JP2005175206A - Solar cell and measuring method of contact resistor and sheet resistor employing solar cell - Google Patents

Solar cell and measuring method of contact resistor and sheet resistor employing solar cell Download PDF

Info

Publication number
JP2005175206A
JP2005175206A JP2003413232A JP2003413232A JP2005175206A JP 2005175206 A JP2005175206 A JP 2005175206A JP 2003413232 A JP2003413232 A JP 2003413232A JP 2003413232 A JP2003413232 A JP 2003413232A JP 2005175206 A JP2005175206 A JP 2005175206A
Authority
JP
Japan
Prior art keywords
receiving surface
surface electrode
solar cell
light
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003413232A
Other languages
Japanese (ja)
Other versions
JP4296083B2 (en
Inventor
Kazuyuki Yoneda
和志 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003413232A priority Critical patent/JP4296083B2/en
Publication of JP2005175206A publication Critical patent/JP2005175206A/en
Application granted granted Critical
Publication of JP4296083B2 publication Critical patent/JP4296083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell capable of measuring the contact resistor of a receiving surface electrode and the sheet resistor of a photoelectric conversion layer under perfected state. <P>SOLUTION: The solar cell is provided with the photoelectric conversion layer, the receiving surface electrode formed on the front surface of the photoelectric conversion layer and a back electrode formed on the rear side of the photoelectric conversion layer, while at least two places of disconnection disconnected with mutually different spaces are formed on the receiving surface electrode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、太陽電池セルおよびその太陽電池セルを用いた接触抵抗とシート抵抗の測定方法に関し、詳しくは、完成した状態にある太陽電池セルにて受光面電極の接触抵抗と光電変換層のシート抵抗を測定可能とするための太陽電池セルの構造に関する。   The present invention relates to a solar battery cell and a method for measuring contact resistance and sheet resistance using the solar battery cell, and more specifically, a contact resistance of a light-receiving surface electrode and a sheet of a photoelectric conversion layer in a solar battery cell in a completed state. The present invention relates to a structure of a solar battery cell for making resistance measurable.

この発明に関連する従来技術としては、太陽電池セルの裏面電極を複数の分割電極で形成し、はんだディップ法によって各分割電極の表面にはんだ層を形成することにより、各分割電極の先端に層厚の厚いはんだ溜まり部を形成した太陽電池セルが知られている(例えば、特許文献1参照)。
このような太陽電池セルによれば、モジュール化工程においてリード線を裏面電極に接続する際に、リード線が複数のはんだ溜まり部によって接続されるため、リード線が十分な強度で裏面電極に接続される。
特開2000−332269号公報
As a prior art related to this invention, a back surface electrode of a solar battery cell is formed with a plurality of divided electrodes, and a solder layer is formed on the surface of each divided electrode by a solder dipping method, whereby a layer is formed at the tip of each divided electrode. A solar battery cell having a thick solder reservoir is known (see, for example, Patent Document 1).
According to such a solar battery cell, when connecting the lead wire to the back electrode in the modularization process, the lead wire is connected to the back electrode with sufficient strength because the lead wire is connected by a plurality of solder reservoirs. Is done.
JP 2000-332269 A

従来の太陽電池セルは、完成した状態において受光面電極の接触抵抗や光電変換層のシート抵抗を測定するのが困難なため、それら抵抗値とセル特性との相関データを得るのが難しい。
このため、完成した状態で、受光面電極の接触抵抗と光電変換層のシート抵抗をそれぞれ測定できる太陽電池セルが求められている。
Since it is difficult to measure the contact resistance of the light-receiving surface electrode and the sheet resistance of the photoelectric conversion layer in the completed solar battery cell, it is difficult to obtain correlation data between the resistance value and the cell characteristics.
For this reason, the solar cell which can measure the contact resistance of a light-receiving surface electrode and the sheet resistance of a photoelectric converting layer in the completed state is calculated | required.

この発明は以上のような事情を考慮してなされたものであり、完成した状態で受光面電極の接触抵抗と光電変換層のシート抵抗の測定が可能な太陽電池セルと、それを用いた接触抵抗とシート抵抗の測定方法を提供するものである。   The present invention has been made in consideration of the above-described circumstances. In a completed state, the solar cell capable of measuring the contact resistance of the light-receiving surface electrode and the sheet resistance of the photoelectric conversion layer, and the contact using the solar cell A method for measuring resistance and sheet resistance is provided.

この発明は、光電変換層と、光電変換層の表面に形成された受光面電極と、光電変換層の裏面に形成された裏面電極を備え、受光面電極は互いに異なる間隔で断線した少なくとも2つの断線箇所が形成されていることを特徴とする太陽電池セルを提供するものである。   The present invention includes a photoelectric conversion layer, a light receiving surface electrode formed on the surface of the photoelectric conversion layer, and a back electrode formed on the back surface of the photoelectric conversion layer, and the light receiving surface electrodes are disconnected at intervals different from each other. The present invention provides a solar battery cell in which a disconnection point is formed.

