JP2005177817A - Method for manufacturing ultra extreme-thick steel plate - Google Patents

Method for manufacturing ultra extreme-thick steel plate Download PDF

Info

Publication number
JP2005177817A
JP2005177817A JP2003423578A JP2003423578A JP2005177817A JP 2005177817 A JP2005177817 A JP 2005177817A JP 2003423578 A JP2003423578 A JP 2003423578A JP 2003423578 A JP2003423578 A JP 2003423578A JP 2005177817 A JP2005177817 A JP 2005177817A
Authority
JP
Japan
Prior art keywords
thickness
slab
thick steel
steel plate
seff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003423578A
Other languages
Japanese (ja)
Inventor
Takayuki Kobayashi
孝之 小林
Kazuo Komata
一夫 小俣
Norimi Wada
典巳 和田
Mitsuo Kudo
光雄 工藤
Akira Takane
章 多賀根
Katsuyoshi Tsurisaki
勝義 釣崎
Minoru Suwa
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003423578A priority Critical patent/JP2005177817A/en
Publication of JP2005177817A publication Critical patent/JP2005177817A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an ultra extreme-thick steel plate which is homogeneous in the internal quality and has thickness of more than 200 mm at a low cost. <P>SOLUTION: By the manufacturing method of the ultra extreme-thick steel plate having > 200 mm thickness, a composite slab is formed by superposed two or more continuously cast slabs which are preliminarily worked and welding the circumference of the superposing surface and the composite slab is hot-rolled under the condition that the effective center stress sum Seff defined by the following formula (1) is ≥ 0.3 and reduction ratio is < 2. Above formula (1) is Seff = Σ((σtcmax/k<SB>0</SB>)-1), where, Σ shows the total sum of the value 1 at each pass through a rolling schedule. However, (σtcmax/k<SB>0</SB>)-1 < 0 is not added. Further, σtcmax/k<SB>0</SB>= ( 1.67 × (ld/hm) + 0.5 ), where, ld is the projected length of the arc of contact, hm is the average thickness ( the average of the thickness on the inlet side and the thickness on the outlet side ) and k<SB>0</SB>is the deformation resistance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、超極厚鋼板の製造方法、詳しくは、予備加工を施した連続鋳造スラブを2枚以上重ね合わせて、有効中心応力和Seffが0.3以上、圧下比2未満の条件で熱間圧延して互いに接合し、かくして、内部品質が均一な板厚200mmを超える超極厚鋼板を安価に製造する方法に関するものである。   The present invention relates to a method of manufacturing an ultra-thick steel plate, more specifically, two or more continuous cast slabs that have been subjected to preliminary processing are overlapped, and the heat is applied under the condition that the effective center stress sum Seff is 0.3 or more and the reduction ratio is less than 2. The present invention relates to a method for inexpensively manufacturing ultra-thick steel plates having a uniform internal quality exceeding 200 mm, which are cold-rolled and joined to each other.

板厚が100mmを超える極厚鋼板は、従来から圧力容器や大型構造物等に使用されている。このような極厚鋼板は、その用途の関係から特に内部品質の均一性が要求される。このような極厚鋼板は、インゴット法により鋳造された鋼塊を分塊圧延して製造されていたが、経済性に問題があった。   Ultra-thick steel plates having a thickness exceeding 100 mm have been conventionally used for pressure vessels, large structures, and the like. Such an extra-thick steel plate is required to have a uniform internal quality, in particular, because of its application. Such an extra-thick steel plate has been manufactured by split-rolling a steel ingot cast by the ingot method, but has a problem in economic efficiency.

そこで、特公平7−83946号公報(特許文献1)、特開平2−197383号公報(特許文献2)、特開平4−190902号公報(特許文献3)、特開平4−266402号公報(特許文献4)には、複数枚の連続鋳造スラブを重ね合わせ、重ね合わせ面の四周を溶接して複合スラブを形成し、重ね合わせ面を真空処理した後、熱間圧延して板厚100mm以上の極厚鋼板を製造する方法が記載されている。これらの従来技術では、スラブの接合性の観点から圧下比が規定されており、特許文献1では2以上、特許文献2では3以上、特許文献3および4ではそれぞれ2.5以上である。   Therefore, Japanese Patent Publication No. 7-83946 (Patent Document 1), Japanese Patent Application Laid-Open No. 2-197383 (Patent Document 2), Japanese Patent Application Laid-Open No. 4-190902 (Patent Document 3), Japanese Patent Application Laid-Open No. 4-266402 (Patent Document). In Reference 4), a plurality of continuous cast slabs are overlapped, and the composite surface is formed by welding four rounds of the overlapped surface, and after the overlapped surface is vacuum-treated, it is hot-rolled to have a thickness of 100 mm or more. A method for producing an extra heavy steel sheet is described. In these prior arts, the reduction ratio is defined from the viewpoint of slab jointability, which is 2 or more in Patent Document 1, 3 or more in Patent Document 2, and 2.5 or more in Patent Documents 3 and 4, respectively.

また、特開平6−15466号公報(特許文献5)には、複合スラブの圧下比の低減を目的として、スラブの重ね合わせ面間にアモルファス金属をインサートして、1.6以上の圧下比で圧延する板厚100mm以上の極厚鋼板を製造する方法が開示されている。   Japanese Patent Laid-Open No. 6-15466 (Patent Document 5) discloses that an amorphous metal is inserted between overlapping surfaces of a slab with a reduction ratio of 1.6 or more for the purpose of reducing the reduction ratio of the composite slab. A method of manufacturing a very thick steel plate having a thickness of 100 mm or more to be rolled is disclosed.

特公平7−83946号公報Japanese Patent Publication No. 7-83946 特開平2−197383号公報Japanese Patent Laid-Open No. 2-197383 特開平4−190902号公報Japanese Patent Laid-Open No. 4-190902 特開平4−266402号公報JP-A-4-266402 特開平6−15466号公報JP-A-6-15466

しかしながら、上記従来技術は、次のような問題を有していた。すなわち、特許文献1から4に開示された従来技術は、圧下比が2以上と大きいので、得られた製品板厚も200mm以下である。   However, the above prior art has the following problems. That is, in the prior arts disclosed in Patent Documents 1 to 4, since the reduction ratio is as large as 2 or more, the obtained product plate thickness is also 200 mm or less.

また、特許文献5に開示された従来技術は、圧下比が小さいので、200mm以上の板厚の極厚鋼板を得ることができるものの、高価なアモルファス金属を必要とするので、現実的でない。   In addition, the prior art disclosed in Patent Document 5 has a small reduction ratio, so that an extremely thick steel plate having a thickness of 200 mm or more can be obtained, but an expensive amorphous metal is required, which is not practical.

一方、連続鋳造スラブの中心部に存在するセンターポロシティ対策として、特許文献3および4には、圧下比1.15以上で一次圧下した後、圧下比2.5以上で二次圧下し、トータルで2.875以上の圧下比でスラブを圧下することが記載されている。しかしながら、特許文献2に記載されている従来技術(圧下比3以上)と大差がないので、最終製品の板厚向上が期待できない。   On the other hand, as a countermeasure against the center porosity existing in the center portion of the continuous casting slab, in Patent Documents 3 and 4, after primary reduction with a reduction ratio of 1.15 or more, secondary reduction with a reduction ratio of 2.5 or more is performed. It is described that the slab is reduced at a reduction ratio of 2.875 or more. However, since there is no significant difference from the prior art described in Patent Document 2 (a reduction ratio of 3 or more), it is not possible to expect an increase in the thickness of the final product.

また、厚板製品の場合、幅や長さは種々であるが、上記各特許文献にはこれらの対策に関する記載はない。更に、圧延方法に関する詳細検討がなく、最低圧下比が規定されているだけである。   Further, in the case of thick plate products, the width and length are various, but the above-mentioned patent documents do not describe these countermeasures. Furthermore, there is no detailed examination on the rolling method, and only the minimum reduction ratio is specified.

従って、この発明は、(1)接合およびセンターポロシティ対策としての製造条件、
(2)センタ−ポロシティ対策としての予備加工、(3)接合対策としての重ね合わせ条件を検討し、予備加工した連続鋳造スラブを用いて複合スラブとし、これを熱間圧延することで、内質に優れた200mm以上の超極厚鋼板を安価に製造する方法を提供することを目的とする。
Accordingly, the present invention provides (1) manufacturing conditions as a countermeasure against bonding and center porosity,
(2) Preliminary processing as a countermeasure against center porosity, (3) Examination of overlay conditions as a countermeasure against joining, and making a composite slab using a pre-processed continuous cast slab, and hot rolling this, An object of the present invention is to provide a method for producing an ultra-thick steel plate having an excellent thickness of 200 mm or more at a low cost.

この発明は、上記目的を達成するためになされたものであり、下記を特徴とするものである。   The present invention has been made to achieve the above object, and is characterized by the following.

請求項1記載の発明は、予備加工を施した連続鋳造スラブを2枚以上重ね合わせ、重ね合わせ面の四周を溶接して複合スラブを形成し、そして、下記(1)式で定義される有効中心応力和Seffが0.3以上、圧下比2未満の条件で前記複合スラブを熱間圧延することに特徴を有するものである。   In the invention described in claim 1, two or more continuous cast slabs which have been subjected to preliminary processing are overlapped, and a composite slab is formed by welding four rounds of the overlapped surface, and the effective defined by the following formula (1) The composite slab is hot-rolled under the condition that the central stress sum Seff is 0.3 or more and less than the reduction ratio of 2.

Seff=Σ〔(σtcmax/k0)−1〕 ---(1)
ここで、Σは、圧延スケジュールを通した各パスの値の総和を示す。
但し、(σtcmax/k0)−1<0は、加算しない。
また、σtcmax/k0=1.67×(ld/hm)+0.5
ここで、ld:投影接触弧長
hm:平均板厚(入り側板厚と出側板厚の平均)
0:変形抵抗
Seff = Σ [(σtcmax / k 0 ) -1] --- (1)
Here, Σ indicates the sum of the values of each pass through the rolling schedule.
However, (σtcmax / k 0 ) −1 <0 is not added.
Also, σtcmax / k 0 = 1.67 × (ld / hm) +0.5
Where ld: projected contact arc length
hm: Average plate thickness (average of input side plate thickness and output side plate thickness)
k 0 : Deformation resistance

請求項2記載の発明は、請求項1記載の発明において、連続鋳造スラブの重ね合わせ枚数を奇数枚とした複合スラブを、(1)式で定義される有効中心応力和Seffが0.2以上、圧下比2未満の条件で熱間圧延することに特徴を有するものである。   The invention according to claim 2 is the invention according to claim 1, wherein the effective center stress sum Seff defined by the equation (1) is 0.2 or more in the composite slab in which the number of continuous cast slabs is an odd number. It is characterized by hot rolling under conditions with a reduction ratio of less than 2.

請求項3記載の発明は、請求項1または2記載の発明において、予備加工は、連続鋳造スラブに10mm以上の圧下を加えるものであることに特徴を有するものである。   The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the preliminary processing is to apply a reduction of 10 mm or more to the continuous cast slab.

請求項4記載の発明は、請求項1から3の何れか1に記載の発明において、予備加工の段階でスラブ素材を所定の寸法および形状に成形することに特徴を有するものである。   The invention according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, the slab material is formed into a predetermined size and shape at the preliminary processing stage.

この発明によれば、アモルファス金属等の高価なインサート金属を使用することなく、内部品質が均一な板厚200mmを超える超極厚鋼板を安価に得ることができる。   According to the present invention, an ultra-thick steel plate having a uniform internal quality exceeding 200 mm in thickness can be obtained at low cost without using an expensive insert metal such as an amorphous metal.

この発明は、高価なインサート金属を使用しない板厚200mmを超える極厚鋼板を得ることができる極厚鋼板の製造方法であり、連続鋳造スラブに予備加工を施して、センターポロシティが予備圧着されたスラブ素材を調製し、前記スラブ素材を2枚以上重ね合わせ、重ね合わせ面の四周を溶接して複合スラブを形成し、そして、下記(1)式で定義される有効中心応力和Seffが0.3以上、圧下比2未満の条件で前記複合スラブを熱間圧延して、板厚200mmを超える超極厚鋼板を製造することに特徴を有するものである。   The present invention is a method for producing an extra-thick steel plate capable of obtaining an extra-thick steel plate having a thickness exceeding 200 mm without using an expensive insert metal, and the center porosity is pre-crimped by pre-processing the continuous cast slab. A slab material is prepared, two or more slab materials are overlapped, a composite slab is formed by welding four rounds of the overlapping surface, and an effective central stress sum Seff defined by the following equation (1) is 0. The composite slab is hot-rolled under a condition of 3 or more and less than a reduction ratio of 2 to produce an ultra-thick steel plate having a plate thickness exceeding 200 mm.

Seff=Σ〔(σtcmax/k0)−1〕 ---(1)
ここで、Σは、圧延スケジュールを通した各パスの値の総和を示す。
但し、(σtcmax/k0)−1<0は、加算しない。
また、σtcmax/k0=1.67×(ld/hm)+0.5
ここで、ld:投影接触弧長
hm:平均板厚(入り側板厚と出側板厚の平均)
0:変形抵抗
Seff = Σ [(σtcmax / k 0 ) -1] --- (1)
Here, Σ indicates the sum of the values of each pass through the rolling schedule.
However, (σtcmax / k 0 ) −1 <0 is not added.
Also, σtcmax / k 0 = 1.67 × (ld / hm) +0.5
Where ld: projected contact arc length
hm: Average plate thickness (average of input side plate thickness and output side plate thickness)
k 0 : Deformation resistance

なお、複合スラブを形成する際の重ね合わせ面の四周の溶接は、EB(電子ビーム)溶接、MIG溶接、SMAW(手溶接)等を用いることができる。また、この発明は、炭素鋼以外にステンレス鋼にも適用できる。   In addition, EB (electron beam) welding, MIG welding, SMAW (manual welding), etc. can be used for the welding of the 4 times of the overlapping surface at the time of forming a composite slab. Moreover, this invention is applicable also to stainless steel other than carbon steel.

スラブ素材の接合に影響を及ぼす因子である、接合面状態、加熱条件、圧延条件をパラメ−タとして検討した結果、上記有効中心応力和Seffが0.3以上の条件下では、仮にスラブ素材の接合面がt/2(t:複合スラブ厚)と、最も厳しい位置になっても接合が達成されることが確認できた。従って、この発明では、有効中心応力和Seffの値を0.3以上に限定した。   As a result of studying the joint surface state, heating conditions, and rolling conditions, which are factors affecting the joining of the slab material, as parameters, under the condition that the effective center stress sum Seff is 0.3 or more, the slab material It was confirmed that the joining was achieved even when the joining surface reached the most severe position at t / 2 (t: composite slab thickness). Therefore, in this invention, the value of the effective center stress sum Seff is limited to 0.3 or more.

センタ−ポロシティに関しても同様の検討を行った結果、圧延あるいは鍛造等の予備加工により予め連続鋳造スラブに10mm以上の圧下を加えれば、その後、有効中心応力和Seffが0.2以上の圧延を行うことにより、連続鋳造スラブの中心部に存在するセンターポロシティを圧着でき、これを解消することができる結果、製品板厚を拡大することができることが確認できた。   As a result of the same examination regarding the center-porosity, if a reduction of 10 mm or more is applied in advance to the continuously cast slab by preliminary processing such as rolling or forging, then rolling with an effective center stress sum Seff of 0.2 or more is performed. As a result, it was confirmed that the center porosity existing in the central portion of the continuous cast slab can be crimped, and this can be eliminated. As a result, the product plate thickness can be increased.

なお、使用するスラブのセンターポロシティは、その大きさが小さなものの方が圧着しやすいため、センターポロシティの大きさが1mm以下のスラブを用いることが好ましい。また、スラブの重ね合わせ面は、ショットブラストや機械研削等の方法により黒皮を除去する。特に、グラインダーや機械研削等で一定の表面粗さ以下に制御することが望ましい。さらに、重ね合わせ面の四周を溶接した後、公知の適当な手段で合わせ面の間に存在する空気を排気し、真空状態にしてから熱間圧延を行うことが好ましい。   In addition, since the center porosity of the slab to be used is smaller in size, the center porosity is preferably 1 mm or less. Further, the black skin is removed from the superposed surface of the slab by a method such as shot blasting or mechanical grinding. In particular, it is desirable to control the surface roughness below a certain level with a grinder or mechanical grinding. Further, it is preferable to perform hot rolling after welding the four circumferences of the overlapping surfaces and exhausting the air existing between the mating surfaces by a known appropriate means to make a vacuum state.

また、予備加工の際に、最終製品寸法を考慮した寸法・形状に成形しておくことによって、種々の幅、長さの超極厚鋼板を製造することができる。すなわち、予備加工の際に幅出し圧延を行い、その後の複合スラブをストレート圧延することによって、0.3以上の有効中心応力和Seffを確保して、幅広の超極厚鋼板を製造することができる。   In addition, ultra-thick steel plates with various widths and lengths can be manufactured by forming into dimensions and shapes in consideration of final product dimensions during preliminary processing. That is, it is possible to manufacture a wide ultra-thick steel sheet while securing an effective central stress sum Seff of 0.3 or more by performing tentering rolling during preliminary processing and straight rolling the subsequent composite slab. it can.

さらに、スラブ素材の重ね合わせの枚数を奇数枚として圧延する場合には、接合面は板厚のt/2にはならず、より表層に近い位置となる。このような場合、圧延による圧縮応力、歪は、板厚中心部より表層に近い部分の方が大きい。このため板厚の1/2に接合面が来る場合より、接合のための圧延条件は緩和され、有効中心応力和Seffが0.2以上であれば、良好な接合性が得られることが判明した。   Furthermore, in the case of rolling with the number of overlapping slab materials as an odd number, the joining surface does not become t / 2 of the plate thickness but is closer to the surface layer. In such a case, the compressive stress and strain due to rolling are larger in the portion closer to the surface layer than in the center portion of the plate thickness. For this reason, the rolling conditions for joining are relaxed compared with the case where the joining surface comes to ½ of the plate thickness, and it is found that good jointability can be obtained if the effective central stress sum Seff is 0.2 or more. did.

次に、この発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

250mm×1500mm×3000mmの連続鋳造スラブに、圧下量が10〜30mmの予備加工をストレート圧延により施して、220〜240mm×1500mm×3000〜3400mmの複数枚のスラブ素材を調製した。なお、各複合スラブは、同一チャージのスラブにより調製し、スラブ素材の表面は、ショットブラスト処理により黒皮を除去した(以下の実施例2、3において同じ)。次に、このようにして調製した同一板厚のスラブ素材を2枚重ね合わせ、重ね合わせ面の四周を溶接して、板厚440〜480mmの4枚の複合スラブを調製した。なお、重ね合わせ面の溶接は、MIG溶接により行い、溶接による組み立て後、接合界面の空気を排除する真空処理を行った(以下の実施例2、3において同じ)。次に、このようにして調製した各複合スラブを1200℃に加熱した後、ストレート圧延により熱間圧延(本圧延)して、290mm×1500mm×長さを有するNo.A〜Dの厚板製品を製造した。   A continuous casting slab of 250 mm × 1500 mm × 3000 mm was subjected to a pre-processing with a reduction amount of 10 to 30 mm by straight rolling to prepare a plurality of slab materials of 220 to 240 mm × 1500 mm × 3,000 to 3400 mm. Each composite slab was prepared by a slab having the same charge, and the black skin was removed from the surface of the slab material by shot blasting (the same applies to Examples 2 and 3 below). Next, two slab materials having the same thickness prepared in this manner were overlapped, and the four overlapped surfaces were welded to prepare four composite slabs having a thickness of 440 to 480 mm. The overlapping surface was welded by MIG welding, and after assembling by welding, vacuum treatment was performed to exclude air at the joint interface (the same applies to Examples 2 and 3 below). Next, each composite slab prepared in this manner was heated to 1200 ° C., and then hot-rolled (main rolled) by straight rolling, and No. having a length of 290 mm × 1500 mm × length. A plate product A to D was manufactured.

このときの本圧延での圧下比および有効中心応力和(Seff)の値を表1に示す。そして、センターポロシティの圧着の有無と接合性とを調査した。センターポロシティの圧着の有無の調査は、1/4および3/4断面を超音波探傷(UT)することにより、また、接合性は、板厚中心部(接合面)を超音波探傷(UT)することにより行った。これらの結果を表1に併せて示す。   Table 1 shows the reduction ratio and the effective central stress sum (Seff) in the main rolling at this time. Then, the presence / absence and bonding of the center porosity were investigated. The investigation on the presence or absence of crimping of the center porosity is performed by ultrasonic flaw detection (UT) on 1/4 and 3/4 cross sections, and the bondability is determined by ultrasonic flaw detection (UT) at the center of the plate thickness (bonding surface). It was done by doing. These results are also shown in Table 1.

なお、表1の1/4および3/4断面のUT結果の○印は、センターポロシティが十分に圧着されていることを示し、×印は、圧着が不十分であることを示す。また、表1の接合面のUT結果の○印は、本圧延によりスラブ素材同士が十分に接合されていることを示し、×印は、接合が不十分であることを示す。   In addition, the ◯ mark in the UT results of the ¼ and 3/4 cross sections in Table 1 indicates that the center porosity is sufficiently crimped, and the x mark indicates that the crimping is insufficient. Moreover, the ◯ mark of the UT result of the joint surfaces in Table 1 indicates that the slab materials are sufficiently bonded by the main rolling, and the X mark indicates that the bonding is insufficient.

Figure 2005177817
Figure 2005177817

表1の厚板製品No.BとNo.Cとから明らかなように、有効中心応力和(Seff)の条件のみが本発明範囲外であるNo.Cは、スラブ素材の接合が不十分であった。   Thick plate product No. in Table 1 B and No. As is clear from FIG. C, only the condition of effective center stress sum (Seff) is outside the scope of the present invention. In C, the joining of the slab material was insufficient.

これに対して、10mm以上の予備加工を行い、有効中心応力和(Seff)が0.3以上の厚板製品No.A、BおよびDは、何れも、圧下比が2未満であってもスラブ素材の接合およびセンターポロシティの圧着が十分であり、品質の優れた超厚板鋼板を製造することができた。   In contrast, a thick plate product No. 10 having a pre-processing of 10 mm or more and an effective central stress sum (Seff) of 0.3 or more is used. For all of A, B and D, even when the reduction ratio was less than 2, the joining of the slab material and the pressing of the center porosity were sufficient, and it was possible to produce an ultra-thick steel plate having excellent quality.

250mm×1500mm×3000mmの連続鋳造スラブに、30mmの圧下量および幅出し圧延による予備加工を施して、220mm×1600mm×3200mmのスラブ素材を調製した。次に、このようにして調製したスラブ素材を2枚重ね合わせ、重ね合わせ面の四周を溶接して、440mm×1600mm×3200mmの複合スラブを調製した。次に、このようにして調製した複合スラブを1200℃に加熱した後、有効中心応力和(Seff)が0.30となるストレート圧延により熱間圧延(本圧延)して、300mm×1600mm×長さを有する厚板製品を製造した。そして、センターポロシティの圧着の有無と接合性とを調査した。これらの調査方法は、実施例1と同様である。   A 250 mm × 1500 mm × 3000 mm continuous cast slab was preliminarily processed by a rolling reduction of 30 mm and tenter rolling to prepare a slab material of 220 mm × 1600 mm × 3200 mm. Next, two slab materials prepared in this way were overlapped, and the four sides of the overlapped surface were welded to prepare a composite slab of 440 mm × 1600 mm × 3200 mm. Next, after heating the composite slab thus prepared to 1200 ° C., it is hot-rolled (main rolling) by straight rolling with an effective center stress sum (Seff) of 0.30, and is 300 mm × 1600 mm × long A thick plate product having a thickness was produced. Then, the presence / absence and bonding of the center porosity were investigated. These investigation methods are the same as those in the first embodiment.

この本発明例は、製品幅(1600mm)がスラブ幅(1500mm)より広く、幅出し圧延が必要な場合であるが、予備加工において幅出し圧延を行い、本圧延ではストレート圧延により有効中心応力和(Seff)が0.30となるように圧延を行うことによって、センターポロシティの圧着および接合性は十分であり、品質の優れた超厚板鋼板を製造することができた。   In this example of the present invention, the product width (1600 mm) is wider than the slab width (1500 mm), and tentering rolling is necessary. However, tentering rolling is performed in preliminary processing, and in this rolling, the effective central stress sum is obtained by straight rolling. By performing rolling so that (Seff) is 0.30, the center porosity has sufficient pressure bonding and joining properties, and an ultra-thick steel plate having excellent quality can be produced.

比較のために、上記本発明例と同一寸法の連続鋳造スラブに、圧下量が30mmの予備加工を施して、220mm×1500mm×3400mmのスラブ素材を調製した。次に、このようにして調製したスラブ素材を2枚重ね合わせ、重ね合わせ面の四周を溶接して、440mm×1500mm×3400mmの複合スラブを調製した。次に、このようにして調製した複合スラブを1200℃に加熱した後、本圧延で幅出し圧延を行い、300mm×1600mm×長さを有する厚板製品を製造した。そして、センターポロシティの圧着の有無と接合性とを調査した。   For comparison, a slab material of 220 mm × 1500 mm × 3400 mm was prepared by subjecting a continuous cast slab having the same dimensions as the above-described example of the present invention to a preliminary processing with a reduction amount of 30 mm. Next, two slab materials thus prepared were overlapped, and the four sides of the overlapped surface were welded to prepare a composite slab of 440 mm × 1500 mm × 3400 mm. Next, after heating the composite slab thus prepared to 1200 ° C., tenter rolling was performed by main rolling to produce a thick plate product having a length of 300 mm × 1600 mm × length. Then, the presence / absence and bonding of the center porosity were investigated.

この比較例によれば、本圧延で幅出し圧延をしたために、有効中心応力和(Seff)は0.24までしか得られなかった。このために接合性が不十分であった。   According to this comparative example, since the tenter rolling was performed in the main rolling, the effective center stress sum (Seff) was only obtained up to 0.24. For this reason, the bondability was insufficient.

200mm×1500mm×3000mmの連続鋳造スラブに、圧下量が73mmの予備加工をストレート圧延により施して、127mm×1500mm×4720mmの複数枚のスラブ素材を調製した。次に、このようにして調製したスラブ素材を3枚重ね合わせ、重ね合わせ面の四周を溶接して、380mm×1500mm×4720mmの複合スラブを調製した。次に、このようにして調製した複合スラブを1200℃に加熱した後、有効中心応力和(Seff)が0.22、圧下比が1.3となる条件でストレート圧延(本圧延)をして、300mm×1500mm×長さを有する厚板製品を製造した。そして、センターポロシティの圧着の有無と接合性とを調査した。これらの調査方法は、実施例1と同様である。   A 200 mm × 1500 mm × 3000 mm continuous cast slab was preliminarily processed with a rolling reduction of 73 mm by straight rolling to prepare a plurality of 127 mm × 1500 mm × 4720 mm slab materials. Next, three slab materials prepared in this way were overlapped, and the four sides of the overlapped surface were welded to prepare a composite slab of 380 mm × 1500 mm × 4720 mm. Next, the composite slab thus prepared was heated to 1200 ° C. and then subjected to straight rolling (main rolling) under the conditions that the effective center stress sum (Seff) was 0.22 and the reduction ratio was 1.3. A thick plate product having a length of 300 mm × 1500 mm × length was manufactured. Then, the presence / absence and bonding of the center porosity were investigated. These investigation methods are the same as those in the first embodiment.

この本発明例は、予備加工したスラブを3枚組み立てたものであるが、2枚の場合に比べて接合面が板厚表層に近いために、有効中心応力和(Seff)が0.22であってもセンターポロシティの圧着および接合性は十分であり、品質の優れた超厚板鋼板を製造することができた。   In this example of the present invention, three pre-processed slabs are assembled, but the effective central stress sum (Seff) is 0.22 because the joint surface is closer to the plate thickness surface layer than in the case of two sheets. Even in this case, the crimping and joining properties of the center porosity were sufficient, and an ultra-thick steel plate with excellent quality could be produced.

比較のために、上記本発明例と同一寸法の連続鋳造スラブに、圧下量が10mmの予備加工を施して、190mm×1500mm×3150mmのスラブ素材を調製した。次に、このようにして調製したスラブ素材を2枚重ね合わせ、重ね合わせ面の四周を溶接して、380mm×1500mm×3150mmの複合スラブを調製した。次に、このようにして調製した複合スラブを1200℃に加熱した後、有効中心応力和(Seff)が0.24、圧下比が1.3となる条件でストレート圧延(本圧延)をして、300mm×1500mm×長さを有する厚板製品を製造した。そして、センターポロシティの圧着の有無と接合性とを調査した。   For comparison, a slab material having a size of 190 mm × 1500 mm × 3150 mm was prepared by subjecting a continuous cast slab having the same dimensions as the above-described example of the present invention to preliminary processing with a reduction amount of 10 mm. Next, two slab materials prepared in this way were overlapped, and the four sides of the overlapped surface were welded to prepare a composite slab of 380 mm × 1500 mm × 3150 mm. Next, the composite slab thus prepared was heated to 1200 ° C. and then subjected to straight rolling (main rolling) under the conditions that the effective center stress sum (Seff) was 0.24 and the reduction ratio was 1.3. A thick plate product having a length of 300 mm × 1500 mm × length was manufactured. Then, the presence / absence and bonding of the center porosity were investigated.

この比較例によれば、3枚のスラブを組み立てた場合に比べて接合面が板厚表層から遠いために、有効中心応力和(Seff)が0.24であっても、接合性が不十分であった。   According to this comparative example, since the joint surface is far from the plate thickness surface layer as compared with the case where three slabs are assembled, even if the effective center stress sum (Seff) is 0.24, the joint property is insufficient. Met.

Claims (4)

予備加工を施した連続鋳造スラブを2枚以上重ね合わせ、重ね合わせ面の四周を溶接して複合スラブを形成し、そして、下記(1)式で定義される有効中心応力和Seffが0.3以上、圧下比2未満の条件で前記複合スラブを熱間圧延することを特徴とする、板厚200mmを超える超極厚鋼板の製造方法。
Seff=Σ〔(σtcmax/k0)−1〕 ---(1)
ここで、Σは、圧延スケジュールを通した各パスの値の総和を示す。
但し、(σtcmax/k0)−1<0は、加算しない。
また、σtcmax/k0=1.67×(ld/hm)+0.5
ここで、ld:投影接触弧長
hm:平均板厚(入り側板厚と出側板厚の平均)
0:変形抵抗
Two or more continuous cast slabs that have been subjected to pre-processing are overlapped, and the composite slab is formed by welding the four sides of the overlapping surface, and the effective center stress sum Seff defined by the following equation (1) is 0.3. As mentioned above, the said composite slab is hot-rolled on conditions with a reduction ratio of less than 2, The manufacturing method of the ultra-thick steel plate exceeding 200 mm of board thickness characterized by the above-mentioned.
Seff = Σ [(σtcmax / k 0 ) -1] --- (1)
Here, Σ indicates the sum of the values of each pass through the rolling schedule.
However, (σtcmax / k 0 ) −1 <0 is not added.
Also, σtcmax / k 0 = 1.67 × (ld / hm) +0.5
Where ld: projected contact arc length
hm: Average plate thickness (average of input side plate thickness and output side plate thickness)
k 0 : Deformation resistance
前記連続鋳造スラブの重ね合わせ枚数を奇数枚とした前記複合スラブを、(1)式で定義される有効中心応力和Seffが0.2以上、圧下比2未満の条件で熱間圧延することを特徴とする、請求項1記載の、板厚200mmを超える超極厚鋼板の製造方法。   The composite slab having an odd number of continuous cast slabs is hot-rolled under the condition that the effective center stress sum Seff defined by the equation (1) is 0.2 or more and less than the reduction ratio 2. The method for producing a super thick steel plate having a thickness of more than 200 mm according to claim 1. 前記予備加工は、前記連続鋳造スラブに10mm以上の圧下を加えるものであることを特徴とする、請求項1または2記載の、板厚200mmを超える超極厚鋼板の製造方法。   The method of manufacturing a super extra-thick steel plate having a plate thickness exceeding 200 mm according to claim 1, wherein the preliminary processing is to apply a reduction of 10 mm or more to the continuous cast slab. 前記予備加工の段階で前記スラブ素材を所定の寸法および形状に成形することを特徴とする、請求項1から3の何れか1に記載の、板厚200mmを超える超極厚鋼板の製造方法。   The method for producing a super extra-thick steel plate having a plate thickness exceeding 200 mm according to any one of claims 1 to 3, wherein the slab material is formed into a predetermined size and shape in the preliminary processing stage.
JP2003423578A 2003-12-19 2003-12-19 Method for manufacturing ultra extreme-thick steel plate Pending JP2005177817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423578A JP2005177817A (en) 2003-12-19 2003-12-19 Method for manufacturing ultra extreme-thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423578A JP2005177817A (en) 2003-12-19 2003-12-19 Method for manufacturing ultra extreme-thick steel plate

Publications (1)

Publication Number Publication Date
JP2005177817A true JP2005177817A (en) 2005-07-07

Family

ID=34784066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423578A Pending JP2005177817A (en) 2003-12-19 2003-12-19 Method for manufacturing ultra extreme-thick steel plate

Country Status (1)

Country Link
JP (1) JP2005177817A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525562A (en) * 2014-11-28 2015-04-22 振石集团东方特钢股份有限公司 Production method of stainless-steel, carbon steel and stainless steel three-layer combined plate coil
CN105252237A (en) * 2014-07-16 2016-01-20 鞍钢股份有限公司 Method for producing CrMnNiMo series ultra-thick mold compound billets
CN106513611A (en) * 2016-10-17 2017-03-22 江阴兴澄特种钢铁有限公司 Continuous casting process for producing 450mm extremely-thick plate blank on straight arc-shaped continuous casting machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252237A (en) * 2014-07-16 2016-01-20 鞍钢股份有限公司 Method for producing CrMnNiMo series ultra-thick mold compound billets
CN105252237B (en) * 2014-07-16 2017-09-26 鞍钢股份有限公司 A kind of production method of the special thick mould composite billet of CrMnNiMo systems
CN104525562A (en) * 2014-11-28 2015-04-22 振石集团东方特钢股份有限公司 Production method of stainless-steel, carbon steel and stainless steel three-layer combined plate coil
CN106513611A (en) * 2016-10-17 2017-03-22 江阴兴澄特种钢铁有限公司 Continuous casting process for producing 450mm extremely-thick plate blank on straight arc-shaped continuous casting machine

Similar Documents

Publication Publication Date Title
JP2019521859A (en) Double pipe manufacturing method
JP2005152998A (en) Ultra-thick steel plate and method for manufacturing it
JP2005177817A (en) Method for manufacturing ultra extreme-thick steel plate
CN104801562A (en) Making method of blank for producing steel nickel/nickel-based alloy composite board
CN108581375A (en) A kind of preparation method having the stainless steel and carbon steel composite tube that cover side
JP4843401B2 (en) Forging method and anvil used for the forging method
JP2663736B2 (en) Manufacturing method of extra thick steel plate
JP3333619B2 (en) Manufacturing method of extra thick steel plate
KR20190073300A (en) Method of manufacturing ultra thin and wide width steel sheet
KR20190074989A (en) Method of manufacturing ultra thin and wide width steel sheet
JP2002331317A (en) Blank member for auto body panel
JPH0234289A (en) Manufacture of metal clad plate by rolling
CN104827241A (en) Manufacturing method of blanks for producing steel-zirconium composite boards
JP2852316B2 (en) Method of manufacturing large-diameter rectangular steel pipe for improving material quality and uniform shape at corner R
JP2004330222A (en) Square steel pipe and manufacturing method for square steel pipe
JP4248788B2 (en) Forming roll and forming method
JPH1071423A (en) Square steel tube and its production
KR102452501B1 (en) Forging method for slab
JPH0484682A (en) Production of clad material having high base metal toughness
JPH04200907A (en) Hot joining method for steel material
JP4654594B2 (en) Extra-thick steel plate and manufacturing method thereof
JP2007136527A (en) Steel plate having excellent in-plane bendability, and plane bending method of steel plate
JPH07124639A (en) Manufacture of hot-rolled large diameter square steel tube where material of corner radiused part is not deteriorated
JP2012115868A (en) Method for bending press sheet
JP6316912B1 (en) Manufacturing method for high-strength steel sheet press products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A02