sends an “empty” signal to the waste supply operator, or automatically uses the waste supply device based on the “empty” signal. When waste is input by operation, and the upper sensor detects "charge" that waste in the throat part is present, it sends a "charge" signal to the above-mentioned operator, or "charge" signal 3. The structure of the supply section of the solid melting furnace according to claim 1 or 2, wherein the operation of charging the waste is stopped by automatic operation of the supply device based on
JP2003436700A 2003-12-22 2003-12-22 Structure of waste feeding part Pending JP2005180892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003436700A JP2005180892A (en) 2003-12-22 2003-12-22 Structure of waste feeding part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003436700A JP2005180892A (en) 2003-12-22 2003-12-22 Structure of waste feeding part

Publications (1)

Publication Number Publication Date
JP2005180892A true JP2005180892A (en) 2005-07-07

Family

ID=34791878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003436700A Pending JP2005180892A (en) 2003-12-22 2003-12-22 Structure of waste feeding part

Country Status (1)

Country Link
JP (1) JP2005180892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097279A2 (en) * 2006-09-21 2008-08-14 John Kimberlin Apparatus, system, and method for operating and controlling combustor for ground or particulate biomass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097279A2 (en) * 2006-09-21 2008-08-14 John Kimberlin Apparatus, system, and method for operating and controlling combustor for ground or particulate biomass
WO2008097279A3 (en) * 2006-09-21 2009-07-09 John Kimberlin Apparatus, system, and method for operating and controlling combustor for ground or particulate biomass

Similar Documents

Publication Publication Date Title
US20060219139A1 (en) Mobile solid waste gasification unit
JP2007271203A (en) Fluidized bed gasification furnace and its fluidized bed monitoring/controlling method
FI93673B (en) Method for controlling the combustion of materials in a fluidized bed incinerator
JP2005180892A (en) Structure of waste feeding part
JP2001289422A (en) Gasifying process system
JP2002295817A (en) Gasification melting furnace for combustible refuse, and method for gasification melting
JP6063539B1 (en) Waste incinerator and its cooling method
JP4770435B2 (en) Method and apparatus for cooling waste pyrolysis char
JPH10324880A (en) Bridge-detecting and bridge-breaking apparatuses of thermal decomposition residue discharge apparatus in waste treatment apparatus
JP3795847B2 (en) Incinerator
JP2003287213A (en) Burning control device for garbage incinerator
JP2007255816A (en) Waste supply device and waste treatment device
JP2757087B2 (en) Object injection device to combustion furnace
JP5103848B2 (en) Dust blowing device for waste melting furnace
JP2003185118A (en) Combustion air amount control system in thermal decomposition gasification melting furnace
KR100559745B1 (en) Centrifugal combustion apparatus using air-flow in a furnace
JPH06109221A (en) Waste burning furnace
CN218188864U (en) Anti-collapse bed device for circulating fluidized bed desulfurization tower
JP3309019B2 (en) Waste incineration ash melting equipment
JP2000018537A (en) Vertical melting furnace
KR102618690B1 (en) Apparatus for removing blockage incineration bottom ash of waste incinerator
JPH07113511A (en) Underground type incinerating furnace
JP6965842B2 (en) Waste incinerator and waste incinerator method
JP2003065515A (en) Incinerator
JP3750027B2 (en) Ash volume reduction processing method and apparatus