この発明によれば、受光面電極は、互いに異なる間隔で断線した少なくとも2つの断線箇所が形成されるので、断線間隔が異なる2つの断線箇所で電気抵抗値をそれぞれ測定でき、測定された電気抵抗値の差から受光面電極の接触抵抗と光電変換層のシート抵抗をそれぞれ求めることができる。
求められた接触抵抗とシート抵抗は、これら抵抗値とセル特性との相関データを得るのに利用され、製造工程の良否の判別や太陽電池の開発に活かされる。
According to the present invention, since the light receiving surface electrode is formed with at least two disconnection locations that are disconnected at different intervals, the electrical resistance values can be measured at the two disconnection locations with different disconnection intervals, respectively. From the difference in value, the contact resistance of the light-receiving surface electrode and the sheet resistance of the photoelectric conversion layer can be obtained.
The obtained contact resistance and sheet resistance are used to obtain correlation data between these resistance values and cell characteristics, and are used for determining the quality of the manufacturing process and for developing solar cells.

この発明による太陽電池セルは、光電変換層と、光電変換層の表面に形成された受光面電極と、光電変換層の裏面に形成された裏面電極を備え、受光面電極は互いに異なる間隔で断線した少なくとも2つの断線箇所が形成されていることを特徴とする。   A solar cell according to the present invention includes a photoelectric conversion layer, a light receiving surface electrode formed on the surface of the photoelectric conversion layer, and a back electrode formed on the back surface of the photoelectric conversion layer, and the light receiving surface electrodes are disconnected at different intervals. It is characterized in that at least two disconnected portions are formed.

この発明による太陽電池セルにおいて、光電変換層としては、例えば、厚さが200〜400μm程度のp型またはn型シリコン基板に、n型またはp型の不純物が拡散されてpn接合層が形成されたものを用いることができる。   In the solar cell according to the present invention, as the photoelectric conversion layer, for example, an n-type or p-type impurity is diffused in a p-type or n-type silicon substrate having a thickness of about 200 to 400 μm to form a pn junction layer. Can be used.

受光面電極および裏面電極としては、例えば、光電変換層の表面および裏面に金属粉末を含む金属ペーストをスクリーン印刷法などの方法によりそれぞれ印刷し、焼成して形成されたものを用いることができる。   As the light-receiving surface electrode and the back surface electrode, for example, those formed by printing and baking a metal paste containing metal powder on the front and back surfaces of the photoelectric conversion layer by a method such as a screen printing method can be used.

この発明による太陽電池セルにおいて、受光面電極は並行する2本の細長い接続用電極と、これら接続用電極に直交する複数の細長いグリッド電極とからなっていてもよい。
また、上記構成において、断線箇所は2本の接続用電極に1箇所ずつ形成されてもよい。
また、上記構成において、各断線箇所は各接続用電極の長手方向のほぼ中央に形成されてもよい。
また、上記構成において、各断線箇所は各接続用電極を斜めに横切るように形成されてもよい。
In the solar battery cell according to the present invention, the light-receiving surface electrode may be composed of two parallel elongated connecting electrodes and a plurality of elongated grid electrodes orthogonal to the connecting electrodes.
Further, in the above configuration, one disconnection point may be formed on each of the two connection electrodes.
Moreover, in the said structure, each disconnection location may be formed in the approximate center of the longitudinal direction of each connection electrode.
Moreover, in the said structure, each disconnection location may be formed so that it may cross each connection electrode diagonally.

また、この発明による太陽電池セルにおいて、受光面電極は焼成銀からなっていてもよい。   In the solar cell according to the present invention, the light-receiving surface electrode may be made of sintered silver.

また、この発明は別の観点からみると、上述のこの発明による太陽電池セルを用い、各断線箇所において互いに間隔を空けて対向する受光面電極の端部にそれぞれ抵抗計の端子を当てて前記端部間の電気抵抗値を測定し、2つの断線箇所で測定された電気抵抗値の差から受光面電極の接触抵抗と光電変換層のシート抵抗をそれぞれ求めることを特徴とする接触抵抗とシート抵抗の測定方法を提供するものでもある。   Further, from another viewpoint, the present invention uses the above-described solar cell according to the present invention, and applies the terminals of the resistance meter to the ends of the light receiving surface electrodes facing each other at intervals in each disconnection. Contact resistance and sheet characterized by measuring the electrical resistance value between the end portions and determining the contact resistance of the light receiving surface electrode and the sheet resistance of the photoelectric conversion layer from the difference between the electrical resistance values measured at the two disconnection points, respectively It also provides a method for measuring resistance.

また、この発明は更に別の観点からみると、上述のこの発明による接触抵抗とシート抵抗の測定方法によって受光面電極の接触抵抗と光電変換層のシート抵抗をそれぞれ求め、求められた接触抵抗とシート抵抗に基づいて太陽電池セルの製造工程の良否を判別することを特徴とする太陽電池セルの製造方法を提供するものでもある。   Further, from another viewpoint, the present invention obtains the contact resistance of the light-receiving surface electrode and the sheet resistance of the photoelectric conversion layer by the contact resistance and sheet resistance measurement method according to the present invention described above, and the obtained contact resistance and The present invention also provides a method for manufacturing a solar battery cell, in which the quality of the manufacturing process of the solar battery cell is determined based on the sheet resistance.

