JP4567544B2 - Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil - Google Patents

Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil Download PDF

Info

Publication number
JP4567544B2
JP4567544B2 JP2005214065A JP2005214065A JP4567544B2 JP 4567544 B2 JP4567544 B2 JP 4567544B2 JP 2005214065 A JP2005214065 A JP 2005214065A JP 2005214065 A JP2005214065 A JP 2005214065A JP 4567544 B2 JP4567544 B2 JP 4567544B2
Authority
JP
Japan
Prior art keywords
heavy metal
contaminated soil
soil
arsenic
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005214065A
Other languages
Japanese (ja)
Other versions
JP2007029813A (en
Inventor
正光 高橋
晴康 道下
豊 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2005214065A priority Critical patent/JP4567544B2/en
Publication of JP2007029813A publication Critical patent/JP2007029813A/en
Application granted granted Critical
Publication of JP4567544B2 publication Critical patent/JP4567544B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複合重金属汚染土壌の無害化処理方法と無害化処理装置に関し、より詳しくは、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌の無害化処理方法と無害化処理装置に関する。   The present invention relates to a detoxification method and a detoxification treatment apparatus for composite heavy metal-contaminated soil, and more specifically, contains at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic. The present invention relates to a detoxification treatment method and a detoxification treatment device for composite heavy metal contaminated soil.

従来、重金属で汚染された汚染土壌の無害化処理としては、重金属が溶出して人体や環境に影響を与えることを防止すべく、汚染土壌から重金属を除去したり、汚染土壌中の重金属を水に難溶性の塩に変化させたりする方法が採用されている。この汚染土壌から重金属を除去する方法としては、汚染土壌に塩化カルシウムを混合して加熱することにより重金属を塩化物として揮発除去させる塩化揮発と呼ばれる方法や汚染土壌を酸などで洗浄する方法などが用いられている。
また、重金属を水に難溶性の塩に変化させる方法は、不溶化などとも呼ばれ、不溶化させる重金属の種類に応じてこの重金属と水に難溶性の塩を形成する化合物(不溶化剤)を土壌に混合させる方法などが採用されている。また、この不溶化剤としては、不溶化させる重金属の種類に応じて種々のものが採用されている。
Conventionally, as a detoxification treatment for contaminated soil contaminated with heavy metals, heavy metals can be removed from contaminated soil, or heavy metals in contaminated soil can be treated with water to prevent heavy metals from eluting and affecting the human body and the environment. Or a method of changing to a slightly soluble salt. Methods for removing heavy metals from this contaminated soil include a method called chlorination and volatilization, in which heavy metal is volatilized and removed as chloride by mixing and heating the contaminated soil, and washing the contaminated soil with an acid. It is used.
In addition, the method of changing heavy metals into water-insoluble salts is also called insolubilization, and depending on the type of heavy metal to be insolubilized, a compound (insolubilizer) that forms a salt insoluble in water and heavy metal is added to the soil. A method of mixing is employed. Moreover, as this insolubilizer, various things are employ | adopted according to the kind of heavy metal to insolubilize.

ところで、重金属で汚染された汚染土壌の中には、単一の種類の重金属でのみ汚染された土壌以外に、複数の種類の重金属を含有する複合重金属汚染土壌が存在する。この複合重金属汚染土壌を上記のように無害化処理する場合には、個々の重金属を別々の工程で無害化処理するよりも、汚染土壌に含有されているすべての種類の重金属に有効な無害化処理方法、および、無害化処理材料を用いることで無害化処理の工程を簡略化させることができる。例えば、鉛と砒素とを含有する汚染土壌に対して、鉛と砒素との両者に有効となる無害化処理材料を用いて、両者に有効な処理方法行う場合には、鉛を無害化した後に砒素の無害化を行ったり、あるいは、砒素の無害化を行った後に鉛の無害化を行ったりする場合に比べて工程を簡略化させることができる。   Incidentally, among contaminated soils contaminated with heavy metals, there are composite heavy metal contaminated soils containing a plurality of types of heavy metals in addition to soils contaminated with only one type of heavy metals. When this complex heavy metal contaminated soil is detoxified as described above, it is more effective to detoxify all types of heavy metals contained in the contaminated soil than to detoxify individual heavy metals in separate steps. By using the treatment method and the detoxification treatment material, the detoxification treatment process can be simplified. For example, when using a detoxification treatment material that is effective for both lead and arsenic on contaminated soil containing lead and arsenic, The process can be simplified as compared with the case of detoxifying arsenic or detoxifying lead after detoxifying arsenic.

このようなことに対して、特許文献1には、鉛、カドミウム、水銀、砒素、セレン、アンチモン、亜鉛、銅の少なくとも1種を含有する重金属汚染土壌に塩素を含有する物質を加えて700〜1600℃に加熱することにより上記の重金属を塩化揮発させることが記載されている。しかし、上記重金属の中で砒素は土壌中に含有されている場合には塩化揮発が困難でそのほとんどを土壌中に残留するおそれがあり、処理後の土壌に水分が接触すると砒素が溶出するおそれを有している。したがって、別途、砒素の無害化処理を行う必要があり、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌では、特許文献1に記載されているような方法では工程の簡略化が困難である。
また、加熱により重金属を除去する方法においては、加熱前は砒素の溶出量が環境基準を満たす土壌であっても、加熱により従来土壌に含まれている砒素化合物が溶出しやすい形態に変化するため別途砒素の不溶化を行う必要がある。
また、このような複合重金属汚染土壌を酸で洗浄してこれらの重金属を除去することも考え得るが、その場合には、土壌に酸が残留することとなるため別途酸を除去する工程が必要になり工程の簡略化が困難である。さらに、これらの重金属に共通の不溶化剤も見出されていないことから不溶化処理による無害化処理工程の簡略化も困難である。
すなわち、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌の従来の無害化処理方法においては、工程の簡略化が困難であるという問題を有している。
In contrast, in Patent Document 1, a substance containing chlorine is added to a heavy metal-contaminated soil containing at least one of lead, cadmium, mercury, arsenic, selenium, antimony, zinc, copper, and 700 to 700- It is described that the above heavy metal is chlorinated by heating to 1600 ° C. However, among the above heavy metals, arsenic is difficult to volatilize when it is contained in the soil and most of it may remain in the soil, and arsenic may leach out when water contacts the treated soil. have. Therefore, it is necessary to separately perform arsenic detoxification treatment, and in the case of composite heavy metal contaminated soil containing one or more of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic, patent literature In the method as described in No. 1, it is difficult to simplify the process.
In addition, in the method of removing heavy metals by heating, even if the arsenic elution amount satisfies the environmental standards before heating, the arsenic compound contained in the conventional soil is easily dissolved by heating. It is necessary to insolubilize arsenic separately.
It is also conceivable to remove such heavy metals by washing these complex heavy metal-contaminated soils with acid, but in that case, acid will remain in the soil, so a separate step for removing the acid is necessary. It is difficult to simplify the process. Furthermore, since no insolubilizer common to these heavy metals has been found, it is difficult to simplify the detoxification process by insolubilization.
That is, in the conventional detoxification treatment method for composite heavy metal contaminated soil containing at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic, it is difficult to simplify the process. There is a problem that there is.

特開2003−200149号公報JP 2003-200149 A

本発明は、上記の問題点に鑑み、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌の従来の無害化処理方法における工程を簡略化させ得る無害化処理方法ならびに無害化処理装置の提供を課題としている。   In view of the above problems, the present invention provides a conventional detoxification method for composite heavy metal-contaminated soil containing at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic. It is an object of the present invention to provide a detoxification processing method and a detoxification processing apparatus that can simplify the process.

本発明者らは、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌の無害化について鋭意検討を行った。その結果、本発明者らは、特許文献1では、砒素の塩化物よりも揮発性が高く不安定なAs23を砒素成分として土壌に混合して処理することが実施例2に記載されてはいるが、実際の土壌中では砒素は、FeAsO4などのAs23に比べて揮発性が低く安定な状態で存在しているため、700〜1600℃の温度では塩化揮発させることが困難で、しかも、この安定な状態から塩化物に変化させることも困難であることを見出した。また、本発明者らは、マグネシウムとFeAsO4などとを所定の条件で反応させることにより水に対して溶解性の低い砒素化合物を形成させ得るものとし得ることを見出し、従来、塩化カルシウムなどに比べて潮解性が高い点などから塩化揮発に用いられることのなかった塩化マグネシウムに着目して検討を行い本発明の完成に到ったのである。
すなわち、本発明は、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌の無害化処理方法であって、 前記複合重金属汚染土壌を塩化マグネシウム存在下で700℃以上に加熱する加熱処理を実施することを特徴とする複合重金属汚染土壌の無害化処理方法と塩化マグネシウム存在下で前記複合重金属汚染土壌を700℃以上に加熱する加熱機構と、該加熱された複合重金属汚染土壌から発生する気体を除去する排気機構とが備えられていることを特徴とする複合重金属汚染土壌の無害化処理装置とを提供する。
The present inventors diligently investigated detoxification of composite heavy metal-contaminated soil containing at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic. As a result, in Patent Document 1, the present inventors described in Example 2 that As 2 O 3, which is more volatile and unstable than arsenic chloride, is mixed and treated as an arsenic component in soil. However, in actual soil, arsenic is present in a stable state with lower volatility than As 2 O 3 such as FeAsO 4 , so that it can be chlorinated at 700-1600 ° C. It was difficult, and it was also found difficult to change from this stable state to chloride. Further, the present inventors have found that an arsenic compound having low solubility in water can be formed by reacting magnesium with FeAsO 4 or the like under predetermined conditions. The present invention has been completed by focusing on magnesium chloride, which has not been used for chloride volatilization due to its high deliquescence and the like.
That is, the present invention is a detoxification method for composite heavy metal-contaminated soil containing at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic, wherein the composite heavy metal contamination A detoxification treatment method for composite heavy metal-contaminated soil, which comprises heating the soil to 700 ° C. or higher in the presence of magnesium chloride, and heating the composite heavy metal-contaminated soil to 700 ° C. or higher in the presence of magnesium chloride. Provided is a detoxification device for composite heavy metal contaminated soil, comprising a heating mechanism and an exhaust mechanism for removing gas generated from the heated composite heavy metal contaminated soil.

本発明によれば、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌の処理方法において、前記複合重金属汚染土壌を塩化マグネシウム存在下において700℃以上に加熱することにより、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、銅の内土壌に含まれる重金属を塩化揮発させつつ、砒素とマグネシウムとを反応させて砒素を水に対しての溶解性の低い化合物とすることができる。すなわち、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌に含まれる重金属を塩化揮発させつつ砒素を不溶化させることができる。したがって、複合重金属汚染土壌の無害化処理の工程を簡略化させ得る。   According to the present invention, in the method for treating a composite heavy metal contaminated soil containing at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic, the composite heavy metal contaminated soil is treated with magnesium chloride. By heating to 700 ° C or higher in the presence, heavy metals contained in the soil of lead, cadmium, mercury, selenium, antimony, zinc, and copper are chlorinated and volatilized, and arsenic is reacted with magnesium to make water arsenic. Therefore, it can be a compound having low solubility. That is, arsenic can be insolubilized while chlorinating heavy metals contained in a composite heavy metal contaminated soil containing at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic. Therefore, the process of detoxifying the composite heavy metal contaminated soil can be simplified.

