JP2005180636A - Bearing for planetary gear - Google Patents

Bearing for planetary gear Download PDF

Info

Publication number
JP2005180636A
JP2005180636A JP2003424886A JP2003424886A JP2005180636A JP 2005180636 A JP2005180636 A JP 2005180636A JP 2003424886 A JP2003424886 A JP 2003424886A JP 2003424886 A JP2003424886 A JP 2003424886A JP 2005180636 A JP2005180636 A JP 2005180636A
Authority
JP
Japan
Prior art keywords
planetary gear
bearing
gear
planetary
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003424886A
Other languages
Japanese (ja)
Inventor
Tetsuo Watanabe
哲雄 渡邊
Yutaka Kanda
裕 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003424886A priority Critical patent/JP2005180636A/en
Publication of JP2005180636A publication Critical patent/JP2005180636A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2809Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
    • F16H1/2836Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels by allowing limited movement of the planets relative to the planet carrier or by using free floating planets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and simple bearing for a planetary gear capable of absorbing positioning error of the planetary gear without complicating a structure of a carrier. <P>SOLUTION: This bearing 20 for the planetary gear is used in a planetary gear device wherein a sun gear 12 is mounted on a center of a ring-shaped internal gear 11, a plurality of planetary gears 15 are mounted between the internal gear 11 and the sun gear 12 through the carrier 13, and the plurality of planetary gears 15 are engaged with the internal gear 11 and the sun gear 12, and mounted between a supporting shaft 16 mounted on the carrier 13 and the planetary gear 15. This bearing 20 for the planetary gear comprises an inner ring 25 fitted to the supporting shaft 16, and an outer ring 26 fitted to the planetary gear 15, and at least one of the inner and outer rings is constituted to lower the radial rigidity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は遊星歯車用軸受に係り、特に、一般産業機械に使用される遊星歯車装置に用いられる遊星歯車用軸受に関する。   The present invention relates to a planetary gear bearing, and more particularly to a planetary gear bearing used in a planetary gear device used in a general industrial machine.

遊星歯車装置は高変速比が効果的に得られ、入力軸と出力軸が同軸上にあることや、平行歯車装置に比べてコンパクト化が可能なことから産業機械の減速機や増速機に多く用いられている。
この遊星歯車装置は、特に、内歯歯車と、その中心にある太陽歯車との間にキャリアを介して複数(通常3〜4個)の遊星歯車が連接されたものが広く知られている。
複数の遊星歯車を、キャリアに設けられた支持軸に軸受を介して回転自在に支える。この遊星歯車が、内歯歯車と太陽歯車との双方に噛み合いながら自転および公転する。
The planetary gear unit can effectively obtain a high gear ratio, the input shaft and the output shaft are coaxial, and can be made more compact than a parallel gear unit. Many are used.
In particular, this planetary gear device is widely known in which a plurality of (usually 3 to 4) planetary gears are connected via a carrier between an internal gear and a sun gear at the center thereof.
A plurality of planetary gears are rotatably supported via bearings on a support shaft provided on the carrier. The planetary gear rotates and revolves while meshing with both the internal gear and the sun gear.

遊星歯車を用いた遊星歯車装置を図10に示す。この遊星歯車装置100は、入力軸101およびキャリア102から入力された動力が支持軸103を経て遊星歯車104に伝達される。
具体的には、支持軸103に軸受(図示せず)を介して遊星歯車104を嵌合することで、遊星歯車104が支持軸103に対して回転自在に支持される。支持軸103から遊星歯車104に伝達される動力が、軸受に対してラジアル荷重(すなわち、軸受の半径方向にかかる力)として働く。
A planetary gear device using planetary gears is shown in FIG. In the planetary gear device 100, the power input from the input shaft 101 and the carrier 102 is transmitted to the planetary gear 104 through the support shaft 103.
Specifically, the planetary gear 104 is rotatably supported with respect to the support shaft 103 by fitting the planetary gear 104 to the support shaft 103 via a bearing (not shown). The power transmitted from the support shaft 103 to the planetary gear 104 acts as a radial load (that is, a force applied in the radial direction of the bearing) on the bearing.

遊星歯車104は固定された内歯歯車105と噛み合いながら公転することで、太陽歯車106に動力を伝達する。太陽歯車106から出力軸107に動力を伝える。
ここで、遊星歯車装置100の支持軸103を両端103A,103Bで支持するようにキャリア102を形成する。
支持軸103を両端103A,103Bで支持することで、遊星歯車装置100で大きな動力を伝達する場合でも、支持軸103が斜めに弾性変形することを防ぐ。
The planetary gear 104 revolves while meshing with the fixed internal gear 105 to transmit power to the sun gear 106. Power is transmitted from the sun gear 106 to the output shaft 107.
Here, the carrier 102 is formed so as to support the support shaft 103 of the planetary gear device 100 at both ends 103A and 103B.
Supporting the support shaft 103 at both ends 103A and 103B prevents the support shaft 103 from elastically deforming obliquely even when large power is transmitted by the planetary gear device 100.

遊星歯車装置100はコンパクトでありながら高い変速比が得られる反面、取付誤差や加工誤差のために、各々の遊星歯車104の位置を正確に配置することが難しい。このため、各々の遊星歯車104に不均等に力がかかる虞がある。
すなわち、各々の遊星歯車104を図11のように内歯歯車105と太陽歯車106との間に等間隔に配置した場合、遊星歯車104の位置は、内歯歯車105および太陽歯車106の双方と同時に噛み合うことが条件であり、歯あたりの一番よい位置で決まることが好ましい。
Although the planetary gear device 100 is compact and can provide a high gear ratio, it is difficult to accurately position the planetary gears 104 due to mounting errors and processing errors. For this reason, there is a possibility that force is applied to each planetary gear 104 unevenly.
That is, when the planetary gears 104 are arranged at equal intervals between the internal gear 105 and the sun gear 106 as shown in FIG. 11, the positions of the planetary gears 104 are both the internal gear 105 and the sun gear 106. It is a condition that they mesh at the same time, and is preferably determined at the best position per tooth.

しかし、各々の遊星歯車104は、キャリア102に嵌合された支持軸103で取付位置が拘束されている。支持軸103の位置精度が悪いと遊星歯車104の歯あたりが不均一になる虞がある。
遊星歯車104の歯あたりが不均一の場合、歯あたりの強い遊星歯車104に力がかかる。
このため、歯あたりの強い遊星歯車104が弾性変形したとき、他の遊星歯車104に初めて力がかかることになる。
However, the mounting position of each planetary gear 104 is restricted by the support shaft 103 fitted to the carrier 102. If the position accuracy of the support shaft 103 is poor, the contact of the planetary gear 104 may be uneven.
When the planetary gear 104 has uneven teeth, a force is applied to the planetary gear 104 having strong teeth.
For this reason, when the planetary gear 104 having a strong tooth contact is elastically deformed, a force is applied to the other planetary gears 104 for the first time.

図11は、3個の遊星歯車104の全てが内歯歯車105に理想的に噛み合った状態を示す。
図12は、3個の遊星歯車104のうち、下側の2個の遊星歯車104が内歯歯車105に歯あたりが強い状態で噛み合った状態を示す。
図13は、3個の遊星歯車104のうち、上側の1個の遊星歯車104のみが内歯歯車105に歯あたりが強い状態で噛み合った状態を示す。
FIG. 11 shows a state where all of the three planetary gears 104 are ideally meshed with the internal gear 105.
FIG. 12 shows a state in which the lower two planetary gears 104 out of the three planetary gears 104 mesh with the internal gear 105 in a state where the tooth contact is strong.
FIG. 13 shows a state in which only one upper planetary gear 104 out of the three planetary gears 104 meshes with the internal gear 105 in a state where the tooth contact is strong.

図12では、下側の2個の遊星歯車104が内歯歯車105から受けている大きな力を分散させるように、大きな力が太陽歯車106を介して、小さな力を受けている上側の1個の遊星歯車104へと矢印の方向に伝わることが好ましい。
図13では、上側の1個の遊星歯車104が内歯歯車105から受けている大きな力を分散させるように、大きな力が太陽歯車106を介して、小さい力を受けている下側の2個の遊星歯車104へと矢印の方向に伝わることが好ましい。
In FIG. 12, the upper two planet gears 104 receive a small force via the sun gear 106 so that the large force received from the internal gear 105 is dispersed. It is preferable to travel to the planetary gear 104 in the direction of the arrow.
In FIG. 13, two lower forces receiving a small force via the sun gear 106 so that one large planetary gear 104 disperses a large force received from the internal gear 105. It is preferable to travel to the planetary gear 104 in the direction of the arrow.

しかし、各々の遊星歯車104はキャリア102の支持軸103(図1参照)によって位置が拘束されているので、一部の遊星歯車104に受けている大きな力を、その他の遊星歯車104に分散させるように遊星歯車104の位置を修正することは難しい。
このため、遊星歯車装置100の作動中は、常に歯あたりの強い遊星歯車104にかかる力が大きくなり、そのことが歯面108(後述する図14参照)の損傷や、遊星歯車104と支持軸103との間に介在されている軸受の損傷原因になる。
However, since the position of each planetary gear 104 is constrained by the support shaft 103 (see FIG. 1) of the carrier 102, a large force received by a part of the planetary gears 104 is distributed to the other planetary gears 104. Thus, it is difficult to correct the position of the planetary gear 104.
For this reason, during the operation of the planetary gear device 100, the force applied to the planetary gear 104 having a strong tooth contact always increases, which causes damage to the tooth surface 108 (see FIG. 14 described later), the planetary gear 104 and the support shaft. This is a cause of damage to the bearing interposed between them.

歯面108の損傷や、軸受の損傷原因を解消する遊星歯車装置100が提案されている(例えば特許文献1〜3参照)。
実開平5-45297号公報 実開平6-67949号公報 特開平8-170695号公報
There has been proposed a planetary gear device 100 that eliminates damage to the tooth surface 108 and causes of bearing damage (see, for example, Patent Documents 1 to 3).
Japanese Utility Model Publication No. 5-45297 Japanese Utility Model Publication No. 6-67949 Japanese Patent Laid-Open No. 8-170695

実開平5-45297号公報の技術は、遊星歯車の支持軸と軸受の間に僅かな隙間を形成し、その隙間に潤滑油による油膜を形成したものである。
これにより、遊星歯車のラジアル方向の動きを可能にして、各々の遊星歯車にかかる力を均等に分散する。
Japanese Utility Model Laid-Open No. 5-45297 discloses a technique in which a slight gap is formed between a support shaft of a planetary gear and a bearing, and an oil film made of lubricating oil is formed in the gap.
As a result, the planetary gears can move in the radial direction, and the force applied to each planetary gear is evenly distributed.

しかしながら、支持軸と軸受の間は僅かな隙間であり、油膜厚さは15〜20μmと小さい。
このため、産業機械に用いる大型の遊星歯車装置では、支持軸と軸受の嵌め合いを、僅かな隙間で管理することは難しい。
However, there is a slight gap between the support shaft and the bearing, and the oil film thickness is as small as 15 to 20 μm.
For this reason, in a large planetary gear device used for an industrial machine, it is difficult to manage the fit between the support shaft and the bearing with a slight gap.

さらに、大型の遊星歯車装置は、遊星歯車のバックラッシュが数百μmと大きく、支持軸と軸受の間に僅かな隙間を形成しても、大きなバックラッシュを吸収できず、各々の遊星歯車にかかる力を有効に分散することは難しい。   Furthermore, the large planetary gear device has a large planetary gear backlash of several hundred μm, and even if a slight gap is formed between the support shaft and the bearing, it cannot absorb a large backlash. It is difficult to disperse such force effectively.

また、実開平6-67949号公報の技術は、遊星歯車の内径に嵌合される軸受の外周部に弾性ブッシュを嵌合させたものである。
これにより、遊星歯車のラジアル方向の動きを可能にして、各々の遊星歯車にかかる力を均等に分散する。
Japanese Unexamined Utility Model Publication No. 6-67949 discloses a technique in which an elastic bush is fitted to the outer peripheral portion of a bearing fitted to the inner diameter of the planetary gear.
As a result, the planetary gears can move in the radial direction, and the force applied to each planetary gear is evenly distributed.

しかしながら、この技術は、支持軸に軸受を挿入し、さらに軸受に弾性ブッシュを挿入するので、遊星歯車の内径が大きくなる。このため、遊星歯車が薄肉となり、歯車変形を増長させる虞がある。
すなわち、図14の想像線で示す遊星歯車104の公転方向(矢印方向)に力がかかり、遊星歯車104が、実線で示すように変形することが考えられる。
遊星歯車104の変形に伴い、遊星歯車104の噛み合う歯面108は見かけ上、噛合い率が減少し、歯面108にかかる力が増大する。
このため、大きな動力を伝達する大型の遊星歯車装置100には不適である。
However, this technique inserts a bearing into the support shaft and further inserts an elastic bush into the bearing, so that the inner diameter of the planetary gear increases. For this reason, a planetary gear may become thin, and there exists a possibility of increasing a gear deformation.
That is, it is conceivable that a force is applied in the revolution direction (arrow direction) of the planetary gear 104 indicated by the imaginary line in FIG. 14, and the planetary gear 104 is deformed as indicated by the solid line.
As the planetary gear 104 is deformed, the meshing tooth surface 108 of the planetary gear 104 apparently decreases in meshing rate, and the force applied to the toothing surface 108 increases.
For this reason, it is unsuitable for the large planetary gear apparatus 100 which transmits a big motive power.

さらに、特開平8-170695号公報の技術は、支持軸の支持部を弾性構造にしたものである。これにより、遊星歯車の位置誤差を吸収し、遊星歯車のラジアル方向の動きを可能にして、各々の遊星歯車にかかる力を均等に分散する。   Further, the technique disclosed in Japanese Patent Laid-Open No. 817095/1990 discloses an elastic structure for the support portion of the support shaft. Thereby, the position error of the planetary gear is absorbed, the movement of the planetary gear in the radial direction is enabled, and the force applied to each planetary gear is evenly distributed.

しかしながら、この技術は、支持軸の支持部を弾性構造にするために、切欠孔やピンなどの複雑な構造のキャリアが必要である。
このため、キャリアの強度検討に時間がかかり、そのことが生産性を高める妨げになっている。
However, this technique requires a carrier having a complicated structure such as a notch hole or a pin in order to make the support portion of the support shaft an elastic structure.
For this reason, it takes time to examine the strength of the carrier, which hinders productivity.

本発明は、前述した問題点に鑑みてなされたものであり、その目的は、キャリアの構造を複雑にすることなく、遊星歯車の位置誤差を吸収することが可能で、コンパクトで簡便な遊星歯車用軸受を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to achieve a compact and simple planetary gear that can absorb a positional error of the planetary gear without complicating the structure of the carrier. It is to provide a bearing.

前述した目的を達成するために、本発明は、リング状の内歯歯車の中央に太陽歯車が設けられ、内歯歯車および太陽歯車間にキャリアを介して複数の遊星歯車が配置されるとともに、複数の遊星歯車が内歯歯車および太陽歯車に噛み合わされた遊星歯車において、前記キャリアに備えた支持軸と前記遊星歯車との間に介在された遊星歯車用軸受であって、前記支持軸に嵌合する内輪および遊星歯車に嵌合する外輪を備え、内・外輪の少なくとも一方を、ラジアル方向の剛性が低くなるように構成したことを特徴としている。   In order to achieve the above-described object, the present invention provides a sun gear at the center of a ring-shaped internal gear, and a plurality of planetary gears are arranged between the internal gear and the sun gear via a carrier, A planetary gear having a plurality of planetary gears meshed with an internal gear and a sun gear, a planetary gear bearing interposed between the support shaft provided in the carrier and the planetary gear, and fitted to the support shaft The inner ring and the outer ring fitted to the planetary gear are provided, and at least one of the inner and outer rings is configured to have low radial rigidity.

このように構成された遊星歯車用軸受においては、遊星歯車を遊星歯車用軸受で支え、この遊星歯車用軸受の内輪および外輪の少なくとも一方をラジアル方向の剛性が低くなるように構成した。
これにより、遊星歯車のラジアル方向の動きを可能にし、遊星歯車の位置誤差を吸収する。
In the planetary gear bearing configured as described above, the planetary gear is supported by the planetary gear bearing, and at least one of the inner ring and the outer ring of the planetary gear bearing is configured to have low radial rigidity.
As a result, the planetary gear can be moved in the radial direction, and the position error of the planetary gear is absorbed.

また、遊星歯車の位置誤差を吸収する部位を、遊星歯車用軸受自体に備えることで、従来技術のように遊星歯車用軸受と遊星歯車の内径との間に誤差を吸収するための隙間を、個別に設ける必要がない。
加えて、弾性構造によるダンピング効果により遊星歯車の噛合い時に発生する振動・騒音の低減に寄与できる。
Further, by providing the planetary gear bearing itself with a portion that absorbs the position error of the planetary gear, a gap for absorbing the error between the planetary gear bearing and the planetary gear inner diameter as in the prior art, There is no need to provide them separately.
In addition, the damping effect by the elastic structure can contribute to the reduction of vibration and noise generated when the planetary gear is engaged.

本発明は、前記内輪および外輪の少なくとも一方の肉厚が軸方向中央で薄くなるように、前記内輪の内周面、前記外輪の外周面に、円周方向の溝部を備えたことを特徴としている。   The present invention is characterized in that a circumferential groove is provided on the inner peripheral surface of the inner ring and the outer peripheral surface of the outer ring so that the thickness of at least one of the inner ring and the outer ring is reduced in the center in the axial direction. Yes.

内輪や外輪の肉厚を軸方向中央で薄くすることで、内輪や外輪を両端支持梁に構成する。両端支持梁とすることで、内輪や外輪の軸方向中央の弾性変形が容易になる。
これにより、遊星歯車のラジアル方向の動きを可能にし、遊星歯車の位置誤差を吸収する。
By reducing the thickness of the inner ring and the outer ring at the center in the axial direction, the inner ring and the outer ring are configured as both end support beams. By using both-end support beams, elastic deformation at the center in the axial direction of the inner ring and the outer ring is facilitated.
As a result, the planetary gear can be moved in the radial direction, and the position error of the planetary gear is absorbed.

また、内輪の内周面や外輪の外周面に溝部を形成して薄肉にするだけの簡素な構成なので、強度検討が短い時間でおこなわれる。強度検討を短い時間でおこなうことで、生産性を高めることが可能になる。
さらに、内輪の内周面や外輪の外周面に溝部を形成するだけの簡素な構成なので、遊星歯車用軸受のコンパクト化や、簡便化が図れる。
In addition, the strength is studied in a short time because it is a simple structure in which a groove is formed on the inner peripheral surface of the inner ring and the outer peripheral surface of the outer ring to make it thinner. Productivity can be increased by conducting a strength study in a short time.
Furthermore, since it is a simple structure which only forms a groove part in the inner peripheral surface of an inner ring | wheel or the outer peripheral surface of an outer ring | wheel, the compactness and simplification of the planetary gear bearing can be achieved.

本発明は、前記溝部に弾性体が設けられ、前記軸受が嵌合される前記支持軸の外周面、または軸受が嵌合される前記遊星歯車の内周面に、前記弾性体を当接させたことを特徴としている。   In the present invention, an elastic body is provided in the groove, and the elastic body is brought into contact with an outer peripheral surface of the support shaft to which the bearing is fitted or an inner peripheral surface of the planetary gear to which the bearing is fitted. It is characterized by that.

溝部内に弾性体を設けた。よって、支持軸の外周面と内輪との間や、遊星歯車の内周面と外輪との間に僅かな隙間を設けるだけで、弾性体を弾性変形させて内輪や外輪を容易に
ラジアル方向へ移動させることが可能になる。
これにより、遊星歯車のラジアル方向の動きを可能にし、遊星歯車の位置誤差を吸収する。
支持軸の外周面を僅かに小さくすることや、遊星歯車の内周面を僅かに大きくするだけで、遊星歯車の位置誤差を吸収することが可能になる。
これにより、遊星歯車用軸受のコンパクト化や、簡便化が図れる。
An elastic body was provided in the groove. Therefore, it is possible to easily deform the inner ring and the outer ring in the radial direction by elastically deforming the elastic body only by providing a slight gap between the outer peripheral surface of the support shaft and the inner ring or between the inner peripheral surface of the planetary gear and the outer ring. It can be moved.
As a result, the planetary gear can be moved in the radial direction, and the position error of the planetary gear is absorbed.
It is possible to absorb the position error of the planetary gear by simply making the outer peripheral surface of the support shaft slightly smaller and the inner peripheral surface of the planetary gear slightly larger.
Thereby, the compactness and simplification of the planetary gear bearing can be achieved.

本発明によれば、遊星歯車の位置誤差を吸収する部位を軸受自体に備えることで、遊星歯車の内径を小さく抑え、遊星歯車の薄肉化を防ぎ、長寿命化を図ることができるという効果が得られる。
さらに、遊星歯車の位置誤差を吸収する部位を軸受自体に備えることで、従来の遊星歯車装置に、本発明を適用する場合に、遊星歯車用軸受のみを交換するだけで済む。これにより、周辺部材の設計変更や追加加工が不要になり、従来の遊星歯車装置に本発明を費用をかけないで簡単に適用できる。
According to the present invention, by providing the bearing itself with a portion that absorbs the positional error of the planetary gear, the inner diameter of the planetary gear can be suppressed, the thinning of the planetary gear can be prevented, and the life can be extended. can get.
Furthermore, by providing the bearing itself with a portion that absorbs the positional error of the planetary gear, when the present invention is applied to a conventional planetary gear device, only the planetary gear bearing needs to be replaced. This eliminates the need for design changes and additional processing of the peripheral members, and allows the present invention to be easily applied to conventional planetary gear devices without cost.

以下、本発明に係る実施形態を図面に基づいて詳細に説明する。図1(A)は本発明に係る遊星歯車用軸受を備えた遊星歯車装置の概略図、図(B)は遊星歯車装置の正面図、図2〜図9は本発明に係る遊星歯車用軸受の第1〜第8実施形態を示す断面図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. 1A is a schematic diagram of a planetary gear device provided with a planetary gear bearing according to the present invention, FIG. 1B is a front view of the planetary gear device, and FIGS. 2 to 9 are planetary gear bearings according to the present invention. It is sectional drawing which shows 1st-8th embodiment of this.

図1(A),(B)に示すように、遊星歯車装置10は、リング状の内歯歯車11と、その中心に設けた太陽歯車12と、内歯歯車11および太陽歯車12との間にキャリア13を介して設けられた複数(一例として3個)の遊星歯車15とを備える。
遊星歯車15は、キャリア13に設けられた支持軸16に遊星歯車用軸受20を介して回転自在に嵌合されている。
As shown in FIGS. 1A and 1B, the planetary gear device 10 includes a ring-shaped internal gear 11, a sun gear 12 provided at the center thereof, and the internal gear 11 and the sun gear 12. And a plurality of (three as an example) planetary gears 15 provided via a carrier 13.
The planetary gear 15 is rotatably fitted to a support shaft 16 provided on the carrier 13 via a planetary gear bearing 20.

遊星歯車装置10によれば、入力軸21からキャリア13に矢印A方向の動力が伝えられ、キャリア13に伝えられた動力が支持軸16を介して遊星歯車15に伝えられる。
遊星歯車15に動力が伝えられることにより、遊星歯車15が、固定された内歯歯車11と噛み合いながら矢印B方向に公転するとともに、矢印C方向に自転し、太陽歯車12に動力を伝達する。これにより、太陽歯車12から出力軸22に矢印D方向に動力を伝える。
According to the planetary gear device 10, the power in the direction of arrow A is transmitted from the input shaft 21 to the carrier 13, and the power transmitted to the carrier 13 is transmitted to the planetary gear 15 via the support shaft 16.
By transmitting power to the planetary gear 15, the planetary gear 15 revolves in the direction of arrow B while meshing with the fixed internal gear 11, rotates in the direction of arrow C, and transmits power to the sun gear 12. Thus, power is transmitted from the sun gear 12 to the output shaft 22 in the direction of arrow D.

ここで、遊星歯車装置10で大きな動力を伝達することを考慮して、図1(A)に示すように支持軸16を両端16A,16Bで支持するようにキャリア13が形成されている。
キャリア13で支持軸16の両端16A,16Bを支持することで、支持軸16に作用する公転方向の力で支持軸16が傾くことを防ぐ。
Here, considering that large power is transmitted by the planetary gear device 10, the carrier 13 is formed so as to support the support shaft 16 at both ends 16A and 16B as shown in FIG.
By supporting the ends 16A and 16B of the support shaft 16 with the carrier 13, the support shaft 16 is prevented from being tilted by the force in the revolution direction acting on the support shaft 16.

図2に示す第1実施形態の遊星歯車用軸受20は、内輪25と外輪26との間に保持器27を介して転動体28を配置したもので、内輪25の内周面29に、湾曲状の溝部29Aが円周方向に形成されている。
内輪25の軸方向中央部25Aの肉厚T1が薄くなり、内輪25を両端支持梁に構成する。内輪25を両端支持梁とすることで、内輪25の軸方向中央部25Aの弾性変形が容易になる。
A planetary gear bearing 20 according to the first embodiment shown in FIG. 2 has a rolling element 28 disposed between an inner ring 25 and an outer ring 26 via a cage 27, and is curved on an inner peripheral surface 29 of the inner ring 25. A groove portion 29A is formed in the circumferential direction.
The wall thickness T1 of the axial center portion 25A of the inner ring 25 is reduced, and the inner ring 25 is configured as a both-end support beam. By using the inner ring 25 as a support beam at both ends, the elastic deformation of the axial central portion 25A of the inner ring 25 is facilitated.

すなわち、内輪25のラジアル方向(支持軸16の半径方向)の剛性が低くなる。
剛性が低くなることで、内輪25のラジアル方向への弾性変形が可能になる。これにより、図1に示す遊星歯車15のラジアル方向の動きを可能にして、遊星歯車15の位置誤差を吸収する。
That is, the rigidity of the inner ring 25 in the radial direction (the radial direction of the support shaft 16) is reduced.
By reducing the rigidity, the inner ring 25 can be elastically deformed in the radial direction. Thereby, the planetary gear 15 shown in FIG. 1 can move in the radial direction, and the position error of the planetary gear 15 is absorbed.

よって、例えば、図1(B)に示す3個の遊星歯車15のうち、下側の2個の遊星歯車15が内歯歯車11から大きな力を受けた場合、この大きな力を、小さな力を受けている上側の1個の遊星歯車15に伝えて、3個の遊星歯車15に均等に分散させる。
したがって、3個の遊星歯車15の全てを、内歯歯車11に均等に噛み合わせることが可能になる。
Therefore, for example, when the lower two planetary gears 15 among the three planetary gears 15 shown in FIG. 1B receive a large force from the internal gear 11, this large force is reduced to a small force. This is transmitted to the upper planetary gear 15 that is being received and is evenly distributed to the three planetary gears 15.
Therefore, all the three planetary gears 15 can be meshed with the internal gear 11 evenly.

また、図2に示すように内輪25の内周面29に湾曲状の溝部29Aを形成することで、遊星歯車15の位置誤差を吸収する部位を、遊星歯車用軸受20自体に備えることが可能になる。
よって、遊星歯車15の内径が小さく抑えられ、遊星歯車15の薄肉化を防ぎ、長寿命化を図ることができる。
Also, as shown in FIG. 2, by forming a curved groove 29A on the inner peripheral surface 29 of the inner ring 25, it is possible to provide the planetary gear bearing 20 itself with a portion that absorbs the positional error of the planetary gear 15. become.
Therefore, the inner diameter of the planetary gear 15 can be kept small, the planetary gear 15 can be prevented from being thinned, and the life can be extended.

なお、溝部29Aの深さや、幅を調整することで、単位当たりの弾性変形量、すなわちラジアル剛性が調整可能になり、使用条件に合わせて適切な剛性が得られる。
加えて、弾性構造によるダンピング効果により遊星歯車15の噛合い時に発生する振動・騒音の低減に寄与できる。
In addition, by adjusting the depth and width of the groove 29A, the amount of elastic deformation per unit, that is, radial rigidity can be adjusted, and appropriate rigidity can be obtained according to use conditions.
In addition, the damping effect by the elastic structure can contribute to the reduction of vibration and noise generated when the planetary gear 15 is engaged.

以下、図3〜図9に基づいて第2〜第8実施形態の遊星歯車用軸受について説明する。なお、第2〜第8実施形態の遊星歯車用軸受において、第1実施形態と同一部材については同一符号を付して説明を省略する。   Hereinafter, the planetary gear bearings of the second to eighth embodiments will be described with reference to FIGS. In the planetary gear bearings of the second to eighth embodiments, the same members as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図3に示す第2実施形態の遊星歯車用軸受30は、内輪31と外輪26との間に保持器27を介して転動体28を配置したもので、内輪31の内周面32に、溝部32Aが円周方向に形成され、内輪断面形状は略コ字状とされている。
内輪31の軸方向中央部31A、具体的には、軸方向中央部31Aの範囲Hの肉厚T2が薄くなり、内輪31を両端支持梁に構成する。内輪31を両端支持梁とすることで、第1実施形態と同様に、内輪31のラジアル方向の剛性が低くなる。
A planetary gear bearing 30 according to the second embodiment shown in FIG. 3 has a rolling element 28 disposed between an inner ring 31 and an outer ring 26 via a cage 27, and a groove portion is formed on an inner peripheral surface 32 of the inner ring 31. 32A is formed in the circumferential direction, and the inner ring cross-sectional shape is substantially U-shaped.
The axial center portion 31A of the inner ring 31, specifically, the thickness T2 in the range H of the axial center portion 31A is reduced, and the inner ring 31 is configured as a support beam at both ends. By using the inner ring 31 as both-end support beams, the rigidity of the inner ring 31 in the radial direction is reduced as in the first embodiment.

剛性が低くなることで、内輪31のラジアル方向への弾性変形が可能になる。これにより、図1に示す遊星歯車15のラジアル方向の動きを可能にして、遊星歯車15の位置誤差を吸収する。
したがって、第2実施形態の遊星歯車用軸受30によれば、第1実施形態と同様の効果が得られる。
By reducing the rigidity, the inner ring 31 can be elastically deformed in the radial direction. Thereby, the planetary gear 15 shown in FIG. 1 can move in the radial direction, and the position error of the planetary gear 15 is absorbed.
Therefore, according to the planetary gear bearing 30 of the second embodiment, the same effect as that of the first embodiment can be obtained.

図4に示す第3実施形態の遊星歯車用軸受35は、内輪36と外輪26との間に保持器27を介して転動体28を配置したもので、内輪36の内周面37に、溝部37Aが円周方向に形成されて内輪断面形状は略コ字状とされ、更に溝部37Aには複数の細溝部38が円周方向に一定間隔をおいて形成されている。   A planetary gear bearing 35 according to the third embodiment shown in FIG. 4 includes a rolling element 28 disposed between an inner ring 36 and an outer ring 26 via a retainer 27. A groove portion is formed on an inner peripheral surface 37 of the inner ring 36. 37A is formed in the circumferential direction, the inner ring cross-sectional shape is substantially U-shaped, and a plurality of narrow groove portions 38 are formed in the groove portion 37A at regular intervals in the circumferential direction.

これにより、溝部37Aのうち、細溝部38の肉厚T3が特に薄くなり、内輪36のラジアル方向の剛性が低くなる。
溝部37Aに複数本の細溝部39を設けることで、単位当たりの弾性変形量、すなわちラジアル剛性が調整可能になり、使用条件に合わせて適切な剛性が得られる。
Thereby, the thickness T3 of the narrow groove portion 38 in the groove portion 37A is particularly thin, and the radial rigidity of the inner ring 36 is reduced.
By providing a plurality of narrow grooves 39 in the groove 37A, the amount of elastic deformation per unit, that is, radial rigidity can be adjusted, and appropriate rigidity can be obtained according to the use conditions.

剛性が低くなることで、第1実施形態と同様に、輪36のラジアル方向への弾性変形が可能になる。これにより、図1に示す遊星歯車15のラジアル方向の動きを可能にし、遊星歯車15の位置誤差を吸収する。
したがって、第3実施形態の遊星歯車用軸受35によれば、第1実施形態と同様の効果が得られる。
By reducing the rigidity, the ring 36 can be elastically deformed in the radial direction as in the first embodiment. Accordingly, the planetary gear 15 shown in FIG. 1 can move in the radial direction, and the position error of the planetary gear 15 is absorbed.
Therefore, according to the planetary gear bearing 35 of the third embodiment, the same effect as that of the first embodiment can be obtained.

図5に示す第4実施形態の遊星歯車用軸受40は、内輪44と外輪41との間に保持器27を介して転動体28を配置したもので、外輪41の外周面42に、湾曲状の溝部42Aが円周方向に形成されている。
外輪41の軸方向中央部41Aの肉厚T4が薄くなり、外輪41を両端支持梁に構成する。外輪41を両端支持梁とすることで、外輪41の軸方向中央部41Aの弾性変形が容易になる。
The planetary gear bearing 40 of the fourth embodiment shown in FIG. 5 has a rolling element 28 disposed between an inner ring 44 and an outer ring 41 via a cage 27, and is curved on the outer peripheral surface 42 of the outer ring 41. The groove portion 42A is formed in the circumferential direction.
The wall thickness T4 of the central portion 41A in the axial direction of the outer ring 41 is reduced, and the outer ring 41 is configured as a both-end support beam. By using the outer ring 41 as a support beam at both ends, the elastic deformation of the central portion 41A in the axial direction of the outer ring 41 is facilitated.

すなわち、外輪41のラジアル方向の剛性が低くなる。剛性が低くなることで、外輪41のラジアル方向への弾性変形が可能になる。
これにより、図1に示す遊星歯車15のラジアル方向の動きを可能にし、遊星歯車15の位置誤差を吸収する。
That is, the radial rigidity of the outer ring 41 is reduced. By reducing the rigidity, the outer ring 41 can be elastically deformed in the radial direction.
Accordingly, the planetary gear 15 shown in FIG. 1 can move in the radial direction, and the position error of the planetary gear 15 is absorbed.

図6に示す第5実施形態の遊星歯車用軸受45は、内輪46と外輪26との間に保持器27を介して転動体28を配置したもので、内輪46の内周面47に、溝部47Aが円周方向に形成され、円周方向の溝部47A内にばね材(弾性体)48が設けられている。   A planetary gear bearing 45 according to the fifth embodiment shown in FIG. 6 has a rolling element 28 disposed between an inner ring 46 and an outer ring 26 via a cage 27, and a groove portion is formed on an inner peripheral surface 47 of the inner ring 46. 47A is formed in the circumferential direction, and a spring material (elastic body) 48 is provided in the groove portion 47A in the circumferential direction.

このばね材48は、遊星歯車用軸受45が嵌合される支持軸16(図1も参照)の外周面16Cに当接される。
ここで、支持軸16の外周面16Cと、内輪46の内周面47との間に僅かな隙間が設けられている。
The spring material 48 is brought into contact with the outer peripheral surface 16C of the support shaft 16 (see also FIG. 1) to which the planetary gear bearing 45 is fitted.
Here, a slight gap is provided between the outer peripheral surface 16 </ b> C of the support shaft 16 and the inner peripheral surface 47 of the inner ring 46.

内輪46の溝部47Aの肉厚T5が薄くなり、内輪46のラジアル方向の剛性が低くなる。
加えて、溝部47A内にばね材(弾性体)48を設けたので、ばね材(弾性体)48のばね力で内輪46と支持軸16との間に隙間を略均等に確保できる。
内輪46の弾性変形と、ばね材(弾性体)48の弾性変形による2種の弾性変形が可能になるので、ラジアル方向への移動量を大きく確保できる。
The thickness T5 of the groove 47A of the inner ring 46 is reduced, and the radial rigidity of the inner ring 46 is reduced.
In addition, since the spring material (elastic body) 48 is provided in the groove 47 </ b> A, the gap between the inner ring 46 and the support shaft 16 can be substantially evenly secured by the spring force of the spring material (elastic body) 48.
Since two types of elastic deformation are possible by elastic deformation of the inner ring 46 and elastic deformation of the spring material (elastic body) 48, a large amount of movement in the radial direction can be secured.

これにより、図1に示す遊星歯車15の位置誤差をより一層確実に吸収し、遊星歯車15のラジアル方向の動きを可能にする。   Thereby, the positional error of the planetary gear 15 shown in FIG. 1 is more reliably absorbed, and the planetary gear 15 can be moved in the radial direction.

図7に示す第6実施形態の遊星歯車用軸受50は、内輪51と外輪26との間に保持器27を介して転動体28を配置したもので、内輪51の内周面52に略コ字状に円周方向の溝部52Aが形成され、円周方向の溝部52A内にゴム材や合成樹脂材(弾性体)53が設けられている。   A planetary gear bearing 50 according to the sixth embodiment shown in FIG. 7 has a rolling element 28 disposed between an inner ring 51 and an outer ring 26 via a retainer 27, and is substantially connected to an inner peripheral surface 52 of the inner ring 51. A circumferential groove 52A is formed in a letter shape, and a rubber material or a synthetic resin material (elastic body) 53 is provided in the circumferential groove 52A.

このゴム材や合成樹脂材53は、遊星歯車用軸受50が嵌合される支持軸16(図1も参照)の外周面16Cに当接される。
ここで、支持軸16の外周面16Cと、内輪51の内周面52との間に僅かな隙間が設けられている。
The rubber material or the synthetic resin material 53 is brought into contact with the outer peripheral surface 16C of the support shaft 16 (see also FIG. 1) to which the planetary gear bearing 50 is fitted.
Here, a slight gap is provided between the outer peripheral surface 16 </ b> C of the support shaft 16 and the inner peripheral surface 52 of the inner ring 51.

内輪51の溝部52Aの肉厚T6が薄くなり、内輪51のラジアル方向の剛性が低くなる。
加えて、溝部52A内にゴム材や合成樹脂材(弾性体)53を設けたので、ゴム材や合成樹脂材(弾性体)53のばね力で内輪51と支持軸16との間に隙間を略均等に確保できる。
The thickness T6 of the groove 52A of the inner ring 51 is reduced, and the radial rigidity of the inner ring 51 is reduced.
In addition, since the rubber material or synthetic resin material (elastic body) 53 is provided in the groove 52A, a gap is formed between the inner ring 51 and the support shaft 16 by the spring force of the rubber material or synthetic resin material (elastic body) 53. It can be secured almost evenly.

よって、内輪51の弾性変形と、ゴム材や合成樹脂材(弾性体)53の弾性変形による2種の弾性変形が可能になるので、ラジアル方向への移動量を大きく確保できる。
これにより、図1に示す遊星歯車15の位置誤差をより一層確実に吸収し、遊星歯車15のラジアル方向の動きを可能にする。
したがって、第6実施形態の遊星歯車用軸受50によれば、第5実施形態と同様の効果を得ることができる。
Therefore, two types of elastic deformation are possible by elastic deformation of the inner ring 51 and elastic deformation of the rubber material or the synthetic resin material (elastic body) 53, so that a large amount of movement in the radial direction can be secured.
Thereby, the positional error of the planetary gear 15 shown in FIG. 1 is more reliably absorbed, and the planetary gear 15 can be moved in the radial direction.
Therefore, according to the planetary gear bearing 50 of the sixth embodiment, the same effect as that of the fifth embodiment can be obtained.

図8に示す第7実施形態の遊星歯車用軸受55は、内輪56と外輪26との間に保持器27を介して転動体28を配置したもので、内輪56の内周面57に一対の円周方向の溝部57Aが所定間隔をおいて形成され、一対の溝部57A内にゴム材や合成樹脂材(弾性体)58が設けられている。   A planetary gear bearing 55 according to the seventh embodiment shown in FIG. 8 has a rolling element 28 disposed between an inner ring 56 and an outer ring 26 via a retainer 27. Circumferential grooves 57A are formed at predetermined intervals, and a rubber material or a synthetic resin material (elastic body) 58 is provided in the pair of grooves 57A.

このゴム材や合成樹脂材58は、遊星歯車用軸受55が嵌合される支持軸16(図1も参照)の外周面16Cに当接される。
ここで、支持軸16の外周面16Cと、内輪56の内周面57との間に僅かな隙間が設けられている。
The rubber material or the synthetic resin material 58 is brought into contact with the outer peripheral surface 16C of the support shaft 16 (see also FIG. 1) to which the planetary gear bearing 55 is fitted.
Here, a slight gap is provided between the outer peripheral surface 16 </ b> C of the support shaft 16 and the inner peripheral surface 57 of the inner ring 56.

支持軸16と内輪56との間の隙間に、ゴム材や合成樹脂材58を設けることで、ゴム材や合成樹脂材58を弾性変形させて、内輪56をラジアル方向に移動することが可能になる。
これにより、図1に示す遊星歯車15のラジアル方向の動きを可能にし、遊星歯車15の位置誤差を吸収する。
よって、第7実施形態の遊星歯車用軸受55よれば、第5実施形態と同様の効果を得ることができる。
By providing a rubber material or a synthetic resin material 58 in the gap between the support shaft 16 and the inner ring 56, the rubber material or the synthetic resin material 58 can be elastically deformed to move the inner ring 56 in the radial direction. Become.
Accordingly, the planetary gear 15 shown in FIG. 1 can move in the radial direction, and the position error of the planetary gear 15 is absorbed.
Therefore, according to the planetary gear bearing 55 of the seventh embodiment, the same effect as that of the fifth embodiment can be obtained.

図9に示す第8実施形態の遊星歯車用軸受60は、内輪44と外輪62との間に保持器27を介して転動体28を配置したもので、外輪62の外周面63に円周方向の溝部63Aが形成され、円周方向の溝部63A内にゴム材や合成樹脂材(弾性体)64が設けられている。   The planetary gear bearing 60 according to the eighth embodiment shown in FIG. 9 has a rolling element 28 disposed between an inner ring 44 and an outer ring 62 via a cage 27, and is arranged on the outer circumferential surface 63 of the outer ring 62 in the circumferential direction. 63A is formed, and a rubber material or a synthetic resin material (elastic body) 64 is provided in the circumferential groove 63A.

このゴム材や合成樹脂材64は、遊星歯車用軸受60が嵌合される遊星歯車15(図1も参照)の内周面15Aに当接される。
ここで、遊星歯車15の内周面15Aと、外輪62の外周面63との間に僅かな隙間が設けられている。
The rubber material or the synthetic resin material 64 is brought into contact with the inner peripheral surface 15A of the planetary gear 15 (see also FIG. 1) to which the planetary gear bearing 60 is fitted.
Here, a slight gap is provided between the inner peripheral surface 15 </ b> A of the planetary gear 15 and the outer peripheral surface 63 of the outer ring 62.

外輪62の溝部63Aの肉厚T8が薄くなり、外輪62のラジアル方向の剛性が低くなる。
加えて、溝部63A内にゴム材や合成樹脂材(弾性体)64を設けたので、ゴム材や合成樹脂材(弾性体)64のばね力で外輪62と遊星歯車15との間に隙間を略均等に確保できる。
The thickness T8 of the groove 63A of the outer ring 62 is reduced, and the radial rigidity of the outer ring 62 is reduced.
In addition, since a rubber material or synthetic resin material (elastic body) 64 is provided in the groove 63A, a gap is formed between the outer ring 62 and the planetary gear 15 by the spring force of the rubber material or synthetic resin material (elastic body) 64. It can be secured almost evenly.

よって、外輪62の弾性変形と、ゴム材や合成樹脂材(弾性体)64の弾性変形による2種の弾性変形が可能になるので、ラジアル方向への移動量を大きく確保できる。
これにより、図1に示す遊星歯車15のラジアル方向の動きを可能にし、遊星歯車15の位置誤差をより一層確実に吸収する。
Therefore, since two types of elastic deformation are possible by elastic deformation of the outer ring 62 and elastic deformation of the rubber material or synthetic resin material (elastic body) 64, a large amount of movement in the radial direction can be ensured.
Accordingly, the planetary gear 15 shown in FIG. 1 can move in the radial direction, and the position error of the planetary gear 15 is more reliably absorbed.

なお、前記実施形態では、遊星歯車15の個数を3個とした例について説明したが、遊星歯車15の個数はこれに限定するものではない。
また、前記実施形態では、弾性体としてばね材48,ゴム材や合成樹脂材53,58,64を例示したが、これに限らないで、その他の弾性体を用いることも可能である。
In the above-described embodiment, an example in which the number of planetary gears 15 is three has been described. However, the number of planetary gears 15 is not limited to this.
Moreover, in the said embodiment, although the spring material 48, the rubber material, and the synthetic resin materials 53, 58, and 64 were illustrated as an elastic body, it is not restricted to this, It is also possible to use another elastic body.

さらに、前記実施形態では、遊星歯車装置10の入力軸21から動力を入力し、動力を出力軸22から出力することで増速機として使用する例について説明したが、これに限らないで、出力軸22から動力を入力し、動力を入力軸21から出力することで遊星歯車装置10を減速機として使用することも可能である。   Further, in the above-described embodiment, the example in which power is input from the input shaft 21 of the planetary gear device 10 and the power is output from the output shaft 22 has been described, but the present invention is not limited to this. It is also possible to use the planetary gear unit 10 as a speed reducer by inputting power from the shaft 22 and outputting power from the input shaft 21.

さらに、前記実施形態では、遊星歯車用軸受の内輪、または外輪の一方をラジアル方向の剛性が低くなるように構成する内容を例示したが、これに限らないで、内輪および外輪の両方をラジアル方向の剛性が低くなるように構成することも可能である。   Furthermore, in the above-described embodiment, the content of the inner ring or the outer ring of the planetary gear bearing being configured so that the rigidity in the radial direction is low is illustrated, but the present invention is not limited thereto, and both the inner ring and the outer ring are in the radial direction. It is also possible to configure so as to reduce the rigidity.

その他、前述した実施形態において例示した内歯歯車,太陽歯車,キャリア,遊星歯車,支持軸,遊星歯車用軸受,内輪,外輪,内輪の内周面,溝部,外輪の外周面,ばね材,ゴム材や合成樹脂材等の材質,形状,寸法,形態,数,配置個所等は本発明を達成できるものであれば任意であり、限定されない。   In addition, the internal gear, the sun gear, the carrier, the planetary gear, the support shaft, the planetary gear bearing, the inner ring, the outer ring, the inner peripheral surface of the inner ring, the groove, the outer peripheral surface of the outer ring, the spring material, and the rubber exemplified in the above-described embodiments. The material, shape, size, form, number, location, etc. of the material and synthetic resin material are arbitrary and are not limited as long as the present invention can be achieved.

図1(A)は本発明に係る遊星歯車用軸受を備えた遊星歯車装置の概略図、図(B)は遊星歯車装置の正面図である。FIG. 1A is a schematic view of a planetary gear device provided with a planetary gear bearing according to the present invention, and FIG. 1B is a front view of the planetary gear device. 本発明に係る遊星歯車用軸受の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the planetary gear bearing which concerns on this invention. 本発明に係る遊星歯車用軸受の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the planetary gear bearing which concerns on this invention. 本発明に係る遊星歯車用軸受の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the planetary gear bearing which concerns on this invention. 本発明に係る遊星歯車用軸受の第4実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the planetary gear bearing which concerns on this invention. 本発明に係る遊星歯車用軸受の第5実施形態を示す断面図である。It is sectional drawing which shows 5th Embodiment of the planetary gear bearing which concerns on this invention. 本発明に係る遊星歯車用軸受の第6実施形態を示す断面図である。It is sectional drawing which shows 6th Embodiment of the planetary gear bearing which concerns on this invention. 本発明に係る遊星歯車用軸受の第7実施形態を示す断面図である。It is sectional drawing which shows 7th Embodiment of the planetary gear bearing which concerns on this invention. 本発明に係る遊星歯車用軸受の第8実施形態を示す断面図である。It is sectional drawing which shows 8th Embodiment of the planetary gear bearing which concerns on this invention. 従来の遊星歯車装置を示す概略図である。It is the schematic which shows the conventional planetary gear apparatus. 従来の遊星歯車装置を示す正面図である。It is a front view which shows the conventional planetary gear apparatus. 従来の遊星歯車装置の作用を示す正面図である。It is a front view which shows the effect | action of the conventional planetary gear apparatus. 従来の遊星歯車装置のもう一つの作用を示す正面図である。It is a front view which shows another effect | action of the conventional planetary gear apparatus. 従来の遊星歯車装置の作用を示す要部拡大図である。It is a principal part enlarged view which shows the effect | action of the conventional planetary gear apparatus.

符号の説明Explanation of symbols

10 遊星歯車用軸受
11 内歯歯車
12 太陽歯車
13 キャリア
15 遊星歯車
15A 遊星歯車の内周面
16 支持軸
16C 支持軸の外周面
20,30,35,40,45,50,55,60 遊星歯車用軸受
25,31,36,44,46,51,56 内輪
26,28,41,62 外輪
29,32,37,47,52,57 内輪の内周面
29A,32A,37A,3842A,47A,52A,57A,63A 溝部
42,63 外輪の外周面
48 ばね材(弾性体)
53,58,64 ゴム材や合成樹脂材(弾性体)
DESCRIPTION OF SYMBOLS 10 Bearing for planetary gears 11 Internal gear 12 Sun gear 13 Carrier 15 Planetary gear 15A Planetary gear 15A Inner peripheral surface 16 Support shaft 16C Outer peripheral surface of support shaft 20, 30, 35, 40, 45, 50, 55, 60 Planetary gear Bearings 25, 31, 36, 44, 46, 51, 56 Inner rings 26, 28, 41, 62 Outer rings 29, 32, 37, 47, 52, 57 Inner ring inner peripheral surfaces 29A, 32A, 37A, 3842A, 47A, 52A, 57A, 63A Groove 42, 63 Outer ring outer peripheral surface 48 Spring material (elastic body)
53, 58, 64 Rubber material or synthetic resin material (elastic body)

Claims (3)

リング状の内歯歯車の中央に太陽歯車が設けられ、内歯歯車および太陽歯車間にキャリアを介して複数の遊星歯車が配置されるとともに、複数の遊星歯車が内歯歯車および太陽歯車に噛み合わされた遊星歯車において、前記キャリアに備えた支持軸と、前記遊星歯車との間に介在された遊星歯車用軸受であって、
前記支持軸に嵌合する内輪および遊星歯車に嵌合する外輪を備え、内・外輪の少なくとも一方を、ラジアル方向の剛性が低くなるように構成したことを特徴とする遊星歯車用軸受。
A sun gear is provided in the center of the ring-shaped internal gear, and a plurality of planetary gears are arranged via a carrier between the internal gear and the sun gear, and the plurality of planetary gears mesh with the internal gear and the sun gear. In the planetary gear, the planetary gear bearing interposed between the support shaft provided in the carrier and the planetary gear,
A planetary gear bearing comprising an inner ring fitted to the support shaft and an outer ring fitted to the planetary gear, wherein at least one of the inner and outer rings is configured to have low radial rigidity.
前記内輪および外輪の少なくとも一方の肉厚が軸方向中央で薄くなるように、前記内輪の内周面、前記外輪の外周面に、円周方向の溝部を備えたことを特徴とする請求項1記載の遊星歯車用軸受。   2. A circumferential groove portion is provided on an inner peripheral surface of the inner ring and an outer peripheral surface of the outer ring so that a thickness of at least one of the inner ring and the outer ring becomes thin at an axial center. The planetary gear bearing described. 前記溝部に弾性体が設けられ、前記遊星歯車用軸受が嵌合される前記支持軸の外周面、または遊星歯車用軸受が嵌合される前記遊星歯車の内周面に、前記弾性体を当接させたことを特徴とする請求項2記載の遊星歯車用軸受。   An elastic body is provided in the groove, and the elastic body is applied to the outer peripheral surface of the support shaft to which the planetary gear bearing is fitted or the inner peripheral surface of the planetary gear to which the planetary gear bearing is fitted. The planetary gear bearing according to claim 2, wherein the planetary gear bearing is in contact with the planetary gear.
JP2003424886A 2003-12-22 2003-12-22 Bearing for planetary gear Pending JP2005180636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424886A JP2005180636A (en) 2003-12-22 2003-12-22 Bearing for planetary gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424886A JP2005180636A (en) 2003-12-22 2003-12-22 Bearing for planetary gear

Publications (1)

Publication Number Publication Date
JP2005180636A true JP2005180636A (en) 2005-07-07

Family

ID=34784947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424886A Pending JP2005180636A (en) 2003-12-22 2003-12-22 Bearing for planetary gear

Country Status (1)

Country Link
JP (1) JP2005180636A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170615A (en) * 2005-12-26 2007-07-05 Nsk Ltd Rolling bearing
DE102006019982A1 (en) * 2006-04-29 2007-10-31 Schaeffler Kg Ball and roller bearing rotary connection for supporting e.g. crane, has single flexible ball race formed in longitudinal section to provide elastic deformation such that roller bearing is prestressed in circumferential area
WO2010062519A1 (en) * 2008-10-27 2010-06-03 The Timken Company Noise isolating rolling element bearing for a crankshaft
JP2011115759A (en) * 2009-12-07 2011-06-16 Fukae Kasei Kk Pipette device
JP2012122513A (en) * 2010-12-07 2012-06-28 Ntn Corp Needle roller bearing with retainer
EP2559916A1 (en) * 2011-08-16 2013-02-20 General Electric Company Planetary gear system
WO2013038495A1 (en) * 2011-09-13 2013-03-21 住友重機械工業株式会社 Step-up gear for wind-powered electricity generation
JP2014034389A (en) * 2012-08-08 2014-02-24 Mando Corp Operation device used for steering system of vehicle
JP2016205521A (en) * 2015-04-23 2016-12-08 水野 博 Backlash-less planetary gear device
JP2017133690A (en) * 2016-01-28 2017-08-03 ゼネラル・エレクトリック・カンパニイ Gearbox planet attenuation spring damper
CN107013675A (en) * 2016-01-28 2017-08-04 通用电气公司 Gearbox planetary squeeze-film damping device
CN107939833A (en) * 2017-01-10 2018-04-20 株式会社捷太格特 Wave gear device ball bearing
CN108953579A (en) * 2017-05-19 2018-12-07 伦克股份有限公司 Particularly for the transmission device of wind-driven generator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170615A (en) * 2005-12-26 2007-07-05 Nsk Ltd Rolling bearing
DE102006019982A1 (en) * 2006-04-29 2007-10-31 Schaeffler Kg Ball and roller bearing rotary connection for supporting e.g. crane, has single flexible ball race formed in longitudinal section to provide elastic deformation such that roller bearing is prestressed in circumferential area
WO2010062519A1 (en) * 2008-10-27 2010-06-03 The Timken Company Noise isolating rolling element bearing for a crankshaft
JP2011515639A (en) * 2008-10-27 2011-05-19 コーヨー ベアリングス ユーエスエイ、エルエルシー Noise-blocking rolling element bearing for crankshaft
US8646343B2 (en) 2009-12-07 2014-02-11 Fukae Kasei Co., Ltd. Pipette device
JP2011115759A (en) * 2009-12-07 2011-06-16 Fukae Kasei Kk Pipette device
JP2012122513A (en) * 2010-12-07 2012-06-28 Ntn Corp Needle roller bearing with retainer
EP2559916A1 (en) * 2011-08-16 2013-02-20 General Electric Company Planetary gear system
CN102954155A (en) * 2011-08-16 2013-03-06 通用电气公司 Planetary gear system
WO2013038495A1 (en) * 2011-09-13 2013-03-21 住友重機械工業株式会社 Step-up gear for wind-powered electricity generation
JP2014034389A (en) * 2012-08-08 2014-02-24 Mando Corp Operation device used for steering system of vehicle
US9114823B2 (en) 2012-08-08 2015-08-25 Mando Corporation Actuating device employed in steering system for vehicle
JP2016205521A (en) * 2015-04-23 2016-12-08 水野 博 Backlash-less planetary gear device
JP2017133690A (en) * 2016-01-28 2017-08-03 ゼネラル・エレクトリック・カンパニイ Gearbox planet attenuation spring damper
CN107013676A (en) * 2016-01-28 2017-08-04 通用电气公司 Gearbox planetary decay spring-damper
CN107013675A (en) * 2016-01-28 2017-08-04 通用电气公司 Gearbox planetary squeeze-film damping device
CN107939833A (en) * 2017-01-10 2018-04-20 株式会社捷太格特 Wave gear device ball bearing
CN108953579A (en) * 2017-05-19 2018-12-07 伦克股份有限公司 Particularly for the transmission device of wind-driven generator

Similar Documents

Publication Publication Date Title
JP4087250B2 (en) Planetary gear transmission
JP5940066B2 (en) Wave gear device with compound rolling bearing
JP5263860B2 (en) High reduction compound planetary gear mechanism
JP5006691B2 (en) Hypoid gear motor and manufacturing method thereof
JP2005180636A (en) Bearing for planetary gear
JPWO2008075598A1 (en) Gear device
US9709151B2 (en) Wave generator and strain wave gearing
US20130102433A1 (en) Gear transmission
JP2018017362A (en) Gear transmission
JP2016205603A (en) Planetary gear reduction gear
JPWO2006077825A1 (en) Swing intermeshing planetary gear unit
JP2008025687A (en) Bearing for wave gear device
JP2018017342A (en) Gear device
WO2018168763A1 (en) Differential reduction gear
KR102336717B1 (en) Reducer having dual eccentric rotating shaft
JP2007100843A (en) Rocking inscribed planetary gear device and geared motor
JPH10299841A (en) Inscribed meshing epicyclic gear structure
JP2007024086A (en) Bearing device
JP2020051541A (en) Gear speed reducer
JP2010007841A (en) Ring gear, and gear transmission provided with ring gear
JP2018204764A (en) Helical gear unit for vehicle
JP2013199999A (en) Reduction gear
JP7467046B2 (en) Gearing
JP2017089804A (en) Wave gear device with traction drive mechanism
JP2007078053A (en) Differential gear and final reduction gear

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327