また、この発明は更に別の観点からみると、互いに隣接するように並べられた複数の太陽電池セルと、隣接する一対の太陽電池セルの一方の受光面電極と他方の裏面電極を電気的に接続するインターコネクタと、電気的に接続された太陽電池セルを封止する封止材とを備え、各太陽電池セルは上述のこの発明による太陽電池セルからなり、インターコネクタは各太陽電池セルの受光面電極に形成された断線箇所を電気的に接続するように接続される太陽電池モジュールを提供するものでもある。   From another viewpoint, the present invention electrically connects a plurality of solar cells arranged adjacent to each other, and one light receiving surface electrode and the other back surface electrode of a pair of adjacent solar cells. An interconnector to be connected and a sealing material for sealing electrically connected solar cells, each solar cell is composed of the above-described solar cells according to the present invention, The present invention also provides a solar cell module that is connected so as to electrically connect the disconnection points formed on the light receiving surface electrode.

以下にこの発明の実施例について図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

この発明の実施例1について図1〜9に基づいて説明する。図1はこの発明の実施例1による太陽電池セルの平面図、図2は図1に示される太陽電池セルの側面図、図3および図4は、太陽電池セルの製造工程を示す工程図、図5は受光面電極をスクリーン印刷法によって形成する際に用いられる受光面電極形成用スクリーンの平面図、図6および図7は電気抵抗の測定方法を説明する説明図、図8はシート抵抗とFFおよびPmとの関係を示すグラフ図、図9は図1および図2に示される太陽電池セルを用いて製造された太陽電池モジュールの概略的な構成を示す説明図である。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view of a solar battery cell according to Embodiment 1 of the present invention, FIG. 2 is a side view of the solar battery cell shown in FIG. 1, and FIGS. 3 and 4 are process diagrams showing manufacturing steps of the solar battery cell, FIG. 5 is a plan view of a light receiving surface electrode forming screen used when the light receiving surface electrode is formed by a screen printing method, FIGS. 6 and 7 are explanatory diagrams for explaining a method of measuring electric resistance, and FIG. FIG. 9 is a graph showing the relationship between FF and Pm, and FIG. 9 is an explanatory diagram showing a schematic configuration of a solar cell module manufactured using the solar cells shown in FIGS. 1 and 2.

太陽電池セル
図1および図2に示されるように、実施例1による太陽電池セル20は、光電変換層17と、光電変換層17の表面に形成された受光面電極14と、光電変換層17の裏面に形成された裏面集電極13を備え、受光面電極14は互いに異なる間隔で断線した少なくとも2つの断線箇所25,26が形成されている。
光電変換層17は、p型シリコンからなるウエハ10の表面にn型拡散層11が形成されたものである。
受光面電極14は並行する2本の細長い接続用電極22,23と、これら接続用電極22,23に直交する複数の細長いグリッド電極24とから構成されている。
Solar Cell As shown in FIGS. 1 and 2, the solar cell 20 according to Example 1 includes a photoelectric conversion layer 17, a light-receiving surface electrode 14 formed on the surface of the photoelectric conversion layer 17, and a photoelectric conversion layer 17. The back surface collecting electrode 13 formed on the back surface of the light receiving surface electrode 14 is provided, and the light receiving surface electrode 14 is formed with at least two disconnected portions 25 and 26 that are disconnected at different intervals.
The photoelectric conversion layer 17 is obtained by forming the n-type diffusion layer 11 on the surface of the wafer 10 made of p-type silicon.
The light-receiving surface electrode 14 is composed of two parallel elongated connecting electrodes 22 and 23 and a plurality of elongated grid electrodes 24 orthogonal to the connecting electrodes 22 and 23.

2本の接続用電極22,23はそれぞれ1箇所ずつ断線箇所25,26を有し、また、断線箇所25,26は接続用電極22,23の長手方向のほぼ中央に接続用電極22,23をそれぞれ斜めに横切るように形成されている。
光電変換層17の表面には反射防止膜12が形成され、裏面集電極13の一部には裏面配線用電極15が形成され、受光面電極14と裏面配線用電極15の表面ははんだ層16で被覆されている。
The two connection electrodes 22 and 23 each have one disconnection point 25 and 26, and the disconnection points 25 and 26 are connected to the connection electrodes 22 and 23 at approximately the center in the longitudinal direction of the connection electrodes 22 and 23. Are formed so as to cross each of them diagonally.
The antireflection film 12 is formed on the surface of the photoelectric conversion layer 17, the back surface wiring electrode 15 is formed on a part of the back surface collecting electrode 13, and the surfaces of the light receiving surface electrode 14 and the back surface wiring electrode 15 are the solder layer 16. It is covered with.

太陽電池セルの製造
まず、図3(a)に示されるように、ワイヤーソーにより125mm角、厚さ300μmにスライスされたp型シリコンウエハ10にアルカリエッチングを施し、スライス時におけるダメージ層を除去する。
次に、図3(b)に示されるように、受光面となるウエハ10の表面にリン(P)系の化合物を含有したn型の不純物を塗布し、800〜900℃の熱拡散により面抵抗値が約50Ωのn型拡散層11を形成する。
Production of Solar Cell First, as shown in FIG. 3A, the p-type silicon wafer 10 sliced to 125 mm square and 300 μm thick by a wire saw is subjected to alkali etching to remove a damaged layer at the time of slicing. .
Next, as shown in FIG. 3B, an n-type impurity containing a phosphorus (P) -based compound is applied to the surface of the wafer 10 to be a light receiving surface, and the surface is diffused by thermal diffusion at 800 to 900 ° C. An n-type diffusion layer 11 having a resistance value of about 50Ω is formed.

次に、図3(c)に示されるように、ウエハ10の受光面に反射防止膜12(ARC)として膜厚70〜100μmのSiN膜をプラズマCVD法で形成する。
次に、図3(d)に示されるように、ウエハ10の裏面にアルミペーストをスクリーン印刷法により印刷し、150℃程度で乾燥させた後、700〜800℃程度で焼成し、不純物となるアルミを拡散させてP+層からなるBSF層(図示せず)を形成すると共に裏面集電極13を形成する。
なお、この裏面集電極13の形成の際、後の工程で裏面配線用電極15(図11参照)を形成するための開口部13aを形成しておく。
Next, as shown in FIG. 3C, an SiN film having a film thickness of 70 to 100 μm is formed on the light receiving surface of the wafer 10 as an antireflection film 12 (ARC) by plasma CVD.
Next, as shown in FIG. 3D, an aluminum paste is printed on the back surface of the wafer 10 by a screen printing method, dried at about 150 ° C., and then baked at about 700 to 800 ° C. to become impurities. Aluminum is diffused to form a BSF layer (not shown) made of a P + layer, and the back collector electrode 13 is formed.
In forming the back surface collecting electrode 13, an opening 13a for forming the back surface wiring electrode 15 (see FIG. 11) is formed in a later step.

次に、図3(e)に示されるように、ウエハ10の表面上に、銀ペースト(粘度350Pa・s(10rpmにおける粘度))をスクリーン印刷法で印刷し、受光面電極14を形成する。
この際、図5に示すような、印刷すべき受光面電極に対応した形状のメッシュパターンを有する受光面電極形成用スクリーン30を用いる。
図5に示される受光面電極形成用スクリーン30は、320mm×320mmの寸法を有する枠材31と、SUS250からなるメッシュ32と、メッシュ32と一体化された乳剤33とから主に構成され、メッシュパターン34に対応する部分のみ乳剤33が欠損している。
Next, as shown in FIG. 3E, a silver paste (viscosity 350 Pa · s (viscosity at 10 rpm)) is printed on the surface of the wafer 10 by a screen printing method to form the light receiving surface electrode 14.
At this time, a light receiving surface electrode forming screen 30 having a mesh pattern corresponding to the light receiving surface electrode to be printed as shown in FIG. 5 is used.
The light receiving surface electrode forming screen 30 shown in FIG. 5 is mainly composed of a frame member 31 having a size of 320 mm × 320 mm, a mesh 32 made of SUS250, and an emulsion 33 integrated with the mesh 32. Only the portion corresponding to the pattern 34 is missing the emulsion 33.

次に、図4(f)に示されるように、裏面集電極13の開口部13aに銀ペーストをスクリーン印刷法で印刷し、150℃程度で乾燥させた後、700〜800℃程度で焼成して裏面配線用電極15を形成する。なお、この焼成の際にウエハ10の受光面に印刷された受光面電極14が反射防止膜12をファイヤースルーし、受光面電極14とウエハ10とのオーミックコンタクトが得られる。
その後、図4(g)に示されるように、はんだディップを行うことにより受光面電極14および裏面配線用電極15の表面がはんだ層16で被覆され、図1および図2に示される太陽電池セル20が完成する。
Next, as shown in FIG. 4 (f), a silver paste is printed on the opening 13 a of the back collector electrode 13 by screen printing, dried at about 150 ° C., and then fired at about 700 to 800 ° C. Thus, the back surface wiring electrode 15 is formed. In this firing, the light-receiving surface electrode 14 printed on the light-receiving surface of the wafer 10 fires through the antireflection film 12, and an ohmic contact between the light-receiving surface electrode 14 and the wafer 10 is obtained.
Thereafter, as shown in FIG. 4G, the surface of the light-receiving surface electrode 14 and the back surface wiring electrode 15 is covered with the solder layer 16 by performing solder dipping, and the solar battery cell shown in FIGS. 20 is completed.

接触抵抗とシート抵抗の測定
図1に示される完成した太陽電池セル20を用い、断線箇所25において互いに間隔を空けて対向する接続用電極の端部22a,22bにそれぞれ抵抗計の端子(図示せず)を当てて端部22a,22b間の電気抵抗値を測定する。
同様に、断線箇所26においても、互いに間隔を空けて対向する接続用電極の端部23a,23bにそれぞれ抵抗計の端子を当てて端部23a,23b間の電気抵抗値を測定する。
この際、断線箇所25において測定された抵抗値は、図6に示すように接触抵抗Rcとシート抵抗kαを含んだものになる。なお、「k」は定数であり、「α」は接続用電極22の端部22a,22b間の距離である。
一方、断線箇所26において測定された抵抗値は、図7に示すように接触抵抗Rcとシート抵抗kβを含んだものになる。なお、「β」は接続用電極23の端部23a,23b間の距離である。
Measurement of Contact Resistance and Sheet Resistance Using the completed solar cell 20 shown in FIG. 1, terminals of resistance meters (not shown) are respectively connected to the ends 22a and 22b of the connection electrodes facing each other at a disconnection point 25 with a space therebetween. 2) and the electrical resistance value between the end portions 22a and 22b is measured.
Similarly, also at the disconnection point 26, the resistance values of the terminals 23a and 23b are applied to the ends 23a and 23b of the connection electrodes facing each other with a space therebetween, and the electrical resistance value between the ends 23a and 23b is measured.
At this time, the resistance value measured at the disconnection point 25 includes the contact resistance Rc and the sheet resistance kα as shown in FIG. “K” is a constant, and “α” is a distance between the end portions 22 a and 22 b of the connection electrode 22.
On the other hand, the resistance value measured at the disconnection point 26 includes the contact resistance Rc and the sheet resistance kβ as shown in FIG. “Β” is the distance between the end portions 23 a and 23 b of the connection electrode 23.

ここで、接続用電極22の端部22a,22b間の抵抗値を「R1」、接続用電極23の端部23a,23b間の抵抗値を「R2」とすると、接触抵抗Rcとシート抵抗kα,kβは次の式で求めることができる。

R1=2Rc+kα
R2=2Rc+kβ
β>α
R2−R1=k(β−α)
k=(R2−R1)/(β−α)

R1−kα=2Rc
Rc=2Rc/2
Here, when the resistance value between the end portions 22a and 22b of the connection electrode 22 is “R1” and the resistance value between the end portions 23a and 23b of the connection electrode 23 is “R2”, the contact resistance Rc and the sheet resistance kα. , Kβ can be obtained by the following equation.

R1 = 2Rc + kα
R2 = 2Rc + kβ
β> α
R2−R1 = k (β−α)
k = (R2-R1) / (β-α)

R1-kα = 2Rc
Rc = 2Rc / 2

太陽電池セル製造工程の良否の判断
一般に、製品としての太陽電池セルの良否の判断は、出力(Pm)で判定することができる。出力(Pm)は以下の式で求めることができる。

Pm=Isc×Voc×FF

ここで、Iscは短絡時電流、Vocは開放時電圧、FFはフィルタファクタである。
In general, the quality of a solar cell as a product can be judged by the output (Pm). The output (Pm) can be obtained by the following equation.

Pm = Isc × Voc × FF

Here, Isc is a short-circuit current, Voc is an open-circuit voltage, and FF is a filter factor.

また、図8にシート抵抗値とFFおよびPmとの関係を示す。なお、図8は第1試料(T1)のシート抵抗値、FF、およびPmをそれぞれ1とし、第2試料(T2)、第3試料(T3)のシート抵抗値、FF、およびPmをそれぞれ相対比較したものである。
図8から明らかなように、シート抵抗が大きくなるほどFFが小さくなり、Pmも小さくなるので良品率が下がる。
また、グラフには表わさないが、接触抵抗も大きくなるほどFFが小さくなるという傾向がある。
これらのことから、上述の測定方法によって完成した太陽電池セル20の接触抵抗とシート抵抗を測定することにより、太陽電池セル製造工程が良好であったか否かを判別することができる。
FIG. 8 shows the relationship between the sheet resistance value and FF and Pm. In FIG. 8, the sheet resistance value, FF, and Pm of the first sample (T1) are set to 1, respectively, and the sheet resistance value, FF, and Pm of the second sample (T2) and the third sample (T3) are respectively relative. It is a comparison.
As is clear from FIG. 8, as the sheet resistance increases, the FF decreases and the Pm also decreases, so the yield rate decreases.
Although not shown in the graph, the FF tends to decrease as the contact resistance increases.
From these facts, it is possible to determine whether or not the solar cell manufacturing process was satisfactory by measuring the contact resistance and sheet resistance of the solar cell 20 completed by the above-described measurement method.

太陽電池モジュール
図9に図1および図2に示される太陽電池セル20を用いて製造された太陽電池モジュールを示す。
図9に示される太陽電池モジュール60は、互いに隣接するように並べられた複数の太陽電池セル20と、隣接する一対の太陽電池セル20の一方の受光面電極14と他方の裏面配線用電極15を電気的に接続するインターコネクタ61と、電気的に接続された太陽電池セル20を封止する封止材62とを備え、インターコネクタ61は、各太陽電池セル20の受光面電極14に形成された断線箇所25を電気的に接続するように接続されている。
なお、図に表れないが、断線箇所26についても同様にインターコネクタ61によって電気的に接続される。
Solar Battery Module FIG. 9 shows a solar battery module manufactured using the solar battery cell 20 shown in FIGS. 1 and 2.
The solar cell module 60 shown in FIG. 9 includes a plurality of solar cells 20 arranged so as to be adjacent to each other, one light receiving surface electrode 14 of the pair of adjacent solar cells 20 and the other back surface wiring electrode 15. The interconnector 61 and the sealing material 62 for sealing the electrically connected solar cells 20 are formed on the light receiving surface electrode 14 of each solar cell 20. The disconnected part 25 is connected so as to be electrically connected.
Although not shown in the figure, the disconnected portion 26 is also electrically connected by the interconnector 61 in the same manner.

封止材62の表面側には受光面ガラス63が貼り付けられ、裏面側には裏面封止シート64が貼り付けられ、封止材62の外縁はアルミニウム製の枠材65で囲われている。
なお、両端に位置する太陽電池セル20の受光面電極14と裏面配線用電極15には電力取り出し用の外部端子66がそれぞれ接続される。
つまり、太陽電池セル20は、受光面電極14の断線箇所25,26をインターコネクタ61で電気的に接続することにより、断線箇所が形成されない一般の太陽電池セルと同様に実用に供される。
A light receiving surface glass 63 is attached to the front surface side of the sealing material 62, and a back surface sealing sheet 64 is attached to the back surface side, and the outer edge of the sealing material 62 is surrounded by an aluminum frame member 65. .
Note that an external terminal 66 for extracting power is connected to the light receiving surface electrode 14 and the back surface wiring electrode 15 of the solar battery cell 20 located at both ends.
In other words, the solar battery cell 20 is put to practical use in the same manner as a general solar battery cell in which a disconnection point is not formed by electrically connecting the disconnection points 25 and 26 of the light receiving surface electrode 14 with the interconnector 61.

この発明の実施例2による太陽電池セルについて図10および図11に基づいて説明する。
実施例2では、太陽電池セルの製造工程において、実施例1で用いた図5に示される受光面電極形成用スクリーン30の代わりに図10に示される受光面電極形成用スクリーン50を用いる。
このため、図11に示されるように、完成した太陽電池セル40の受光面電極41は4箇所に断線箇所45,46,47,48が形成される。
断線箇所45,46は接続用電極42に形成され、断線箇所47,48は接続用電極43に形成される。
接続用電極42に形成された断線箇所45,46と、接続用電極43に形成された断線箇所47,48は互いに同じ断線間隔を有する。
A solar battery cell according to Embodiment 2 of the present invention will be described with reference to FIGS.
In Example 2, the light receiving surface electrode forming screen 50 shown in FIG. 10 is used in place of the light receiving surface electrode forming screen 30 shown in FIG.
For this reason, as shown in FIG. 11, the light receiving surface electrode 41 of the completed solar battery cell 40 is formed with disconnection portions 45, 46, 47, 48 at four locations.
The disconnection points 45 and 46 are formed on the connection electrode 42, and the disconnection points 47 and 48 are formed on the connection electrode 43.
The disconnection points 45 and 46 formed in the connection electrode 42 and the disconnection points 47 and 48 formed in the connection electrode 43 have the same disconnection interval.

電気抵抗値の測定では、図11に示すように、断線箇所45において互いに対向する接続用電極の端部42a,42b、断線箇所46において互いに対向する接続用電極の端部42c,42d、断線箇所47において互いに対向する接続用電極の端部43a,43b、および断線箇所48において互いに対向する接続用電極の端部43c,43dにそれぞれ抵抗計の端子を当てて電気抵抗値を測定する。   In the measurement of the electrical resistance value, as shown in FIG. 11, the end portions 42a and 42b of the connection electrodes facing each other at the disconnection location 45, the end portions 42c and 42d of the connection electrodes facing each other at the disconnection location 46, and the disconnection location. 47, the resistance values are measured by applying the terminals of the resistance meter to the ends 43a and 43b of the connection electrodes facing each other and the ends 43c and 43d of the connection electrodes facing each other at the disconnection point 48.

つまり、実施例2では測定箇所が4箇所に増えているため、より正確な接触抵抗とシート抵抗の算出が可能になる。
例えば、断線箇所45と断線箇所46の抵抗値の差から求められた接触抵抗と、断線箇所47と断線箇所48の抵抗値の差から求められた接触抵抗との平均値を求めることにより、より正確な接触抵抗の算出が可能になる。
同様に、断線箇所45と断線箇所46の抵抗値の差から求められたシート抵抗と、断線箇所47と断線箇所48の抵抗値の差から求められたシート抵抗との平均値を求めることにより、より正確なシート抵抗の算出が可能になる。
That is, in Example 2, since the number of measurement points is increased to four, more accurate contact resistance and sheet resistance can be calculated.
For example, by calculating the average value of the contact resistance obtained from the difference between the resistance values of the breakage point 45 and the breakage point 46 and the contact resistance obtained from the difference between the resistance values of the breakage point 47 and the breakage point 48, Accurate contact resistance can be calculated.
Similarly, by obtaining the average value of the sheet resistance obtained from the difference in resistance value between the breakage point 45 and the breakage point 46 and the sheet resistance obtained from the difference in resistance value between the breakage point 47 and the breakage point 48, More accurate sheet resistance can be calculated.

この発明の実施例1による太陽電池セルの平面図である。It is a top view of the photovoltaic cell by Example 1 of this invention. 図1に示される太陽電池セルの平面図である。It is a top view of the photovoltaic cell shown by FIG. 図1および図2に示される太陽電池セルの製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the photovoltaic cell shown by FIG. 1 and FIG. 図1および図2に示される太陽電池セルの製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the photovoltaic cell shown by FIG. 1 and FIG. 図4(e)の製造工程で用いられる受光面電極形成用スクリーンの平面図である。It is a top view of the screen for light-receiving surface electrode formation used at the manufacturing process of FIG.4 (e). 接触抵抗とシート抵抗の測定方法を説明する説明図である。It is explanatory drawing explaining the measuring method of contact resistance and sheet resistance. 接触抵抗とシート抵抗の測定方法を説明する説明図である。It is explanatory drawing explaining the measuring method of contact resistance and sheet resistance. シート抵抗とFFおよびPmとの関係を示すグラフ図である。It is a graph which shows the relationship between sheet resistance, FF, and Pm. 図1および図2に示される太陽電池セルを用いて製造された太陽電池モジュールの概略的な構成を示す説明図である。It is explanatory drawing which shows schematic structure of the solar cell module manufactured using the photovoltaic cell shown by FIG. 1 and FIG. この発明の実施例2による太陽電池セルの製造工程で用いられる受光面電極形成用スクリーンの平面図である。It is a top view of the screen for light-receiving surface electrode formation used at the manufacturing process of the photovoltaic cell by Example 2 of this invention. この発明の実施例2による太陽電池セルの平面図である。It is a top view of the photovoltaic cell by Example 2 of this invention.

符号の説明Explanation of symbols

10・・・ウエハ
11・・・n型拡散層
12・・・反射防止膜
13・・・裏面集電極
13a・・・開口部
14・・・受光面電極
15・・・裏面配線用電極
16・・・はんだ層
17・・・光電変換層
20・・・太陽電池セル
22,23,42,43・・・接続用電極
22a,22b,23a,23b,42a,42b,42c,42d,43a,43b,43c,43d・・・端部
24・・・グリッド電極
25,26,45,46,47,48・・・断線箇所
30,50・・・受光面電極形成用スクリーン
31・・・枠材
32・・・メッシュ
33・・・乳剤
34・・・メッシュパターン
60・・・太陽電池モジュール
61・・・インターコネクタ
62・・・封止材
63・・・受光面ガラス
64・・・裏面封止シート
65・・・枠材
66・・・外部端子
DESCRIPTION OF SYMBOLS 10 ... Wafer 11 ... N-type diffused layer 12 ... Antireflection film 13 ... Back surface collection electrode 13a ... Opening part 14 ... Light-receiving surface electrode 15 ... Electrode for back surface wiring 16. ..Solder layer 17 ... Photoelectric conversion layer 20 ... Solar cell 22,23,42,43 ... Connecting electrode 22a, 22b, 23a, 23b, 42a, 42b, 42c, 42d, 43a, 43b , 43c, 43d ... end 24 ... grid electrode 25, 26, 45, 46, 47, 48 ... disconnection location 30, 50 ... light receiving surface electrode forming screen 31 ... frame material 32 ... Mesh 33 ... Emulsion 34 ... Mesh pattern 60 ... Solar cell module 61 ... Interconnector 62 ... Sealing material 63 ... Light receiving surface glass 64 ... Back side sealing sheet 65 ... Wood 66 ... external terminal

Claims (9)

光電変換層と、光電変換層の表面に形成された受光面電極と、光電変換層の裏面に形成された裏面電極を備え、受光面電極は互いに異なる間隔で断線した少なくとも2つの断線箇所が形成されていることを特徴とする太陽電池セル。   A photoelectric conversion layer, a light-receiving surface electrode formed on the surface of the photoelectric conversion layer, and a back-surface electrode formed on the back surface of the photoelectric conversion layer, the light-receiving surface electrode is formed with at least two disconnected points disconnected at different intervals A solar battery cell characterized by being made. 受光面電極は並行する2本の細長い接続用電極と、これら接続用電極に直交する複数の細長いグリッド電極とからなる請求項1に記載の太陽電池セル。   The solar cell according to claim 1, wherein the light-receiving surface electrode includes two elongated connection electrodes in parallel and a plurality of elongated grid electrodes orthogonal to the connection electrodes. 断線箇所は2本の接続用電極に1箇所ずつ形成される請求項2に記載の太陽電池セル。   The solar cell according to claim 2, wherein the disconnection portion is formed on each of the two connection electrodes. 各断線箇所は各接続用電極の長手方向のほぼ中央に形成される請求項3に記載の太陽電池セルの接触抵抗とシート抵抗の測定方法。   The method for measuring contact resistance and sheet resistance of a solar battery cell according to claim 3, wherein each disconnection point is formed at substantially the center in the longitudinal direction of each connection electrode. 各断線箇所は各接続用電極を斜めに横切るように形成される請求項3又は4に記載に太陽電池セル。   5. The solar battery cell according to claim 3, wherein each disconnection portion is formed so as to obliquely cross each connection electrode. 受光面電極は焼成銀からなる請求項1〜5のいずれか1つに記載の太陽電池セル。   The solar cell according to any one of claims 1 to 5, wherein the light-receiving surface electrode is made of sintered silver. 請求項1〜6のいずれか1つに記載の太陽電池セルを用い、各断線箇所において互いに間隔を空けて対向する受光面電極の端部にそれぞれ抵抗計の端子を当てて前記端部間の電気抵抗値を測定し、2つの断線箇所で測定された電気抵抗値の差から受光面電極の接触抵抗と光電変換層のシート抵抗をそれぞれ求めることを特徴とする接触抵抗とシート抵抗の測定方法。   Using the solar battery cell according to any one of claims 1 to 6, a terminal of an ohmmeter is applied to each end of the light receiving surface electrode facing each other at an interval at each disconnection point, and between the ends. A method for measuring contact resistance and sheet resistance, characterized in that the electrical resistance value is measured, and the contact resistance of the light-receiving surface electrode and the sheet resistance of the photoelectric conversion layer are respectively determined from the difference between the electrical resistance values measured at two disconnection points. . 請求項7に記載の接触抵抗とシート抵抗の測定方法によって受光面電極の接触抵抗と光電変換層のシート抵抗をそれぞれ求め、求められた接触抵抗とシート抵抗に基づいて太陽電池セル製造工程の良否を判別することを特徴とする太陽電池セルの製造方法。   The contact resistance of the light receiving surface electrode and the sheet resistance of the photoelectric conversion layer are respectively determined by the contact resistance and sheet resistance measuring method according to claim 7, and the quality of the solar cell manufacturing process is determined based on the obtained contact resistance and sheet resistance. The manufacturing method of the photovoltaic cell characterized by distinguishing. 互いに隣接するように並べられた複数の太陽電池セルと、隣接する一対の太陽電池セルの一方の受光面電極と他方の裏面電極を電気的に接続するインターコネクタと、電気的に接続された太陽電池セルを封止する封止材とを備え、各太陽電池セルは請求項1〜6のいずれか1つに記載の太陽電池セルからなり、インターコネクタは各太陽電池セルの受光面電極に形成された断線箇所を電気的に接続するように接続される太陽電池モジュール。   A plurality of solar cells arranged adjacent to each other, an interconnector that electrically connects one light receiving surface electrode and the other back surface electrode of a pair of adjacent solar cells, and an electrically connected solar And a solar cell according to any one of claims 1 to 6, wherein an interconnector is formed on a light-receiving surface electrode of each solar cell. Solar cell module connected to electrically connect the disconnected part.
JP2003413232A 2003-12-11 2003-12-11 Solar cell and measuring method of contact resistance and sheet resistance using the solar cell Expired - Fee Related JP4296083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413232A JP4296083B2 (en) 2003-12-11 2003-12-11 Solar cell and measuring method of contact resistance and sheet resistance using the solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413232A JP4296083B2 (en) 2003-12-11 2003-12-11 Solar cell and measuring method of contact resistance and sheet resistance using the solar cell

Publications (2)

Publication Number Publication Date
JP2005175206A true JP2005175206A (en) 2005-06-30
JP4296083B2 JP4296083B2 (en) 2009-07-15

Family

ID=34733421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413232A Expired - Fee Related JP4296083B2 (en) 2003-12-11 2003-12-11 Solar cell and measuring method of contact resistance and sheet resistance using the solar cell

Country Status (1)

Country Link
JP (1) JP4296083B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214204A (en) * 2006-02-07 2007-08-23 Sharp Corp Solar cell, solar cell string, and solar cell module
JP2007242953A (en) * 2006-03-09 2007-09-20 Sharp Corp Solar cell, solar cell string, and solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214204A (en) * 2006-02-07 2007-08-23 Sharp Corp Solar cell, solar cell string, and solar cell module
JP4519080B2 (en) * 2006-02-07 2010-08-04 シャープ株式会社 Solar cell, solar cell string and solar cell module
JP2007242953A (en) * 2006-03-09 2007-09-20 Sharp Corp Solar cell, solar cell string, and solar cell module
JP4519089B2 (en) * 2006-03-09 2010-08-04 シャープ株式会社 Solar cell, solar cell string and solar cell module

Also Published As

Publication number Publication date
JP4296083B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4738149B2 (en) Solar cell module
JP5820278B2 (en) Solar cell and method for manufacturing solar cell
JP5806304B2 (en) Solar cell and method for manufacturing the same
JP2005340362A (en) Solar cell and solar cell module
JP2010147107A (en) Photoelectromotive force device and its manufacturing method
US20160284895A1 (en) Photovoltaic apparatus
JP6495649B2 (en) Solar cell element and solar cell module
US9490375B2 (en) Solar cell and method for manufacturing the same, and solar cell module
US9171975B2 (en) Solar cell element and process for production thereof
CN102077358A (en) Photovoltaic system and manufacturing method thereof
JP2001068699A (en) Solar cell
JP6559244B2 (en) Solar cell manufacturing method and solar cell
JP2009016713A (en) Manufacturing method of solar cell and solar cell, and screen for printing
JP4953562B2 (en) Solar cell module
JP4185332B2 (en) Solar cell and solar cell module using the same
US20140210073A1 (en) Conductive paste, electrode for semiconductor device, semiconductor device, and method for manufacturing semiconductor device
KR101371865B1 (en) Front electrode structure of solar cell and fabricating method thereof
JP4296083B2 (en) Solar cell and measuring method of contact resistance and sheet resistance using the solar cell
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
WO2013094556A1 (en) Solar cell with wiring sheet, solar cell module, and solar cell manufacturing method
JP2013065588A (en) Solar cell
JP5329980B2 (en) Solar cell module
JP2016178280A (en) Solar cell element and solar cell module using the same
WO2018207312A1 (en) Solar cell and method for manufacturing solar cell
JP4761714B2 (en) Solar cell and solar cell module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees