JP2007170615A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2007170615A
JP2007170615A JP2005372177A JP2005372177A JP2007170615A JP 2007170615 A JP2007170615 A JP 2007170615A JP 2005372177 A JP2005372177 A JP 2005372177A JP 2005372177 A JP2005372177 A JP 2005372177A JP 2007170615 A JP2007170615 A JP 2007170615A
Authority
JP
Japan
Prior art keywords
bearing
rolling
outer ring
ring
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005372177A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hara
和弘 原
Mineo Kishi
峰雄 亀子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005372177A priority Critical patent/JP2007170615A/en
Publication of JP2007170615A publication Critical patent/JP2007170615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing which suppresses rise of pressure on a contact face between a bearing ring and a rolling body and prevents early seizure even if a negative radial inside clearance is caused when the bearing rotates, to thereby extend service life of the bearing. <P>SOLUTION: This rolling bearing is provided with: an inner ring 4 and an outer ring 6 arranged opposingly so as to rotate relatively; and a plurality of rolling bodies (cylindrical roller) 2 assembled in between raceway surfaces (an inner ring raceway surface 4m, an outer ring raceway surface 6m) formed on an outside diameter face 4a of the inner ring and an inside diameter face 6b of the outer ring by facing them mutually, so as to roll freely. When outside diameter of the bearing is D and diameter of the raceway surface of the outer ring is D<SB>E</SB>or inside diameter of the bearing is d and diameter of the raceway surface of the inner ring is d<SB>i</SB>, this rolling bearing satisfies the relation of (D/D<SB>E</SB>)≤1.07 or (d/d<SB>i</SB>)≤1.07. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、ジェットエンジンやガスタービンエンジンの主軸受、これら各エンジンのインターナル・ギヤボックスやエキスターナル・ギヤボックスの軸受、減速機の高速ピニオン軸受などの用途に関し、特に軸受回転時において軸受外径面とハウジング内径面との間に正の軸受すきまを有する構造で使用される転がり軸受に関する。   The present invention relates to applications such as main bearings for jet engines and gas turbine engines, internal gearboxes and external gearboxes for these engines, and high-speed pinion bearings for reduction gears. The present invention relates to a rolling bearing used in a structure having a positive bearing clearance between an outer diameter surface and a housing inner diameter surface.

従来の円筒ころ軸受では、軌道輪の熱処理変形を考慮すると共に、軌道輪に対する加工精度を確保するなどの観点から、当該軌道輪間に介在した複数の転動体の中心径(中心相互を結んだ仮想円の直径)は、軸受(外輪)外径と軸受(内輪)内径との略中心に位置付けられている。この場合、各転動体の直径は、軸受断面幅(ラジアル方向の断面幅)の約50%〜60%程度に設定されている。   In conventional cylindrical roller bearings, in consideration of heat treatment deformation of the bearing ring and securing processing accuracy for the bearing ring, the center diameters of a plurality of rolling elements interposed between the bearing rings (the centers are connected to each other). The diameter of the virtual circle) is positioned at the approximate center between the outer diameter of the bearing (outer ring) and the inner diameter of the bearing (inner ring). In this case, the diameter of each rolling element is set to about 50% to 60% of the bearing cross-sectional width (cross-sectional width in the radial direction).

このような円筒ころ軸受において、その軸受内部(ラジアル内部)すきまは、例えば軸受回転時の回転軸やハウジングとの嵌合代に応じた軌道輪の膨張収縮量、軌道輪と転動体との温度差によるラジアル内部すきまの変化量などを考慮して、軸受回転時の残留すきまが正のすきまとなるように設定されている(例えば、特許文献1)。更に、軌道輪や回転軸並びにハウジングの寸法のバラツキや、軸受回転時の温度(発熱量)のバラツキなども考慮して、常に軸受回転時のラジアル内部すきまが正のすきまとなるように設定されている。この場合、軸受回転時においてラジアル内部すきまはゼロ以上となり、ある程度のバラツキを有する。   In such a cylindrical roller bearing, the clearance inside the bearing (radial inside) is, for example, the amount of expansion and contraction of the bearing ring according to the fitting allowance with the rotating shaft and the housing during rotation of the bearing, the temperature between the bearing ring and the rolling element. Considering the amount of change in the radial internal clearance due to the difference, etc., the residual clearance during rotation of the bearing is set to be a positive clearance (for example, Patent Document 1). In addition, the radial internal clearance during bearing rotation is always set to a positive clearance in consideration of variations in the dimensions of the bearing ring, rotating shaft and housing, as well as variations in temperature (heat generation amount) during bearing rotation. ing. In this case, the radial internal clearance becomes zero or more when the bearing rotates, and there is some variation.

ところで、軸受回転時に正のラジアル内部すきまが大きくなると、例えば振動や騒音、或いは早期破損による軸受寿命の短命などの原因となり、逆に、軸受回転時に負のラジアル内部すきまが大きくなると、急激な軸受寿命の短命、転動体と軌道輪との間の接触面圧が上昇し早期の焼き付きに至る場合がある。図5(a),(b)には、呼び番号N208の円筒ころ軸受において、軸受回転時のラジアル内部すきまの増減に伴う軸受の計算寿命と最大面圧との関係が示されている。なお、同図(a)の軸受には300kgfのラジアル荷重Frが負荷されており、一方、同図(b)の軸受には150kgfのラジアル荷重Frが負荷されている。また、最大面圧は、内外輪と転動体(ころ)との間の接触面圧を示し、計算寿命は、所定の計算式に従って算出した軸受寿命を示す。   By the way, if the positive radial internal clearance increases when the bearing rotates, it may cause, for example, vibration, noise, or short life of the bearing due to premature damage, and conversely, if the negative radial internal clearance increases when the bearing rotates, a sudden bearing In some cases, the service life is short-lived, and the contact surface pressure between the rolling element and the raceway increases, leading to early seizure. FIGS. 5 (a) and 5 (b) show the relationship between the calculated life of the bearing and the maximum surface pressure associated with the increase or decrease of the radial internal clearance during rotation of the cylindrical roller bearing with the nominal number N208. Incidentally, a radial load Fr of 300 kgf is applied to the bearing of FIG. 9A, while a radial load Fr of 150 kgf is applied to the bearing of FIG. The maximum surface pressure indicates the contact surface pressure between the inner and outer rings and the rolling elements (rollers), and the calculated life indicates the bearing life calculated according to a predetermined calculation formula.

同図(a),(b)の関係から明らかなように、軸受回転時に正のラジアル内部すきまが大きくなると、最大面圧はそれ程大きくならないが軸受寿命(計算寿命)が低下し、逆に、軸受回転時に負のラジアル内部すきまが大きくなると、最大面圧が大きくなることで早期の焼き付きに至り、その結果、軸受寿命(計算寿命)が急激に低下することがわかる。なお、同図(a),(b)の関係は、外輪を剛体として構成した場合の一例であるが、例えば図5(c),(d)に示すように、外輪を剛体として構成しない場合には、軸受回転時に負のラジアル内部すきまが大きくなると、最大面圧が大きくなることで早期の焼き付きに至り、その結果、軸受寿命(計算寿命)が急激に低下する。   As is clear from the relationship between FIGS. 4A and 4B, if the positive radial internal clearance increases during bearing rotation, the maximum surface pressure does not increase that much, but the bearing life (calculated life) decreases. It can be seen that if the negative radial internal clearance increases during bearing rotation, the maximum surface pressure increases, leading to premature seizure, resulting in a sudden decrease in bearing life (calculated life). The relationship between FIGS. 5A and 5B is an example when the outer ring is configured as a rigid body. For example, as shown in FIGS. 5C and 5D, the outer ring is not configured as a rigid body. If the negative radial internal clearance increases during bearing rotation, the maximum surface pressure increases, leading to premature seizure. As a result, the bearing life (calculated life) decreases rapidly.

具体例で説明すると、ガスタービンエンジンなどを用いた発電装置では、非常停止時に起きるヒートバックにより軌道輪の温度差が増大し、これによりラジアル内部すきまが負のすきまとなることで接触面圧が過剰に上昇し、軌道輪や転動体に圧痕を生じさせて、はくり損傷を引き起こす場合がある。また、ジェットエンジンやガスタービンエンジンの主軸受のように、高速軽荷重で使用される円筒ころ軸受は、軌道輪と転動体との間の相対滑りが増加し、スキッディング損傷が生じることが一般的に知られている。この場合、例えば外輪の軌道面を楕円形状或いは三角形状にすることで、転動体に予圧を負荷して滑りを防止する工夫が施されているが、そうすると軸受の製造工程が複雑になり、その結果、軸受の製造コストが上昇してしまう。   As a specific example, in a power generation device using a gas turbine engine or the like, the temperature difference of the raceway ring increases due to heat back that occurs during an emergency stop, and this causes the radial internal clearance to become a negative clearance, which causes the contact surface pressure to increase. It may rise excessively, causing indentations on the races and rolling elements, which may cause peeling damage. In addition, cylindrical roller bearings used at high speeds and light loads, such as jet engine and gas turbine engine main bearings, generally increase the relative slip between the race and rolling elements, causing skid damage. Known. In this case, for example, by making the raceway surface of the outer ring into an elliptical shape or a triangular shape, a device for applying a preload to the rolling elements to prevent slipping is applied, but this makes the manufacturing process of the bearing complicated, As a result, the manufacturing cost of the bearing increases.

ここで、スキッディング損傷対策としては、軸受回転時のラジアル内部すきまをゼロ以下(負のすきま)に設定すれば、当該損傷を抑えることが可能である。しかし、軸受や回転軸との加工精度を保持する点、或いは、軸受回転中における軌道輪相互の温度差が大きくなると負のラジアルすきま量が増加し、これにより軌道輪と転動体との間の接触面圧が増加して軸受の早期焼き付きを生じる虞がある点などを考慮すると、ラジアル内部すきまをゼロ以下(負のすきま)に設定することは困難である。
実開平5−86027号公報
Here, as a measure against skidding damage, if the radial internal clearance during rotation of the bearing is set to zero or less (negative clearance), the damage can be suppressed. However, the negative radial clearance increases when maintaining the machining accuracy with the bearing and the rotating shaft, or when the temperature difference between the bearing rings during rotation of the bearing increases. Considering the possibility that the contact surface pressure increases and premature seizure of the bearing may occur, it is difficult to set the radial internal clearance to zero or less (negative clearance).
Japanese Utility Model Publication No. 5-86027

本発明は、このような問題を解決するためになされており、その目的は、軸受回転時に負のラジアル内部すきまになった場合でも軌道輪と転動体との間の接触面圧の上昇を抑えて且つ早期の焼き付きを防止して軸受寿命の延命化を図ることが可能な転がり軸受を提供することにある。   The present invention has been made to solve such a problem, and its purpose is to suppress an increase in contact surface pressure between the raceway and the rolling element even when a negative radial internal clearance occurs during bearing rotation. Another object of the present invention is to provide a rolling bearing capable of preventing the early seizure and extending the life of the bearing.

このような目的を達成するために、本発明は、相対回転可能に対向配置された内輪及び外輪と、内輪の外径面及び外輪の内径面にそれぞれ対向して形成された軌道面間に転動自在に組み込まれた複数の転動体とを備えた転がり軸受であって、軸受外径寸法をD、外輪の軌道面の径寸法をDとすると、(D/D)≦1.07なる関係を満足する。
また、本発明は、相対回転可能に対向配置された内輪及び外輪と、内輪の外径面及び外輪の内径面にそれぞれ対向して形成された軌道面間に転動自在に組み込まれた複数の転動体とを備えた転がり軸受であって、軸受内径寸法をd、内輪の軌道面の径寸法をdとすると、(d/d)≦1.07なる関係を満足する。
このような発明において、内輪及び外輪は、軸受鋼で形成されており、弾性変形可能に構成されている。また、転動体として円筒ころが適用されている。
In order to achieve such an object, the present invention is provided between an inner ring and an outer ring, which are opposed to each other so as to be relatively rotatable, and a raceway surface formed to face the outer diameter surface of the inner ring and the inner diameter surface of the outer ring. (D / D E ) ≦ 1.07, where D is a rolling bearing having a plurality of rolling elements that are movably incorporated, and D is the outer diameter of the bearing and DE is the diameter of the raceway surface of the outer ring. Satisfy the relationship.
Further, the present invention provides a plurality of rolls incorporated between an inner ring and an outer ring, which are opposed to each other so as to be relatively rotatable, and raceway surfaces formed to face the outer diameter surface of the inner ring and the inner diameter surface of the outer ring. A rolling bearing provided with rolling elements satisfies the relationship (d / d i ) ≦ 1.07, where d is the inner diameter of the bearing and d i is the diameter of the raceway surface of the inner ring.
In such an invention, the inner ring and the outer ring are made of bearing steel and are configured to be elastically deformable. Moreover, cylindrical rollers are applied as rolling elements.

本発明によれば、軸受回転時に負のラジアル内部すきまになった場合でも軌道輪と転動体との間の接触面圧の上昇を抑えて且つ早期の焼き付きを防止して軸受寿命の延命化を図ることが可能な転がり軸受を実現することができる。   According to the present invention, even when a negative radial internal clearance is generated during rotation of the bearing, an increase in contact surface pressure between the race and the rolling element is suppressed, and early seizure is prevented, thereby extending the life of the bearing. A rolling bearing that can be realized can be realized.

以下、本発明の一実施の形態に係る転がり軸受について添付図面を参照して説明する。
図1(a)には、転動体2として円筒ころが適用された転がり軸受(円筒ころ軸受)の構成例が示されており、当該円筒ころ軸受は、相対回転可能に対向配置された内輪4及び外輪6を備えている。この場合、内輪4は回転軸8の外径面8sに外嵌固定され、外輪6はハウジング10の内径面10sに対向配置されており、外輪6の外径面6aとハウジング10の内径面10sとの間には所定(正)のすきまW1が形成されている。なお、すきまW1の大きさは、例えば外輪6の外径面6aとハウジング10の内径面10sとの間に介在されるオイルスクイズダンパなどの介在物の大きさや形状に応じて任意に設定されるため、ここでは特に限定しない。
Hereinafter, a rolling bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1A shows a configuration example of a rolling bearing (cylindrical roller bearing) to which a cylindrical roller is applied as the rolling element 2, and the cylindrical roller bearing has an inner ring 4 disposed so as to be relatively rotatable. And an outer ring 6. In this case, the inner ring 4 is externally fitted and fixed to the outer diameter surface 8 s of the rotary shaft 8, and the outer ring 6 is disposed to face the inner diameter surface 10 s of the housing 10, and the outer diameter surface 6 a of the outer ring 6 and the inner diameter surface 10 s of the housing 10. A predetermined (positive) gap W1 is formed between the two. The size of the clearance W1 is arbitrarily set according to the size and shape of an inclusion such as an oil squeeze damper interposed between the outer diameter surface 6a of the outer ring 6 and the inner diameter surface 10s of the housing 10, for example. Therefore, there is no particular limitation here.

また、内輪4の外径面4a及び外輪6の内径面6bには、それぞれ、その周方向に沿って連続した軌道面(内輪軌道面4m、外輪軌道面6m)が対向して形成されており、これら軌道面4m,6m間に複数の転動体(円筒ころ)2が転動自在に組み込まれている。更に、内外輪4,6間には、保持器12が介在されており、当該保持器12により複数の転動体(円筒ころ)2は1つずつ回転自在に保持されている。なお、保持器12としては、転動体(円筒ころ)2を回転自在に保持できれば任意の形式の保持器を適用することができるため、ここでは特に限定しない。また、当該保持器12の材質については、例えば樹脂や金属などを適用可能であるため、ここでは特に限定しない。   Further, the outer raceway surface 4a of the inner ring 4 and the inner raceway surface 6b of the outer ring 6 are formed with facing raceways (inner raceway surface 4m, outer raceway surface 6m) facing each other in the circumferential direction. A plurality of rolling elements (cylindrical rollers) 2 are incorporated between these raceway surfaces 4m and 6m so as to be freely rollable. Further, a cage 12 is interposed between the inner and outer rings 4 and 6, and a plurality of rolling elements (cylindrical rollers) 2 are rotatably held by the cage 12 one by one. The cage 12 is not particularly limited because any type of cage can be applied as long as the rolling element (cylindrical roller) 2 can be rotatably held. Moreover, about the material of the said holder | retainer 12, since resin, a metal, etc. are applicable, for example, it does not specifically limit here.

本実施の形態において、上述したような円筒ころ軸受は、軸受外径寸法(外輪6の外径面6aの径寸法)をD、外輪6の軌道面6mの径寸法をDとすると、(D/D)≦1.07なる関係を満足するように構成されている。即ち、外輪6の断面幅(ラジアル方向の断面幅)が小さくなるように構成されている。この場合、転動体(円筒ころ)2及び内外輪4,6の材料としては、高炭素クロム軸受鋼、耐熱軸受鋼、耐熱浸炭軸受鋼などが使用されるが、かかる軸受鋼を適用した場合でも、外輪6の断面幅を小さくすることで当該外輪6を弾性変形可能に構成することができる。 In the present embodiment, the cylindrical roller bearing as described above has a bearing outer diameter dimension (diameter dimension of the outer diameter surface 6a of the outer ring 6) as D and a diameter dimension of the raceway surface 6m of the outer ring 6 as D E ( D / D E ) ≦ 1.07 is satisfied. That is, the outer ring 6 is configured to have a smaller cross-sectional width (a radial cross-sectional width). In this case, high-carbon chromium bearing steel, heat-resistant bearing steel, heat-resistant carburized bearing steel, etc. are used as the material of the rolling elements (cylindrical rollers) 2 and the inner and outer rings 4, 6, even when such bearing steel is applied. The outer ring 6 can be configured to be elastically deformable by reducing the cross-sectional width of the outer ring 6.

このような構成によれば、回転軸8の回転により内外輪4,6が相対回転している間に、軸受内部(ラジアル内部)すきまが負のすきまになった場合、外輪6が転動体(円筒ころ)2からの荷重を受けてハウジング10の内径面10s方向に弾性変形することで、軸受内部に生じる予圧(転動体荷重)を低減させることができる。これにより、転動体(円筒ころ)2と内外輪4,6(軌道面4m,6m)との間の接触面圧の上昇を抑えることができる。この場合、軸受の早期の焼き付きを防止することが可能となり、その結果、軸受寿命の延命化を実現することができる。   According to such a configuration, if the clearance inside the bearing (radial interior) becomes a negative clearance while the inner and outer rings 4 and 6 are rotating relative to each other due to the rotation of the rotating shaft 8, the outer ring 6 is turned into a rolling element ( By receiving the load from the cylindrical roller) 2 and elastically deforming in the direction of the inner surface 10s of the housing 10, the preload (rolling element load) generated in the bearing can be reduced. Thereby, an increase in contact surface pressure between the rolling elements (cylindrical rollers) 2 and the inner and outer rings 4, 6 (track surfaces 4m, 6m) can be suppressed. In this case, it is possible to prevent early seizure of the bearing, and as a result, it is possible to extend the life of the bearing.

具体例で説明すると、ガスタービンエンジンなどを用いた発電装置では、非常停止時に起きるソークバックにより軌道輪の温度差が増大し、これによりラジアル内部すきまが負のすきまとなった場合、外輪6が転動体(円筒ころ)2からの荷重を受けて弾性変形することで、転動体(円筒ころ)2と内外輪4,6(軌道面4m,6m)との間の接触面圧の上昇を抑えることができる。これにより、転動体(円筒ころ)2や内外輪4,6(軌道面4m,6m)に対する圧痕やはくり損傷などの発生を防止することが可能となり、その結果、発電装置を長期に亘って安定して稼働させ続けることができる。   Specifically, in a power generation apparatus using a gas turbine engine or the like, when the temperature difference of the raceway ring increases due to the soak back that occurs during an emergency stop, and the radial internal clearance becomes a negative clearance, the outer ring 6 Suppressing an increase in contact surface pressure between the rolling element (cylindrical roller) 2 and the inner and outer rings 4 and 6 (track surface 4m, 6m) by receiving elastic load from the rolling element (cylindrical roller) 2 be able to. As a result, it is possible to prevent the occurrence of indentation and peeling damage to the rolling elements (cylindrical rollers) 2 and the inner and outer rings 4 and 6 (the raceway surfaces 4 m and 6 m). It can continue to operate stably.

また、ジェットエンジンやガスタービンエンジンの主軸受のように、高速軽荷重で使用される円筒ころ軸受において、ラジアル内部すきまが負のすきまとなった場合、外輪6が転動体(円筒ころ)2からの荷重を受けて弾性変形することで、転動体(円筒ころ)2と内外輪4,6(軌道面4m,6m)との間の接触面圧の上昇を抑えることができる。これにより、スキッディング損傷の発生を防止すると共に、軸受の早期の焼き付きを防止することが可能となり、その結果、軸受寿命の延命化を実現することができる。   Further, in a cylindrical roller bearing used at high speed and light load, such as a main bearing of a jet engine or a gas turbine engine, when the radial internal clearance becomes a negative clearance, the outer ring 6 starts from the rolling element (cylindrical roller) 2. It is possible to suppress an increase in contact surface pressure between the rolling element (cylindrical roller) 2 and the inner and outer rings 4 and 6 (the raceway surfaces 4m and 6m). As a result, it is possible to prevent the occurrence of skid damage and to prevent early seizure of the bearing. As a result, it is possible to extend the life of the bearing.

また、図1(b)には、本発明の他の実施の形態に係る転がり軸受の構成例が示されている。かかる構成例の転がり軸受にも転動体2として円筒ころが適用されており、上述した一実施の形態(図1(a))と同一の構成を有している。相違点としては、外輪6がハウジング10の内径面10sに内嵌固定され、内輪4が回転軸8の外径面8sに対向配置されており、内輪4の内径面4bと回転軸8の外径面8sとの間には所定(正)のすきまW2が形成されている。なお、すきまW2の大きさは、例えば内輪4の内径面4bと回転軸8の外径面8sとの間に介在されるオイルスクイズダンパなどの介在物の大きさや形状に応じて任意に設定されるため、ここでは特に限定しない。   FIG. 1B shows a configuration example of a rolling bearing according to another embodiment of the present invention. Cylindrical rollers are also applied as rolling elements 2 to the rolling bearings of this configuration example, and have the same configuration as that of the above-described embodiment (FIG. 1 (a)). The difference is that the outer ring 6 is fitted and fixed to the inner diameter surface 10 s of the housing 10, and the inner ring 4 is disposed opposite to the outer diameter surface 8 s of the rotating shaft 8. A predetermined (positive) gap W2 is formed between the radial surface 8s. The size of the clearance W2 is arbitrarily set according to the size and shape of an inclusion such as an oil squeeze damper interposed between the inner diameter surface 4b of the inner ring 4 and the outer diameter surface 8s of the rotating shaft 8, for example. Therefore, there is no particular limitation here.

図1(b)の構成例における円筒ころ軸受は、軸受内径寸法をd、内輪4の軌道面4mの径寸法をdとすると、(d/d)≦1.07なる関係を満足するように構成されている。即ち、内輪4の断面幅(ラジアル方向の断面幅)が小さくなるように構成されている。この場合、転動体(円筒ころ)2及び内外輪4,6の材料としては、高炭素クロム軸受鋼、耐熱軸受鋼、耐熱浸炭軸受鋼などが使用されるが、かかる軸受鋼を適用した場合でも、内輪4の断面幅を小さくすることで当該内輪4を弾性変形可能に構成することができる。 Cylindrical roller bearing in the configuration example of FIG. 1 (b), the bearing inner diameter d, the diameter of the raceway surface 4m of the inner ring 4 and d i, satisfying the (d / d i) ≦ 1.07 the relationship It is configured as follows. That is, the inner ring 4 is configured to have a smaller cross-sectional width (a radial cross-sectional width). In this case, high-carbon chromium bearing steel, heat-resistant bearing steel, heat-resistant carburized bearing steel, etc. are used as the material of the rolling elements (cylindrical rollers) 2 and the inner and outer rings 4, 6, even when such bearing steel is applied. The inner ring 4 can be configured to be elastically deformable by reducing the cross-sectional width of the inner ring 4.

このような構成によれば、回転軸8の回転により内外輪4,6が相対回転している間に、軸受内部(ラジアル内部)すきまが負のすきまになった場合、内輪4が転動体(円筒ころ)2からの荷重を受けて回転軸8の外径面8s方向に弾性変形することで、軸受内部に生じる予圧(転動体荷重)を低減させることができる。これにより、転動体(円筒ころ)2と内外輪4,6(軌道面4m,6m)との間の接触面圧の上昇を抑えることができる。この場合、軸受の早期焼き付きを防止することが可能となり、その結果、軸受寿命の延命化を実現することができる。なお、他の効果については、上述した一実施の形態(図1(a))と同様であるため、その説明は省略する。   According to such a configuration, if the clearance inside the bearing (radial interior) becomes a negative clearance while the inner and outer rings 4 and 6 are rotating relative to each other due to the rotation of the rotating shaft 8, the inner ring 4 is a rolling element ( By receiving a load from the cylindrical roller) 2 and elastically deforming in the direction of the outer diameter surface 8s of the rotary shaft 8, the preload (rolling element load) generated inside the bearing can be reduced. Thereby, an increase in contact surface pressure between the rolling elements (cylindrical rollers) 2 and the inner and outer rings 4, 6 (track surfaces 4m, 6m) can be suppressed. In this case, early seizure of the bearing can be prevented, and as a result, the life of the bearing can be extended. Since other effects are the same as those of the above-described embodiment (FIG. 1A), description thereof is omitted.

ここで、上述したような効果について、ラジアル内部すきまが負のすきまになった際の軸受寿命(計算寿命)と最大面圧との関係(図2〜図4)を参照しつつ検証する。
なお、図1(a),(b)に示した転がり軸受(円筒ころ軸受)は、互いに同一の効果を奏するため、以下では、図1(a)に例示した円筒ころ軸受について、その効果を検証する。即ち、当該円筒ころ軸受は、軸受外径寸法(外輪6の外径面6aの径寸法)をD、外輪6の軌道面6mの径寸法をDとすると、(D/D)≦1.07なる関係を満足するように構成されている。
Here, the effects as described above will be verified with reference to the relationship between the bearing life (calculated life) and the maximum surface pressure when the radial internal clearance becomes negative (FIGS. 2 to 4).
The rolling bearings (cylindrical roller bearings) shown in FIGS. 1 (a) and 1 (b) have the same effects. Therefore, the effects of the cylindrical roller bearings illustrated in FIG. 1 (a) will be described below. Validate. That is, in the cylindrical roller bearing, assuming that the outer diameter of the bearing (the diameter of the outer diameter surface 6a of the outer ring 6) is D and the diameter of the raceway surface 6m of the outer ring 6 is D E , (D / D E ) ≦ 1 0.07 is satisfied.

図2(a),(b)には、呼び番号N208の円筒ころ軸受において、負(−0.010)のラジアル内部すきまになった際の軸受寿命(計算寿命)と最大面圧との関係が示されている。同図(a)の軸受には300kgfのラジアル荷重Frが負荷されており、一方、同図(b)の軸受には150kgfのラジアル荷重Frが負荷されている。同図(a),(b)の関係から明らかなように、(D/D)≦1.07なる関係を満足するように軸受を構成することで、転動体(円筒ころ)2と内外輪4,6(軌道面4m,6m)との間の接触面圧の上昇を抑えて軸受寿命の延命化を実現できることが検証された。 2 (a) and 2 (b) show the relationship between the bearing life (calculated life) and the maximum surface pressure when a negative (−0.010) radial internal clearance is applied to a cylindrical roller bearing with the nominal number N208. Has been. A radial load Fr of 300 kgf is applied to the bearing shown in FIG. 5A, while a radial load Fr of 150 kgf is applied to the bearing shown in FIG. As is apparent from the relationship between FIGS. 4A and 4B, the rolling element (cylindrical roller) 2 and the inner and outer surfaces are formed by configuring the bearing so as to satisfy the relationship of (D / D E ) ≦ 1.07. It was verified that the bearing life can be extended by suppressing the increase in contact surface pressure between the rings 4 and 6 (the raceway surfaces 4m and 6m).

図3(a),(b)には、呼び番号N208の円筒ころ軸受において、負(−0.020)のラジアル内部すきまになった際の軸受寿命(計算寿命)と最大面圧との関係が示されている。同図(a)の軸受には300kgfのラジアル荷重Frが負荷されており、一方、同図(b)の軸受には150kgfのラジアル荷重Frが負荷されている。同図(a),(b)の関係から明らかなように、(D/D)≦1.07なる関係を満足するように軸受を構成することで、転動体(円筒ころ)2と内外輪4,6(軌道面4m,6m)との間の接触面圧の上昇を抑えて軸受寿命の延命化を実現できることが検証された。 3 (a) and 3 (b) show the relationship between the bearing life (calculated life) and the maximum surface pressure when a negative (−0.020) radial internal clearance is obtained in a cylindrical roller bearing with the nominal number N208. Has been. A radial load Fr of 300 kgf is applied to the bearing shown in FIG. 5A, while a radial load Fr of 150 kgf is applied to the bearing shown in FIG. As is apparent from the relationship between FIGS. 4A and 4B, the rolling element (cylindrical roller) 2 and the inner and outer surfaces are formed by configuring the bearing so as to satisfy the relationship of (D / D E ) ≦ 1.07. It was verified that the bearing life can be extended by suppressing the increase in contact surface pressure between the rings 4 and 6 (the raceway surfaces 4m and 6m).

図4(a),(b)には、呼び番号N208の円筒ころ軸受において、負(−0.050)のラジアル内部すきまになった際の軸受寿命(計算寿命)と最大面圧との関係が示されている。同図(a)の軸受には300kgfのラジアル荷重Frが負荷されており、一方、同図(b)の軸受には150kgfのラジアル荷重Frが負荷されている。同図(a),(b)の関係から明らかなように、(D/D)≦1.07なる関係を満足するように軸受を構成することで、転動体(円筒ころ)2と内外輪4,6(軌道面4m,6m)との間の接触面圧の上昇を抑えて軸受寿命の延命化を実現できることが検証された。 4 (a) and 4 (b) show the relationship between the bearing life (calculated life) and the maximum surface pressure when a negative (−0.050) radial internal clearance is applied to the cylindrical roller bearing with nominal number N208. Has been. A radial load Fr of 300 kgf is applied to the bearing shown in FIG. 5A, while a radial load Fr of 150 kgf is applied to the bearing shown in FIG. As is apparent from the relationship between FIGS. 4A and 4B, the rolling element (cylindrical roller) 2 and the inner and outer surfaces are formed by configuring the bearing so as to satisfy the relationship of (D / D E ) ≦ 1.07. It was verified that the bearing life can be extended by suppressing the increase in contact surface pressure between the rings 4 and 6 (the raceway surfaces 4m and 6m).

なお、上述した実施の形態では、転動体2として円筒ころを適用した転がり軸受を想定して説明したが、例えば円すいころ、針状ころ、球面ころなどを適用した転がり軸受や、転動体2として玉を適用した転がり軸受にも本発明の技術的思想を適用することが可能である。   In the above-described embodiment, the description has been made on the assumption that a rolling bearing using a cylindrical roller is used as the rolling element 2, but for example, a rolling bearing using a tapered roller, a needle roller, a spherical roller, or the rolling element 2 is used. The technical idea of the present invention can also be applied to a rolling bearing to which balls are applied.

(a)は、本発明の一実施の形態に係る転がり軸受の構成を示す断面図、(b)は、本発明の他の実施の形態に係る転がり軸受の構成を示す断面図。(a) is sectional drawing which shows the structure of the rolling bearing which concerns on one embodiment of this invention, (b) is sectional drawing which shows the structure of the rolling bearing which concerns on other embodiment of this invention. (a)は、300kgfのラジアル荷重Frが負荷された軸受において、負(−0.010)のラジアル内部すきまになった際の軸受寿命(計算寿命)と最大面圧との関係を示す図、(b)は、150kgfのラジアル荷重Frが負荷された軸受において、負(−0.010)のラジアル内部すきまになった際の軸受寿命(計算寿命)と最大面圧との関係を示す図。(a) is a diagram showing the relationship between the bearing life (calculated life) and the maximum surface pressure when a negative (−0.010) radial internal clearance is obtained in a bearing loaded with a radial load Fr of 300 kgf, (b) ) Is a diagram showing the relationship between the bearing life (calculated life) and the maximum surface pressure when a negative (−0.010) radial internal clearance is obtained in a bearing loaded with a radial load Fr of 150 kgf. (a)は、300kgfのラジアル荷重Frが負荷された軸受において、負(−0.020)のラジアル内部すきまになった際の軸受寿命(計算寿命)と最大面圧との関係を示す図、(b)は、150kgfのラジアル荷重Frが負荷された軸受において、負(−0.020)のラジアル内部すきまになった際の軸受寿命(計算寿命)と最大面圧との関係を示す図。(a) is a diagram showing the relationship between the bearing life (calculated life) and the maximum surface pressure when a negative (−0.020) radial internal clearance is obtained in a bearing loaded with a radial load Fr of 300 kgf, (b) ) Is a diagram showing the relationship between the bearing life (calculated life) and the maximum surface pressure when a negative (−0.020) radial internal clearance is obtained in a bearing loaded with a radial load Fr of 150 kgf. (a)は、300kgfのラジアル荷重Frが負荷された軸受において、負(−0.050)のラジアル内部すきまになった際の軸受寿命(計算寿命)と最大面圧との関係を示す図、(b)は、150kgfのラジアル荷重Frが負荷された軸受において、負(−0.050)のラジアル内部すきまになった際の軸受寿命(計算寿命)と最大面圧との関係を示す図。(a) is a diagram showing the relationship between the bearing life (calculated life) and the maximum surface pressure when a negative (−0.050) radial internal clearance is obtained in a bearing loaded with a 300 kgf radial load Fr. ) Is a diagram showing the relationship between the bearing life (calculated life) and the maximum surface pressure when a negative (−0.050) radial internal clearance is obtained in a bearing loaded with a radial load Fr of 150 kgf. 従来の軸受において、軸受回転時のラジアル内部すきまの増減に伴う軸受の計算寿命と最大面圧との関係を示す図であり、(a)及び(b)は、外輪を剛体として構成した場合の一例を示す図、(c)及び(d)は、外輪を剛体として構成しない場合の一例を示す図。In a conventional bearing, it is a figure which shows the relationship between the calculation life of a bearing accompanying the increase / decrease in the radial internal clearance at the time of bearing rotation, and the maximum surface pressure, (a) And (b) is the case where an outer ring | wheel is comprised as a rigid body. The figure which shows an example, (c) And (d) is a figure which shows an example when not comprising an outer ring | wheel as a rigid body.

符号の説明Explanation of symbols

2 転動体
4 内輪
4a 内輪の外径面
4b 内輪の内径面
4m 内輪軌道面
6 外輪
6a 外輪の外径面
6b 外輪の内径面
6m 外輪軌道面
2 Rolling element 4 Inner ring 4a Inner ring outer diameter surface 4b Inner ring inner diameter surface 4m Inner ring raceway surface 6 Outer ring 6a Outer ring outer diameter surface 6b Outer ring inner diameter surface 6m Outer ring raceway surface

Claims (5)

相対回転可能に対向配置された内輪及び外輪と、内輪の外径面及び外輪の内径面にそれぞれ対向して形成された軌道面間に転動自在に組み込まれた複数の転動体とを備えた転がり軸受であって、
軸受外径寸法をD、外輪の軌道面の径寸法をDとすると、(D/D)≦1.07
なる関係を満足することを特徴とする転がり軸受。
An inner ring and an outer ring that are arranged to face each other so as to be relatively rotatable, and a plurality of rolling elements that are rotatably incorporated between raceway surfaces formed to face the outer diameter surface of the inner ring and the inner diameter surface of the outer ring, respectively. A rolling bearing,
When the outer diameter of the bearing is D and the diameter of the raceway surface of the outer ring is DE , (D / D E ) ≦ 1.07
A rolling bearing characterized by satisfying the following relationship.
相対回転可能に対向配置された内輪及び外輪と、内輪の外径面及び外輪の内径面にそれぞれ対向して形成された軌道面間に転動自在に組み込まれた複数の転動体とを備えた転がり軸受であって、
軸受内径寸法をd、内輪の軌道面の径寸法をdとすると、(d/d)≦1.07
なる関係を満足することを特徴とする転がり軸受。
An inner ring and an outer ring that are arranged to face each other so as to be relatively rotatable, and a plurality of rolling elements that are rotatably incorporated between raceway surfaces formed to face the outer diameter surface of the inner ring and the inner diameter surface of the outer ring, respectively. A rolling bearing,
Bearing inner diameter d, the diameter of the inner ring raceway surface and d i, (d / d i ) ≦ 1.07
A rolling bearing characterized by satisfying the following relationship.
外輪は、軸受鋼で形成されており、弾性変形可能に構成されていることを特徴とする請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the outer ring is formed of bearing steel and is configured to be elastically deformable. 内輪は、軸受鋼で形成されており、弾性変形可能に構成されていることを特徴とする請求項2に記載の転がり軸受。   The rolling bearing according to claim 2, wherein the inner ring is made of bearing steel and is configured to be elastically deformable. 転動体として円筒ころが適用されていることを特徴とする請求項1〜4のいずれかに記載の転がり軸受。
The rolling bearing according to claim 1, wherein a cylindrical roller is applied as the rolling element.
JP2005372177A 2005-12-26 2005-12-26 Rolling bearing Pending JP2007170615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372177A JP2007170615A (en) 2005-12-26 2005-12-26 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372177A JP2007170615A (en) 2005-12-26 2005-12-26 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2007170615A true JP2007170615A (en) 2007-07-05

Family

ID=38297422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372177A Pending JP2007170615A (en) 2005-12-26 2005-12-26 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2007170615A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139047A (en) * 1977-05-10 1978-12-05 Nippon Seiko Kk Ball bearing device
JPH0712119A (en) * 1993-06-28 1995-01-17 Nippon Seiko Kk Cylindrical roller bearing
JP2002339988A (en) * 2001-05-21 2002-11-27 Nsk Ltd Roller bearing
JP2005180636A (en) * 2003-12-22 2005-07-07 Nsk Ltd Bearing for planetary gear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139047A (en) * 1977-05-10 1978-12-05 Nippon Seiko Kk Ball bearing device
JPH0712119A (en) * 1993-06-28 1995-01-17 Nippon Seiko Kk Cylindrical roller bearing
JP2002339988A (en) * 2001-05-21 2002-11-27 Nsk Ltd Roller bearing
JP2005180636A (en) * 2003-12-22 2005-07-07 Nsk Ltd Bearing for planetary gear

Similar Documents

Publication Publication Date Title
US9593718B2 (en) Multipoint contact ball bearing
JP5935370B2 (en) Roller bearing
WO2012132968A1 (en) Roller bearing
JP2008185107A (en) Ball bearing
JP2008106869A (en) Ball bearing
JP2008180246A (en) Tapered roller bearing
JP2009036348A (en) Tandem type double-row angular contact ball bearing and bearing device for pinion shaft
JP2007292093A (en) Deep groove ball bearing
JP2009138795A (en) Double row angular ball bearing
RU2232926C2 (en) Antifriction bearing
JP2009203846A (en) Ball bearing arrangement for turbocharger
JP2014105809A (en) Retainer for rolling bearing
JP2000320558A (en) Synthetic resin made retainer for roller bearing
JP2005003198A (en) Rolling bearing and transmission for hybrid car or fuel cell car using the same
JP6064783B2 (en) Rolling bearing
JP2007170615A (en) Rolling bearing
JP2009168171A (en) Roller bearing
JP2010196861A (en) Roll bearing
JP2006242293A (en) Double row bearing
JP2587897Y2 (en) Rolling bearing
JP2009203845A (en) Bearing device for turbocharger
JP2008223854A (en) Rolling bearing
JP2004108429A (en) Tapered roller bearing
JP2015068354A (en) Rolling bearing
JP2014020401A (en) Tandem type double-row angular ball bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081225

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A02