以下に、本実施形態の複合重金属汚染土壌の処理方法について、鉛と砒素とを含有する複合重金属汚染土壌に塩化マグネシウムを混合した後に、ロータリーキルンを用いて700℃以上の温度に加熱して複合重金属汚染土壌の無害化処理を行う場合を例に説明する。   Below, about the processing method of the composite heavy metal contaminated soil of this embodiment, after mixing magnesium chloride with the composite heavy metal contaminated soil containing lead and arsenic, the composite heavy metal is heated to a temperature of 700 ° C. or more using a rotary kiln. The case where the detoxification process of contaminated soil is performed will be described as an example.

まず、複合重金属汚染土壌の処理に用いる装置について図1を参照しつつ説明する。
この複合重金属汚染土壌の処理に用いる装置には、鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌を塩化マグネシウムを含有する状態で700℃以上に加熱するロータリーキルン1と、このロータリーキルン1で加熱された複合重金属汚染土壌から発生する気体を除去して二次燃焼させる二次燃焼炉2とが備えられている。
また、複合重金属汚染土壌の処理装置には、複合重金属汚染土壌に塩化マグネシウムを混合するミキサー(図示せず)と、この塩化マグネシウムを混合された複合重金属汚染土壌を貯留する土壌ホッパー3と、該土壌ホッパー3からロータリーキルン1に複合重金属汚染土壌を搬送する搬送コンベア4が備えられている。
また、複合重金属汚染土壌の処理装置には、ロータリーキルン1から排出された、加熱処理後の土壌を冷却する処理土壌冷却装置5が備えられ、該処理土壌冷却装置5で冷却された土壌を搬送する処理土壌排出コンベア8と、該処理土壌排出コンベア8により排出された土壌をその粒度により篩い分けする篩い分けコンベア9が備えられている。
さらに、複合重金属汚染土壌の処理装置には、前記二次燃焼炉2で二次燃焼された複合重金属汚染土壌から発生した気体の排ガスを冷却するための減温塔6と、該減温塔6で冷却された排ガスに含まれる重金属の塩化物やその他のダストを捕集するためのバグフィルター7と、前記排ガスをバグフィルター7に通過させる前に排ガスを中和処理させたりするための薬剤を保管する薬剤貯留槽10が備えられている。
また、ここでは詳述はしないが、複合重金属汚染土壌の処理装置には、上記のほかに、燃料供給手段、助燃ガス供給手段や各種配管、ポンプ、送風機、煙突などといった、土壌処理装置に通常備えられているものが備えられている。
First, an apparatus used for treating composite heavy metal contaminated soil will be described with reference to FIG.
The apparatus used for treating this complex heavy metal contaminated soil contains magnesium chloride containing complex heavy metal contaminated soil containing at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic. A rotary kiln 1 that is heated to 700 ° C. or higher in a state and a secondary combustion furnace 2 that removes gas generated from the composite heavy metal-contaminated soil heated by the rotary kiln 1 and performs secondary combustion are provided.
In addition, the composite heavy metal-contaminated soil treatment apparatus includes a mixer (not shown) that mixes magnesium chloride with composite heavy metal-contaminated soil, a soil hopper 3 that stores composite heavy metal-contaminated soil mixed with magnesium chloride, A transport conveyor 4 for transporting the composite heavy metal contaminated soil from the soil hopper 3 to the rotary kiln 1 is provided.
The composite heavy metal-contaminated soil treatment apparatus is provided with a treated soil cooling device 5 that cools the soil after heat treatment discharged from the rotary kiln 1, and transports the soil cooled by the treated soil cooling device 5. A treated soil discharge conveyor 8 and a sieving conveyor 9 for sieving the soil discharged by the treated soil discharge conveyor 8 according to the particle size thereof are provided.
Further, the composite heavy metal contaminated soil treatment apparatus includes a temperature reducing tower 6 for cooling the exhaust gas of gas generated from the composite heavy metal contaminated soil secondary-combusted in the secondary combustion furnace 2, and the temperature reducing tower 6 A bag filter 7 for collecting heavy metal chlorides and other dusts contained in the exhaust gas cooled in the step, and a chemical for neutralizing the exhaust gas before passing the exhaust gas through the bag filter 7. A medicine storage tank 10 for storage is provided.
Although not described in detail here, in addition to the above, the processing equipment for complex heavy metal contaminated soil is usually used in soil processing equipment such as fuel supply means, auxiliary combustion gas supply means, various pipes, pumps, blowers, and chimneys. What is provided is provided.

次いで、このような装置を用いた本実施形態の複合重金属汚染土壌の処理方法について説明する。
本実施形態の複合重金属汚染土壌の処理方法においては、まず汚染土壌と、塩化マグネシウムとを混合する混合工程を実施し、次いで、この混合工程後の土壌を、ロータリーキルンを用いて700℃以上に加熱処理する加熱工程を実施し、さらに、ロータリーキルンから排出される排ガスを加熱処理する工程を実施する。また、加熱工程後の土壌を冷却する冷却工程を実施する。
前記混合工程においては、複合重金属汚染土壌と塩化マグネシウムとをミキサーなど一般的な混合攪拌手段を用いて混合する。このとき、塩化マグネシウムは、固体のまま複合重金属汚染土壌に混合してもよく、水に溶かした水溶液の状態で混合してもよい。また、この塩化マグネシウムの複合重金属汚染土壌に対する添加量は、複合重金属汚染土壌中に含まれる鉛や砒素の量によりその下限の量を定めることが好ましく、鉛を十分に塩化揮発させるための塩素量から求められる塩化マグネシウムの量と、砒素を水に対しての溶解性の低い化合物とするための十分なマグネシウム量から求められる塩化マグネシウムの量のいずれか多い方を複合重金属汚染土壌に対して添加する塩化マグネシウムの下限の量とすることが好ましい。
このような点において、鉛を十分に塩化揮発させるための塩素量から求められる塩化マグネシウムの量は、鉛1モルに対して塩化マグネシウム1モル以上、より好ましくは2モル以上である。
一方、砒素については、砒素1モルに対して、塩化マグネシウム1.5モル以上、より好ましくは3モル以上である。
しかし、通常、複合汚染土壌では、鉛など砒素以外に含有される重金属の量に比べて砒素の含有量は微量であることから、塩化揮発させる重金属すなわちここでは鉛に対して定めることができる。
なお、上限については、過分の塩化マグネシウムを複合重金属汚染土壌に添加すると後段に説明する加熱工程において、土壌中の水分などと塩化マグネシウムとが反応し、大量に塩化水素ガスが発生し、加熱炉などの加熱設備を腐蝕させるおそれがあることから、土壌に対して、好ましくは、10質量%以下とされ、3質量%以下とされることがより好ましい。
なお、ここでいう質量%とは、塩化マグネシウム六水和物換算の質量%を意図している。
Subsequently, the processing method of the composite heavy metal contaminated soil of this embodiment using such an apparatus is demonstrated.
In the method for treating composite heavy metal-contaminated soil of this embodiment, first, a mixing step of mixing the contaminated soil and magnesium chloride is performed, and then the soil after the mixing step is heated to 700 ° C. or higher using a rotary kiln. The heating process to process is implemented, Furthermore, the process which heat-processes the waste gas discharged | emitted from a rotary kiln is implemented. Moreover, the cooling process which cools the soil after a heating process is implemented.
In the mixing step, the composite heavy metal contaminated soil and magnesium chloride are mixed using a general mixing and stirring means such as a mixer. At this time, the magnesium chloride may be mixed with the composite heavy metal-contaminated soil as a solid, or may be mixed in a state of an aqueous solution dissolved in water. The amount of magnesium chloride added to the complex heavy metal-contaminated soil is preferably determined by the amount of lead and arsenic contained in the complex heavy metal-contaminated soil, and the amount of chlorine for sufficiently chlorinating lead. Add the amount of magnesium chloride required from the above and the amount of magnesium chloride required from the amount of magnesium sufficient to make arsenic a compound with low solubility in water to the composite heavy metal contaminated soil The lower limit amount of magnesium chloride is preferable.
In such a point, the amount of magnesium chloride determined from the amount of chlorine for sufficiently chlorinating lead is 1 mol or more, more preferably 2 mol or more of magnesium chloride with respect to 1 mol of lead.
On the other hand, the amount of arsenic is 1.5 mol or more, more preferably 3 mol or more, with respect to 1 mol of arsenic.
However, in complex contaminated soil, the content of arsenic is usually insignificant compared to the amount of heavy metal other than arsenic, such as lead, so it can be determined for the heavy metal to be chlorinated, that is, lead here.
As for the upper limit, when excess magnesium chloride is added to the composite heavy metal contaminated soil, in the heating process described later, moisture in the soil reacts with magnesium chloride, and a large amount of hydrogen chloride gas is generated. In view of the possibility of corroding the heating equipment such as, it is preferably 10% by mass or less and more preferably 3% by mass or less with respect to the soil.
In addition, the mass% here intends the mass% of magnesium chloride hexahydrate conversion.

なお、複合重金属汚染土壌中に砒素が多く含有され、砒素を水に対しての溶解性の低い化合物とするための十分なマグネシウム量から求められる塩化マグネシウムの量が上記の上限値を超えてしまう場合には、本発明の効果を損ねない範囲において一部の塩化マグネシウムに代えて酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウムなどのマグネシウム化合物を用いてマグネシウム量を補うことも可能である。このことにより、加熱炉などの加熱設備を腐蝕させるおそれを抑制させることができる。
さらに、本発明の効果を損ねない範囲において塩化マグネシウムとともに、塩化カルシウムなどを併用することも可能であるが塩化カルシウムを併用した場合には、砒素とマグネシウムとの化合物に比べて水に溶出し易い砒酸カルシウム塩が形成され易くなることから、好ましくは、塩化マグネシウムのみを用いることが好ましい。
前記加熱工程においては、混合工程にて不溶化剤を混合させた砒素汚染土壌をロータリーキルンで700℃以上に加熱する。この加熱工程での加熱温度が700℃以上とされるのは、加熱温度が700℃未満の場合には、鉛を塩化揮発させることが困難であり、また、砒素とマグネシウムとの化合物の形成に多大な時間を必要として複合重金属汚染土壌の無害化処理工程を簡略化させることが困難となるためである。
In addition, the amount of magnesium chloride determined from the amount of magnesium sufficient to make arsenic a compound with low solubility in water that contains a large amount of arsenic in the complex heavy metal contaminated soil will exceed the above upper limit. In some cases, the amount of magnesium can be supplemented by using a magnesium compound such as magnesium oxide, magnesium carbonate, or magnesium hydroxide in place of a portion of magnesium chloride within a range not impairing the effects of the present invention. Thereby, the possibility of corroding heating equipment such as a heating furnace can be suppressed.
Furthermore, calcium chloride and the like can be used in combination with magnesium chloride within a range that does not impair the effects of the present invention, but when calcium chloride is used in combination, it is easier to elute into water than a compound of arsenic and magnesium. It is preferable to use only magnesium chloride because calcium arsenate is easily formed.
In the heating step, the arsenic-contaminated soil mixed with the insolubilizing agent in the mixing step is heated to 700 ° C. or higher with a rotary kiln. The heating temperature in this heating process is set to 700 ° C. or higher because it is difficult to volatilize lead when the heating temperature is lower than 700 ° C., and it is necessary to form a compound of arsenic and magnesium. It is because it becomes difficult to simplify the detoxification process of the composite heavy metal-contaminated soil, requiring a lot of time.

また、この加熱工程での汚染土壌の加熱は、850〜1000℃の温度で、ロータリーキルン内の平均滞留時間5〜120min好ましくは10〜90minとされることが好ましい。
この加熱工程が850〜1000℃の温度、平均滞留時間5〜120minとされることが好ましいのは、前述した通り、加熱温度が850℃未満の場合には、温度が低く鉛を塩化揮発により十分に除去できないおそれがあり、1000℃を超える場合には、土壌成分が焼結し、クリンカを生成するおそれがあるためである。特に、クリンカが生成されると、ロータリーキルンの排出機構が詰まり連続運転に支障をきたすおそれがある。さらに、この加熱工程においては、装置を高温で運転させるため、前記のように排出機構が詰まると一度運転を停止し、炉内を冷却して、詰まりを解消し、再加熱するまでに多大な手間が必要になる点からもロータリーキルンの運転温度としては1000℃以下であることが好ましい。
また、平均滞留時間が5min未満の場合には、鉛などの重金属が塩化揮発されずに土壌中に残存するおそれがあり、120minを超える場合には処理コストが高くなるおそれを有するためである。
なお、このロータリーキルンでの平均滞留時間とは、ロタリーキルン内で加熱されている土壌の総質量を、単位時間あたりにロータリーキルンに導入させる量で除した値を意図している。
なお、ロータリーキルン内の土壌の温度は、熱電対などの一般的な温度計測手段により計測することができ、このような温度測定手段をロータリーキルンの所望の位置(例えば、入口部、中央部、排出部など)に設置して、それぞれの位置での土壌の温度を測定することができる。
The heating of the contaminated soil in this heating step is preferably performed at a temperature of 850 to 1000 ° C. and an average residence time in the rotary kiln of 5 to 120 minutes, preferably 10 to 90 minutes.
The heating process is preferably performed at a temperature of 850 to 1000 ° C. and an average residence time of 5 to 120 minutes. As described above, when the heating temperature is less than 850 ° C., the temperature is low and lead is sufficiently evaporated by chlorination. This is because if it exceeds 1000 ° C., the soil components may sinter and produce clinker. In particular, when the clinker is generated, the rotary kiln discharge mechanism may be clogged and hinder continuous operation. Furthermore, in this heating step, since the apparatus is operated at a high temperature, once the discharge mechanism is clogged as described above, the operation is stopped once, the inside of the furnace is cooled, the clogging is eliminated, and the reheating is enormous. The operating temperature of the rotary kiln is preferably 1000 ° C. or less from the point that labor is required.
In addition, when the average residence time is less than 5 minutes, heavy metals such as lead may remain in the soil without being volatilized, and when it exceeds 120 minutes, the treatment cost may increase.
The average residence time in the rotary kiln is intended to be a value obtained by dividing the total mass of soil heated in the rotary kiln by the amount introduced into the rotary kiln per unit time.
The temperature of the soil in the rotary kiln can be measured by general temperature measuring means such as a thermocouple, and such temperature measuring means can be measured at a desired position of the rotary kiln (for example, an inlet portion, a central portion, a discharge portion). Etc.) and the temperature of the soil at each position can be measured.

また、この加熱工程においては、複合重金属汚染土壌から発生する気体をロータリーキルン内から排気機構で吸引除去して、ロータリーキルン内をわずかに負圧状態(例えば、−0.1〜0kPa:ゲージ圧)に維持させることが好ましい。このロータリーキルン内をわずかに負圧状態とすることが好ましいのは、複合重金属汚染土壌から発生する塩化鉛の揮発ガスがロータリーキルンから漏洩することを防止するための対策、例えば、厳重なシール機構などを省略させ得るためである。
また、この吸引除去された気体は、後段で説明する二次燃焼炉内に導入し、排ガス中の未燃成分を燃焼させる。
Moreover, in this heating process, the gas generated from the composite heavy metal contaminated soil is sucked and removed from the rotary kiln by an exhaust mechanism, and the rotary kiln is slightly negative pressure (for example, −0.1 to 0 kPa: gauge pressure). It is preferable to maintain. It is preferable to set the rotary kiln to a slightly negative pressure state by taking measures to prevent leakage of lead chloride volatile gas generated from the complex heavy metal contaminated soil from the rotary kiln, such as a strict sealing mechanism. This is because it can be omitted.
The suctioned and removed gas is introduced into a secondary combustion furnace described later, and unburned components in the exhaust gas are burned.

また、加熱処理工程を酸素雰囲気(例えば酸素濃度10%以上)で行うことにより、塩化揮発しにくい鉛を好適に揮発させることができる。この塩化揮発の反応機構については明確に解明されていないが、土壌中の鉛が一度酸素と反応して酸化鉛を形成し、この酸化鉛が塩素と反応して塩化鉛を形成し、土壌中から除去されるものと考える。還元雰囲気においては酸化鉛が形成されにくいため、直接塩素と反応して塩化鉛を形成することが考えられるが、土壌中の鉛化合物は塩素と直接反応しにくく、その結果、鉛の除去が不十分になるおそれがある。そのため、前述した通り酸素雰囲気であれば、土壌中の鉛がより反応しやすい酸素と結合して酸化鉛を形成し、その酸化鉛が塩素と反応して塩化鉛を形成し、その結果、塩化揮発を促すことができる。
ロータリーキルンから排出される排ガスは土壌中の有機物が不完全に燃焼して生成された未燃分(たとえば一酸化炭素)を含んでいるため、二次燃焼炉に導入して未燃分を完全燃焼させる。完全燃焼された排ガスは減温塔内で水の散布により約100〜200℃、好ましくは150〜180℃まで冷却された後、粒子状(45μm以下)の活性炭と消石灰などの添加剤が添加され、その後、バグフィルターによって排ガス中の微粒子や前記活性炭が除去される。また、このとき必要に応じて中和剤等の薬品を添加しても良い。なお、塩化揮発した重金属もこのバグフィルターで除去されることとなる。この、捕集された塩化鉛は別途設けられた処理工程により処理させる。
In addition, by performing the heat treatment step in an oxygen atmosphere (for example, an oxygen concentration of 10% or more), it is possible to suitably volatilize lead that is less likely to volatilize. The reaction mechanism of chloride volatilization is not clearly understood, but lead in the soil once reacts with oxygen to form lead oxide, which reacts with chlorine to form lead chloride, Is considered to be removed. Since lead oxide is difficult to form in a reducing atmosphere, it can be considered that it reacts directly with chlorine to form lead chloride. However, lead compounds in soil are less likely to react directly with chlorine, and as a result, lead removal is difficult. May be sufficient. Therefore, as described above, in an oxygen atmosphere, lead in the soil combines with oxygen that is more likely to react to form lead oxide, and the lead oxide reacts with chlorine to form lead chloride. Volatilization can be promoted.
The exhaust gas discharged from the rotary kiln contains unburned components (for example, carbon monoxide) generated by incomplete combustion of organic matter in the soil, so it is introduced into the secondary combustion furnace and completely burned. Let The exhaust gas completely burned is cooled to about 100 to 200 ° C., preferably 150 to 180 ° C. by spraying water in the temperature reducing tower, and then added with particulate activated carbon (45 μm or less) activated carbon and slaked lime. Thereafter, the fine particles in the exhaust gas and the activated carbon are removed by the bag filter. At this time, chemicals such as a neutralizing agent may be added as necessary. In addition, the heavy metal which volatilized and chlorinated is also removed by this bag filter. The collected lead chloride is processed by a separately provided processing step.

一方、土壌の冷却工程においては、前記加熱工程を終えて無害化処理された土壌を常温まで冷却させる。この冷却工程での土壌の冷却は、単に土壌を放置して自然放冷させる方法や土壌に水をシャワーリングしたり、あるいは、加熱工程を終えた土壌を水中に投入して冷却したりするなど種々の方法を採用することができる。
また、このシャワーリングや土壌が投入される水として緩衝液などを用いて土壌を冷却するとともに所望のpH値に調整することも可能である。
On the other hand, in the soil cooling step, the detoxified soil after the heating step is cooled to room temperature. The cooling of the soil in this cooling process is simply by leaving the soil to cool naturally, showering water in the soil, or cooling the soil after the heating process is put into the water, etc. Various methods can be employed.
In addition, it is possible to cool the soil using a buffer solution or the like as water to which the shower ring or soil is charged and adjust the pH to a desired value.

なお、本実施形態においては、塩化マグネシウムの塩素により塩化揮発を容易に起こす鉛を含有する複合重金属汚染土壌について説明したが、この鉛に代えて水銀が含有される場合においても他の重金属の場合に比べて塩化揮発を容易に起こさせることができ、加熱工程において砒素と反応させるためのマグネシウムをより早く、より多く発生させることができる。したがって、砒素とマグネシウムとの反応を促進させることができる。すなわち、無害化処理後の土壌から砒素が溶出されるおそれをより低減させ得る。このような点から、本実施形態においては、鉛と砒素との複合重金属汚染土壌を用いた場合を例に説明したが、本発明においては、鉛や水銀と砒素以外に、カドミウム、セレン、アンチモン、亜鉛、および、銅などが含有される複合重金属汚染土壌にも適応可能である。   In addition, in this embodiment, although the complex heavy metal contaminated soil containing lead which easily causes volatilization and volatilization by chlorine of magnesium chloride has been described, even when mercury is contained instead of this lead, the case of other heavy metals As compared with the above, volatilization of chloride can be easily caused, and magnesium for reacting with arsenic can be generated more quickly and more in the heating process. Therefore, the reaction between arsenic and magnesium can be promoted. That is, it is possible to further reduce the possibility that arsenic is eluted from the soil after detoxification treatment. From this point, in the present embodiment, the case of using a mixed heavy metal contaminated soil of lead and arsenic has been described as an example. However, in the present invention, in addition to lead, mercury and arsenic, cadmium, selenium, and antimony are used. It is also applicable to complex heavy metal contaminated soil containing zinc, copper, copper and the like.

また、本実施形態においては、土壌を攪拌しつつ加熱処理することができ、土壌に処理むらができることを防止し得る点ならびに連続的な処理が可能である点から加熱機構としてロータリーキルンを用いる場合を例に説明したが、本発明においては、塩化マグネシウムを含有する複合重金属汚染土壌を700℃以上に加熱する加熱機構としてロータリーキルンを用いる方法に限定するものではなく、一般的な間接加熱炉や、その他の加熱炉を用いることができる。
また、本実施形態においては、塩化揮発させた重金属を土壌から分離する方法として気体の吸引除去を例に説明したが、本発明においては、このような方法に限定されるものではない。さらに、本実施形態においては、吸引除去した重金属の塩化物をバグフィルターなどを用いて捕集する方法を例示したが、本発明においては、このような方法に限定するものではない。
また、本実施形態においては活性炭を吹き込む例を説明したが、これに限定されず、バグフィルターの後段に活性炭を充填した吸着塔を設けても良い。また、バグフィルターに代えて活性炭フィルターを用いても良い。
また、要すれば、本発明の効果を損ねない範囲において、塩化マグネシウム以外に、一般的な不溶化剤を加熱工程前あるいは加熱工程後の土壌に混合することも可能である。
Moreover, in this embodiment, the case where a rotary kiln is used as a heating mechanism can be subjected to heat treatment while stirring the soil, and can be prevented from being uneven in the soil and can be continuously treated. As described in the example, in the present invention, the method is not limited to a method using a rotary kiln as a heating mechanism for heating composite heavy metal-contaminated soil containing magnesium chloride to 700 ° C. or higher, and a general indirect heating furnace, other The heating furnace can be used.
In the present embodiment, gas suction removal is described as an example of a method for separating chlorinated heavy metal from soil. However, the present invention is not limited to such a method. Furthermore, in the present embodiment, the method of collecting the suctioned and removed heavy metal chloride using a bag filter or the like is exemplified, but the present invention is not limited to such a method.
Moreover, although the example which blows in activated carbon was demonstrated in this embodiment, it is not limited to this, You may provide the adsorption tower filled with activated carbon in the back | latter stage of a bag filter. Further, an activated carbon filter may be used instead of the bag filter.
In addition, if necessary, a general insolubilizing agent other than magnesium chloride can be mixed with the soil before or after the heating step within a range not impairing the effects of the present invention.

SUS304製の間接加熱炉の中に被処理土壌(鉛及び砒素含有土壌)を投入し、一端より所定の雰囲気ガス(窒素と空気の混合ガス)を供給し、他端よりガスを排出する構造の試験装置を利用した。
表1に「処理前」として示されている鉛と砒素とを含有する複合重金属汚染土壌に塩化マグネシウム六水和物を3質量%となるように添加、混合したものを500g用意し、上記間接加熱炉に投入し、供給ガスとしては窒素を30リットル/minで供給し、炉内雰囲気を酸素濃度10vol%になるように調整しつつ1000℃で15分間加熱した。
なお、排出されたガスは冷却され、排ガスの一部を酸素分析計(ホダカ社製、排ガス計測器HT−1300)に通過させ、炉内の酸素濃度を確認できるようにしている。
処理後の土壌は放熱により冷却し、常温まで冷却する。この冷却された土壌を平成15年3月環境省告示第18号「土壌溶出量調査に係る測定方法を定める件 」に定められた溶出試験方法で水中へのヒ素及び鉛の溶出量を測定することにより、ヒ素及び鉛が環境庁で定められた環境基準(例えば、ヒ素の場合、0.01mg/リットル以下)を達成される程度まで不溶化されているかどうか確認した。
また、平成15年3月環境省告示第18号「土壌含有量調査に係る測定方法を定める件 」に定められた含有試験方法で土壌中に含有されている砒素及び鉛の含有量を同様に測定した。結果を、表1に併せて示す。
The treated soil (lead and arsenic-containing soil) is put into an indirect heating furnace made of SUS304, a predetermined atmosphere gas (mixed gas of nitrogen and air) is supplied from one end, and the gas is discharged from the other end. A test device was used.
Prepare 500 g of magnesium chloride hexahydrate added to 3 wt% of mixed heavy metal contaminated soil containing lead and arsenic indicated in Table 1 as "Before treatment" It was put into a heating furnace, nitrogen was supplied as a supply gas at a rate of 30 liters / min, and the furnace atmosphere was adjusted to an oxygen concentration of 10 vol% and heated at 1000 ° C. for 15 minutes.
The discharged gas is cooled, and a part of the exhaust gas is passed through an oxygen analyzer (exhaust gas measuring device HT-1300, manufactured by Hodaka Co.) so that the oxygen concentration in the furnace can be confirmed.
The treated soil is cooled by heat dissipation and cooled to room temperature. Measure the amount of arsenic and lead dissolved in water by the dissolution test method stipulated in the Ministry of the Environment Notification No. 18 “Matters for Measuring Soil Dissolution” in March 2003. Thus, it was confirmed whether arsenic and lead were insolubilized to the extent that environmental standards established by the Environment Agency (for example, 0.01 mg / liter or less in the case of arsenic) were achieved.
In addition, the content of arsenic and lead contained in the soil by the content test method stipulated in the Ministry of the Environment Notification No. 18 “Matters Concerning Soil Content Survey”, March 2003 It was measured. The results are also shown in Table 1.

塩化マグネシウムの添加量を1質量%とした以外は実施例1と同様に土壌の加熱処理を行った。結果を表1に示す。   The soil was heat treated in the same manner as in Example 1 except that the amount of magnesium chloride added was 1% by mass. The results are shown in Table 1.

加熱温度を850℃とした以外は、実施例1と同様に土壌の加熱処理を行った。結果を表1に示す。
(比較例1)
Soil heat treatment was performed in the same manner as in Example 1 except that the heating temperature was 850 ° C. The results are shown in Table 1.
(Comparative Example 1)

土壌に何も加えずに加熱処理のみを行った以外は、実施例1と同様に土壌の加熱処理を行った。結果を表1に示す。
(比較例2)
Soil heat treatment was performed in the same manner as in Example 1 except that only heat treatment was performed without adding anything to the soil. The results are shown in Table 1.
(Comparative Example 2)

塩化マグネシウム六水和物に代えて塩化カルシウム二水和物を用いたこと以外は、実施例1と同様に土壌の加熱処理を行った。結果を表1に示す。   The soil was heat-treated in the same manner as in Example 1 except that calcium chloride dihydrate was used instead of magnesium chloride hexahydrate. The results are shown in Table 1.

Figure 0004567544
表1から、複合重金属汚染土壌の処理方法として、前記複合重金属汚染土壌を塩化マグネシウム存在下で700℃以上に加熱する加熱処理が実施されることで土壌を十分無害化することができ、新たな処理を必要とせず、無害化処理工程を簡略化させ得ることがわかる。
Figure 0004567544
From Table 1, as a method for treating composite heavy metal-contaminated soil, the soil can be sufficiently detoxified by carrying out heat treatment in which the composite heavy metal-contaminated soil is heated to 700 ° C. or higher in the presence of magnesium chloride. It can be seen that the detoxification treatment process can be simplified without requiring treatment.

一実施形態の複合重金属汚染土壌処理装置を示す概略図。Schematic which shows the composite heavy metal contamination soil processing apparatus of one Embodiment.

符号の説明Explanation of symbols

1:ロータリーキルン、2:二次燃焼炉   1: Rotary kiln, 2: Secondary combustion furnace

Claims (3)

鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌の無害化処理方法であって、
前記複合重金属汚染土壌を塩化マグネシウム存在下で700℃以上に加熱する加熱処理を実施することを特徴とする複合重金属汚染土壌の無害化処理方法。
A method for detoxifying composite heavy metal-contaminated soil containing at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic,
A detoxification treatment method for composite heavy metal-contaminated soil, characterized in that the composite heavy metal-contaminated soil is heated to 700 ° C. or higher in the presence of magnesium chloride.
鉛または水銀のいずれか1種以上と砒素との複合重金属汚染土壌に用いられる請求項1に記載の複合重金属汚染土壌の無害化処理方法。   The method for detoxifying composite heavy metal-contaminated soil according to claim 1, which is used for composite heavy metal-contaminated soil of one or more of lead and mercury and arsenic. 鉛、カドミウム、水銀、セレン、アンチモン、亜鉛、および、銅のいずれか1種以上と砒素とを含有する複合重金属汚染土壌の処理に用いられる装置であって、
塩化マグネシウムを含有する前記複合重金属汚染土壌を700℃以上に加熱する加熱機構と、該加熱された複合重金属汚染土壌から発生する気体を除去する排気機構とが備えられていることを特徴とする複合重金属汚染土壌の無害化処理装置。
An apparatus used for treating composite heavy metal contaminated soil containing at least one of lead, cadmium, mercury, selenium, antimony, zinc, and copper and arsenic,
A composite comprising: a heating mechanism for heating the composite heavy metal-contaminated soil containing magnesium chloride to 700 ° C. or higher; and an exhaust mechanism for removing gas generated from the heated composite heavy metal-contaminated soil. Detoxification equipment for heavy metal contaminated soil.
JP2005214065A 2005-07-25 2005-07-25 Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil Expired - Fee Related JP4567544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214065A JP4567544B2 (en) 2005-07-25 2005-07-25 Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214065A JP4567544B2 (en) 2005-07-25 2005-07-25 Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2007029813A JP2007029813A (en) 2007-02-08
JP4567544B2 true JP4567544B2 (en) 2010-10-20

Family

ID=37789713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214065A Expired - Fee Related JP4567544B2 (en) 2005-07-25 2005-07-25 Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP4567544B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975524B2 (en) * 2007-05-29 2012-07-11 三菱重工環境・化学エンジニアリング株式会社 Method and apparatus for detoxifying heavy metal-containing substances

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214029A (en) * 1994-01-28 1995-08-15 Dowa Mining Co Ltd Recycling method of heavy metal by making incineration ash or fly ash harmless
JPH11267601A (en) * 1998-03-25 1999-10-05 Takuma Co Ltd Melting treatment of incineration ash
JP2003200149A (en) * 2001-10-24 2003-07-15 Taiheiyo Cement Corp Method for recycling soil containing heavy metal as resource
JP2003340426A (en) * 2002-05-30 2003-12-02 Mitsubishi Materials Corp Method for decontaminating soil
JP2004131755A (en) * 2002-10-08 2004-04-30 Kowa Seiko Kk Recycling method for using smoke dust as raw material for iron making
JP2004290878A (en) * 2003-03-27 2004-10-21 Taiheiyo Cement Corp Treating method and system for soil containing heavy metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214029A (en) * 1994-01-28 1995-08-15 Dowa Mining Co Ltd Recycling method of heavy metal by making incineration ash or fly ash harmless
JPH11267601A (en) * 1998-03-25 1999-10-05 Takuma Co Ltd Melting treatment of incineration ash
JP2003200149A (en) * 2001-10-24 2003-07-15 Taiheiyo Cement Corp Method for recycling soil containing heavy metal as resource
JP2003340426A (en) * 2002-05-30 2003-12-02 Mitsubishi Materials Corp Method for decontaminating soil
JP2004131755A (en) * 2002-10-08 2004-04-30 Kowa Seiko Kk Recycling method for using smoke dust as raw material for iron making
JP2004290878A (en) * 2003-03-27 2004-10-21 Taiheiyo Cement Corp Treating method and system for soil containing heavy metal

Also Published As

Publication number Publication date
JP2007029813A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
EP1671712B1 (en) Method for treatment of arsenic-contaminated soil
JP4833093B2 (en) Waste incineration fly ash treatment method
TWI646994B (en) Hazardous substance treatment agent
JP4329946B1 (en) Incineration fly ash treatment method
JP2002210452A (en) Cleaning method of soil, water and/or gas and iron powder for dehalogenating halogenated organic compound
JP4567544B2 (en) Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil
JP2003181411A (en) Heavy metal elution preventing agent and treatment method of contaminated medium
JP2010051840A (en) Agent for treating flue gas, and method for treating flue gas
JPH1099814A (en) Treatment of waste
JP4448964B2 (en) Method for treating soil containing heavy metals
JP2007105722A (en) Detoxicating method for fluorine-contaminated soil
JP2001259607A (en) Treatment method and apparatus for heavy metal or organic chlorine compound
JP3764454B2 (en) Purification method for soil contaminated with volatile organic compounds
TWI521066B (en) Aluminum slag stability of the resource processing process
JP4350675B2 (en) Arsenic-contaminated soil treatment method
JP2004066202A (en) Treating agent for waste containing dioxins and heavy metal, treatment method of exhasut gas and fly ash, and treatment method of fly ash
JP2005137982A (en) Separation method of heavy metals contained in solid waste and separation and recovery system therefor
JP4609057B2 (en) Dioxin decomposition agent and decomposition method
JP3731104B2 (en) Detoxification method for dioxin solids
JP2007152338A (en) Treatment method for rendering fluorine-contaminated soil harmless
JP2005305305A (en) Cleaning treatment method for arsenic containing contaminated soil and its apparatus
JP2004331739A (en) Dioxin-decomposing agent
JP2007268339A (en) Method for burning heavy metal containing raw material
JPH11114530A (en) Incineration ash or non-polluting treatment of fly ash
JPH06218224A (en) Treatment of exhaust gas and collected dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Ref document number: 4567544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees