JP2005177564A - Ultrapure water production method and apparatus - Google Patents

Ultrapure water production method and apparatus Download PDF

Info

Publication number
JP2005177564A
JP2005177564A JP2003419233A JP2003419233A JP2005177564A JP 2005177564 A JP2005177564 A JP 2005177564A JP 2003419233 A JP2003419233 A JP 2003419233A JP 2003419233 A JP2003419233 A JP 2003419233A JP 2005177564 A JP2005177564 A JP 2005177564A
Authority
JP
Japan
Prior art keywords
water
mixed bed
ultrapure water
treated
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003419233A
Other languages
Japanese (ja)
Inventor
Shuichi Chino
秀一 知野
Yukio Noguchi
幸男 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2003419233A priority Critical patent/JP2005177564A/en
Publication of JP2005177564A publication Critical patent/JP2005177564A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce maintenance costs by lowering the concentration of boron and reducing the regeneration frequency of an anion exchange resin or mixed bed ion exchange resin device in ultrapure water production processes. <P>SOLUTION: A heat exchanger is disposed ahead of the anion exchange device or the mixed bed ion exchange device in an ultrapure production system to control the temperature of water to be treated, fed to the anion exchange device or the mixed bed ion exchange device, at ≤25°C, preferably at ≤20°C. A reduction in water temperature enables a prolongation of a period until boron ions begin to flow out to extend a regenerative cycle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超純水の製造方法及び装置に係り、さらに詳しくは、医薬品製造工程、液晶基板製造工程、半導体製造工程などの純度の高い水を必要とする分野で、イオン交換装置の再生時期を延長するとともにホウ素を極低濃度まで低減させることができる超純水の製造方法及び装置に関する。   The present invention relates to a method and apparatus for producing ultrapure water, and more specifically, in a field requiring high purity water such as a pharmaceutical production process, a liquid crystal substrate production process, and a semiconductor production process, It is related with the manufacturing method and apparatus of the ultrapure water which can extend boron and can reduce a boron to very low concentration.

従来から、医薬品製造工程、液晶基板製造工程、半導体製造工程などの高純度の水質が要求される分野では、いわゆる超純水が使用されている。   Conventionally, so-called ultrapure water has been used in fields requiring high-purity water quality such as pharmaceutical manufacturing processes, liquid crystal substrate manufacturing processes, and semiconductor manufacturing processes.

超純水は、通常1次純水システムと2次純水システムの2段階からなる超純水製造装置で製造されている。   Ultrapure water is usually produced by an ultrapure water production apparatus consisting of two stages, a primary pure water system and a secondary pure water system.

1次純水システムは、例えば、水道水や井水などの原水を、膜前処理装置、膜前処理装置の処理水に酸を添加する第1のpH調整装置、第1のpH調整装置の処理水を脱炭酸する脱気装置、脱炭酸した処理水にアルカリを添加する第2のpH調整装置、第2のpH調整装置の処理水を逆浸透膜処理する逆浸透膜装置、逆浸透膜装置の透過水のイオン成分を除去する混床式イオン交換装置から構成されている。なお、1次純水システムには、上記構成以外に、さらに、アニオン交換装置やカチオン交換装置、紫外線分解装置、真空脱気装置等が用いられることもある。1次純水システムの処理水は、一旦、1次純水タンクに貯留される。   The primary pure water system includes, for example, raw water such as tap water and well water, a membrane pretreatment device, a first pH adjustment device that adds acid to the treatment water of the membrane pretreatment device, and a first pH adjustment device. Degassing device for decarboxylating treated water, second pH adjusting device for adding alkali to decarboxylated treated water, reverse osmosis membrane device for treating treated water of second pH adjusting device with reverse osmosis membrane, reverse osmosis membrane It consists of a mixed bed type ion exchange device that removes the ion component of the permeated water of the device. In addition to the above configuration, the primary pure water system may further use an anion exchange device, a cation exchange device, an ultraviolet decomposition device, a vacuum deaeration device, or the like. The treated water of the primary pure water system is temporarily stored in the primary pure water tank.

2次純水システムは、1次純水システムの処理水の有機質成分をイオン成分に分解する紫外線分解装置、紫外線分解装置で有機質成分の分解により生成したイオン成分を除去する混床式イオン交換装置、限外濾過膜装置等から構成されており、通常ユースポイントで使用されなかった処理水は、再度2次純水システムの被処理水として循環再使用されている。   The secondary pure water system is an ultraviolet decomposition device that decomposes the organic components of the treated water of the primary pure water system into ion components, and a mixed bed ion exchange device that removes the ion components generated by the decomposition of the organic components by the ultraviolet decomposition device. The treated water, which is composed of an ultrafiltration membrane device or the like and is not normally used at the point of use, is recycled and reused as the treated water of the secondary pure water system.

これらの1次純水システムや2次純水システムで用いられる装置のうち、イオン交換装置は、一定量のイオンを吸着すると、もはやイオンを吸着しなくなって処理水中にイオンが流出するようになるため、イオンの流出が始まる前の適当なタイミングで再生する必要がある。   Among the devices used in these primary pure water systems and secondary pure water systems, when an ion exchange device adsorbs a certain amount of ions, it no longer adsorbs ions and ions flow out into the treated water. Therefore, it is necessary to regenerate at an appropriate timing before the outflow of ions starts.

イオンのアニオン交換樹脂に対する吸着され易さは、イオンの種類によって異なり、通常、吸着され易さは、SO42−>NO3>Cl>F>イオン状シリカ>Bの順になっている。 The ease of adsorption of ions to the anion exchange resin differs depending on the type of ion, and the ease of adsorption is usually in the order of SO4 2− > NO 3 > Cl > F > ionic silica> B.

このため、アニオン交換装置や混床式イオン交換装置の樹脂再生の目安として処理水のホウ素濃度を用いることも行われている。   For this reason, the boron concentration of treated water is also used as a standard for resin regeneration in an anion exchanger and mixed bed ion exchanger.

ところで、最近、半導体製造現場において使用する超純水には、より高い純度の超純水が要求されるようになってきており、特に、超純水中に不純物として存在するホウ素イオンは半導体デバイスのPN接合に使用される不純物の一つであるため、ホウ素イオン濃度を非常に低いレベルに押さえることが要求されてきている。   Recently, ultrapure water with higher purity has been required for ultrapure water used in semiconductor manufacturing sites. In particular, boron ions that exist as impurities in ultrapure water are semiconductor devices. Since it is one of the impurities used in the PN junction, it has been required to keep the boron ion concentration at a very low level.

ホウ素は、金属と負の電荷をもった非金属の中間の属性をもつ典型的な半金属元素と考えられているが、ホウ酸は、陽イオン化合物よりも陰イオン化合物を形成する傾向があり、脱イオン水の中では次式のように水と反応してホウ酸塩イオン(以下、単にホウ素イオンと称する。)と水素イオンとを生成する。

Figure 2005177564
Boron is considered a typical semi-metallic element with intermediate attributes between metals and non-metals with negative charges, but boric acid tends to form anionic compounds rather than cationic compounds. In deionized water, it reacts with water as in the following formula to generate borate ions (hereinafter simply referred to as boron ions) and hydrogen ions.
Figure 2005177564

このホウ素イオンは、アニオン交換装置や混床式イオン交換装置によって除去可能であるが、前述したとおり、ホウ素イオンはイオン交換樹脂に吸着されにくく、超純水製造システムの処理水中のホウ素イオンを非常に低いレベルに押さえるためにはイオン交換樹脂の再生を頻繁に行わなければならず、このため超純水製造システムのメンテナンスコストが高くなってしまうという問題があった。   This boron ion can be removed by an anion exchange device or a mixed bed type ion exchange device. However, as described above, boron ions are not easily adsorbed by the ion exchange resin, and boron ions in the treated water of the ultrapure water production system are very difficult to absorb. In order to keep it at a very low level, it is necessary to frequently regenerate the ion exchange resin, which causes a problem that the maintenance cost of the ultrapure water production system becomes high.

ホウ素イオンを選択的に除去するホウ素選択性イオン交換樹脂を使用する技術も提案されているが(特許文献1)、この方法では、イオン交換樹脂塔をもう1基設置しなければならず、結局、別にイオン交換樹脂塔を必要とするから、メンテナンスコスト低減のための本質的な解決手段にはなっていない。
特開平8−8496号公報
A technique using a boron-selective ion exchange resin that selectively removes boron ions has also been proposed (Patent Document 1). However, in this method, another ion exchange resin tower must be installed. In addition, since an ion exchange resin tower is required separately, it is not an essential solution for reducing maintenance costs.
Japanese Patent Application Laid-Open No. 8-8496

前述したとおり、最近、超純水中のホウ素イオンの濃度を低くすることが求められるようになってきているが、ホウ素イオンはイオン交換樹脂に吸着され難いため、ホウ素イオンを少なくするためには、いきおいイオン交換樹脂の再生を頻繁に行わなければならず、このため超純水製造システムのメンテナンスコストが高くなるという問題があった。   As described above, it has recently been required to reduce the concentration of boron ions in ultrapure water. However, since boron ions are difficult to be adsorbed on ion exchange resins, in order to reduce boron ions, However, it is necessary to frequently regenerate the ion exchange resin, which causes a problem that the maintenance cost of the ultrapure water production system increases.

本発明者等は、かかる問題を解消すべく鋭意研究を進めたところ、被処理水の水温を低くすると、イオン交換樹脂のホウ素イオンの破過までの時間が長くなることを見出だした。   As a result of diligent research to solve such problems, the present inventors have found that when the temperature of the water to be treated is lowered, the time until breakthrough of boron ions in the ion exchange resin becomes longer.

本発明は、かかる知見に基づいてなされたもので、超純水製造システムにおけるアニオン交換装置又は混床式イオン交換装置の前段に熱交換器を配置し、前記アニオン交換装置又は混床式イオン交換装置の被処理水の水温を25℃以下、好ましくは20℃以下に制御することを特徴としている。   The present invention has been made on the basis of such knowledge, and a heat exchanger is disposed in front of the anion exchange device or the mixed bed ion exchange device in the ultrapure water production system, and the anion exchange device or the mixed bed ion exchange is provided. It is characterized in that the temperature of the water to be treated in the apparatus is controlled to 25 ° C. or lower, preferably 20 ° C. or lower.

本発明の効果は、アニオン交換装置又は混床式イオン交換装置の被処理水の水温を低くするほど大きくなるが、冷却に要するコストは逆に被処理水の水温を低くすればするほど高くなるので、冷却温度は、再生頻度が少なくなることによる再生コストの低減と冷却のためのコスト上昇との兼ね合いで、適当な温度に設定することが望ましい。一般に、元の水温より10℃を越えて冷却すると冷却コストの上昇が再生コストの低減効果を相殺してしまうので、被処理水の冷却は元の水温から10℃以内の範囲で設定することが望ましい。   The effect of the present invention increases as the temperature of the water to be treated of the anion exchange device or the mixed bed ion exchange device decreases, but the cost required for cooling increases as the temperature of the water to be treated decreases. Therefore, it is desirable to set the cooling temperature to an appropriate temperature in view of the reduction in the regeneration cost due to the reduction in the regeneration frequency and the increase in the cost for cooling. In general, if the cooling temperature exceeds 10 ° C. from the original water temperature, the increase in the cooling cost will offset the effect of reducing the regeneration cost. Therefore, the cooling of the water to be treated can be set within the range of 10 ° C. from the original water temperature. desirable.

本発明に使用する熱交換器としては、矩形の管路を良熱電導性の金属板からなる仕切り板で複数に仕切って複数の水路を形成し、隣接する水路を被処理水と冷却水が互いに向流で通過するように構成した平板式熱交換器が好適している。   As a heat exchanger used in the present invention, a rectangular pipe is divided into a plurality of partitions by a partition plate made of a metal plate having good heat conductivity to form a plurality of water channels, and the water to be treated and the cooling water are placed in adjacent water channels. A flat plate heat exchanger configured to pass countercurrent to each other is suitable.

また、本発明に使用するアニオン交換装置又は混床式イオン交換装置としては、アニオン交換樹脂を充填したアニオン交換樹脂装置やアニオン交換樹脂とカチオン交換樹脂との混合物を充填した混床式イオン交換樹脂装置が適している。   The anion exchange apparatus or mixed bed type ion exchange apparatus used in the present invention includes an anion exchange resin apparatus filled with an anion exchange resin or a mixed bed type ion exchange resin filled with a mixture of an anion exchange resin and a cation exchange resin. The device is suitable.

熱交換器は、アニオン交換装置又は混床式イオン交換装置の前段であれば、1次純水システム、2次純水システム、あるいはその両方に設置することができるが、ホウ素負荷の大きい1次純水システムのアニオン交換装置又は混床式イオン交換装置の前段に設置した方がより効果的である。   The heat exchanger can be installed in the primary pure water system, the secondary pure water system, or both if it is a front stage of the anion exchange device or the mixed bed type ion exchange device. It is more effective to install it in the front stage of the anion exchanger or mixed bed ion exchanger of the pure water system.

なお、熱交換器は、アニオン交換装置又は混床式イオン交換装置の直前に配置する必要はなく、アニオン交換装置又は混床式イオン交換装置に入る被処水が25℃以下となれば、他の装置を熱交換器とアニオン交換装置又は混床式イオン交換装置の間に介在させることも可能である。   The heat exchanger does not need to be placed immediately before the anion exchange device or the mixed bed type ion exchange device. If the treated water entering the anion exchange device or the mixed bed type ion exchange device is 25 ° C. or less, the heat exchanger It is also possible to interpose the apparatus between the heat exchanger and the anion exchange apparatus or the mixed bed type ion exchange apparatus.

本発明によれば、イオン交換装置の再生時期を延長するとともにホウ素を極低濃度まで低減させることができる。   According to the present invention, it is possible to extend the regeneration time of the ion exchange device and reduce boron to a very low concentration.

以下に、発明を実施するための最良の形態について説明する。
なお、以下の形態は、半導体製造装置に超純水を供給する超純水製造装置の1次純水システムに適用した例であるが、本発明は、かかる実施例に限定されるものではない。
The best mode for carrying out the invention will be described below.
In addition, although the following form is an example applied to the primary pure water system of the ultrapure water manufacturing apparatus which supplies ultrapure water to a semiconductor manufacturing apparatus, this invention is not limited to this Example. .

図1は、本発明を超純水製造システムの1次純水システムに適用した実施例の構成図である。   FIG. 1 is a configuration diagram of an embodiment in which the present invention is applied to a primary pure water system of an ultrapure water production system.

同図に示すように、この実施例の超純水製造装置は、中空糸膜からなる膜前処理装置1、酸貯槽2aとポンプ2bからなる第1のpH調整装置2、脱炭酸ガス塔3、アルカリ貯槽4aとポンプ4bからなる第2のpH調整装置4、第1の逆浸透膜装置7a、第2の逆浸透膜装置7b、平板式熱交換器8、混床式イオン交換装置9から、その主要部分が構成されている。   As shown in the figure, the ultrapure water production apparatus of this embodiment includes a membrane pretreatment device 1 comprising a hollow fiber membrane, a first pH adjusting device 2 comprising an acid storage tank 2a and a pump 2b, and a decarbonation gas tower 3. From the second pH adjusting device 4 comprising the alkaline storage tank 4a and the pump 4b, the first reverse osmosis membrane device 7a, the second reverse osmosis membrane device 7b, the flat plate heat exchanger 8, and the mixed bed ion exchange device 9. The main part is composed.

この実施例では、この超純水製造装置に供給された原水(神奈川県厚木市市水)は、膜前処理装置1で前処理された後、図示を承略したpH計により処理水のpHが測定され、図示を省略したpH調整装置により所定のpH値とするための硫酸水溶液量が計算されて第1のpH調整装置2から硫酸水溶液が注下されpHが4〜5に調整される。   In this embodiment, the raw water (Atsugi City water, Kanagawa Prefecture) supplied to the ultrapure water production apparatus is pretreated by the membrane pretreatment apparatus 1 and then the pH of the treated water by a pH meter not shown. Is measured, the amount of sulfuric acid aqueous solution to obtain a predetermined pH value is calculated by a pH adjusting device (not shown), and the sulfuric acid aqueous solution is poured from the first pH adjusting device 2 to adjust the pH to 4-5. .

次いで、pHを4〜5に調整された市水は、脱炭酸装置3により脱気されて脱炭酸される。脱炭酸された処理水は、図示を省略したpH調整装置により所定のpH値とするための水酸化ナトリウム水溶液量が計算されて、アルカリ貯槽4aからポンプ4bによって水酸化ナトリウム水溶液が添加されてpHが6〜7に調整される。pHを6〜7に調整された処理水は、第1の逆浸透膜装置[東レ(株)SU−710]7aに供給され、さらにその透過水が第2の逆浸透膜装置7bに供給されて逆浸透膜処理が行われる。   Next, the city water whose pH is adjusted to 4 to 5 is degassed and decarboxylated by the decarboxylation device 3. In the decarboxylated treated water, the amount of aqueous sodium hydroxide solution for calculating a predetermined pH value is calculated by a pH adjusting device (not shown), and the aqueous sodium hydroxide solution is added from the alkaline storage tank 4a by the pump 4b. Is adjusted to 6-7. The treated water whose pH is adjusted to 6 to 7 is supplied to the first reverse osmosis membrane device [Toray Industries, Inc. SU-710] 7a, and the permeated water is further supplied to the second reverse osmosis membrane device 7b. Reverse osmosis membrane treatment is performed.

この第2の逆浸透膜装置7bの透過水は平板式熱交換器8に供給されて、水温を所定の温度に調節した後、混床式イオン交換装置9に被処水として供給されて脱イオン処理が行われる。   The permeated water of the second reverse osmosis membrane device 7b is supplied to the flat plate heat exchanger 8, the water temperature is adjusted to a predetermined temperature, and then supplied to the mixed bed type ion exchanger 9 as treated water to be removed. Ion treatment is performed.

混床式イオン交換装置9は、内径50mm×高さ1500mmの容器に、混床式イオン交換樹脂[ローム・アンド・ハース社、MBGP]を1.5リットル充填したものであり、通水は、流量60リットル/hの下降流として行われる。   The mixed bed type ion exchange device 9 is a container having an inner diameter of 50 mm and a height of 1500 mm filled with 1.5 liters of mixed bed type ion exchange resin [Rohm and Haas, MBGP]. It is carried out as a downward flow with a flow rate of 60 liters / h.

混床式イオン交換装置9の被処理水の温度を28℃(比較例)、25℃(実施例1)、20℃(実施例2)にして処理したときの処理水中のホウ素イオン濃度を毎日定時に測定したときの結果を図2に示す。   The concentration of boron ions in the treated water when treated at 28 ° C. (Comparative Example), 25 ° C. (Example 1), and 20 ° C. (Example 2) every day in the mixed-bed ion exchanger 9 The results when measured at regular times are shown in FIG.

図2のグラフから明らかなように、実施例1(25℃)では、比較例(28℃)でホウ素イオンの流出まで3日だったのが、5日とほぼ60%可使期間が延長され、実施例2ではそれが7日と、ほぼ133%可使期間が延長されており、それだけ、再生の頻度を少なくできることが確認された。   As is apparent from the graph of FIG. 2, in Example 1 (25 ° C.), the outflow period of boron ions in Comparative Example (28 ° C.) was 3 days, but it was extended to 60 days by 5 days. In Example 2, it was confirmed that the frequency of regeneration could be reduced by that much because the period of use of 133% was extended to 7 days.

なお、以上の実施例では、イオン交換装置として混床式イオン交換装置を用いた例について説明したが、アニオン交換装置を用いた場合にも同様の効果を得ることが可能である。   In addition, although the example which used the mixed bed type | mold ion exchange apparatus as an ion exchange apparatus was demonstrated in the above Example, the same effect can be acquired also when an anion exchange apparatus is used.

以上の実施例は、半導体用の超純水製造装置の1次純水システムに本発明を適用した例であるが、半導体製造現場以外でも、医薬品製造工程、液晶基板製造工程その他の高純度の水が必要とされる分野に適用することが可能である。   The above embodiment is an example in which the present invention is applied to a primary pure water system of an ultrapure water production apparatus for semiconductors. However, the pharmaceutical production process, the liquid crystal substrate production process, and other high-purity products can be used outside the semiconductor production site. It can be applied to fields where water is required.

発明の一実施例の超純水製造装置の要部の構成を示す図、The figure which shows the structure of the principal part of the ultrapure water manufacturing apparatus of one Example of invention, 本発明の効果を示すためのグラフである。It is a graph for showing the effect of the present invention.

符号の説明Explanation of symbols

1…膜前処理装置、2…第1のpH調整装置、3…脱炭酸ガス塔、4…第2のpH調整装置、7a…第1の逆浸透膜装置、7b…第2の逆浸透膜装置、8…平板式熱交換器、9…混床式イオン交換装置。   DESCRIPTION OF SYMBOLS 1 ... Membrane pretreatment apparatus, 2 ... 1st pH adjustment apparatus, 3 ... Decarbonation gas tower, 4 ... 2nd pH adjustment apparatus, 7a ... 1st reverse osmosis membrane apparatus, 7b ... 2nd reverse osmosis membrane Apparatus: 8 ... Flat plate type heat exchanger, 9 ... Mixed bed type ion exchanger.

Claims (7)

超純水製造システムにおけるアニオン交換装置又は混床式イオン交換装置の前段に熱交換器を配置し、前記アニオン交換装置又は混床式イオン交換装置に通水する被処理水の水温を25℃以下に制御することを特徴とする超純水の製造方法。   A heat exchanger is disposed in front of the anion exchanger or mixed bed ion exchanger in the ultrapure water production system, and the temperature of the water to be treated that passes through the anion exchanger or mixed bed ion exchanger is 25 ° C. or lower. A method for producing ultrapure water, characterized in that the method is controlled. 前記アニオン交換装置又は混床式イオン交換装置に通水する被処理水の水温を20℃以下に制御することを特徴とする請求項1記載の超純水の製造方法。   The method for producing ultrapure water according to claim 1, wherein the temperature of water to be treated which is passed through the anion exchanger or the mixed bed ion exchanger is controlled to 20 ° C or lower. 超純水製造システムにおけるアニオン交換装置又は混床式イオン交換装置の前段に熱交換器を配置し、前記アニオン交換装置又は混床式イオン交換装置の被処理水の水温を元の水温から10℃以内の範囲で低下させることを特徴とする請求項1又は2記載の超純水の製造方法。   A heat exchanger is disposed in front of the anion exchanger or mixed bed ion exchanger in the ultrapure water production system, and the water temperature of the treated water of the anion exchanger or mixed bed ion exchanger is 10 ° C. from the original water temperature. The method for producing ultrapure water according to claim 1, wherein the water content is lowered within a range. 熱交換器が、平板式熱交換器であることを特徴とする請求項1乃至3のいずれか1項記載の超純水の製造方法。   The method for producing ultrapure water according to any one of claims 1 to 3, wherein the heat exchanger is a flat plate heat exchanger. アニオン交換装置又は混床式イオン交換装置が、アニオン交換樹脂装置又は混床式イオン交換樹脂装置であることを特徴とする請求項1乃至4のいずれか1項記載の超純水の製造方法。   The method for producing ultrapure water according to any one of claims 1 to 4, wherein the anion exchange device or the mixed bed type ion exchange device is an anion exchange resin device or a mixed bed type ion exchange resin device. 超純水製造システムが、1次純水システムであることを特徴とする請求項1乃至5のいずれか1項記載の超純水の製造方法。   The method for producing ultrapure water according to any one of claims 1 to 5, wherein the ultrapure water production system is a primary pure water system. 原水に膜前処理を施す前処理装置と、
前記前処理装置の処理水に酸を添加してpHを7未満とする第1のpH調整装置と、
前記第1のpH調整装置の処理水を脱気する脱気装置と、
前記脱気工程の処理水にアルカリを添加してpHを7以上とする第2のpH調整装置と、
前記第2のpH調整装置の処理水を逆浸透膜処理する逆浸透膜装置と、
前記逆浸透膜装置の処理水の温度を25℃以下となるよう温度調節する水温調節装置と、
前記水温調節装置で温度調節した処理水のイオン成分を除去するアニオン交換装置又は混床式イオン交換装置と
を有することを特徴とする超純水の製造装置。
A pretreatment device that performs membrane pretreatment on raw water;
A first pH adjusting device that adds acid to the treated water of the pretreatment device to make the pH less than 7,
A degassing device for degassing the treated water of the first pH adjusting device;
A second pH adjuster for adjusting the pH to 7 or more by adding alkali to the treated water in the degassing step;
A reverse osmosis membrane device for treating the treated water of the second pH adjusting device with a reverse osmosis membrane;
A water temperature adjusting device for adjusting the temperature of the treated water of the reverse osmosis membrane device to 25 ° C. or less;
An apparatus for producing ultrapure water, comprising: an anion exchange device or a mixed bed type ion exchange device that removes an ion component of treated water whose temperature is adjusted by the water temperature adjustment device.
JP2003419233A 2003-12-17 2003-12-17 Ultrapure water production method and apparatus Withdrawn JP2005177564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419233A JP2005177564A (en) 2003-12-17 2003-12-17 Ultrapure water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419233A JP2005177564A (en) 2003-12-17 2003-12-17 Ultrapure water production method and apparatus

Publications (1)

Publication Number Publication Date
JP2005177564A true JP2005177564A (en) 2005-07-07

Family

ID=34781187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419233A Withdrawn JP2005177564A (en) 2003-12-17 2003-12-17 Ultrapure water production method and apparatus

Country Status (1)

Country Link
JP (1) JP2005177564A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
CN104903247A (en) * 2012-12-07 2015-09-09 东丽株式会社 Method and device for treating organic wastewater
JP6269866B1 (en) * 2017-01-30 2018-01-31 栗田工業株式会社 PH control method by electric conductivity
KR20200121279A (en) 2018-02-20 2020-10-23 쿠리타 고교 가부시키가이샤 Method for removing boron, and method for producing pure or ultrapure water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
CN104903247A (en) * 2012-12-07 2015-09-09 东丽株式会社 Method and device for treating organic wastewater
JP6269866B1 (en) * 2017-01-30 2018-01-31 栗田工業株式会社 PH control method by electric conductivity
WO2018138957A1 (en) * 2017-01-30 2018-08-02 栗田工業株式会社 Method for controlling ph by electrical conductivity
JP2018122210A (en) * 2017-01-30 2018-08-09 栗田工業株式会社 pH VALUE CONTROL METHOD BY ELECTRIC CONDUCTIVITY
CN110177764A (en) * 2017-01-30 2019-08-27 栗田工业株式会社 PH control method based on conductivity
US11130688B2 (en) 2017-01-30 2021-09-28 Kurita Water Industries Ltd. Method for controlling pH by electrical conductivity
KR20200121279A (en) 2018-02-20 2020-10-23 쿠리타 고교 가부시키가이샤 Method for removing boron, and method for producing pure or ultrapure water

Similar Documents

Publication Publication Date Title
CN107235590B (en) Treatment process for zero discharge and resource recycling of catalyst wastewater
JPH0753276B2 (en) Fluoride-containing water treatment method
JP2017205703A (en) Water treatment method and equipment, and method for regenerating ion exchange resin
JPH11244853A (en) Production of pure water
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP2005177564A (en) Ultrapure water production method and apparatus
CN105314770A (en) Regeneration system and method of tetramethyl ammonium hydroxide developing waste liquid
WO2021079584A1 (en) Water treatment system, ultrapure water production system, and water treatment method
JP2007125519A (en) Method and apparatus for producing ultrapure water
JP2000070933A (en) Production of pure water
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JP2007125455A (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP4552273B2 (en) Electrodeionization equipment
JPH10314735A (en) Pure water preparation process
JPH0137997B2 (en)
JP3884407B2 (en) Method and apparatus for treating fluorine-containing water
TW201827338A (en) A method of synthesizing homogeneous barium perborate particles by using fluidized-bed crystallization technology
CN116322948A (en) Pure water production system and pure water production method
JP4624066B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JPH10249340A (en) Production of pure water
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JPH11262771A (en) Production of pure water
JP2000301145A (en) Deionizer
JP2006122908A (en) Pure water producing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306