JP2005180825A - Automatic ice maker - Google Patents

Automatic ice maker Download PDF

Info

Publication number
JP2005180825A
JP2005180825A JP2003423386A JP2003423386A JP2005180825A JP 2005180825 A JP2005180825 A JP 2005180825A JP 2003423386 A JP2003423386 A JP 2003423386A JP 2003423386 A JP2003423386 A JP 2003423386A JP 2005180825 A JP2005180825 A JP 2005180825A
Authority
JP
Japan
Prior art keywords
water
ice making
making chamber
deicing
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003423386A
Other languages
Japanese (ja)
Inventor
Shizuma Kadowaki
静馬 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2003423386A priority Critical patent/JP2005180825A/en
Publication of JP2005180825A publication Critical patent/JP2005180825A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve stable protection of a supply passage of defrosting water and a heat exchanger. <P>SOLUTION: A water heater 35 is disposed in a water pipe 29 through which defrosting water is supplied to the water collecting part 27 of a second ice-making chamber 12. A second refrigerant circulation passage 49 connected to a compressor CM is in communication with the water heater 35. An inlet valve WHV<SB>1</SB>is disposed on the hot-gas entrance side of the water heater 35 and an outlet valve WHV<SB>2</SB>is disposed on the exit side thereof. When the second ice-making chamber 12 is operated for defrosting, the inlet valve WHV<SB>1</SB>and the outlet valve WHV<SB>2</SB>open to allow a hot gas discharged from the compressor CM to be supplied to the water heater 35 so as to cause heat exchange between the hot gas and the defrosting water circulating in the water heater 35 and heat the defrosting water. A pressure switch 47 is disposed on the hot-gas exit side of the second refrigerant circulation passage 49 where the hot gas exits the water heater 35. When the switch 47 detects abnormal pressure, it is recognized as the stop of water and the operation of the automatic ice maker stops. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、例えば球体状や多面体状をなす氷塊群を全自動で大量に製造し得る自動製氷機に関するものである。   The present invention relates to an automatic ice making machine capable of manufacturing a large amount of ice blocks in a spherical shape or a polyhedron shape, for example.

前記自動製氷機として、特許文献1に係る「自動製氷機の除氷制御方法」が存在している。この自動製氷機は、下方に開放する第1製氷小室を多数画成し、冷凍系から導出する蒸発器を背面に備えた第1製氷室と、上方に開放する第2製氷小室を多数画成した第2製氷室とを基本的に備え、製氷運転に際し両製氷小室を対応的に閉成して内部に画成された球体等の氷塊を形成する空間に製氷水を供給することで、該空間に球体氷を生成するよう構成される。この構造に係る自動製氷機では、除氷運転に際しては、第2製氷室の周囲に画成された水溜部に常温の除氷水を溜めることで加熱して第2製氷小室と球体氷との氷結を解除した後、第1製氷室に対して第2製氷室を傾動開放し、次いで第1製氷室を加熱して第1製氷小室と球体氷との氷結を解除することで、第1および第2の製氷小室中に生成した球体氷群を剥離落下させるよう構成されている。   As the automatic ice maker, there is a “deicing control method of an automatic ice maker” according to Patent Document 1. This automatic ice making machine defines a large number of first ice making chambers that open downward, and a large number of first ice making chambers that have an evaporator led out from the refrigeration system on the back and a second ice making chamber that opens upwards. The ice making water is supplied to a space that forms an ice lump such as a sphere defined inside by correspondingly closing both ice making chambers during ice making operation. Configured to generate spherical ice in space. In the automatic ice making machine according to this structure, during the deicing operation, room temperature deicing water is stored in a water reservoir defined around the second ice making chamber and heated to freeze the second ice making chamber and the spherical ice. Is released, the second ice making chamber is tilted and opened with respect to the first ice making chamber, and then the first ice making chamber is heated to release the freezing of the first ice making chamber and the spherical ice. The spherical ice group generated in the ice making chamber 2 is peeled and dropped.

前記第2製氷室の除氷に除氷水を用いる場合、該除氷水の温度が周囲温度に影響されるため、冬期のように除氷水の温度が低いときには除氷に要する時間が長くなり、日産製氷能力が低下する問題がある。また前記除氷水は、第2製氷小室と球体氷との氷結が解除されるまで水溜部への供給が継続され、前記水溜部内において除氷水を流動させることで第2製氷小室と球体氷との氷結解除を促進させている。そして、水溜部からオーバーフロー等した除氷水は機外に排出されるようになっている。従って、除氷時間が長くなる分、除氷水の消費水量が増加してランニングコストが嵩む問題も指摘される。なお、除氷水の単位時間当たりの供給量を少なくすれば節水は可能であるが、除氷水が低温時には更に除氷時間が長くなるために実施できないのが実状であった。   When deicing water is used for deicing the second ice making chamber, the temperature of the deicing water is affected by the ambient temperature. Therefore, when the temperature of the deicing water is low as in winter, the time required for deicing becomes longer. There is a problem that the ice making capacity is lowered. Further, the deicing water is continuously supplied to the water reservoir until the freezing of the second ice making chamber and the spherical ice is released, and the deicing water flows in the water reservoir to cause the second ice making chamber and the spherical ice to flow. Promotes freezing. And the deicing water overflowed from the water reservoir is discharged out of the machine. Accordingly, there is a problem that the amount of deicing water consumed increases and the running cost increases as the deicing time increases. In addition, water saving is possible if the supply amount per unit time of deicing water is reduced, but in reality, the deicing time becomes longer when deicing water is at a low temperature, so that it cannot be carried out.

そこで、本願の発明者は、前記課題に対処し得る装置として、発明「自動製氷機および運転方法」(特願2002−241084号)を出願した。この自動製氷機では、第2製氷室の水溜部に除氷水を供給する給水管(供給経路)に温水器(熱交換器)を配設し、冷凍系を構成する圧縮機から吐出するホットガス(高温冷媒)を温水器に供給し、該ホットガスと温水器を流通する除氷水とを熱交換させて該除氷水を加温することで、除氷に要する時間を短縮して日産製氷能力を向上し得るよう構成されている。
特開平2−154963号公報
Therefore, the inventor of the present application has applied for an invention “automatic ice making machine and operation method” (Japanese Patent Application No. 2002-241084) as an apparatus capable of coping with the above-mentioned problems. In this automatic ice maker, a hot water (heat exchanger) is provided in a water supply pipe (supply path) for supplying deiced water to the water reservoir of the second ice making chamber, and hot gas discharged from a compressor constituting the refrigeration system. (High-temperature refrigerant) is supplied to the water heater, heat exchange is performed between the hot gas and the deicing water flowing through the water heater, and the deicing water is heated, thereby reducing the time required for deicing and making the Nissan ice making capacity It is comprised so that it can improve.
Japanese Patent Laid-Open No. 2-154963

前記温水器を用いた自動製氷機において、除氷運転に際して断水により温水器および給水管に除氷水が供給されなくなると、温水器に供給されるホットガスで加熱された空気により給水管が加熱されて高温となり、樹脂部品の変形や破損等の問題を招くおそれがある。そこで、給水管における温水器の配設位置より下流側に温度検知手段を配設し、該検知手段が予め設定された異常温度を検知したときに、自動製氷機の運転を停止するよう構成している。   In the automatic ice making machine using the water heater, when the deicing water is not supplied to the water heater and the water supply pipe due to water interruption during the deicing operation, the water supply pipe is heated by the air heated by the hot gas supplied to the water heater. As a result, there is a risk of causing a problem such as deformation or breakage of resin parts. In view of this, a temperature detection means is disposed downstream of the water heater in the water supply pipe, and the automatic ice maker is stopped when the detection means detects a preset abnormal temperature. ing.

前述した構成では、給水管が異常温度に達したときには、温度検知手段の配設位置より上流側の給水管や温水器は、更に高い温度となっており、該給水管や温水器の耐久性が熱影響により低下するおそれがある。また、前記温度検知手段としてはバイメタルサーモが用いられているが、該サーモの検知動作は遅く、安定した保護が困難であった。例えば、樹脂部品の耐熱温度が60℃の場合、給水管の内部温度が60℃以下で自動製氷機の運転を停止する必要があるが、その場合にはバイメタルサーモに設定される異常温度としては40℃程度としなければならず、断水以外の温度上昇を誤検知してしまうおそれがあった。更に、バイメタルサーモと給水管との配設状態によって、該サーモによる検知温度にバラツキを生じ、これによっても安定した保護が図れなくなる難点も指摘される。   In the configuration described above, when the water supply pipe reaches an abnormal temperature, the water supply pipe and the water heater on the upstream side of the position where the temperature detecting means is disposed are at a higher temperature, and the durability of the water supply pipe and the water heater is increased. May decrease due to heat effects. In addition, although a bimetal thermo is used as the temperature detecting means, the detecting operation of the thermo is slow and it is difficult to stably protect. For example, if the heat resistance temperature of the resin parts is 60 ° C, it is necessary to stop the operation of the automatic ice maker when the internal temperature of the water supply pipe is 60 ° C or less. In that case, as the abnormal temperature set for the bimetal thermostat, It had to be about 40 ° C., and there was a risk that a temperature rise other than water break would be erroneously detected. Further, it is pointed out that the temperature detected by the thermometer varies depending on the arrangement state of the bimetal thermometer and the water supply pipe, and this makes it difficult to achieve stable protection.

すなわち本発明は、前述した従来の技術に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、除氷水の供給経路や熱交換器の安定した保護を達成し得る自動製氷機を提供することを目的とする。   That is, the present invention has been proposed in view of the above-described problems inherent in the above-described conventional technology, and has been proposed to suitably solve this problem, and achieves stable protection of the deicing water supply path and the heat exchanger. It is an object of the present invention to provide an automatic ice making machine.

前記課題を克服し、所期の目的を好適に達成するため、本発明に係る自動製氷機は、
下方に開放する第1製氷小室が設けられ、冷凍系を構成する蒸発器を配設した第1製氷室と、上方に開放する第2製氷小室が設けられ、前記第1製氷室を下方から閉成可能に配設した第2製氷室とを備え、除氷運転に際して前記第2製氷室の周囲に除氷水を供給して該第2製氷室を加熱するよう構成した自動製氷機において、
前記除氷水の供給経路に設けられると共に、前記冷凍系における蒸発器に冷媒を循環させる第1冷媒循環経路から分岐した第2冷媒循環経路が接続され、冷凍系を構成する圧縮機から吐出されて第2冷媒循環経路を介して供給される高温冷媒により除氷水を加温する熱交換器と、
前記第2冷媒循環経路における熱交換器に対する高温冷媒の入口側および出口側に配設されて開閉制御される入口弁および出口弁と、
前記熱交換器における高温冷媒の出口から前記出口弁までの間の第2冷媒循環経路に設けられ、高温冷媒の圧力または温度を検知する断水検知手段とから構成したことを特徴とする。
In order to overcome the above-mentioned problems and achieve the desired purpose suitably, the automatic ice making machine according to the present invention is:
A first ice making chamber that opens downward is provided, a first ice making chamber that is provided with an evaporator constituting a refrigeration system, and a second ice making chamber that opens upward is provided, and the first ice making chamber is closed from below. An automatic ice maker configured to supply deicing water around the second ice making chamber and heat the second ice making chamber in a deicing operation.
A second refrigerant circulation path that is provided in the supply path of the deicing water and is branched from the first refrigerant circulation path that circulates the refrigerant is connected to an evaporator in the refrigeration system, and is discharged from a compressor constituting the refrigeration system. A heat exchanger that heats the deiced water with a high-temperature refrigerant supplied through the second refrigerant circulation path;
An inlet valve and an outlet valve which are disposed on the inlet side and the outlet side of the high-temperature refrigerant with respect to the heat exchanger in the second refrigerant circulation path and are controlled to be opened and closed;
It is provided in the 2nd refrigerant | coolant circulation path from the exit of the high temperature refrigerant | coolant in the said heat exchanger to the said outlet valve, It comprised from the water-stop detection means which detects the pressure or temperature of a high temperature refrigerant | coolant.

本発明に係る自動製氷機によれば、熱交換器における高温冷媒の出口側に接続する第2冷媒循環経路に、高温冷媒の圧力または温度を検知する断水検知手段を配設したから、断水状態を早期に検知することができ、自動製氷機の運転を停止することで熱交換器や下流側の除氷水の供給経路が熱影響により耐久性が低下するのを抑制することができる。また高温冷媒の圧力を検知する場合は、レスポンスが早く、かつより正確な検知が可能となり、熱交換器および除氷水の供給経路の安定した保護を図り得る。   According to the automatic ice maker according to the present invention, the second refrigerant circulation path connected to the outlet side of the high-temperature refrigerant in the heat exchanger is provided with the water-break detection means for detecting the pressure or temperature of the high-temperature refrigerant. By stopping the operation of the automatic ice making machine, it is possible to suppress the durability of the heat exchanger and the downstream deicing water supply path from being deteriorated due to the thermal effect. In addition, when detecting the pressure of the high-temperature refrigerant, the response is quick and more accurate, and stable protection of the heat exchanger and the deicing water supply path can be achieved.

次に、本発明に係る自動製氷機につき、好適な実施例を挙げて、添付図面を参照しながら説明する。なお、実施例の自動製氷機では球体氷を製造する構成で説明するが、製造する氷塊の形状は球体状に限定されるものでなく、製氷室に画成される空間の形状を変更することで、例えばダイヤカット状の多面体氷等、各種形状の氷塊が製造可能である。   Next, the automatic ice making machine according to the present invention will be described with reference to the accompanying drawings by way of preferred embodiments. The automatic ice making machine of the embodiment will be described with a configuration for manufacturing spherical ice, but the shape of the ice block to be manufactured is not limited to the spherical shape, but the shape of the space defined in the ice making chamber is changed. Thus, for example, ice blocks of various shapes such as diamond-cut polyhedral ice can be manufactured.

図1は、実施例に係る自動製氷機の製氷機構および冷凍系を概略的に示すものであり、図2は製氷機構の概略構成を示す。図示の自動製氷機における製氷機構では、所要直径をなす複数の球体氷を製造する製氷室10が、水平に配設した第1製氷室11と、この第1製氷室11を下方から開閉可能に閉成する第2製氷室12とから基本的に構成される。すなわち、製氷機筐体(図示せず)の内部上方に配設された取付枠16に、熱伝導率の良好な金属を材質とする矩形状の第1製氷室11が水平姿勢で垂設され、半球状凹部としての第1製氷小室13が、この第1製氷室11に所要の整列パターンで下向きで複数凹設されている。また第1製氷室11の上面には、圧縮機CMや凝縮器CN等と共に冷凍系を構成する蒸発器14が蛇行状に密着固定され、該圧縮機CMの運転により蒸発器14における気化冷媒の熱交換が促進されて、第1製氷室11が氷点下にまで冷却されるようになっている。   FIG. 1 schematically shows an ice making mechanism and a refrigeration system of an automatic ice making machine according to an embodiment, and FIG. 2 shows a schematic configuration of the ice making mechanism. In the ice making mechanism in the illustrated automatic ice making machine, an ice making chamber 10 for producing a plurality of spherical ice pieces having a required diameter can be opened horizontally from a first ice making chamber 11 and the first ice making chamber 11 opened from below. This is basically composed of a second ice making chamber 12 that is closed. That is, a rectangular first ice making chamber 11 made of a metal having a good thermal conductivity is vertically suspended in a horizontal posture on a mounting frame 16 disposed in an upper part of an ice making machine casing (not shown). A plurality of first ice making chambers 13 as hemispherical recesses are provided in the first ice making chamber 11 in a required alignment pattern in a downward direction. Further, an evaporator 14 constituting a refrigeration system together with the compressor CM and the condenser CN is fixed in a meandering manner on the upper surface of the first ice making chamber 11, and the vaporized refrigerant in the evaporator 14 is operated by the operation of the compressor CM. Heat exchange is promoted so that the first ice making chamber 11 is cooled to below freezing point.

前記第1製氷室11の直下には、銅の如き熱良導性の金属を材質とする第2製氷室12が後述の如く傾動可能に配設され、製氷運転に際して、該第1製氷室11を下方から閉成すると共に、除氷運転に際して、該第1製氷室11を開放し得るよう構成される。この第2製氷室12には、前記第1製氷室11に凹設した第1製氷小室13と対応して、同じく半球状凹部からなる第2製氷小室15が上向きに所要の整列パターンで複数凹設されている。従って、図2に示すように第1製氷室11に対し第2製氷室12を下方から閉成すると、両製氷小室13,15が相互に対応して各小室内に所要直径の球状空間が画成される。   Immediately below the first ice making chamber 11, a second ice making chamber 12 made of a heat-conductive metal such as copper is disposed so as to be tiltable as will be described later. During the ice making operation, the first ice making chamber 11 is arranged. The first ice making chamber 11 can be opened during the deicing operation. Corresponding to the first ice making chamber 13 recessed in the first ice making chamber 11, the second ice making chamber 12 has a plurality of second ice making chambers 15 which are also formed of hemispherical recesses in a desired alignment pattern. It is installed. Therefore, when the second ice making chamber 12 is closed from the lower side with respect to the first ice making chamber 11 as shown in FIG. 2, the two ice making chambers 13 and 15 correspond to each other so that a spherical space having a required diameter is defined in each of the small chambers. Made.

前記第2製氷室12は、前述の如く銅等の熱良導金属を材質とするブロック体として構成され、各第2製氷小室15に製氷水を噴射供給するための水皿17が、当該第2製氷室12の外底部に一体的に固定されている。この第2製氷室12における第2製氷小室15の形成面と反対側の面(水皿17と対向する面)には、相互に隣接する各第2製氷小室15の間に溝18が形成してある。すなわち、各第2製氷小室15は底面において溝18で囲繞されており、後述する除氷運転に際し、絞り手段としての給水弁WVを介して供給される水道水(除氷水)が溝18と水皿表面との間に充満し、第2製氷小室15の加熱促進を図るよう構成される。なお、給水弁WVは流量コントロール機能(絞り機能)を有し、供給する除氷水の単位時間当たりの供給量(流量)を調節可能に構成されている。   The second ice making chamber 12 is configured as a block body made of a heat-conductive metal such as copper as described above, and a water pan 17 for spraying and supplying ice making water to each second ice making chamber 15 includes the second ice making chamber 12. 2 It is integrally fixed to the outer bottom of the ice making chamber 12. A groove 18 is formed between the second ice making chambers 15 adjacent to each other on the surface opposite to the surface where the second ice making chamber 15 is formed in the second ice making chamber 12 (the surface facing the water dish 17). It is. That is, each of the second ice making chambers 15 is surrounded by a groove 18 on the bottom surface, and tap water (deiced water) supplied through a water supply valve WV serving as a throttle means is supplied to the groove 18 and the water during the deicing operation described later. It is configured to fill the space between the dish surface and promote the heating of the second ice making chamber 15. The water supply valve WV has a flow rate control function (throttle function) and is configured to be able to adjust the supply amount (flow rate) per unit time of the deicing water to be supplied.

前記水皿17は、その後端部が直角に立上がって後部17aが形成され、この後部17aの開放端において前記取付枠16の所定部位に、枢軸19により傾動可能に枢支され、後述の開閉用モータAMによって第2製氷室12と共に傾動される。そして、枢軸19を支点として水皿17を図2において時計方向に傾動すれば、図6に示す如く、該水皿17に一体固定した第2製氷室12は第1製氷小室13を開放し、また枢軸19を支点として反時計方向に傾動すれば、図2に示す如く、第2製氷室12は第1製氷小室13を閉成するよう構成される。水皿17には、各第2製氷小室15と連通する噴水孔20が対応的に穿設され、これら噴水孔20に製氷水を供給する分配管21が水皿17の裏面に蛇行配置されている。また水皿17の下方には、所定量の製氷水が貯溜される製氷水タンク22が一体的に設けられており、該タンク22に付設した給水ポンプPMを介して製氷水が前記分配管21に供給されるよう構成してある。すなわち、製氷運転に際して製氷水タンク22から給水ポンプPMを介して圧送される製氷水は、水皿17に穿設した前記各噴水孔20を介して、各第1製氷小室13と第2製氷小室15とで画成された氷形成用空間中に噴射供給される。そして、該氷形成用空間中で氷結するに至らなかった製氷水(以下「未氷結水」という)は、水皿17の各噴水孔20に隣接して各第2製氷小室15と連通するよう穿設された戻り孔23を介して製氷水タンク22に帰還するよう構成されている。   The rear end of the water pan 17 rises at a right angle to form a rear portion 17a. At the open end of the rear portion 17a, the water pan 17 is pivotally supported by a pivot 19 at a predetermined portion of the mounting frame 16 to be described later. It is tilted together with the second ice making chamber 12 by the motor AM. Then, if the water pan 17 is tilted clockwise in FIG. 2 with the pivot 19 as a fulcrum, the second ice making chamber 12 integrally fixed to the water pan 17 opens the first ice making chamber 13 as shown in FIG. When tilted counterclockwise with the pivot 19 as a fulcrum, the second ice making chamber 12 is configured to close the first ice making chamber 13 as shown in FIG. The water tray 17 has correspondingly formed fountain holes 20 communicating with the second ice making chambers 15, and distribution pipes 21 for supplying ice making water to the fountain holes 20 meander on the back surface of the water dish 17. Yes. An ice making water tank 22 for storing a predetermined amount of ice making water is integrally provided below the water pan 17, and the ice making water is supplied to the distribution pipe 21 through a water supply pump PM attached to the tank 22. It is comprised so that it may be supplied to. That is, the ice making water pumped from the ice making water tank 22 through the water supply pump PM during the ice making operation passes through the fountain holes 20 drilled in the water dish 17 to each of the first ice making chamber 13 and the second ice making chamber. 15 is sprayed and supplied into the ice forming space. Then, ice making water that has not been frozen in the ice forming space (hereinafter referred to as “non-freezing water”) communicates with each second ice making chamber 15 adjacent to each fountain hole 20 of the water dish 17. It is configured to return to the ice making water tank 22 through the drilled return hole 23.

前記第2製氷室12と共に水皿17を傾動させる正逆回転可能な開閉用モータAMは減速機を備え、その出力軸24に回転体としての駆動アーム25が半径方向に延出するよう固定され、該駆動アーム25の先端と水皿17の前方端部(枢支側とは反対の端部)との間に、連繋部材としてのコイルスプリング26が弾力的に係着されている。そして、製氷運転の際には、図2に示す如く、水皿17は、第2製氷室12により第1製氷室11を下方から閉成する水平な閉成位置に、前記コイルスプリング26の弾力により保持されるよう構成される。また駆動アーム25には、コイルスプリング26の係着位置から離間する部位に、出力軸24に対して半径方向に延出するレバー片25aが設けてある。前記取付枠16における駆動アーム25およびレバー片25aの移動軌跡上に切換スイッチSW1が配設され、除氷運転に伴い正転方向(第2製氷室12の開放位置への移動を許容する方向)に回転する開閉用モータAMの運転により回転(図2において反時計方向への正転回転)するレバー片25aが切換スイッチSW1を逆転側に切換えたときに、該モータAMを停止させ、前記水皿17および第2製氷室12を、第1製氷室11から下方に離間する傾斜した開放位置に停止保持するよう設定される。なお、実施例では切換スイッチSW1が、第2製氷室12の除氷完了(開放位置まで移動して第1製氷室11から剥離落下する球体氷を図示しない貯氷庫に案内し得る状態とったとき)を検知する第2検知手段として機能するよう構成される。 The opening / closing motor AM that can be rotated forward and backward together with the second ice making chamber 12 is provided with a speed reducer, and a drive arm 25 as a rotating body is fixed to an output shaft 24 so as to extend in a radial direction. A coil spring 26 as a connecting member is elastically engaged between the tip of the drive arm 25 and the front end of the water dish 17 (end opposite to the pivotal support). In the ice making operation, as shown in FIG. 2, the water pan 17 is placed in a horizontal closed position where the second ice making chamber 12 closes the first ice making chamber 11 from below. It is comprised so that it may be hold | maintained. Further, the drive arm 25 is provided with a lever piece 25 a extending in the radial direction with respect to the output shaft 24 at a position away from the engagement position of the coil spring 26. Changeover switch SW 1 is disposed on the movement locus of the drive arm 25 and the lever piece 25a in the attachment frame 16, a direction as to allow the movement to the open position of the forward direction (second ice compartment 12 with the deicing operation ) rotated by operation of the opening and closing motor AM that rotates (when the lever piece 25a for forward rotation) in the counterclockwise direction in FIG. 2 is switched to the changeover switch SW 1 on the reverse side, stops the motor AM, The water pan 17 and the second ice making chamber 12 are set to stop and hold at an inclined open position that is spaced downward from the first ice making chamber 11. In the embodiment, the change-over switch SW 1 is in a state in which deicing of the second ice making chamber 12 is completed (spherical ice that has moved to the open position and peeled off from the first ice making chamber 11 can be guided to an ice storage (not shown). It is configured to function as a second detection means for detecting (when).

前記水皿17の前後方向と交差する左右方向の両側には、直角に立上がる側部17bが夫々形成されると共に、該水皿17の前方には、側部17bより所定寸法だけ低く設定した堰止め部17cが配設され、この堰止め部17cの左右両端部は両側部17b,17bに密着されている。これにより水皿17の内部表面には、両側部17b,17b、堰止め部17cおよび前記後部17aで囲繞された水溜部27が形成される。そして該水溜部27に貯溜された後述する除氷水は、前記第2製氷室12の周囲に画成した前記溝18中に充満し、各第2製氷小室15を加熱するよう構成される。また水皿17には、水溜部27内の所定位置に排水孔28が穿設されており、水溜部27に貯溜された除氷水の一部は、該排水孔28から製氷水タンク22に流下し、他の除氷水は堰止め部17cの上端からオーバーフローして、水皿17の前方側よりタンク22に流入するようにしてある。なお、製氷水タンク22への給水は、外部水道系に接続している除氷水の供給経路としての給水管29の給水弁WVを開放することにより行なわれる。前記製氷水タンク22にはオーバーフローパイプ34が配設され、除氷運転に際して水溜部27からタンク22に流入して所定水位を越えた除氷水を、該パイプ34を介して機外へ排出するようにしてある。   Sides 17b rising at right angles are formed on both sides in the left-right direction intersecting with the front-rear direction of the water dish 17, respectively, and the front of the water dish 17 is set lower than the side part 17b by a predetermined dimension. A damming portion 17c is disposed, and both left and right ends of the damming portion 17c are in close contact with both side portions 17b and 17b. Thus, a water reservoir 27 surrounded by both side portions 17b and 17b, a damming portion 17c and the rear portion 17a is formed on the inner surface of the water dish 17. The deicing water, which will be described later, stored in the water reservoir 27 is filled in the groove 18 defined around the second ice making chamber 12, and each second ice making chamber 15 is heated. The water pan 17 has a drain hole 28 formed at a predetermined position in the water reservoir 27, and a part of the deicing water stored in the water reservoir 27 flows down from the drain hole 28 to the ice making water tank 22. The other deicing water overflows from the upper end of the damming portion 17 c and flows into the tank 22 from the front side of the water tray 17. In addition, the water supply to the ice making water tank 22 is performed by opening the water supply valve WV of the water supply pipe 29 as a supply path of the deicing water connected to the external water system. The ice making water tank 22 is provided with an overflow pipe 34 so that the deicing water flowing into the tank 22 from the water reservoir 27 and exceeding the predetermined water level during the deicing operation is discharged out of the machine through the pipe 34. It is.

前記給水管29には、給水弁WVの配設位置より上流側に、熱交換器としての温水器35が配設される。この温水器35は、給水管29に連通接続する内管36と、該内管36を所定の空間を存して被覆する外管37とからなる2重管構造とされ、後述するように、除氷運転に際して内管36と外管37との間の空間に高温冷媒(ホットガス)を流通することで、内管36内を流通する除氷水を加温するよう構成される。また、内管36における除氷水が流通する内側およびホットガスが流通する外側には、その長手方向の略全長に亘ってフィン38が連続して突設されており、ホットガスと除氷水との熱交換効率を向上するようにしてある。更に、温水器35および該温水器35から給水弁WVまでの間に臨む給水管29は、発泡ポリエチレン等からなる断熱材としての断熱ホース39で被覆され、温水器35および給水管29からの熱の逃出を抑制するよう構成される。なお、断熱材はホース状のものに限定されず、温水器35および給水管29を被覆し得るものであればよく、その材質も発泡ポリエチレンに限定されるものでない。   In the water supply pipe 29, a water heater 35 as a heat exchanger is disposed upstream of the position where the water supply valve WV is disposed. The water heater 35 has a double pipe structure including an inner pipe 36 that is connected to the water supply pipe 29 and an outer pipe 37 that covers the inner pipe 36 with a predetermined space therebetween. In the deicing operation, a high-temperature refrigerant (hot gas) is circulated in the space between the inner tube 36 and the outer tube 37, so that deicing water flowing in the inner tube 36 is heated. In addition, fins 38 are continuously projected over substantially the entire length in the longitudinal direction on the inner side where the deicing water flows in the inner pipe 36 and on the outer side where the hot gas flows. The heat exchange efficiency is improved. Furthermore, the water heater 35 and the water supply pipe 29 facing the water supply valve WV from the water heater 35 are covered with a heat insulating hose 39 as a heat insulating material made of foamed polyethylene or the like, and heat from the water heater 35 and the water supply pipe 29 is covered. Configured to suppress the escape of In addition, a heat insulating material is not limited to a hose-like thing, What is necessary is just the thing which can coat | cover the water heater 35 and the water supply pipe | tube 29, The material is not limited to a polyethylene foam.

前記第1製氷室11の所定位置に、製氷完了検知手段および第1製氷室11の除氷完了検知手段として機能する温度センサThが配設されている。そして、この温度センサThが、予じめ設定された製氷完了温度を検知した際に、製氷運転から除氷運転に移行すると共に、該温度センサThが、予じめ設定された除氷完了温度を検知した際に、除氷運転から製氷運転に移行するよう設定される。   A temperature sensor Th that functions as an ice making completion detection means and a deicing completion detection means for the first ice making chamber 11 is disposed at a predetermined position in the first ice making chamber 11. When this temperature sensor Th detects the preset ice making temperature, the ice making operation is shifted to the deicing operation, and the temperature sensor Th is set in advance. Is set to shift from the deicing operation to the ice making operation.

前記取付枠16には、前記駆動アーム25の回動軌跡上に臨む位置に、前記第2製氷室12の除氷開始を検知する第1検知手段としての除氷水開始スイッチSW2が配設され、除氷運転に伴う前記開閉用モータAMの運転により駆動アーム25が前記コイルスプリング26を弛ませる正転方向(コイルスプリング26による第2製氷室12の閉成位置の保持を解除する方向)に所定角度回転した際に、該アーム25により除氷水開始スイッチSW2がON作動されるよう構成される。そして、除氷水開始スイッチSW2のON作動により、前記開閉用モータAMを停止させると共に、前記給水弁WVを開放して前記水溜部27への除氷水の供給を開始するように設定してある。 The attachment frame 16 is provided with a deicing water start switch SW 2 as a first detecting means for detecting the deicing start of the second ice making chamber 12 at a position facing the rotation trajectory of the drive arm 25. In the forward rotation direction in which the drive arm 25 loosens the coil spring 26 by the operation of the opening / closing motor AM accompanying the deicing operation (direction in which the holding of the closed position of the second ice making chamber 12 by the coil spring 26 is released). The deicing water start switch SW 2 is configured to be turned on by the arm 25 when rotated by a predetermined angle. By ON operation of the deicing water start switch SW 2, to stop the said opening and closing motor AM, and opens the water supply valve WV is set so as to start supplying the deicing water to the water reservoir 27 .

前記取付枠16における水皿17の枢支側に近接する位置に、除氷水終了スイッチSW3が配設され、該スイッチSW3は、水皿17の前記側部17bに突設された作動片30によりON−OFF作動されるようになっている。すなわち、製氷運転に際して水皿17が閉成位置に保持されている状態では、図2に示す如く、前記作動片30が除氷水終了スイッチSW3に当接してON作動させると共に、後述するように第2製氷室12の各第2製氷小室15と球体氷との氷結が解除されることにより、図5に示す如く、水皿17および第2製氷室12等が自重により下側(開放位置)に向けて傾動した際に、前記作動片30が除氷水終了スイッチSW3から離間してOFF作動するよう構成される。そして、除氷水終了スイッチSW3がOFF作動されたときに、前記給水弁WVを閉成して前記水溜部27への除氷水の供給を停止すると共に、前記開閉用モータAMの運転を再開して、水皿17を開放位置に向けて傾動させるよう設定されている。 A deicing water end switch SW 3 is disposed at a position near the pivot side of the water tray 17 in the mounting frame 16, and the switch SW 3 is an operating piece projecting from the side portion 17 b of the water tray 17. 30 is operated ON-OFF. That is, in the state where the water pan 17 is held in the closed position during the ice making operation, as shown in FIG. 2, the operating piece 30 is brought into contact with the deicing water end switch SW 3 and is turned on, as will be described later. By releasing the freezing between the second ice making chambers 15 and the spherical ice in the second ice making chamber 12, as shown in FIG. 5, the water pan 17, the second ice making chamber 12 and the like are placed under the open weight (open position). in towards upon tilting configured to the operating piece 30 is OFF operated at a distance from the deicing water end switch SW 3. Then, when the deicing water end switch SW 3 is OFF operation, the with water supply valve and closes the WV to stop supplying the deicing water to the water reservoir 27, and restarts the operation of the opening and closing motor AM Thus, the water pan 17 is set to tilt toward the open position.

前記製氷水タンク22の下方には、製氷残水等を受けて機外へ排出するための排水皿31が配設され、該排水皿31の上方に、軸32に固定した氷案内板33が臨んでいる。この氷案内板33は、製氷運転中においては、図2に示す如く、前記水皿17や製氷水タンク22と干渉しない退避位置に位置決めされている。また除氷運転の際には、開放位置に向けて傾動する製氷水タンク22に突設した押片22aが、氷案内板33に設けた反転レバー33aを押すことにより該氷案内板33が軸32を中心として反時計方向に回動されて、この氷案内板33は傾斜状態(開放位置)にある第2製氷室12の上面に倒れ込み、各第2製氷小室15を塞ぐよう構成される(図6参照)。すなわち、第1製氷室11から落下する球体氷を、この氷案内板33において滑落させて貯氷庫(図示せず)へ円滑に案内するようになっている。   Below the ice making water tank 22, a drain pan 31 for receiving ice making residual water or the like and discharging it to the outside of the machine is disposed, and an ice guide plate 33 fixed to the shaft 32 is disposed above the drain pan 31. I'm here. During the ice making operation, the ice guide plate 33 is positioned at a retracted position so as not to interfere with the water tray 17 and the ice making water tank 22 as shown in FIG. Further, during the deicing operation, the pushing piece 22a protruding from the ice making water tank 22 tilting toward the open position pushes the reversing lever 33a provided on the ice guiding plate 33 so that the ice guiding plate 33 is pivoted. The ice guide plate 33 is rotated counterclockwise about 32, and falls down onto the upper surface of the second ice making chamber 12 in an inclined state (open position), thereby closing each second ice making chamber 15 ( (See FIG. 6). That is, the spherical ice falling from the first ice making chamber 11 is slid down on the ice guide plate 33 and smoothly guided to an ice storage (not shown).

なお、前記水皿17が閉成位置に復帰する際には、氷案内板33は閉成位置に向けて傾動する該水皿17により押されて時計方向に旋回し、図2に示す退避位置に復帰するよう構成される。   When the water tray 17 returns to the closed position, the ice guide plate 33 is pushed by the water tray 17 tilting toward the closed position and pivots clockwise, and the retracted position shown in FIG. Configured to return to

前記自動製氷機における冷凍系では、図1に示す如く、圧縮機CMで圧縮された気化冷媒は、吐出管40を経て凝縮器CNで凝縮液化し、ドライヤ41で脱湿された後に膨張弁42で減圧され、前記蒸発器14に流入してここで一挙に膨張して蒸発し、第1製氷室11と熱交換を行なって、各第1製氷小室13を氷点下にまで冷却させる。そして、蒸発器14で蒸発した気化冷媒は、吸入管43を経て圧縮機CMに帰還して再循環される。なお、実施例では、圧縮機CMから吐出される冷媒を蒸発器14に循環供給する経路が、第1冷媒循環経路48とされる。   In the refrigeration system in the automatic ice making machine, as shown in FIG. 1, the vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser CN via the discharge pipe 40, dehumidified by the dryer 41, and then the expansion valve 42. The pressure is reduced and flows into the evaporator 14 where it expands and evaporates at once. The first ice making chamber 13 is cooled to below the freezing point by exchanging heat with the first ice making chamber 11. The vaporized refrigerant evaporated in the evaporator 14 returns to the compressor CM through the suction pipe 43 and is recirculated. In the embodiment, a path for circulating and supplying the refrigerant discharged from the compressor CM to the evaporator 14 is the first refrigerant circulation path 48.

更に、前記第1冷媒循環経路48を構成する圧縮機CMの高圧側の管体である吐出管40からホットガス管44が分岐され、このホットガス管44はホットガス弁HVを経て、蒸発器14の入口側に連通されている。このホットガス弁HVは、除氷運転に際し、第2製氷室12の除氷完了を前記切換スイッチSW1が検知(逆転側になった状態)したときに開放し、該スイッチSW1が正転側に切換わったときに閉成されるよう制御される。すなわち、除氷運転時にホットガス弁HVが開放して、圧縮機CMから吐出される高温冷媒(ホットガス)を、前記ホットガス管44を介して蒸発器14にバイパスさせ、各第1製氷小室13を加熱することにより、小室内部に生成される球体氷の周面を融解させて、各球体氷を自重により落下させるようになっている。なお、図1中の符号FMは、凝縮器CN用のファンモータを示す。 Further, a hot gas pipe 44 is branched from a discharge pipe 40 which is a high pressure side pipe body of the compressor CM constituting the first refrigerant circulation path 48, and this hot gas pipe 44 passes through a hot gas valve HV, and is connected to an evaporator. 14 is connected to the inlet side. During the deicing operation, the hot gas valve HV opens when the changeover switch SW 1 detects the completion of deicing of the second ice making chamber 12 (in the reverse rotation state), and the switch SW 1 is rotated forward. It is controlled to be closed when switched to the side. That is, the hot gas valve HV is opened during the deicing operation, and the high-temperature refrigerant (hot gas) discharged from the compressor CM is bypassed to the evaporator 14 via the hot gas pipe 44, so that each first ice making chamber is bypassed. By heating 13, the peripheral surface of the spherical ice generated in the small chamber is melted, and each spherical ice is dropped by its own weight. In addition, the code | symbol FM in FIG. 1 shows the fan motor for condenser CN.

前記ホットガス管44におけるホットガス弁HVの配設位置より上流側(圧縮機CM側)から供給管45が分岐され、該供給管45は温水器用の入口弁WHV1を経て、前記温水器35における外管37の入口側に連通されている。また、温水器35における外管37の出口側に連通接続される帰還管46は温水器用の出口弁WHV2を経て、前記吸入管43に連通されている。このように外管37(温水器35)に対する高温冷媒の入口側および出口側に配設された前記入口弁WHV1および出口弁WHV2は、前記除氷水開始スイッチSW2のON作動により開放し、前記除氷水終了スイッチSW3がOFF作動されたときに閉成する制御がなされる。すなわち、除氷運転時に入口弁WHV1および出口弁WHV2を開放することで、圧縮機CMから吐出されるホットガスは前記供給管45を介して温水器35の外管37にバイパスされ、該ホットガスと温水器35の内管36内を流通する除氷水との間で熱交換を行なって除氷水を加温し得るよう構成される。なお、内管36の外側を流通するホットガスと、該内管36の内側を流通する除氷水とは、その流れ方向が逆向きとなるよう設定され、ホットガスと除氷水との効率的な熱交換を行なわせ得るようになっている。また実施例では、前記供給管45および帰還管46から第2冷媒循環経路49が構成される。 A supply pipe 45 is branched from the upstream side (compressor CM side) of the hot gas pipe 44 at the position where the hot gas valve HV is disposed, and the supply pipe 45 passes through the inlet valve WHV 1 for the water heater and passes through the water heater 35. Is communicated with the inlet side of the outer tube 37. A return pipe 46 connected to the outlet side of the outer pipe 37 in the water heater 35 is connected to the suction pipe 43 via an outlet valve WHV 2 for the water heater. Thus the outer tube 37 (water heaters 35) the inlet valve disposed in the inlet side and the outlet side of the high-temperature refrigerant for WHV 1 and the outlet valve WHV 2 is opened by the ON operation of the deicing water start switch SW 2 , control for closing when the the deicing water end switch SW 3 is OFF operation is performed. That is, by opening the inlet valve WHV 1 and the outlet valve WHV 2 during the deicing operation, hot gas discharged from the compressor CM is bypassed to the outer pipe 37 of the water heater 35 through the supply pipe 45, The deicing water can be heated by exchanging heat between the hot gas and the deicing water flowing through the inner pipe 36 of the water heater 35. The hot gas flowing outside the inner pipe 36 and the deicing water flowing inside the inner pipe 36 are set so that their flow directions are opposite to each other. Heat exchange can be performed. In the embodiment, the supply pipe 45 and the return pipe 46 constitute a second refrigerant circulation path 49.

前記吐出管40におけるホットガス管44の分岐部より下流側(第2冷媒循環経路49の分岐部より下流側、すなわち凝縮器CN側)に高圧ストップ弁HPVが配設される。この高圧ストップ弁HPVは、前記除氷水開始スイッチSW2のON作動により閉成し、前記除氷水終了スイッチSW3がOFF作動されたときに開放する制御がなされる。すなわち、前記入口弁WHV1および出口弁WHV2が開放するときには、高圧ストップ弁HPVが閉成するよう制御される。また、入口弁WHV1および出口弁WHV2が開放しているときには、前記ホットガス弁HVは閉成しており、これにより前記第2製氷室12の除氷に際しては、圧縮機CMから吐出されたホットガスは、蒸発器14側に流れることなく全て温水器35側に供給され、除氷水の加温にのみ用いられるようになっている。 A high-pressure stop valve HPV is disposed downstream of the branch portion of the hot gas pipe 44 in the discharge pipe 40 (downstream side of the branch portion of the second refrigerant circulation path 49, that is, the condenser CN side). The high-pressure stop valve HPV, said closed by the ON operation of the deicing water start switch SW 2, wherein the deicing water end switch SW 3 is controlled to open when it is OFF operated is made. That is, when the inlet valve WHV 1 and the outlet valve WHV 2 are opened, the high pressure stop valve HPV is controlled to close. When the inlet valve WHV 1 and the outlet valve WHV 2 are open, the hot gas valve HV is closed, so that the deicing of the second ice making chamber 12 is discharged from the compressor CM. All the hot gas is supplied to the water heater 35 side without flowing to the evaporator 14 side, and is used only for heating deiced water.

前記温水器35における外管37の出口側に連通接続される帰還管46には、図1に示す如く、外管37におけるホットガスの出口と前記出口弁WHV2との間に、該帰還管46を流通するホットガスの圧力を検知する断水検知手段としての圧力スイッチ(圧力検知手段)47が設けられている。そして、該圧力スイッチ47が、予め設定された異常圧力(OFF設定値)を検知したときに、自動製氷機の運転を停止するよう設定されている。すなわち、除氷運転に際して、断水により温水器35の内管36や給水管29に除氷水が供給されない場合、該温水器35に供給されるホットガスは除氷水と熱交換しないため(無負荷状態)、帰還管46を流通するホットガスの圧力が上昇し、その値が圧力スイッチ47のOFF設定値(異常圧力)に達すると該圧力スイッチ47がOFF作動して自動製氷機の運転が停止する。これにより、前記内管36内の空気がホットガスにより加熱されて高温となり、これに伴って給水管29が加熱されることに起因して発生する問題を未然に防止するようになっている。例えば、給水管29が、給水弁WVより上流側は金属材からなる管体で構成されると共に、給水弁WVより下流側は樹脂材からなる管体で構成される場合、前述したような高温の空気が樹脂材の管体を流通することで該管体が変形等を来たすのを防止することができる。また、給水弁WVを高温空気から保護し得ると共に、早期検知により給水管29内の高温空気が貯氷庫内に排出されることを極力防止することができる。 As shown in FIG. 1, the return pipe 46 connected to the outlet side of the outer pipe 37 in the water heater 35 is provided between the outlet of the hot gas in the outer pipe 37 and the outlet valve WHV 2. A pressure switch (pressure detection means) 47 is provided as a water breakage detection means for detecting the pressure of hot gas flowing through 46. The pressure switch 47 is set to stop the operation of the automatic ice maker when it detects a preset abnormal pressure (OFF set value). That is, in the deicing operation, when deicing water is not supplied to the inner pipe 36 or the water supply pipe 29 of the water heater 35 due to water interruption, the hot gas supplied to the water heater 35 does not exchange heat with the deicing water (no load state). ) When the pressure of the hot gas flowing through the return pipe 46 rises and the value reaches the OFF set value (abnormal pressure) of the pressure switch 47, the pressure switch 47 is turned OFF and the operation of the automatic ice making machine is stopped. . As a result, the air in the inner pipe 36 is heated by the hot gas to a high temperature, and the problem caused by the heating of the water supply pipe 29 is prevented in advance. For example, when the water supply pipe 29 is formed of a pipe body made of a metal material on the upstream side of the water supply valve WV and a pipe body made of a resin material on the downstream side of the water supply valve WV, the high temperature as described above. It is possible to prevent the pipe body from being deformed or the like by flowing the air through the resin pipe body. Further, the water supply valve WV can be protected from high-temperature air, and the high-temperature air in the water supply pipe 29 can be prevented from being discharged into the ice storage as much as possible by early detection.

なお、実施例の自動製氷機では、前記運転停止により帰還管46内のホットガスの圧力が低下し、その値が前記圧力スイッチ47のON設定値に達すると、該スイッチ47がON作動することで、自動製氷機の運転が再開されるよう設定してある。断水検知手段としての圧力検知手段としては、圧力スイッチに限らず圧力センサ等であってもよい。   In the automatic ice maker of the embodiment, when the operation stops, the pressure of the hot gas in the return pipe 46 decreases, and when the value reaches the ON set value of the pressure switch 47, the switch 47 is turned ON. The automatic ice maker is set to resume operation. The pressure detection means as the water break detection means is not limited to the pressure switch, and may be a pressure sensor or the like.

ここで、前記帰還管46における出口弁WHV2から吸入管43との接続部までの間に圧力スイッチ47を配設する場合は、以下の難点がある。すなわち、実施例において前記第1製氷室11の除氷完了は、前記温度センサThが除氷完了温度を検知することで行なっているため、第1製氷室11から全ての球状氷が落下した後も、該温度センサThが除氷完了温度を検知するまではホットガスが蒸発器14に供給される。このとき、ホットガスは球状氷との熱交換を行なっていない状態(無負荷状態)であるため、吸入管43内のガス圧が上昇することに伴い、該吸入管43との接続部から出口弁WHV2までの間の帰還管46内の圧力も高まり、圧力スイッチ47が誤作動するおそれがある。従って、出口弁WHV2の配設位置より下流側の帰還管46に圧力スイッチ47を配設する場合は、第1製氷室11の除氷完了時における前記の圧力上昇を考慮して、該圧力スイッチ47の作動圧力(ON−OFF設定値)を設定しなければならない。しかるに、出口弁WHV2の配設位置より上流側の帰還管46に圧力スイッチ47を配設する場合は、前述した圧力上昇を考慮する必要はなく、断水によるホットガスの圧力上昇のみに対応し得るように作動圧力を設定すればよく、簡単かつ正確な検知ができるものである。 Here, when the pressure switch 47 is provided between the outlet valve WHV 2 and the connection portion with the suction pipe 43 in the return pipe 46, there are the following difficulties. That is, in the embodiment, the deicing completion of the first ice making chamber 11 is performed by the temperature sensor Th detecting the deicing completion temperature. Therefore, after all the spherical ice has fallen from the first ice making chamber 11. However, the hot gas is supplied to the evaporator 14 until the temperature sensor Th detects the deicing completion temperature. At this time, since the hot gas is in a state in which heat exchange with the spherical ice is not performed (no-load state), the gas pressure in the suction pipe 43 rises and the outlet from the connection portion with the suction pipe 43 The pressure in the return pipe 46 up to the valve WHV 2 also increases, and the pressure switch 47 may malfunction. Therefore, when the pressure switch 47 is disposed in the return pipe 46 on the downstream side from the position where the outlet valve WHV 2 is disposed, the pressure rise when the deicing of the first ice making chamber 11 is completed is considered. The operating pressure (ON-OFF set value) of the switch 47 must be set. However, when the pressure switch 47 is disposed in the return pipe 46 upstream of the position where the outlet valve WHV 2 is disposed, it is not necessary to consider the above-described pressure increase, and only corresponds to the hot gas pressure increase due to water shutoff. It is only necessary to set the operating pressure so as to obtain a simple and accurate detection.

〔実施例の作用〕
次に、実施例に係る自動製氷機の作用につき、以下説明する。製氷運転に際し、図2に示す如く第2製氷室12は、第1製氷室11を下方から閉成して、各第1製氷小室13と各第2製氷小室15とを対応させ、内部に氷形成用空間を画成している。この状態で製氷運転が開始されると、冷凍系の圧縮機CMやファンモータFMが起動して第1製氷室11に設けた蒸発器14に第1冷媒循環経路48を介して冷媒が循環供給され、当該第1製氷室11の冷却がなされると共に、前記製氷水タンク22からの製氷水は分配管21にポンプ圧送され、該分配管21の各噴水孔20を介して両製氷小室13,15に画成される球状空間中に噴射される。
(Effects of Example)
Next, the operation of the automatic ice maker according to the embodiment will be described below. During the ice making operation, as shown in FIG. 2, the second ice making chamber 12 closes the first ice making chamber 11 from below, associates each first ice making chamber 13 with each second ice making chamber 15, and creates ice inside. A space for formation is defined. When the ice making operation is started in this state, the refrigeration compressor CM and the fan motor FM are activated, and the refrigerant is circulated and supplied to the evaporator 14 provided in the first ice making chamber 11 through the first refrigerant circulation path 48. Then, the first ice making chamber 11 is cooled, and ice making water from the ice making water tank 22 is pumped to the distribution pipe 21, and both ice making chambers 13, 15 is injected into a spherical space defined by 15.

噴射された製氷水は、第1製氷小室13の内面に接触して冷却され、下方の第2製氷小室15を潤した後、この未氷結水は、水皿17に穿設した前記戻り孔23を介して、製氷水タンク22に戻されて再度の循環に供される。そして製氷水の循環が反復される内に、タンク22中に貯溜される製氷水全体の温度が次第に低下すると共に、第2製氷小室12の温度も同様に次第に低下する。そして、先ず第1製氷小室13の内壁面で製氷水の一部が凍結して氷層が形成され始め、未氷結水は戻り孔23からタンク22に帰還する運転を重ねる間に、前記氷層の成長が更に進行して、最終的に両製氷小室13,15に形成される球状空間中に球体氷が生成される。   The sprayed ice making water comes into contact with the inner surface of the first ice making chamber 13 and is cooled to wet the second ice making chamber 15 below, and then this uniced water forms the return hole 23 formed in the water dish 17. And then returned to the ice making water tank 22 for recirculation. While the circulation of the ice making water is repeated, the temperature of the entire ice making water stored in the tank 22 gradually decreases, and the temperature of the second ice making chamber 12 also gradually decreases. First, a part of the ice making water freezes on the inner wall surface of the first ice making chamber 13 and an ice layer starts to be formed. During the operation of returning the uniced water from the return hole 23 to the tank 22, Further progresses, and spherical ice is finally generated in the spherical space formed in both ice making chambers 13 and 15.

図3に示す如く、球体氷の製造が完了(製氷完了)し、前記第1製氷室11の温度が製氷完了温度となったことを、前記温度センサThが検知すると、給水ポンプPMが停止制御されて、製氷水の循環供給を停止する。なお、冷凍系を構成する前記圧縮機CMへの通電は継続されたまま、前記ファンモータFMのみ停止制御される。また、前記開閉用モータAMの運転が開始され、前記駆動アーム25は正転方向に回動し、該アーム25が前記除氷水開始スイッチSW2をON作動すると、開閉用モータAMの運転が停止される(図4参照)。このとき、前記給水弁WVが開放され、これにより外部水道系に接続する給水管29から水皿17の表面に画成してある前記水溜部27に除氷水の供給が開始される。また駆動アーム25の回動により前記コイルスプリング26は弛み、該スプリング26による水皿17および第2製氷室12を閉成位置に保持する力は解除される。しかし、この時点では第2製氷小室15と球体氷とは氷結状態を保持しているので、水皿17は閉成位置に臨んだままとなっている。 As shown in FIG. 3, when the temperature sensor Th detects that the production of spherical ice has been completed (ice-making completed) and the temperature of the first ice-making chamber 11 has reached the ice-making completion temperature, the feed water pump PM is controlled to stop. Then, the circulation of ice-making water is stopped. Note that only the fan motor FM is controlled to stop while energization to the compressor CM constituting the refrigeration system is continued. Also, the operation of the opening and closing motor AM is started, the driving arm 25 is rotated in the forward direction, when the arm 25 is turned ON operating the deicing water start switch SW 2, the operation of the opening and closing motor AM is stopped (See FIG. 4). At this time, the water supply valve WV is opened, whereby supply of deicing water is started from the water supply pipe 29 connected to the external water system to the water reservoir 27 defined on the surface of the water tray 17. Further, the coil spring 26 is loosened by the rotation of the drive arm 25, and the force for holding the water pan 17 and the second ice making chamber 12 in the closed position by the spring 26 is released. However, at this time, the second ice making chamber 15 and the spherical ice are kept frozen, so that the water tray 17 remains facing the closed position.

前記除氷水開始スイッチSW2のON作動により、前記入口弁WHV1および出口弁WHV2が開放すると共に、前記高圧ストップ弁HPVが閉成する。またこのとき、前記切換スイッチSW1は正転側になっているから、前記ホットガス弁HVは閉成している。従って、圧縮機CMから吐出されるホットガスは、前記供給管45を介して温水器35の外管37にバイパスされ、該温水器35の内管36内を流通する除氷水との間で熱交換を行なって該除氷水を加温する。そして、この加温された除氷水が、前記水溜部27に供給されることとなる。 When the deicing water start switch SW 2 is turned on, the inlet valve WHV 1 and the outlet valve WHV 2 are opened, and the high-pressure stop valve HPV is closed. At this time, the changeover switch SW 1 is because they become forward side, the hot gas valve HV is closed. Therefore, the hot gas discharged from the compressor CM is bypassed to the outer pipe 37 of the water heater 35 through the supply pipe 45 and is heated between the deicing water flowing in the inner pipe 36 of the water heater 35. Exchange and warm the deiced water. The heated deicing water is supplied to the water reservoir 27.

前記給水弁WVを介して水溜部27に供給される加温された除氷水は、前記排水孔28から製氷水タンク22に流下する量に比べ多量であるので、該水溜部27での水位は次第に上昇し、遂には水皿17の堰止め部17cからオーバーフローするに至る。オーバーフローする際の水溜部27の水面レベルを、第2製氷室12の上端近傍に到来するよう設定しておくことにより、除氷水は第2製氷室12を主として加熱することができる。なお、堰止め部17cからのオーバーフロー水は、水皿17の先端から製氷水タンク22内に流下する。この水皿先端部から流入する水と、前記排水孔28から流下する水とによりタンク22内の水位は次第に上昇し、前記オーバーフローパイプ34から余分な水は排水皿31に流下した後に機外へ排出される。   The amount of warmed deicing water supplied to the water reservoir 27 via the water supply valve WV is larger than the amount flowing down from the drain hole 28 to the ice making water tank 22, so the water level at the water reservoir 27 is It gradually rises and eventually overflows from the weir 17c of the water tray 17. By setting the water surface level of the water reservoir 27 when it overflows so as to arrive near the upper end of the second ice making chamber 12, the deiced water can mainly heat the second ice making chamber 12. The overflow water from the damming portion 17 c flows down from the tip of the water dish 17 into the ice making water tank 22. The water level in the tank 22 gradually rises due to the water flowing in from the tip of the water pan and the water flowing down from the drain hole 28, and excess water flows down from the overflow pipe 34 to the drain pan 31 and then goes out of the machine. Discharged.

前記第2製氷室12は、水溜部27に貯溜される除氷水で加熱されて温度上昇し、前記第2製氷小室15の壁面と球体氷との氷結力は徐々に低下する。なお、第2製氷室12と接触する第1製氷室11にも除氷水の熱は伝わるが、この熱は僅かであり、第1製氷小室13の壁面と球体氷との氷結力は低下しない。   The second ice making chamber 12 is heated by deicing water stored in the water reservoir 27 and the temperature rises, and the freezing force between the wall surface of the second ice making chamber 15 and the spherical ice gradually decreases. The heat of the deicing water is also transmitted to the first ice making chamber 11 that is in contact with the second ice making chamber 12, but this heat is slight, and the freezing force between the wall surface of the first ice making chamber 13 and the spherical ice does not decrease.

前記第2製氷小室15の壁面と球体氷との氷結力が、第2製氷室12、水皿17および製氷水タンク22等からなる水皿組の自重を支えられなくなるまで低下すると、該水皿組は弛んでいた前記コイルスプリング26の弾力とバランスする位置まで自重によって下側に傾動する。これにより図5に示す如く、前記作動片30が除氷水終了スイッチSW3から離間してOFF状態となり、第2製氷室12からの球体氷の剥離を検知する。このとき、前記給水弁WVを閉成すると共に、開閉用モータAMの運転を再開し、前記駆動アーム25が正転方向へ回動することで水皿17および第2製氷室12は開放位置に向けて傾動を開始する。また前記入口弁WHV1および出口弁WHV2が閉成すると共に、前記高圧ストップ弁HPVは開放する。 When the freezing force between the wall surface of the second ice making chamber 15 and the spherical ice is lowered to the point where the weight of the water tray set including the second ice making chamber 12, the water tray 17, the ice making water tank 22, etc. cannot be supported, the water tray The pair tilts downward by its own weight to a position that balances with the elasticity of the coil spring 26 that has been loosened. As a result, as shown in FIG. 5, the operating piece 30 is separated from the deicing water end switch SW 3 and turned off, and the detachment of the spherical ice from the second ice making chamber 12 is detected. At this time, the water supply valve WV is closed, the operation of the opening / closing motor AM is restarted, and the water tray 17 and the second ice making chamber 12 are brought into the open position by rotating the drive arm 25 in the forward rotation direction. Start tilting towards. Further, the inlet valve WHV 1 and the outlet valve WHV 2 are closed, and the high-pressure stop valve HPV is opened.

前述した第2製氷室12の除氷に際し、前記水溜部27に貯溜される除氷水はホットガスとの熱交換により加温されているから、冬期のように周囲温度が低い時期においても第2製氷室12の除氷に要する時間(除氷時間)を短縮することができ、自動製氷機での日産製氷能力を向上し得る。また除氷時間の短縮により、除氷水の使用量を低減することができ、ランニングコストを低廉に抑えることが可能となる。更に、温度の高い除氷水を用いて第2製氷室12の除氷を行なうから、前記給水弁WVでの流量コントロール機能により、供給する除氷水の単位時間当たりの供給量を少なく設定しても除氷時間が長くなることはなく、これによってもランニングコストを抑えることができるようになる。更には、第2製氷室12の除氷に際して前記高圧ストップ弁HPVを閉成することで、圧縮機CMから吐出される全てのホットガスを除氷水の加温に用いることができるから、除氷水を効率的に加温し得る。なお、製氷運転に際しては前記入口弁WHV1および出口弁WHV2を閉成することで、圧縮機CMからの冷媒が温水器35に流入することはなく、冷凍能力が低下することはない。 At the time of deicing the second ice making chamber 12, the deiced water stored in the water reservoir 27 is heated by heat exchange with the hot gas, so that the second temperature can be maintained even when the ambient temperature is low, such as in winter. The time required for deicing the ice making chamber 12 (deicing time) can be shortened, and the Nissan ice making capacity of the automatic ice maker can be improved. Further, by reducing the deicing time, the amount of deicing water used can be reduced, and the running cost can be kept low. Furthermore, since the deicing water in the second ice making chamber 12 is deiced using the deicing water having a high temperature, even if the supply amount per unit time of the deicing water to be supplied is set small by the flow rate control function of the water supply valve WV. The deicing time does not become long, and this also makes it possible to reduce the running cost. Furthermore, by closing the high pressure stop valve HPV when deicing the second ice making chamber 12, all hot gas discharged from the compressor CM can be used for heating the deicing water. Can be efficiently heated. In the ice making operation, the inlet valve WHV 1 and the outlet valve WHV 2 are closed, so that the refrigerant from the compressor CM does not flow into the water heater 35 and the refrigeration capacity does not decrease.

また前記温水器35における熱交換において、除氷水とホットガスとの流れ方向を逆向きに設定したから、両者間の熱交換が効率的になされ、除氷水の温度を高くすることができ、これが除氷時間の短縮に寄与する。しかも、温水器35の前記内管36には内外に突出するフィン38を設けてあるから、ホットガスと除氷水との熱交換を行なうための表面積が増え、これによって熱交換効率が良好となって高い温度の除氷水を得ることが可能となる。更に、温水器35および給水弁WVまでの給水管29を断熱ホース39で被覆してあるから、温水器35で加温した除氷水の温度が前記水溜部27に供給される間に低下するのを抑制することができ、エネルギーロスを抑え得る。   In the heat exchange in the water heater 35, since the flow direction of the deicing water and the hot gas is set in the opposite direction, the heat exchange between the two is efficiently performed, and the temperature of the deicing water can be increased. Contributes to shortening of deicing time. Moreover, since the inner pipe 36 of the water heater 35 is provided with fins 38 projecting inward and outward, the surface area for heat exchange between the hot gas and the deicing water increases, thereby improving the heat exchange efficiency. High temperature deicing water can be obtained. Furthermore, since the water supply pipe 29 to the water heater 35 and the water supply valve WV is covered with the heat insulating hose 39, the temperature of the deicing water heated by the water heater 35 decreases while being supplied to the water reservoir 27. And energy loss can be suppressed.

ここで、前記第2製氷室12の除氷に際し、断水により温水器35の内管36や給水管29に除氷水が供給されない場合は、該温水器35に供給されるホットガスにより内管内の空気が加熱されて高温となり、これに伴って給水管29も加熱され、給水管29を構成する樹脂部分等が変形するおそれがある。しかるに、実施例に係る自動製氷機では、前記帰還管46に配設された圧力スイッチ47が、予め設定された異常圧力(OFF設定値)を検知したときには自動製氷機の運転を停止するよう設定されているから、ホットガスが温水器35内を無負荷状態で流通することで過熱されたり、給水管29内を高温の空気が流通することに起因して発生する、温水器35や給水管29の耐久性の低下等、各種の異常事態を未然に防止することができる。また、圧力スイッチ47により断水を早期に検知することができ、温水器35や給水管29の安定した保護が図られる。なお、圧力スイッチ47による圧力検知は、従来のようなバイメタルサーモを用いた温度検知に比較して、その配設状態等によるバラツキは少なく、正確な断水検知を行ない得る。   Here, when deicing the second ice making chamber 12, when deicing water is not supplied to the inner pipe 36 or the water supply pipe 29 of the water heater 35 due to water interruption, the hot gas supplied to the water heater 35 causes the inside of the inner pipe to The air is heated to a high temperature, and accordingly, the water supply pipe 29 is also heated, and there is a possibility that the resin portion or the like constituting the water supply pipe 29 is deformed. However, in the automatic ice maker according to the embodiment, the pressure switch 47 disposed in the return pipe 46 is set to stop the operation of the automatic ice maker when detecting a preset abnormal pressure (OFF set value). Therefore, the hot water 35 or the water supply pipe generated due to the hot gas being overheated by circulating in the water heater 35 in an unloaded state or the high temperature air circulating in the water supply pipe 29 is generated. Various abnormal situations such as a decrease in durability 29 can be prevented in advance. Further, the pressure switch 47 can detect water breakage at an early stage, and stable protection of the water heater 35 and the water supply pipe 29 is achieved. Note that the pressure detection by the pressure switch 47 has less variation due to the arrangement state, etc., compared to the conventional temperature detection using a bimetal thermo, and can accurately detect water failure.

前記水皿17の傾動途中において、前記軸32に一体的に配設された反転レバー33aを製氷水タンク22の押片22aが押すことにより前記氷案内板33が反転し、水皿17に寄りかかった状態で傾動する。水皿17が最大限に傾動したタイミングをもって、図6に示すように、前記レバー片25aが切換スイッチSW1を逆転側に切換えると、これにより開閉用モータAMは停止して水皿17の傾動を停止させる。なお、このとき氷案内板33は、先に述べた如く、第2製氷室12の上面を覆って氷塊滑落用の円滑面を提供している。 In the middle of the tilting of the water tray 17, the ice guide plate 33 is reversed by pushing the reversing lever 33 a integrally disposed on the shaft 32 by the pressing piece 22 a of the ice making water tank 22. Tilt in the applied state. As shown in FIG. 6, when the lever piece 25 a switches the changeover switch SW 1 to the reverse side at the timing when the water pan 17 tilts to the maximum extent, the opening / closing motor AM stops and the water pan 17 tilts. Stop. At this time, the ice guide plate 33 covers the upper surface of the second ice making chamber 12 and provides a smooth surface for sliding ice blocks as described above.

前記切換スイッチSW1が切換わったときに、前記ホットガス弁HVが開放して蒸発器14にホットガスが供給され、第1製氷室11の加熱がなされて、第1製氷小室13の内面と球体氷との氷結面の融解を開始する。このとき、前記入口弁WHV1および出口弁WHV2は何れも閉成しているから、圧縮機CMから吐出される略全てのホットガスは、蒸発器14に供給されて第1製氷室11の効率的な除氷が達成される。 When the change-over switch SW 1 is switched, the hot gas valve HV is opened and hot gas is supplied to the evaporator 14, the first ice making chamber 11 is heated, and the inner surface of the first ice making chamber 13 is Start melting ice surface with spherical ice. At this time, since both the inlet valve WHV 1 and the outlet valve WHV 2 are closed, almost all the hot gas discharged from the compressor CM is supplied to the evaporator 14 and is supplied to the first ice making chamber 11. Efficient deicing is achieved.

前記第1製氷室11の除氷開始により第1製氷小室13が或る程度加温されると、図6に示す如く、小室壁面と球体氷との氷結が解除されて自重落下し、傾動待機している前記氷案内板33の表面に落着し貯氷庫に滑落回収される。   When the first ice making chamber 13 is heated to some extent by the start of deicing of the first ice making chamber 11, as shown in FIG. 6, the freezing of the wall surface of the chamber and the spherical ice is released, and it falls by its own weight, waiting for tilting. It settles on the surface of the ice guide plate 33, and is slid down and collected in an ice storage.

このように、球体氷が全て第1製氷小室13から離脱すると、第1製氷室11は蒸発器14に循環しているホットガスにより一挙に温度上昇する。そして、前記温度センサThが除氷完了温度を検知すると、前記開閉用モータAMが逆転方向に運転されて駆動アーム25は逆転方向(図7の時計方向)に回動される。従って該駆動アーム25と水皿17との間に弾力的に係着したコイルスプリング26により、水皿組は反時計方向に傾動される。また、第1製氷室11の除氷完了検知により前記給水弁WVが開放され、水皿17上に供給されて前記水溜部27に貯溜する水道水は、前記排水孔28を介して製氷水タンク22に流入し、水位の低下したタンク22に新たな製氷水として供給される。なお、このとき前記温水器35にはホットガスは供給されていないから、製氷水として供給される水道水が加温されることはない。また前記圧力スイッチ47は、閉成状態の出口弁WHV2より温水器35側の帰還管46に設けられているから、前記吸入管43を無負荷状態で流通するホットガスの圧力上昇が、圧力スイッチ47が配設される帰還管46まで及ぶことはなく、該圧力スイッチ47の誤作動により自動製氷機が運転停止するのは防止される。 As described above, when all the spherical ice is separated from the first ice making chamber 13, the temperature of the first ice making chamber 11 is increased at once by the hot gas circulating in the evaporator 14. When the temperature sensor Th detects the deicing completion temperature, the opening / closing motor AM is operated in the reverse direction, and the drive arm 25 is rotated in the reverse direction (clockwise in FIG. 7). Therefore, the water tray assembly is tilted counterclockwise by the coil spring 26 elastically engaged between the drive arm 25 and the water tray 17. The water supply valve WV is opened upon detection of the completion of deicing in the first ice making chamber 11, and the tap water supplied onto the water tray 17 and stored in the water reservoir 27 is stored in the ice making water tank through the drain hole 28. 22 is supplied as new ice-making water to the tank 22 whose water level has dropped. At this time, since hot gas is not supplied to the water heater 35, tap water supplied as ice making water is not heated. Since the pressure switch 47 is provided in the return pipe 46 on the water heater 35 side from the closed outlet valve WHV 2 , the pressure rise of the hot gas flowing through the suction pipe 43 in an unloaded state is It does not extend to the return pipe 46 where the switch 47 is disposed, and the automatic ice maker is prevented from being shut down due to a malfunction of the pressure switch 47.

前記逆転方向に回動する駆動アーム25により反時計方向に傾動される水皿組が閉成位置に復帰されることによって、第1製氷室11は再び第2製氷室12で下方から閉成される(図8参照)。また、駆動アーム25により前記切換スイッチSW1が正転側に切換えられると、開閉用モータAMが停止されると共に、給水弁WVおよびホットガス弁HVが閉成して、水道水およびホットガスの供給が停止される。そして、初期状態に復帰して製氷運転が再開され、前述した動作を繰り返す。なお、駆動アーム25の逆転方向への回動途中に、前記除氷水開始スイッチSW2は該アーム25によりON−OFF作動されるが、このときの信号はキャンセルされ、前記給水弁WVが開放されることはない。更に、前記除氷水終了スイッチSW3も前記作動片30によりON作動され、次のサイクルの待機状態となる。 The first ice making chamber 11 is again closed from below by the second ice making chamber 12 by returning the water tray assembly tilted counterclockwise by the drive arm 25 rotating in the reverse direction to the closed position. (See FIG. 8). When the changeover switch SW 1 is switched to the forward rotation side by the drive arm 25, the opening / closing motor AM is stopped, and the water supply valve WV and the hot gas valve HV are closed to supply tap water and hot gas. Supply is stopped. And it returns to an initial state, ice making operation is restarted, and the operation | movement mentioned above is repeated. Incidentally, in the middle turn in the reverse direction of the drive arm 25, the deicing water start switch SW 2 is is ON-OFF operation by the arm 25, the signal at this time is canceled, the water supply valve WV is opened Never happen. Further, the deicing water end switch SW 3 is also turned ON by the operating piece 30 and enters a standby state for the next cycle.

〔変更例〕
実施例の自動製氷機において、圧力スイッチのON−OFFにより自動製氷機の停止・運転再開、すなわち圧縮機の発停を制御する場合、その発停時間が短かいと圧縮機に負荷が掛かるので、圧力スイッチがOFF(異常圧力を検知)したときにカウントを開始するタイマを用いて、該発停時間を適宜に調節するようにしてもよい。また圧力スイッチが異常圧力を検知したときに、ランプやブザー等の警報手段を作動することで、使用者に異常発生を覚知させる構成を採用し得る。
[Example of change]
In the automatic ice maker of the embodiment, when controlling the stop / restart of the automatic ice maker, that is, the start / stop of the compressor by ON / OFF of the pressure switch, if the start / stop time is short, a load is applied to the compressor. The start / stop time may be appropriately adjusted by using a timer that starts counting when the pressure switch is OFF (detects an abnormal pressure). Further, when the pressure switch detects an abnormal pressure, it is possible to adopt a configuration in which an alarm means such as a lamp or a buzzer is activated to make the user aware of the occurrence of the abnormality.

実施例では、断水検知手段としてホットガスの圧力を検知する圧力スイッチ(圧力検知手段)を挙げたが、ホットガスの温度を検知する温度検知センサ(温度検知手段)を採用することができる。この構成においても、温水器から流出するホットガスの温度を検知することで、早期に断水を検知して異常発生を未然に防ぐことができる。   In the embodiments, the pressure switch (pressure detection means) for detecting the pressure of hot gas is used as the water cutoff detection means. However, a temperature detection sensor (temperature detection means) for detecting the temperature of the hot gas can be employed. Even in this configuration, by detecting the temperature of the hot gas flowing out of the water heater, it is possible to detect a water break at an early stage and prevent an abnormality from occurring.

なお、その他、冷凍系の吐出管に配設される高圧ストップ弁を省略したり、熱交換器(温水器)においての除氷水とホットガスの流れ方向を同じ向きとする構成等、各種の変更が可能である。   In addition, various changes such as omitting the high-pressure stop valve arranged in the discharge pipe of the refrigeration system, or the configuration in which the flow direction of the deicing water and hot gas in the heat exchanger (water heater) is the same direction Is possible.

本発明の実施例に係る自動製氷機の製氷機構および冷凍系等を示す概略構成図である。1 is a schematic configuration diagram showing an ice making mechanism and a refrigeration system of an automatic ice making machine according to an embodiment of the present invention. 実施例に係る自動製氷機の要部を、第1製氷室に対し第2製氷室を閉成して製氷運転を開始した状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state which closed the 2nd ice making chamber with respect to the 1st ice making chamber, and started the ice making operation | movement about the principal part of the automatic ice making machine which concerns on an Example. 実施例の自動製氷機の要部を、製氷が完了して両製氷小室中に略中実な球体氷が生成された状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state by which ice making was completed and the substantially solid spherical ice was produced | generated in both ice-making small chambers about the principal part of the automatic ice maker of an Example. 実施例の自動製氷機の要部を、製氷が完了して駆動アームの回動により除氷水開始スイッチがON作動して給水弁が開放し、水溜部に除氷水が貯溜される状態を示す概略縦断面図である。The main part of the automatic ice making machine of the embodiment is schematically shown in a state where ice making is completed and the deicing water start switch is turned ON by turning the drive arm, the water supply valve is opened, and deicing water is stored in the water reservoir. It is a longitudinal cross-sectional view. 実施例の自動製氷機の要部を、第2製氷室と球体氷との氷結が解除されることで第2製氷室が第1製氷室から開放する状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state which the 2nd ice making chamber open | releases from the 1st ice making chamber by releasing the freezing of a 2nd ice making chamber and spherical ice about the principal part of the automatic ice making machine of an Example. 実施例の自動製氷機の要部を、開放位置に停止した第2製氷室の上面に氷案内板を倒れ込ませて各第2製氷小室を塞いだ状態で第1製氷室から球体氷が剥離落下する状態を示す概略縦断面図である。The main part of the automatic ice maker according to the embodiment is separated from the first ice making chamber in the state where the second ice making chamber is closed by letting the ice guide plate fall down on the upper surface of the second ice making chamber stopped at the open position. It is a schematic longitudinal cross-sectional view which shows the state which falls. 実施例の自動製氷機の要部を、除氷が完了して第2製氷室が第1製氷室を閉成する方向に傾動を開始する状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state which the 2nd ice making chamber starts tilting in the direction which completes deicing and the 1st ice making chamber is closed about the principal part of the automatic ice making machine of an Example. 実施例の自動製氷機の要部を、第2製氷室が閉成位置に保持された状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state by which the 2nd ice making chamber was hold | maintained in the closed position about the principal part of the automatic ice making machine of an Example.

符号の説明Explanation of symbols

11 第1製氷室,12 第2製氷室,13 第1製氷小室,14 蒸発器
15 第2製氷小室,29 給水管(除氷水の供給経路),35 温水器(熱交換器)
47 圧力スイッチ(断水検知手段),48 第1冷媒循環経路
49 第2冷媒循環経路,CM 圧縮機,WHV1 入口弁,WHV2 出口弁
DESCRIPTION OF SYMBOLS 11 1st ice making room, 12 2nd ice making room, 13 1st ice making room, 14 Evaporator 15 2nd ice making room, 29 Water supply pipe (supply path of deicing water), 35 Water heater (heat exchanger)
47 pressure switch (water cutoff detection means), 48 first refrigerant circulation path 49 second refrigerant circulation path, CM compressor, WHV 1 inlet valve, WHV 2 outlet valve

Claims (1)

下方に開放する第1製氷小室(13)が設けられ、冷凍系を構成する蒸発器(14)を配設した第1製氷室(11)と、上方に開放する第2製氷小室(15)が設けられ、前記第1製氷室(11)を下方から閉成可能に配設した第2製氷室(12)とを備え、除氷運転に際して前記第2製氷室(12)の周囲に除氷水を供給して該第2製氷室(12)を加熱するよう構成した自動製氷機において、
前記除氷水の供給経路(29)に設けられると共に、前記冷凍系における蒸発器(14)に冷媒を循環させる第1冷媒循環経路(48)から分岐した第2冷媒循環経路(49)が接続され、冷凍系を構成する圧縮機(CM)から吐出されて第2冷媒循環経路(49)を介して供給される高温冷媒により除氷水を加温する熱交換器(35)と、
前記第2冷媒循環経路(49)における熱交換器(35)に対する高温冷媒の入口側および出口側に配設されて開閉制御される入口弁(WHV1)および出口弁(WHV2)と、
前記熱交換器(35)における高温冷媒の出口から前記出口弁(WHV2)までの間の第2冷媒循環経路(49)に設けられ、高温冷媒の圧力または温度を検知する断水検知手段(47)とから構成した
ことを特徴とする自動製氷機。
A first ice making chamber (13) opened downward is provided, and a first ice making chamber (11) provided with an evaporator (14) constituting a refrigeration system and a second ice making chamber (15) opened upward are provided. And a second ice making chamber (12) disposed so that the first ice making chamber (11) can be closed from below. Deicing water is provided around the second ice making chamber (12) during the deicing operation. An automatic ice making machine configured to supply and heat the second ice making chamber (12);
A second refrigerant circulation path (49) branched from the first refrigerant circulation path (48) for circulating the refrigerant to the evaporator (14) in the refrigeration system is connected to the deicing water supply path (29). A heat exchanger (35) for heating deiced water with a high-temperature refrigerant discharged from the compressor (CM) constituting the refrigeration system and supplied via the second refrigerant circulation path (49);
An inlet valve (WHV 1 ) and an outlet valve (WHV 2 ) which are disposed on the inlet side and the outlet side of the high-temperature refrigerant with respect to the heat exchanger (35) in the second refrigerant circulation path (49) and are controlled to open and close;
A water breakage detection means (47) provided in the second refrigerant circulation path (49) between the outlet of the high-temperature refrigerant and the outlet valve (WHV 2 ) in the heat exchanger (35) and detects the pressure or temperature of the high-temperature refrigerant. ) And an automatic ice making machine.
JP2003423386A 2003-12-19 2003-12-19 Automatic ice maker Pending JP2005180825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423386A JP2005180825A (en) 2003-12-19 2003-12-19 Automatic ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423386A JP2005180825A (en) 2003-12-19 2003-12-19 Automatic ice maker

Publications (1)

Publication Number Publication Date
JP2005180825A true JP2005180825A (en) 2005-07-07

Family

ID=34783943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423386A Pending JP2005180825A (en) 2003-12-19 2003-12-19 Automatic ice maker

Country Status (1)

Country Link
JP (1) JP2005180825A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185319A (en) * 2007-01-31 2008-08-14 Hoshizaki Electric Co Ltd Automatic ice making machine
JP2011133172A (en) * 2009-12-24 2011-07-07 Hoshizaki Electric Co Ltd Automatic ice-making machine
JP2013532816A (en) * 2010-08-03 2013-08-19 マニトワック・フードサービス・カンパニーズ・エルエルシー Low pressure control to signal time delay of ice making cycle start
CN104406342A (en) * 2014-03-21 2015-03-11 江苏弗格森制冷设备有限公司 Spherical ice machine
US9470448B2 (en) 2012-12-13 2016-10-18 Whirlpool Corporation Apparatus to warm plastic side of mold
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US9816744B2 (en) 2012-12-13 2017-11-14 Whirlpool Corporation Twist harvest ice geometry
US9890986B2 (en) 2012-12-13 2018-02-13 Whirlpool Corporation Clear ice maker and method for forming clear ice
US10030902B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Twistable tray for heater-less ice maker
US10047996B2 (en) 2012-12-13 2018-08-14 Whirlpool Corporation Multi-sheet spherical ice making
US10066861B2 (en) 2012-11-16 2018-09-04 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus
US10161663B2 (en) 2012-12-13 2018-12-25 Whirlpool Corporation Ice maker with rocking cold plate
US10174982B2 (en) 2012-12-13 2019-01-08 Whirlpool Corporation Clear ice maker
US10378806B2 (en) 2012-12-13 2019-08-13 Whirlpool Corporation Clear ice maker
US10690388B2 (en) 2014-10-23 2020-06-23 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
US10845111B2 (en) 2012-12-13 2020-11-24 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185319A (en) * 2007-01-31 2008-08-14 Hoshizaki Electric Co Ltd Automatic ice making machine
JP2011133172A (en) * 2009-12-24 2011-07-07 Hoshizaki Electric Co Ltd Automatic ice-making machine
JP2013532816A (en) * 2010-08-03 2013-08-19 マニトワック・フードサービス・カンパニーズ・エルエルシー Low pressure control to signal time delay of ice making cycle start
US9217597B2 (en) 2010-08-03 2015-12-22 Manitowoc Foodservice Companies, Llc Low pressure control for signaling a time delay for ice making cycle start up
US10030902B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Twistable tray for heater-less ice maker
US10030901B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
US10066861B2 (en) 2012-11-16 2018-09-04 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus
US10161663B2 (en) 2012-12-13 2018-12-25 Whirlpool Corporation Ice maker with rocking cold plate
US10378806B2 (en) 2012-12-13 2019-08-13 Whirlpool Corporation Clear ice maker
US9890986B2 (en) 2012-12-13 2018-02-13 Whirlpool Corporation Clear ice maker and method for forming clear ice
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US9470448B2 (en) 2012-12-13 2016-10-18 Whirlpool Corporation Apparatus to warm plastic side of mold
US10047996B2 (en) 2012-12-13 2018-08-14 Whirlpool Corporation Multi-sheet spherical ice making
US11131493B2 (en) 2012-12-13 2021-09-28 Whirlpool Corporation Clear ice maker with warm air flow
US11598567B2 (en) 2012-12-13 2023-03-07 Whirlpool Corporation Twist harvest ice geometry
US10174982B2 (en) 2012-12-13 2019-01-08 Whirlpool Corporation Clear ice maker
US11486622B2 (en) 2012-12-13 2022-11-01 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US10605512B2 (en) 2012-12-13 2020-03-31 Whirlpool Corporation Method of warming a mold apparatus
US9816744B2 (en) 2012-12-13 2017-11-14 Whirlpool Corporation Twist harvest ice geometry
US11725862B2 (en) 2012-12-13 2023-08-15 Whirlpool Corporation Clear ice maker with warm air flow
US10788251B2 (en) 2012-12-13 2020-09-29 Whirlpool Corporation Twist harvest ice geometry
US10816253B2 (en) 2012-12-13 2020-10-27 Whirlpool Corporation Clear ice maker with warm air flow
US10845111B2 (en) 2012-12-13 2020-11-24 Whirlpool Corporation Layering of low thermal conductive material on metal tray
CN104406342A (en) * 2014-03-21 2015-03-11 江苏弗格森制冷设备有限公司 Spherical ice machine
CN104406342B (en) * 2014-03-21 2016-08-17 江苏弗格森制冷设备有限公司 Ball ice maker
US10690388B2 (en) 2014-10-23 2020-06-23 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US11441829B2 (en) 2014-10-23 2022-09-13 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US11808507B2 (en) 2014-10-23 2023-11-07 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout

Similar Documents

Publication Publication Date Title
JP2005180825A (en) Automatic ice maker
JP5008675B2 (en) Automatic ice maker and its operating method
JP3993462B2 (en) Deicing operation method of automatic ice maker
JPH0532668B2 (en)
JP4954684B2 (en) How to operate an automatic ice machine
JPH0544587B2 (en)
JP4532201B2 (en) How to operate an automatic ice machine
JP2008281262A (en) Automatic ice making machine and its operation method
JP5253944B2 (en) Automatic ice machine
JPH0638292Y2 (en) Automatic ice machine
JP2003336948A (en) Deicing operation method for automatic ice machinery
JP5055170B2 (en) Reverse cell ice machine
JP2006090691A (en) Operating method for flow down type ice maker
JP2004045011A (en) Automatic ice machine and its operating method
JP3953942B2 (en) Automatic ice maker and its operating method
JP3412677B2 (en) How to operate an automatic ice maker
JP3875159B2 (en) How to operate an automatic ice machine
JP4972419B2 (en) Automatic ice machine
JPH04273962A (en) Device for controlling operation of ice making machine
JPS6017651Y2 (en) Ice maker operation control device
JP2024054948A (en) Ice-making machine
JP3710916B2 (en) Ice machine
JP4846547B2 (en) How to operate an automatic ice machine
JPS6015090Y2 (en) automatic ice maker
JP2009222275A (en) Ice making machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Effective date: 20090814

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A02