JP2005177593A - Technique for purifying soil contaminated with volatile organic compound - Google Patents

Technique for purifying soil contaminated with volatile organic compound Download PDF

Info

Publication number
JP2005177593A
JP2005177593A JP2003421370A JP2003421370A JP2005177593A JP 2005177593 A JP2005177593 A JP 2005177593A JP 2003421370 A JP2003421370 A JP 2003421370A JP 2003421370 A JP2003421370 A JP 2003421370A JP 2005177593 A JP2005177593 A JP 2005177593A
Authority
JP
Japan
Prior art keywords
soil
voc
volatile organic
contaminated
soil contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003421370A
Other languages
Japanese (ja)
Other versions
JP3764454B2 (en
Inventor
Nobuyasu Okuda
信康 奥田
Shinichi Torisawa
進一 鳥澤
Ryoichi Endo
良一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2003421370A priority Critical patent/JP3764454B2/en
Publication of JP2005177593A publication Critical patent/JP2005177593A/en
Application granted granted Critical
Publication of JP3764454B2 publication Critical patent/JP3764454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To treat soil contaminated with a VOC at a purification yard, highly efficiently, in a short time, and at a low cost. <P>SOLUTION: The soil contaminated with the VOC is passed through a treating apparatus provided with the introduction part and the derivation part of out door air and also mounted with a plurality of conveyers by the plurality of conveyers while carrying out aeration, is repeatedly dried by air, is micronized to less than 0.1 to 4 cm or smaller, and is brought in contact with a large amount of air to accelerate gasification of the VOC contained in the soil contaminated with the VOC and reduce a VOC concentration of less than a targeted value or lower. Hot air is brought in contact with that as a counter current to a passage direction of the soil contaminated with the VOC. As pre-treatment, the soil contaminated with the VOC is passed through a volatile acceleration area constituted of a vibration screen having a passage aperture of 0.1 cm to 4 cm and an air blower, and falls while micronizing the soil contaminated with the VOC, or is subjected to reduction treatment of a moisture ratio or heat treatment at 40 to 100°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、揮発性有機化合物(以下、VOCと称する)に汚染された土壌の浄化工法に関する。   The present invention relates to a method for purifying soil contaminated with a volatile organic compound (hereinafter referred to as VOC).

従来、VOCに汚染された土壌の浄化については、例えば、下記に示すように、種々の技術が知られている。
・生石灰などを100〜150kg混合し、VOCを揮発させるホットソイル工法(例えば、特許文献1参照)
・アルミニウム粉末とアルカリ剤とを土壌と混合し、VOCをガス吸引により浄化し、場内に埋め戻すアルミクリーン工法(例えば、特許文献2,3参照)
・電気ヒーターで土壌を加熱し、VOCを真空吸引する工法(電機加熱+真空吸引工法)
・真空ポンプで土壌ガスとしてVOCを抽出する工法(真空ガス吸引工法)
・機械撹拌によりVOCを揮発させる工法
・外熱式キルン等によりVOCを加熱する低温加熱工法(例えば、特許文献4参照)
・酸とアルカリを土壌に混合し、中和熱で発熱させる工法(例えば、特許文献5参照)
・VOCを蒸発により除去する土壌中のVOCを除去する方法および装置(例えば、特許文献6参照)
・VOCが混入した土壌と水とを混合して得られた泥水を曝気処理し、そのVOCを泥水から揮発させる土壌中のVOCの除去方法(例えば、特許文献7参照)
・オゾンや過マンガン酸カリウム、過酸化水素などの酸化剤を混合してVOCを分解処理する酸化剤混合による分解処理工法
・メタン資化性菌、トルエン・フェノール分解菌、嫌気性微生物などの微生物によりVOCを分解処理する工法(例えば、特許文献8参照)
・水素供与体を供給してVOCを微生物の作用で分解する工法(例えば、特許文献9参照)
特許第2589002号公報 特開2001−087410号公報 特開2002−079232号公報 特開2002−205050号公報 特許第3438004号公報 特開2000−107741号公報 特開2002−59151号公報 特開2001−347280号公報 特開2000−107743号公報 特開2001−219155号公報 特許第3324139号公報 特許第3269901号公報
Conventionally, for purification of soil contaminated with VOC, various techniques are known as shown below, for example.
・ Hot soil method that mixes 100-150 kg of quicklime etc. and volatilizes VOC (for example, refer to Patent Document 1)
・ Aluminum clean method that mixes aluminum powder and alkaline agent with soil, purifies VOC by gas suction, and backfills in the field (for example, see Patent Documents 2 and 3)
・ A method of heating the soil with an electric heater and vacuuming VOCs (electric heating + vacuum suction method)
・ Method of extracting VOC as soil gas with vacuum pump (vacuum gas suction method)
・ Method of volatilizing VOC by mechanical stirring ・ Low-temperature heating method of heating VOC by external heating kiln or the like (for example, see Patent Document 4)
・ A method that mixes acid and alkali with soil and generates heat by heat of neutralization (for example, see Patent Document 5)
-Method and apparatus for removing VOC in soil that removes VOC by evaporation (see, for example, Patent Document 6)
-A method for removing VOCs in soil by aeration of muddy water obtained by mixing soil mixed with VOC and water and volatilizing the VOC from the muddy water (see, for example, Patent Document 7)
・ Decomposition method using oxidant mixture that decomposes VOC by mixing oxidants such as ozone, potassium permanganate and hydrogen peroxide ・ Microorganisms such as methane-utilizing bacteria, toluene / phenol-degrading bacteria, anaerobic microorganisms Method of disassembling VOC by the method (for example, see Patent Document 8)
A method of supplying a hydrogen donor and decomposing VOCs by the action of microorganisms (see, for example, Patent Document 9)
Japanese Patent No. 2589002 JP 2001-087410 A JP 2002-079232 A JP 2002-205050 A Japanese Patent No. 3438004 JP 2000-107741 A JP 2002-59151 A JP 2001-347280 A JP 2000-107743 A JP 2001-219155 A Japanese Patent No. 3324139 Japanese Patent No. 3269901

しかし、ホットソイル工法は、短時間で所定濃度まで低減させるためには、生石灰の使用量が多くなるため、処理後の土壌が過剰に高アルカリとなり、埋め戻しには不適となり、処分費の高騰および場外搬出土量が多く、環境への負荷が高いという問題がある。
アルミクリーン工法は、加熱後の土壌ガス吸引に1日から数日を要する。小規模な土壌処理では施設費が高いという問題がある。
However, the hot-soil method increases the amount of quicklime used in order to reduce it to a predetermined concentration in a short time, so the soil after treatment becomes excessively high alkalinity, making it unsuitable for backfilling, and increasing disposal costs. In addition, there is a problem that the amount of unloading soil is large and the load on the environment is high.
In the aluminum clean method, it takes 1 to several days to suck the soil gas after heating. There is a problem that facility costs are high for small-scale soil treatment.

電機加熱+真空吸引工法は、現地に設置可能な設備では、処理速度が遅く、処理費用が高いという問題がある。
真空ガス吸引工法は、短期間での環境基準値までの浄化が困難である。原地盤の通気性のばらつきに左右され、均一な浄化が困難である。粘性土や吸着性の高い土質では、数年以上経過しても環境基準値以下とならない箇所があるなどの問題がある。
The electric heating + vacuum suction method has a problem that the processing speed is low and the processing cost is high in equipment that can be installed locally.
The vacuum gas suction method is difficult to purify to the environmental standard value in a short period of time. Uniform purification is difficult due to variations in the air permeability of the original ground. In the case of clay soil and soil with high adsorptivity, there are problems such as that there are places that do not fall below the environmental standard value even after several years.

機械撹拌によりVOCを揮発させる工法は、単に機械(バックホーなど)で汚染土壌を撹拌するだけであるから、浄化速度が遅く、高濃度汚染には対応できないなどの問題がある。
低温加熱工法は、処理コストが高い上に、処理装置の設置費が高いため、大量の処理を必要とする現場でしか適用できないという問題がある。
The method of volatilizing VOC by mechanical agitation involves simply agitating the contaminated soil with a machine (such as a backhoe), and thus has a problem that the purification rate is slow and it cannot cope with high-concentration contamination.
The low-temperature heating method has a problem that it is applicable only at a site that requires a large amount of processing because the processing cost is high and the installation cost of the processing device is high.

中和熱でVOCを発熱させる工法は、土壌から極めて短時間にVOCを除去、分離することは困難である。
土壌中のVOCの除去方法は、土壌から極めて短時間にVOCを除去、分離することは困難である。
酸化剤混合による分解処理工法は、処理コストが高い上に、比較的低い濃度の汚染に対しては、除去効率が低い。使用する薬剤の危険性が高いため、不適切な使用により対象エリア外へ流出し、周辺環境へ酸化剤そのものの有害性による影響を及ぼす可能性があるなどの問題がある。
In the method of generating VOCs with heat of neutralization, it is difficult to remove and separate VOCs from soil in a very short time.
In the method for removing VOC in soil, it is difficult to remove and separate VOC from soil in a very short time.
The decomposition treatment method using oxidant mixing is high in processing cost and has low removal efficiency for relatively low concentrations of contamination. Due to the high risk of the chemicals used, there is a problem that it may flow out of the target area due to improper use and may have an adverse effect on the surrounding environment due to the toxicity of the oxidizing agent itself.

VOCを蒸発により除去する方法は、土壌と無機化合物とを水分の存在下にこれらが十分に接触する状態で均一に混合して発熱反応を起こさせ、次いで、発熱反応により加熱された混合物をVOCの大気中への揮散を防止した状態で粒状化させながらVOCを蒸発させるという処理を必要とし、通常のVOC除去には不向きである。
微生物による分解処理工法は、浄化に必要な期間が長い。微生物処理は、土質の影響を大きく受けるため、適用場所が限定されるなどの問題がある。
In the method of removing VOC by evaporation, soil and an inorganic compound are uniformly mixed in the presence of moisture in a state where they are in sufficient contact to cause an exothermic reaction, and then the mixture heated by the exothermic reaction is subjected to VOC. This requires a process of evaporating VOCs while granulating them in a state where volatilization into the atmosphere is prevented, and is not suitable for ordinary VOC removal.
The decomposition treatment method using microorganisms requires a long period of time for purification. Microbial treatment is greatly affected by soil quality, and there are problems such as limited application locations.

なお、ダイオキシンやPCBなどの揮発性の低い有害物質を対象とした汚染土壌前処理方法およびその装置ならびに汚染土壌無害化処理方法が知られている(例えば、特許文献10参照)。しかし、特許文献9では、土壌を乾燥させるだけであるため、土壌中に吸着されているダイオキシンやPCBなどを揮発分離させることができない。また、高濃度汚染には対応できない。大量の処理を必要とする現場では適用できないなどの問題がある。   In addition, a contaminated soil pretreatment method and an apparatus for detrimental substances with low volatility such as dioxins and PCBs, and a contaminated soil detoxification treatment method are known (for example, see Patent Document 10). However, in Patent Document 9, since the soil is only dried, dioxins and PCBs adsorbed in the soil cannot be volatilized and separated. Moreover, it cannot cope with high concentration contamination. There is a problem that it cannot be applied at a site that requires a large amount of processing.

また、ガス化したVOCの気相還元分解処理方法(例えば、特許文献11参照)や気体中に含有する有機塩素化合物を、熱酸化分解する方法(例えば、特許文献12参照)が知られているが、これらはVOCに汚染された土壌の浄化に関する発明ではない。
本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、VOCに汚染された土壌の浄化ヤードにおいて高効率、短時間でローコストに処理することを可能としたVOCに汚染された土壌の浄化工法を提供することにある。
Further, a gas phase reductive decomposition method (for example, see Patent Document 11) of gasified VOC and a method for thermally oxidizing and decomposing an organic chlorine compound contained in a gas (for example, see Patent Document 12) are known. However, these are not inventions related to the purification of soil contaminated with VOCs.
The present invention has been made in order to solve such a conventional problem, and its purpose is to achieve a VOC that can be processed efficiently and in a short time at a low cost in a purification yard of soil contaminated with VOC. The purpose is to provide a method for the purification of contaminated soil.

請求項1に係る発明は、外気の導入部と導出部とを備えるとともに複数のベルトコンベヤを設置した処理装置内に、通気を行いながら前記複数のベルトコンベヤによりVOCに汚染された土壌を通過させ、風乾を繰り返し、VOCに汚染された土壌を0.1cm〜4cm以下に微細化し、大量の空気と接触させ、VOCに汚染された土壌中に含まれるVOCのガス化を促進し、VOCの濃度を目標値以下に低減させることを特徴とする。   According to the first aspect of the present invention, the soil contaminated with VOC by the plurality of belt conveyors is allowed to pass through the processing apparatus provided with the outside air introduction section and the outlet section and provided with a plurality of belt conveyors. Repeated air drying, refined the soil contaminated with VOC to 0.1cm ~ 4cm or less, contact with a large amount of air, promote the gasification of VOC contained in the soil contaminated with VOC, the concentration of VOC Is reduced below the target value.

請求項2に係る発明は、請求項1記載のVOCに汚染された土壌の浄化工法において、
VOCに汚染された土壌の通過方向と向流で温風を接触させることを特徴とする。
請求項3に係る発明は、請求項1または請求項2記載のVOCに汚染された土壌の浄化工法において、VOCに汚染された土壌を複数のベルトコンベヤに搬入する前に、目開き0.1cm〜4cmの振動ふるいと送風機により構成された揮発促進域を通過させ、VOCに汚染された土壌を細分化しながら落下させることを特徴とする。
The invention according to claim 2 is a method for purifying soil contaminated with VOC according to claim 1,
It is characterized in that warm air is brought into contact with the passage direction and countercurrent of soil contaminated with VOC.
According to a third aspect of the present invention, in the method for purifying soil contaminated with VOC according to claim 1 or claim 2, before the soil contaminated with VOC is carried into a plurality of belt conveyors, the opening is 0.1 cm. It is characterized by passing through a volatilization promoting area constituted by a vibration sieve of ˜4 cm and a blower, and dropping soil contaminated with VOC while being subdivided.

請求項4に係る発明は、請求項1ないし請求項3の何れか記載のVOCに汚染された土壌の浄化工法において、VOCに汚染された土壌を複数のベルトコンベヤに搬入する前に、含水比の低減処理または土壌を40℃〜100℃に加温する処理を行うことを特徴とする。
請求項5に係る発明は、請求項1ないし請求項4の何れか記載のVOCに汚染された土壌の浄化工法において、VOCが、常圧での沸点が150℃以下のVOCであることを特徴とする。
According to a fourth aspect of the present invention, in the method for purifying soil contaminated with VOC according to any one of the first to third aspects, the water content ratio is reduced before the soil contaminated with VOC is carried into a plurality of belt conveyors. Or a process of heating the soil to 40 ° C to 100 ° C.
The invention according to claim 5 is the method for purifying soil contaminated with VOC according to any one of claims 1 to 4, wherein the VOC is a VOC having a boiling point of 150 ° C. or less at normal pressure. And

本発明によれば、下記のような効果を奏することが可能となる。
VOCの濃度を極めて短時間に目標値以下まで低減する浄化が実現できる。
土壌厚さを40mm以下とし、外気との接触効率を向上させることにより、加熱温度40℃〜100℃での浄化処理を可能とした。土を200℃〜800℃まで加熱する外熱式キルンなどを用いた加熱処理に比べ、システム構成がシンプルで、イニシャルおよびランニングコストが大幅に抑えられる。
According to the present invention, the following effects can be obtained.
Purification that reduces the VOC concentration to a target value or less in a very short time can be realized.
By making the soil thickness 40 mm or less and improving the contact efficiency with the outside air, purification treatment at a heating temperature of 40 ° C. to 100 ° C. was made possible. Compared to heat treatment using an externally heated kiln that heats the soil to 200 ° C. to 800 ° C., the system configuration is simple, and initial and running costs are greatly reduced.

対策エリアから掘削した土壌を処理土仮置きヤードへの移動と浄化を両立し、作業の大幅な省力化が図れるとともに、汚染土壌の連続処理が可能となる。
掘削箇所またはその付近で密閉された処理装置内で汚染土壌の処理を行うため、作業環境が良好であり、汚染物質の場内移動や処理に伴う外気放散が極限まで抑えられ、環境への負荷が小さい。
The soil excavated from the countermeasure area can be both transferred to the treated soil temporary storage yard and purified, saving labor greatly and enabling continuous treatment of contaminated soil.
Since the contaminated soil is treated in a treatment device sealed at or near the excavation site, the work environment is good, the outside air diffusion due to the movement and treatment of contaminants is suppressed to the maximum, and the burden on the environment is reduced. small.

処理土は処理によりよく撹拌され均一化する。さらに仮置きヤードで浄化状況をチェックすることができ、確実な浄化が実現できる。
浄化システムは、浄化対象物および浄化目標値に応じたシンプルな構成となっており、装置費が低減し、処理コストが安い。
The treated soil is well agitated and homogenized by the treatment. Furthermore, the purification status can be checked in the temporary storage yard, and reliable purification can be realized.
The purification system has a simple configuration according to the purification object and the purification target value, so that the apparatus cost is reduced and the processing cost is low.

以下、本発明の実施形態を図面に基づいて説明する。
(第一実施形態)
先ず、本実施形態に係るVOCに汚染された土壌(以下、汚染土壌と称する)の浄化工法に用いる処理装置1について説明する。
処理装置1は、内部に複数のベルトコンベヤ5を設置し、両端部に外気の導入部3と導出部4とを有するトンネル状の処理部2を備えている。処理部2は、両端部に設けた外気の導入部3および導出部4以外は、床部材の上に骨組みを介して壁部材によって囲われている。なお、トンネル状の処理部2は、対象処理土壌に応じて、多数のベルトコンベヤ5を配置するために、ベルトコンベヤ5を蛇行状に配置させることができるようにしても良い。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
First, the processing apparatus 1 used for the purification method of the soil (henceforth contaminated soil) contaminated with VOC which concerns on this embodiment is demonstrated.
The processing apparatus 1 includes a plurality of belt conveyors 5 therein, and includes a tunnel-shaped processing unit 2 having an outside air introduction unit 3 and a lead-out unit 4 at both ends. The processing unit 2 is surrounded by a wall member on a floor member via a framework except for the outside air introduction unit 3 and the outlet unit 4 provided at both ends. In addition, in order to arrange | position the many belt conveyors 5 according to the object process soil, the tunnel-shaped process part 2 may be made to be able to arrange the belt conveyors 5 in a meandering manner.

複数のベルトコンベヤ5は、処理部2の外気の導出部4側における最初のベルトコンベヤ5aだけが水平に配置され、残りのベルトコンベヤ5は、次のベルトコンベヤ5への受渡において、汚染土壌を落下させることができるように、所定の角度で傾斜して配置されている。また、必要に応じて、ベルトコンベヤ5の配置は、直線的な配置に限らず、蛇行状であっても良い。   In the plurality of belt conveyors 5, only the first belt conveyor 5 a on the outside air deriving unit 4 side of the processing unit 2 is horizontally disposed, and the remaining belt conveyors 5 are configured to remove contaminated soil during delivery to the next belt conveyor 5. It is inclined at a predetermined angle so that it can be dropped. If necessary, the arrangement of the belt conveyor 5 is not limited to a linear arrangement, and may be meandering.

最初のベルトコンベヤ5aが配置される部屋6の上部には、汚染土壌を取り込むためのホッパー7が設けてある。部屋6は、外気の導出部4を兼ねている。
また、部屋6の側部または下部には、ブロア9に連絡する通路8が設けてある。ブロア9は通路10を介して活性炭を入れた空気浄化室11に連絡している。
処理部2の最後のベルトコンベヤ5bの後段には、処理土を仮置きするヤード12に搬送するベルトコンベヤ13が配置されている。
A hopper 7 for taking in contaminated soil is provided in the upper part of the room 6 where the first belt conveyor 5a is arranged. The room 6 also serves as the outside air deriving unit 4.
Further, a passage 8 communicating with the blower 9 is provided at the side or the lower portion of the room 6. The blower 9 communicates with an air purification chamber 11 containing activated carbon through a passage 10.
A belt conveyor 13 that conveys the treated soil to the yard 12 where the treated soil is temporarily placed is disposed at the subsequent stage of the last belt conveyor 5b of the processing unit 2.

次に、本実施形態に係る汚染土壌の浄化工法について説明する。
先ず、ブロア9を駆動して処理部2内に外気を導入する。
次に、汚染土壌が存在する対策エリア14を掘削し、その汚染土壌をホッパー7から処理装置1に投入する。
次に、投入された汚染土壌は、最初のベルトコンベヤ5aで受け取られた後、次段のベルトコンベヤ5に落下し、その後に連なる複数のベルトコンベヤ5に対して落下して乗り移るという受渡を繰り返し受ける。この各受渡における落下時に、汚染土壌の通過方向と向流で通気する外気と接触し、乾燥されるとともに、細分化される。この受渡において、汚染土壌は0.1cm〜4cm以下に微細化し、大量の空気と接触することにより、汚染土壌中および汚染土壌に吸着したVOCがガス化し、VOC濃度が目標値(土壌環境基準または最終処分場受入基準値)以下に低減する。ガス化したVOCは、ブロア9により吸引され、空気浄化室11において活性炭に吸着される。
Next, the contaminated soil purification method according to this embodiment will be described.
First, the blower 9 is driven to introduce outside air into the processing unit 2.
Next, the countermeasure area 14 where the contaminated soil exists is excavated, and the contaminated soil is put into the processing apparatus 1 from the hopper 7.
Next, after the received contaminated soil is received by the first belt conveyor 5a, it is dropped to the next belt conveyor 5, and then dropped and transferred to a plurality of successive belt conveyors 5 repeatedly. receive. At the time of the fall in each delivery, it is contacted with the passing direction of the contaminated soil and the outside air ventilated in a countercurrent, and is dried and subdivided. In this delivery, the contaminated soil is refined to 0.1 cm to 4 cm or less, and by contacting with a large amount of air, the VOC adsorbed in the contaminated soil and the contaminated soil is gasified, and the VOC concentration is the target value (soil environmental standard or Reduce to below the final disposal site acceptance standard value). The gasified VOC is sucked by the blower 9 and adsorbed on the activated carbon in the air purification chamber 11.

次に、VOC濃度が目標値以下になった処理土は、処理装置1の最終のベルトコンベヤ5からベルトコンベヤ13によって処理土を仮置きするヤード12に搬送される。
次に、ヤード12に仮置きされた処理土は、浄化確認の後、埋め戻しや場外搬出などにより処分される。
以上のように、本実施形態によれば、複数のベルトコンベヤ5間での汚染土壌の受渡段階における落下時に汚染土壌が攪拌されるとともに細分化され、かつその落下時に処理装置1内の通気により汚染土壌が乾燥されて汚染土壌中および汚染土壌に吸着したVOCをガス化し易くなるため、短時間で汚染土壌のVOC濃度を目標値以下まで浄化することができる。
Next, the treated soil having a VOC concentration equal to or lower than the target value is conveyed from the final belt conveyor 5 of the processing apparatus 1 to the yard 12 where the treated soil is temporarily placed by the belt conveyor 13.
Next, the treated soil temporarily placed in the yard 12 is disposed of by backfilling or carrying out of the field after confirmation of purification.
As described above, according to the present embodiment, the contaminated soil is agitated and subdivided when the contaminated soil is dropped between the plurality of belt conveyors 5 at the delivery stage, and when the falling, by the ventilation in the processing apparatus 1 Since the contaminated soil is dried and VOCs adsorbed in and in the contaminated soil are easily gasified, the VOC concentration of the contaminated soil can be purified to a target value or less in a short time.

(第二実施形態)
本実施形態では、複数のベルトコンベヤ5により搬送される汚染土壌に対し熱風を吹きかけるようにした点で、第一実施形態に係るVOCの浄化工法とは相違する。
図2は、本実施形態に用いる処理装置1Aを示す。この処理装置1Aでは、複数のベルトコンベヤ5により搬送される汚染土壌に対し熱風を吹きかけるために熱風発生装置15を設けている。その他の構成は、図1に示す処理装置1と同じである。
(Second embodiment)
This embodiment is different from the VOC purification method according to the first embodiment in that hot air is blown against the contaminated soil conveyed by the plurality of belt conveyors 5.
FIG. 2 shows a processing apparatus 1A used in this embodiment. In this processing apparatus 1 </ b> A, a hot air generator 15 is provided to blow hot air against the contaminated soil conveyed by the plurality of belt conveyors 5. Other configurations are the same as those of the processing apparatus 1 shown in FIG.

熱風発生装置15は、化学反応の発熱による加熱、マイクロ波加熱、電気ヒータによる加熱、灯油、ガスなどの燃料による加熱などにより空気を暖め、熱風をファンにより吹き出し、汚染土壌を40℃〜100℃に加温することが可能な装置である。熱風発生装置15は処理装置1A内の空気を吸い込んでこれを加熱するので、処理装置1A内の雰囲気温度も高まり、汚染土壌を加熱し易い状態にすることができる。   The hot air generator 15 warms the air by heating due to heat generated from a chemical reaction, microwave heating, heating by an electric heater, heating by fuel such as kerosene, gas, etc., blows hot air by a fan, and blows contaminated soil at 40 ° C. to 100 ° C. It is a device that can be heated. Since the hot air generator 15 sucks the air in the processing apparatus 1A and heats it, the atmospheric temperature in the processing apparatus 1A also increases, and the contaminated soil can be easily heated.

従って、本実施形態によれば、複数のベルトコンベヤ5による汚染土壌の搬送時に、汚染土壌の通過方向と向流で外気とともに熱風が接触し、汚染土壌中および汚染土壌に吸着したVOCのガス化を促進することができる。
なお、本実施形態では、熱風発生装置15を2つのベルトコンベヤ5に対して1個という割合で設けたが、本発明は、これに限らず、個別に設けても良い。また、処理部2内の雰囲気温度を高めるために外気の導入部3側から導出部4に向かって熱風を吹き込むようにしても良い。
Therefore, according to the present embodiment, when the contaminated soil is transported by the plurality of belt conveyors 5, hot air contacts with the outside air in the direction and countercurrent of the contaminated soil, and gasification of VOCs adsorbed in the contaminated soil and the contaminated soil is obtained. Can be promoted.
In the present embodiment, the hot air generator 15 is provided at a rate of one for the two belt conveyors 5, but the present invention is not limited to this and may be provided individually. Further, hot air may be blown from the outside air introduction unit 3 side toward the derivation unit 4 in order to increase the ambient temperature in the processing unit 2.

(第三実施形態)
本実施形態では、汚染土壌の投入部に振動ふるい16を設けて点で、第一実施形態に係るVOCの浄化工法とは相違する。
図3は、本実施形態に用いる処理装置1Bを示す。この処理装置1Bでは、最初のベルトコンベヤ5aが配置される部屋6に、振動ふるい16が設けてある。振動ふるい16は、ホッパー17と、例えば目開き0.1cm〜4cmの複数の網18とで構成されている。
(Third embodiment)
This embodiment is different from the VOC purification method according to the first embodiment in that a vibrating screen 16 is provided at the input portion of the contaminated soil.
FIG. 3 shows a processing apparatus 1B used in this embodiment. In the processing apparatus 1B, a vibrating screen 16 is provided in a room 6 in which the first belt conveyor 5a is disposed. The vibration sieve 16 includes a hopper 17 and a plurality of nets 18 having an opening of 0.1 cm to 4 cm, for example.

振動ふるい16の下部側には、熱風を供給する取込口19が設けてある。この取込口19には、第二実施形態と同様の熱風発生装置が設けてある。また、汚染土壌の加熱に伴いVOCガスが部屋6内に立ち込めるので、この部屋6をシート20などで囲い、VOCガスをブロア9により吸引し、活性炭を入れた空気浄化室11において浄化された後、排気するようになっている。   An intake port 19 for supplying hot air is provided on the lower side of the vibration sieve 16. The intake port 19 is provided with a hot air generator similar to that of the second embodiment. Since the VOC gas enters the room 6 as the contaminated soil is heated, the room 6 is enclosed by a sheet 20 or the like, and after the VOC gas is sucked by the blower 9 and purified in the air purification chamber 11 containing activated carbon. , Is supposed to exhaust.

本実施形態によれば、処理装置1C内の複数のベルトコンベヤ5による処理前に、汚染土壌を細分化して落下させるとともに熱風により汚染土壌中および汚染土壌に吸着したVCOをガス化することができるので、さらに汚染土壌中および汚染土壌に吸着したVCOがガス化し易い状態にすることができるので、浄化度の向上を図ることができる。
なお、本実施形態では、振動ふるい16の下部に熱風発生装置を設けた場合について説明したが、本発明はこれに限らず、振動ふるい16だけで処理することも可能である。
According to this embodiment, before processing by the plurality of belt conveyors 5 in the processing apparatus 1C, the contaminated soil can be subdivided and dropped, and the VCO adsorbed in the contaminated soil and the contaminated soil by hot air can be gasified. Therefore, since the VCO adsorbed in the contaminated soil and the contaminated soil can be easily gasified, the purification degree can be improved.
In addition, although this embodiment demonstrated the case where a hot air generator was provided in the lower part of the vibration sieve 16, this invention is not restricted to this, It is also possible to process only with the vibration sieve 16. FIG.

(第四実施形態)
本実施形態では、上記第一実施形態ないし第四実施形態において、汚染土壌を処理する前に、含水比を低減するために、例えば、セメント、生石灰、乾燥砂などを混合した。
表1に含水率調整の必要性の有無を示す。
本実施形態では、汚染土壌の含水比に応じて効率的にVOCの除去ができるように調整を行うため、短時間でVOCの除去が可能となる。
(Fourth embodiment)
In the present embodiment, before the contaminated soil is treated in the first to fourth embodiments, for example, cement, quicklime, dry sand, and the like are mixed in order to reduce the moisture content.
Table 1 shows the necessity of moisture content adjustment.
In the present embodiment, adjustment is performed so that VOC can be efficiently removed according to the water content ratio of the contaminated soil, so that VOC can be removed in a short time.

Figure 2005177593
Figure 2005177593

表1において、含水率の高低の判断は、含水率22以上を含水率が高い(含水率調整必要)とし、それ以下は含水率が低い(含水率調整不要)とした。
(第五実施形態)
本実施形態では、上記第一実施形態ないし第四実施形態を適用する浄化対象物質毎の浄化工法の選定について表2に示す。
In Table 1, the determination of whether the moisture content is high or low is based on the assumption that the moisture content is 22 or higher (the moisture content adjustment is necessary), and below that the moisture content is low (the moisture content adjustment is unnecessary).
(Fifth embodiment)
In this embodiment, Table 2 shows the selection of the purification method for each substance to be purified to which the first to fourth embodiments are applied.

Figure 2005177593
Figure 2005177593

表2において、”1”は、第一実施形態による処理方法を示す。”2”は、第二実施形態による処理方法を示す。”3”は第三実施形態に係る処理方法を示す。”4”は、第三実施形態による処理方法において第四実施形態による処理方法を適用した処理方法を示す。
(第六実施形態)
本実施形態では、振動ふるいの目開きを4cm以下にして汚染土壌を粉砕することが望ましいことを確認した。
In Table 2, “1” indicates a processing method according to the first embodiment. “2” indicates a processing method according to the second embodiment. “3” indicates a processing method according to the third embodiment. “4” indicates a processing method in which the processing method according to the fourth embodiment is applied to the processing method according to the third embodiment.
(Sixth embodiment)
In this embodiment, it was confirmed that it is desirable to crush the contaminated soil with an opening of the vibrating screen of 4 cm or less.

本発明は、土壌中に含まれるVOCの揮発を促進する条件を整えることで短時間の浄化を実現している。VOCを揮発させるための外気と土壌との接触では、土壌の大きさを小さくすることが必要である。
砂層の上層を50℃の温風で加熱した場合の計算結果を示す。土壌を温風により加熱すると、土層の内部へ表面から熱が伝わる。浄化効果を促進させるためには、10℃以上上昇させる必要があるため、図5に示すグラフより土壌厚さ2cmまでは有効であると判断できる。
The present invention achieves purification in a short time by adjusting the conditions for promoting the volatilization of VOC contained in the soil. In the contact between the outside air and the soil for volatilizing the VOC, it is necessary to reduce the size of the soil.
The calculation result at the time of heating the upper layer of a sand layer with 50 degreeC warm air is shown. When the soil is heated with warm air, heat is transferred from the surface to the inside of the soil layer. In order to promote the purification effect, it is necessary to raise the temperature by 10 ° C. or more. Therefore, it can be judged that the soil thickness is effective up to 2 cm from the graph shown in FIG.

土壌を微細化し、ベルトコンベヤにより撹拌することにより、土壌の上下より熱が供給されることになるので、土壌の大きさとしては、2cmの2倍にあたる4cm以下が適当である。
図6,図7は、加温に有効な土壌厚さの検討結果を示す。
5cmの砂層の上層を50℃とした場合の土壌温度上昇割合の計算を行ったところ、土壌厚さは、2cm以下とすることが必要であることが判明した。
Heat is supplied from the top and bottom of the soil by refining the soil and stirring it with a belt conveyor. Therefore, the size of the soil is suitably 4 cm or less, which is twice 2 cm.
6 and 7 show the examination results of the soil thickness effective for heating.
Calculation of the rate of increase in soil temperature when the upper layer of the 5 cm sand layer was 50 ° C. revealed that the soil thickness was required to be 2 cm or less.

本実施例は、トリクロロエチレン、テトラクロロエチレンに汚染された砂質土の浄化処理を行った。
〈条件〉
・対象土質: 砂質土、含水率17%、処理土量各180L(300kg)
・汚染物質: トリクロロエチレン(TCE)、テトラクロロエチレン(PCE)
・浄化方法: 汚染土壌を方式(1)または(2)の方法で処理を行い、浄化効果を確 認した。
In this example, purification treatment of sandy soil contaminated with trichlorethylene and tetrachlorethylene was performed.
<conditions>
・ Target soil: Sandy soil, moisture content 17%, treated soil amount 180L (300kg)
-Pollutants: Trichlorethylene (TCE), Tetrachlorethylene (PCE)
-Purification method: The contaminated soil was treated by the method (1) or (2), and the purification effect was confirmed.

・土壌厚さ4cmとして、上記各実施形態において示したトンネル状の処理部内に配置 した複数のベルトコンベヤを通過させた。
実験条件は、表3に示す通りである。
実験結果は、表4、表5に示す通りである。
実験結果において、対照1は、20℃で放置60分(塊のまま土 1kg)の場合、対照2は、50℃で放置60分(塊のまま土 1kg)の場合を示す。
-A soil thickness of 4 cm was passed through a plurality of belt conveyors arranged in the tunnel-shaped processing section shown in the above embodiments.
The experimental conditions are as shown in Table 3.
The experimental results are as shown in Tables 4 and 5.
In the experimental results, Control 1 shows a case of 60 minutes left at 20 ° C. (1 kg of soil as a lump), and Control 2 shows a case of 60 minutes left at 50 ° C. (1 kg of soil as a lump).

Figure 2005177593
Figure 2005177593

Figure 2005177593
Figure 2005177593

Figure 2005177593
Figure 2005177593

〈考察〉
方式(1)について:
環境基準値の3倍程度の汚染土壌を20℃で換気したトンネル状の処理部内のベルトコンベヤを通過させることで、僅か2分程度で土壌よりTCEで73%、PCEで70%を分離し、環境基準値以下とした。
<Discussion>
About method (1):
By passing the contaminated soil, which is about three times the environmental standard value, through a belt conveyor in a tunnel-shaped treatment section ventilated at 20 ° C, 73% of TCE and 70% of PCE are separated from the soil in just 2 minutes. It was below the environmental standard value.

一方、対照として塊のまま1kgで20℃で、60分放置してもTCE、PCEともにほとんど濃度は低下しなかった。
以上より、方式(1)での除去率は70〜74%程度であり、目標値の3〜4倍の濃度を浄化することができた。
方式(2)について:
トンネル状の処理部内を熱風発生装置で50℃とすることで、環境基準値の6〜7倍程度の汚染土壌をトンネル状の処理部内のベルトコンベヤを通過させることで、僅か2分程度で土壌よりTCEで89%、PCEで87%を分離し、環境基準値以下とした。
On the other hand, as a control, the concentration of both TCE and PCE hardly decreased even when left as a lump at 20 ° C. for 60 minutes.
From the above, the removal rate in the method (1) is about 70 to 74%, and it was possible to purify the concentration 3 to 4 times the target value.
About method (2):
By setting the inside of the tunnel-like treatment part to 50 ° C with a hot air generator, the contaminated soil, which is about 6 to 7 times the environmental standard value, is passed through the belt conveyor in the tunnel-like treatment part, so that the soil is only about 2 minutes. Furthermore, 89% was separated by TCE and 87% by PCE, and the environmental standard value or less was set.

一方、対照として塊のまま1kgで50℃で、60分放置してもTCEで23%、PCEでは17%の除去率に留まり、トンネル状の処理部内を通過させる効果は、歴然としている。
以上より、方式(2)での除去率は87〜89%程度であり、目標値の7〜8倍の濃度を浄化することができた。
On the other hand, as a control, the removal rate of 1 kg at 50 ° C. for 60 minutes remains at a removal rate of 23% for TCE and 17% for PCE, and the effect of passing through the tunnel-like treatment part is obvious.
From the above, the removal rate in the method (2) is about 87 to 89%, and the concentration 7 to 8 times the target value could be purified.

本実施例は、トリクロロエチレン、テトラクロロエチレンに汚染された砂混じり粘土の浄化処理を行った。
〈条件〉
・対象土質: 砂混じり粘土、含水率19%、処理土量 2m3
・汚染物質: トリクロロエチレン(TCE)、テトラクロロエチレン(PCE)
・浄化方法: 汚染土壌を方式(3)方法で処理を行い、浄化効果を確認した。
In this example, a purification treatment of clay mixed with sand contaminated with trichlorethylene and tetrachlorethylene was performed.
<conditions>
-Target soil: sand-mixed clay, water content 19%, treated soil volume 2m 3
-Pollutants: Trichlorethylene (TCE), Tetrachlorethylene (PCE)
-Purification method: The contaminated soil was treated by the method (3), and the purification effect was confirmed.

・前処理として生石灰を75kg/m3で添加し、土壌の含水比低下させた後、土壌を加 温した。
・混合後2〜3時間、養生した後に、振動ふるいをかけ、トンネル状の処理部内のベル トコンベヤを通過させ、浄化を行った。振動ふるいの目開きを4cm以下とした。
実験条件は、表6に示す通りである。
-As a pretreatment, quick lime was added at 75 kg / m 3 to reduce the moisture content of the soil, and then the soil was warmed.
・ After curing for 2 to 3 hours after mixing, a vibration sieve was applied to pass through a belt conveyor in the tunnel-shaped processing section for purification. The opening of the vibrating screen was 4 cm or less.
Experimental conditions are as shown in Table 6.

実験結果は、表7に示す通りである。
〈考察〉
環境基準値の10〜30倍程度の汚染土壌に対し、事前に生石灰を混合し、含水率を低下させ微細化しやすくするとともに、60℃近くまで加熱し、その後、振動ふるいと煙道ベルコンを通過させることで、僅か2分程度で土壌よりTCE、PCEを分離し、環境基準値以下とした。
The experimental results are as shown in Table 7.
<Discussion>
Contaminated soil that is 10 to 30 times the environmental standard value is mixed with quick lime in advance to reduce the moisture content and make it easier to refine, heat it to close to 60 ° C, and then pass through a vibrating sieve and flue belcon. By doing so, TCE and PCE were separated from the soil in only about 2 minutes, and the environmental standard value or less was achieved.

土壌の含水比調整を行う方式(3)では、前処理を行わなかった方式(1)、(2)に比べ、除去率が向上し、安定した処理が可能となる。   In the method (3) for adjusting the moisture content ratio of soil, the removal rate is improved and stable treatment is possible as compared with the methods (1) and (2) in which the pretreatment is not performed.

Figure 2005177593
Figure 2005177593

Figure 2005177593
Figure 2005177593

本実施例は、テトラクロロエチレン、トリクロロエチレンにより汚染された高含水率シルトの浄化処理を行った。
〈条件〉
・対象土質: 砂混じり粘土、含水率22〜27%、処理土量 1m3
・汚染物質: トリクロロエチレン(TCE)、テトラクロロエチレン(PCE)
・前処理として生石灰を30,50,75,100kg/m3を添加し、土壌の含水比低 下させ土壌を加温した。
In this example, purification treatment of high water content silt contaminated with tetrachloroethylene and trichlorethylene was performed.
<conditions>
-Target soil: sand-mixed clay, moisture content 22-27%, treated soil volume 1m 3
-Pollutants: Trichlorethylene (TCE), Tetrachlorethylene (PCE)
・ As a pretreatment, quick lime was added at 30 , 50, 75, 100 kg / m 3 to reduce the moisture content of the soil and warm the soil.

・混合後2〜3時間養生した後に、送風機により外気と接触させ、揮発による土壌の分 離を促進しながら、振動ふるいを通過させ、その後の土壌を処理後土壌として含水率、 VOC溶出濃度を測定した。
通過時間 1分
〈結果〉
・表8に示す。
・ After mixing for 2 to 3 hours after mixing, contact with the outside air with a blower, pass through a vibrating screen while promoting soil separation by volatilization, and treat the subsequent soil as treated soil to determine the moisture content and VOC elution concentration. It was measured.
Passing time 1 minute <Result>
-Shown in Table 8.

表8に示すように、初期濃度が基準値の10倍以下と10倍以上で層別し、比較した。上記の初期濃度の範囲では、前処理によるVOC除去率は処理後の含水率と加温時の温度で決定され、初期濃度の多少の影響は小さかった。
そこで、表8の結果をまとめ、処理後の含水率と加温時の温度に対するVOC除去率をプロットし、図7および図8に示した。
As shown in Table 8, the initial density was stratified and compared at 10 times or less and 10 times or more of the reference value. In the above initial concentration range, the VOC removal rate by the pretreatment was determined by the water content after the treatment and the temperature at the time of heating, and the influence of the initial concentration was small.
Therefore, the results in Table 8 were summarized, and the water content after the treatment and the VOC removal rate against the temperature at the time of warming were plotted, and are shown in FIGS.

初期濃度が基準値の10倍以上の汚染土を環境基準値とするには、90%以上の除去率が必要である。初期濃度が高い場合には、前処理で十分に濃度を低減することで、次のベルトコンベヤ処理により合理的かつ確実に環境基準値以下まで完全に浄化することができる。
よって、高含水率シルト汚染土の前処理の目標値は、汚染初期濃度の高低で別々に設定することが合理的である。高含水率のシルト質汚染土に生石灰などを混合し含水率調整を行う場合目標値を表9に示す。
A removal rate of 90% or more is required to make a contaminated soil whose initial concentration is 10 times or more the reference value as the environmental reference value. When the initial concentration is high, by sufficiently reducing the concentration in the pretreatment, it is possible to completely and reliably purify the environmental standard value or less by the next belt conveyor processing.
Therefore, it is reasonable to set the target values for pretreatment of high moisture content silt contaminated soil separately depending on the initial level of contamination. Table 9 shows the target values when adjusting the moisture content by mixing quick lime with high moisture content silty contaminated soil.

以上のように、高含水率なシルト質土壌を、短時間かつ確実に処理するため方法として、表8に示す生石灰などを混合する前処理を行うことで、浄化に適した含水率に調整し、その後、第三実施形態に示すように、振動ふるい→ベルトコンベヤ処理を行い、VOC成分をガス化分離することにより基準値以下まで処理できる。   As described above, as a method for treating silty soil with a high water content in a short time and reliably, pretreatment of mixing quick lime shown in Table 8 is performed to adjust the water content suitable for purification. Thereafter, as shown in the third embodiment, vibration sieve → belt conveyor processing is performed, and the VOC component can be gasified and separated to be processed to a reference value or less.

Figure 2005177593
Figure 2005177593

Figure 2005177593
Figure 2005177593

本実施例は、トリクロロエチレン、テトラクロロエチレンにより汚染されたシルトの浄化処理を行った。
〈条件〉
・対象土質: 砂混じり粘土、含水率27%(1回目の実験)、22.5%(2回目の 実験)、処理土量 2m3
・汚染物質: トリクロロエチレン(TCE)、テトラクロロエチレン(PCE)
・浄化方法: 汚染土壌を方式(4)の方法で処理を行い、浄化効果を確認した。
In this example, purification treatment of silt contaminated with trichlorethylene and tetrachloroethylene was performed.
<conditions>
-Target soil: sand-mixed clay, moisture content 27% (first experiment), 22.5% (second experiment), treated soil volume 2m 3
-Pollutants: Trichlorethylene (TCE), Tetrachlorethylene (PCE)
-Purification method: The contaminated soil was treated by the method (4) to confirm the purification effect.

・前処理として生石灰を75kg/m3で添加し、土壌の含水比を低下させた後、土壌を 加温した。
・混合後2〜3時間、養生した後に、振動ふるいをかけ、トンネル状の処理部内のベル トコンベヤを通過させ、浄化を行った。振動ふるいの目開きを4cm以下とした。
実験条件は、表10に示す通りである。
・ As a pretreatment, quick lime was added at 75 kg / m 3 to reduce the moisture content of the soil, and then the soil was warmed.
・ After curing for 2 to 3 hours after mixing, a vibration sieve was applied to pass through a belt conveyor in the tunnel-shaped processing section for purification. The opening of the vibrating screen was 4 cm or less.
Experimental conditions are as shown in Table 10.

実験結果は、表11に示す通りである。   The experimental results are as shown in Table 11.

Figure 2005177593
Figure 2005177593

Figure 2005177593
Figure 2005177593

〈考察〉
環境基準値の10倍程度の汚染土壌に対し、事前に生石灰を混合し、含水率を低下させ微細化しやすくするとともに、約50℃まで加熱し、その後、振動ふるいとトンネル状の処理部内のベルトコンベヤを通過させることで、僅か2分程度で土壌よりTCE、PCEを分離し、環境基準値以下とした。
<Discussion>
Contaminated soil that is about 10 times the environmental standard value is mixed with quick lime in advance to reduce the water content and make it finer, and heat it to about 50 ° C. By passing through the conveyor, TCE and PCE were separated from the soil in just about 2 minutes, and the environmental standard value was reached.

実施例2とは土質が異なるため、処理後土壌の含水率がやや高いが、ほぼ同等の除去率が期待できる。   Since the soil quality is different from that of Example 2, the moisture content of the treated soil is slightly high, but an almost equivalent removal rate can be expected.

本発明の第一実施形態に係るVOCの浄化工法を示す説明図である。It is explanatory drawing which shows the purification method of VOC which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係るVOCの浄化工法を示す説明図である。It is explanatory drawing which shows the purification construction method of VOC which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係るVOCの浄化工法を示す説明図である。It is explanatory drawing which shows the purification method of VOC which concerns on 3rd embodiment of this invention. 加熱に有効な土壌厚さの検討のための説明図である。It is explanatory drawing for examination of the soil thickness effective for a heating. 図4に基づく土壌温度上昇と接触時間との関係を示す図である。It is a figure which shows the relationship between the soil temperature rise based on FIG. 4, and contact time. 図4に基づく土壌温度上昇と土壌厚さとの関係を示す図である。It is a figure which shows the relationship between the soil temperature rise based on FIG. 4, and soil thickness. 実施例3における最終時含水率とVOC除去率との関係を示す図である。It is a figure which shows the relationship between the last time moisture content in Example 3, and a VOC removal rate. 実施例3における土壌加温温度とVOC除去率との関係を示す図である。It is a figure which shows the relationship between the soil warming temperature in Example 3, and a VOC removal rate.

符号の説明Explanation of symbols

1,1A,1B,1C 処理装置
2 処理部
3 導入部
4 導出部
5,13 ベルトコンベヤ
6 部屋
7,17 ホッパー
8,10 通路
9 ブロア
11 空気浄化室
12 処理土を仮置きするヤード
14 対策エリア
15 熱風発生装置
16 振動ふるい
18 網
19 取込口
20 シート
1, 1A, 1B, 1C Processing device 2 Processing unit 3 Introducing unit 4 Deriving unit 5, 13 Belt conveyor 6 Room 7, 17 Hopper 8, 10 Passage 9 Blower 11 Air purification chamber 12 Yard 14 for temporarily placing processing soil 14 Countermeasure area 15 Hot Air Generator 16 Vibrating Sieve 18 Net 19 Intake Port 20 Sheet

Claims (5)

外気の導入部と導出部とを備えるとともに複数のベルトコンベヤを設置した処理装置内に、通気を行いながら前記複数のベルトコンベヤにより揮発性有機化合物に汚染された土壌を通過させ、風乾を繰り返し、前記土壌を0.1cm〜4cm以下に微細化し、大量の空気と接触させ、前記土壌中に含まれる前記揮発性有機化合物のガス化を促進し、前記揮発性有機化合物の濃度を目標値以下に低減させることを特徴とする揮発性有機化合物に汚染された土壌の浄化工法。   Inside the processing apparatus having a plurality of belt conveyors with an outside air introduction part and a lead-out part, passing the soil contaminated with volatile organic compounds by the plurality of belt conveyors while ventilating, repeated air drying, The soil is refined to 0.1 cm to 4 cm or less, brought into contact with a large amount of air, promotes gasification of the volatile organic compound contained in the soil, and the concentration of the volatile organic compound is reduced to a target value or less. A method for purifying soil contaminated with volatile organic compounds, characterized by reducing it. 請求項1記載の揮発性有機化合物に汚染された土壌の浄化工法において、前記土壌の通過方向と向流で温風を接触させることを特徴とする揮発性有機化合物に汚染された土壌の浄化工法方法。   2. A method for purifying soil contaminated with a volatile organic compound according to claim 1, wherein warm air is brought into contact with the direction of passage of the soil and countercurrent to the soil. Method. 請求項1または請求項2記載の揮発性有機化合物に汚染された土壌の浄化工法において、前記土壌を前記複数のベルトコンベヤに搬入する前に、目開き0.1cm〜4cmの振動ふるいと送風機により構成された揮発促進域を通過させ、前記土壌を細分化しながら落下させることを特徴とする揮発性有機化合物に汚染された土壌の浄化工法方法。   In the purification method of the soil contaminated with the volatile organic compound according to claim 1 or 2, before the soil is carried into the plurality of belt conveyors, a vibrating screen having an opening of 0.1 cm to 4 cm and a blower are used. A method for purifying soil contaminated with a volatile organic compound, which comprises passing through a configured volatilization promoting region and dropping the soil while being subdivided. 請求項1ないし請求項3の何れか記載の揮発性有機化合物に汚染された土壌の浄化工法において、前記土壌を前記複数のベルトコンベヤに搬入する前に、含水比の低減処理または土壌を40℃〜100℃に加温する処理を行うことを特徴とする揮発性有機化合物に汚染された土壌の浄化工法方法。   In the purification method of the soil contaminated with the volatile organic compound according to any one of claims 1 to 3, before the soil is carried into the plurality of belt conveyors, the moisture content is reduced or the soil is subjected to 40 ° C. A method for purifying soil contaminated with volatile organic compounds, characterized by performing a treatment of heating to -100 ° C. 請求項1ないし請求項4の何れか記載の揮発性有機化合物に汚染された土壌の浄化工法において、前記揮発性有機化合物は、常圧での沸点が150℃以下の揮発性有機物質であることを特徴とする揮発性有機化合物に汚染された土壌の浄化工法方法。   5. The method for purifying soil contaminated with the volatile organic compound according to claim 1, wherein the volatile organic compound is a volatile organic substance having a boiling point of 150 ° C. or less at normal pressure. A method for the purification of soil contaminated with volatile organic compounds.
JP2003421370A 2003-12-18 2003-12-18 Purification method for soil contaminated with volatile organic compounds Expired - Fee Related JP3764454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421370A JP3764454B2 (en) 2003-12-18 2003-12-18 Purification method for soil contaminated with volatile organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421370A JP3764454B2 (en) 2003-12-18 2003-12-18 Purification method for soil contaminated with volatile organic compounds

Publications (2)

Publication Number Publication Date
JP2005177593A true JP2005177593A (en) 2005-07-07
JP3764454B2 JP3764454B2 (en) 2006-04-05

Family

ID=34782615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421370A Expired - Fee Related JP3764454B2 (en) 2003-12-18 2003-12-18 Purification method for soil contaminated with volatile organic compounds

Country Status (1)

Country Link
JP (1) JP3764454B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235212A (en) * 2010-05-07 2011-11-24 Panasonic Corp Pretreatment method for soil polluted by pcb
JP2015231589A (en) * 2014-06-09 2015-12-24 清水建設株式会社 Elutriation treatment method of contaminated soil
CN105692048A (en) * 2016-01-18 2016-06-22 田奎 Multi-functional, sealed and movable polluted soil transportation system
CN109092876A (en) * 2017-06-21 2018-12-28 中科鼎实环境工程股份有限公司 Heat strengthens force ventilation processing system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235212A (en) * 2010-05-07 2011-11-24 Panasonic Corp Pretreatment method for soil polluted by pcb
JP2015231589A (en) * 2014-06-09 2015-12-24 清水建設株式会社 Elutriation treatment method of contaminated soil
CN105692048A (en) * 2016-01-18 2016-06-22 田奎 Multi-functional, sealed and movable polluted soil transportation system
CN109092876A (en) * 2017-06-21 2018-12-28 中科鼎实环境工程股份有限公司 Heat strengthens force ventilation processing system and method

Also Published As

Publication number Publication date
JP3764454B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
EP1671712B1 (en) Method for treatment of arsenic-contaminated soil
JP4337128B2 (en) Low-temperature decomposition processing equipment for processed products
JP4833093B2 (en) Waste incineration fly ash treatment method
JP2012161768A (en) Apparatus for cleaning contaminated soil and method for cleaning soil
JP2011016075A (en) Method and apparatus for heating and purifying contaminated soil
JP3764454B2 (en) Purification method for soil contaminated with volatile organic compounds
JP3103719B2 (en) Apparatus and method for heat dechlorination of dust ash
JP2002282817A (en) Waste disposal equipment and disposal method for rendering harmful substance or subject including it harmless
JP2005074409A (en) Method for treating 1, 4-dioxane
JP3395899B2 (en) Vehicle-mounted contaminated soil effluent treatment equipment
JP2013150981A (en) Heat-cleaning apparatus for contaminated soil
JP2013043150A (en) Sludge treatment method and sludge treatment equipment
JP2001276817A (en) Contaminated oil effluent treating device
KR20220040108A (en) Method and System for Treating Wastes
JP4811826B2 (en) Waste organic matter low temperature magnetic decomposition treatment equipment
JP5796152B2 (en) Pretreatment method for PCB contaminated soil
JP4179599B2 (en) Detoxification method for organochlorine compounds
JP4003084B2 (en) Detoxification method for dredged soil
JP2004097913A (en) Treatment system for polluted soil
JP2010051837A (en) Contaminated soil treatment method and its device
JP2002320956A (en) Purifying equipment of soil containing oil
JP2005131579A (en) Method for purifying contaminated cohesive soil
JP4567544B2 (en) Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil
JP2009095736A (en) Method for treating organic arsenic-containing contaminant
JP3810941B2 (en) Soil material detoxification method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3764454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees