JP2005172459A - Grid pattern projection shape measuring device - Google Patents

Grid pattern projection shape measuring device Download PDF

Info

Publication number
JP2005172459A
JP2005172459A JP2003408934A JP2003408934A JP2005172459A JP 2005172459 A JP2005172459 A JP 2005172459A JP 2003408934 A JP2003408934 A JP 2003408934A JP 2003408934 A JP2003408934 A JP 2003408934A JP 2005172459 A JP2005172459 A JP 2005172459A
Authority
JP
Japan
Prior art keywords
grating
projection
lattice
light
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003408934A
Other languages
Japanese (ja)
Inventor
Fumio Kobayashi
富美男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2003408934A priority Critical patent/JP2005172459A/en
Publication of JP2005172459A publication Critical patent/JP2005172459A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain high accuracy in measurement by adjusting the stripe contrast, even when measuring an object which is translucent for the wavelength of the projection light, by constituting the line width ratio of a light opaque region and a light transparent region of reference grid to be adjustable, as well as constituting the reference grid for projecting the grid pattern onto the object with a binary grid. <P>SOLUTION: The projection grid 40 is composed of two elementary grids 41, 43 in which each opaque grid lines 45, 47 are overlapping. The two component grids 41, 43 are so constituted that they are relatively slidable in a lateral direction perpendicular to the grid lines 45, 47, by means of a uniaxial moving stage 49. By this lateral sliding, the projection grid 40 can vary, in the line width ratio of the light opaque region B and the light transparent region W. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、所定の格子パターンを被測定体上に投影し、この格子パターンが被測定体の形状に応じた変形を受けることにより生じる縞のパターンに基づき、被測定体の形状を測定する格子パターン投影形状測定装置に関するものである。   The present invention projects a predetermined lattice pattern onto a measurement object, and measures the shape of the measurement object based on a fringe pattern generated when the lattice pattern undergoes deformation according to the shape of the measurement object. The present invention relates to a pattern projection shape measuring apparatus.

従来、この種の格子パターン投影形状測定装置として、モアレトポグラフィにより形状測定を行なうモアレ装置が知られている。このモアレ装置には、基準となる格子(基準格子)を照射して被測定体上にその影を作り、この影により形成される変形格子を、基準格子を通して見ることにより発生するモアレ縞を観察する格子照射型(実体格子型)のもの(下記特許文献1参照)と、投影用の第1の基準格子(投影格子)の像を被測定体上に投影し、この像により形成された変形格子像を観測用の第2の基準格子(撮影格子)上に結像させることにより生じるモアレ縞を観測する格子投影型のもの(下記特許文献2参照)とがある。   Conventionally, as this type of lattice pattern projection shape measuring apparatus, a moire apparatus that performs shape measurement by moire topography is known. This moire device irradiates a reference grating (reference grating) to create a shadow on the object to be measured, and observes the moire fringes generated by viewing the deformed grating formed by the shadow through the reference grating. An image of a grid irradiation type (substance grid type) (see Patent Document 1 below) and a first reference grid (projection grid) for projection are projected onto the object to be measured, and a deformation formed by this image There is a lattice projection type (see Patent Document 2 below) that observes moire fringes generated by forming a lattice image on a second reference lattice (imaging lattice) for observation.

また、その他の格子パターン投影形状測定装置として、変形格子の縞パターンから直接的に被測定体の形状を解析するもの(下記特許文献3参照)や、複数枚の格子を互いの格子線の方向を傾けて重ね合わせることにより生じるモアレ縞のパターンを被測定体上に投影し、このモアレ縞パターンの変形に基づき被測定体の形状を解析するもの(下記特許文献4参照)などが知られている。   In addition, as other lattice pattern projection shape measuring apparatus, a device that directly analyzes the shape of a measured object from a striped pattern of a deformed lattice (see Patent Document 3 below), or a plurality of lattices in the direction of the lattice lines of each other It is known that a pattern of moire fringes generated by tilting and overlaying is projected on a measured object, and the shape of the measured object is analyzed based on the deformation of the moire fringe pattern (see Patent Document 4 below). Yes.

このような格子パターン投影形状測定装置において測定精度を向上させるためには、被測定体上に投影される格子パターンの光強度分布が正弦波状に変化するものであることが望ましいとされている。従来、基準格子の光透過率分布が正弦波状に変化するように構成された格子(正弦波格子,擬似正弦波格子,補正正弦波格子)を形成し、より高精度な形状測定を実現しようとする技術が提案されている(下記特許文献3,5参照)が、このような正弦波格子は光透過率分布が2値的に変化するいわゆるバイナリ格子(二値格子)に比べ高価となる。   In order to improve the measurement accuracy in such a lattice pattern projection shape measuring apparatus, it is desirable that the light intensity distribution of the lattice pattern projected onto the measurement object changes in a sine wave shape. Conventionally, a grating (sine wave grating, pseudo sine wave grating, corrected sine wave grating) configured so that the light transmittance distribution of the reference grating changes in a sine wave shape is formed to achieve more accurate shape measurement. However, such a sine wave grating is more expensive than a so-called binary grating (binary grating) in which the light transmittance distribution changes in a binary manner.

特開平4−147001号公報JP-A-4-147001 実開昭55−97408号公報Japanese Utility Model Publication No. 55-97408 特開平11−83454号公報Japanese Patent Laid-Open No. 11-83454 特開2002−81923号公報JP 2002-81923 A 特開2000−105109号公報JP 2000-105109 A 「モアレ・トポグラフィの医歯学への応用」 MEDICAL IMAGING TECHNOLOGY Vol.5 No.1(1987) 5:1〜5:2"Application of Moire Topography to Medical Dentistry" MEDICAL IMAGING TECHNOLOGY Vol.5 No.1 (1987) 5: 1-5: 2

ところで、例えば人体やセラミックス等をモアレ装置により測定する場合、モアレ縞が全体的に明るく見えて明暗(白黒)の違いがはっきりしないなど、モアレ縞のコントラストが大きく低下する現象が見られる(上記非特許文献1参照)。これは使用する光源の波長に対して被測定体が半透過性を有していると、光が被測定体において内部散乱を生じ、この内部散乱(特にそのうち後方散乱)によって、被測定体に投影された格子パターンの光強度分布が崩れ、正弦波状のものを得ようとしても得られなくなることが大きな要因と考えられる。   By the way, for example, when measuring a human body or ceramics with a moire device, there is a phenomenon that the contrast of the moire fringes is greatly reduced such that the moire fringes look bright overall and the difference between light and dark (black and white) is not clear. Patent Document 1). This is because if the object to be measured is semi-transmissive to the wavelength of the light source to be used, the light undergoes internal scattering in the object to be measured, and this internal scattering (particularly backscattering among them) causes the object to be measured. It is thought that the major factor is that the light intensity distribution of the projected grating pattern is broken and it is impossible to obtain a sinusoidal wave pattern.

人体等を測定する場合に縞のコントラストが低下する現象は、モアレ装置以外にも格子パターン投影を利用する他の形状測定装置においても見られ、測定精度を低下させる大きな要因となる。従来、被測定体の形状に応じて正弦波格子における格子線のピッチや幅を変えることにより、被測定体上に投影された正弦波状の格子パターンの振幅やバイアス強度を変える技術は提案されている(上記特許文献3参照)。   The phenomenon in which the fringe contrast decreases when measuring a human body or the like is also observed in other shape measuring apparatuses using lattice pattern projection in addition to the moire apparatus, which is a major factor for reducing the measurement accuracy. Conventionally, there has been proposed a technique for changing the amplitude and bias intensity of a sinusoidal grating pattern projected on the object to be measured by changing the pitch and width of the grating lines in the sinusoidal grating according to the shape of the object to be measured. (See Patent Document 3 above).

しかし、被測定体の内部散乱が主因と考えられる縞コントラストの低下問題を、内部散乱の程度が相異なる複数の被測定体に対応できるような形で光学的に解決し得る技術は提案されていなかった。   However, there has been proposed a technique that can optically solve the problem of reduction in fringe contrast, which is thought to be mainly caused by internal scattering of the object to be measured, in a form that can deal with a plurality of objects to be measured having different levels of internal scattering. There wasn't.

本発明は、このような事情に鑑みてなされたものであり、使用する光源の波長に対して半透過性を有するような被測定体を測定する場合においても、縞コントラストを調整して高い測定精度を得ることが可能な格子パターン投影形状測定装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and even when measuring an object to be measured that has translucency with respect to the wavelength of the light source to be used, the fringe contrast is adjusted to achieve high measurement. It is an object of the present invention to provide a lattice pattern projection shape measuring apparatus capable of obtaining accuracy.

上記課題を解決するため本発明に係る格子パターン投影形状測定装置は、
互いに隣接する不透光格子線および透光格子線を一対として、該一対の双方がそれぞれ全長に亘って少なくとも一方向においては略一定の線幅を持つようにして、前記方向に隙間無く平行に複数対並べてなる第1の基準格子の格子パターンを被測定体に投影し、該格子パターンが該被測定体の形状に応じた変形を受けることにより生じる縞パターンに基づき、前記被測定体の形状を測定する格子パターン投影形状測定装置において、
前記第1の基準格子は、前記不透光格子線と前記透光格子線との間で投影光の透過率が略2値的に変化するバイナリ格子であり、
前記一対のピッチは不変で該ピッチを構成する前記不透光格子線と前記透光格子線の前記線幅の割合が前記方向において可変に構成されていることを特徴とするものである。
In order to solve the above problems, a lattice pattern projection shape measuring apparatus according to the present invention is:
A pair of non-transparent grid lines and translucent grid lines that are adjacent to each other, and each of the pair has a substantially constant line width in at least one direction over the entire length, and is parallel to the above direction without a gap. The shape of the object to be measured is based on a fringe pattern generated by projecting a plurality of pairs of grid patterns of the first reference grating onto the object to be measured and subjecting the lattice pattern to deformation according to the shape of the object to be measured. In a lattice pattern projection shape measuring apparatus for measuring
The first reference grating is a binary grating in which the transmittance of the projection light changes approximately in a binary manner between the opaque grating line and the transparent grating line.
The pair of pitches is not changed, and the ratio of the line width of the light-transmitting grid lines and the light-transmitting grid lines constituting the pitches is variable in the direction.

本発明において、前記第1の基準格子は、前記一対のピッチが互いに等しい2枚の要素格子を互いの格子線が平行な状態となるように重ね合わせて構成されており、前記2枚の要素格子を前記方向に相対的に横ずらしすることにより前記線幅の割合を変えるように構成されているものとすることができる。
この場合、前記2枚の要素格子の前記格子線は直線状格子線とすることができる。
In the present invention, the first reference grating is configured by superposing the two element gratings having the same pair of pitches so that the lattice lines are parallel to each other, and the two elements The line width ratio may be changed by relatively shifting the lattice in the direction.
In this case, the lattice lines of the two element lattices can be linear lattice lines.

また、前記第1の基準格子の像を前記被測定体上に投影する投影光学系と、この投影により前記被測定体上に形成された前記縞パターンの像を第2の基準格子上に結像させ、この結像により形成されたモアレ縞を観測する観測光学系とを備えてなるものとしてもよい。
この場合、前記第2の基準格子は、前記不透光格子線と前記透光格子線とで構成される前記一対の間で光の透過率分布が正弦波状となるように構成することが好ましい。
In addition, a projection optical system that projects the image of the first reference grating onto the measured object, and the image of the fringe pattern formed on the measured object by this projection are connected onto the second reference grating. And an observation optical system for observing moire fringes formed by the image formation.
In this case, it is preferable that the second reference grating is configured such that a light transmittance distribution is a sine wave shape between the pair of the opaque grating lines and the transparent grating lines. .

なお、上記「平行な状態」とは、1つの格子線を横ずらしの方向(格子線が直線の場合は一般に格子線と直角な方向)に平行移動させると他の格子線と略完全に重なる状態、すなわち当該移動方向に延びる直線群を設定した場合、この直線群の各直線と交わる各格子線の境界部分の傾きが各格子線間で互いに等しくなる状態を意味する。   Note that the above "parallel state" means that when one grid line is moved in a laterally shifted direction (in the case where the grid line is a straight line, the direction is generally perpendicular to the grid line), the other grid lines are almost completely overlapped. When a state, that is, a group of straight lines extending in the moving direction is set, it means a state in which the slopes of the boundary portions of the lattice lines intersecting with the straight lines of the straight line group are equal to each other between the lattice lines.

また、上記「横ずらし」の方向は、このような直線群の延びる方向、すなわち当該方向に2つの要素格子を横ずらしすると、各直線が各不透光格子線および各透光格子線とそれぞれ交わる部分の長さが各直線間で略等しく変化する方向を意味する。   In addition, the direction of the above-mentioned “lateral shift” is the direction in which such a group of straight lines extends, that is, when the two element lattices are laterally shifted in this direction, each straight line is connected to each opaque lattice line and each transparent lattice line, respectively. It means a direction in which the length of the intersecting portion changes approximately equally between the straight lines.

なお、上記「横ずらし方向」は一方向に限定されるものではない。例えば、格子線が直線である場合、格子線と斜めに交わる任意の方向に横ずらし方向をとることできる。   The “lateral shifting direction” is not limited to one direction. For example, when the grid line is a straight line, the horizontal shift direction can be taken in an arbitrary direction obliquely intersecting the grid line.

また、上記「バイナリ格子」は、ガラス板上に形成された金属薄膜をエッチングすることによって格子線を作り、金属薄膜が除去された透光格子線と金属薄膜が残っている不透光格子線の境界で光の透過が厳密にオン・オフされるもの以外に、例えば写真乳剤により透光格子線と不透光格子線とを形成したもののように、透光格子線と不透光格子線の境界で僅かな滲みが生じるため、境界における光のオン・オフが厳密にはなされないものも含む。   The "binary lattice" is a lattice line formed by etching a metal thin film formed on a glass plate, and a light-transmitting lattice line from which the metal thin film has been removed and a light-transmitting lattice line from which the metal thin film remains. In addition to the one in which light transmission is strictly turned on and off at the boundary, the light-transmitting lattice line and the light-transmitting lattice line are formed, for example, a light-transmitting lattice line and a light-transmitting lattice line are formed by photographic emulsion. Since slight blur occurs at the boundary, the light is not strictly turned on / off at the boundary.

また、上記第1および第2の基準格子は格子線が直線となる直線格子に限定されない。上述したように各格子線が平行な状態に並ぶもの(いわゆる平行格子)であれば、格子線が曲線となる曲線格子であってもよい。なお、このような曲線格子の各格子線は、数学の分野で定義される「平行曲線」とは異なる。   Further, the first and second reference gratings are not limited to linear gratings in which the grating lines are straight lines. As described above, a curved grid in which the grid lines are curved may be used as long as the grid lines are arranged in parallel (so-called parallel grid). Each grid line of such a curved grid is different from a “parallel curve” defined in the field of mathematics.

また一般的に、使用する投影光が白色光である場合には、透光格子線を無色透明とした基準格子が用いられるが、上記第1および第2の基準格子は、使用する投影光の波長に対して透光格子線が透明、不透光格子線が不透明であればよく、透光格子線が無色透明である必要はない。   In general, when the projection light to be used is white light, a reference grating in which the transparent grating line is colorless and transparent is used. However, the first and second reference gratings are used for the projection light to be used. The light-transmitting grid lines need only be transparent and the light-transmitting grid lines opaque with respect to the wavelength, and the light-transmitting grid lines need not be colorless and transparent.

本発明に係る格子パターン投影形状測定装置によれば、使用する光源の波長に対して半透過性を有するような被測定体を測定する場合においても、第1の基準格子の格子ピッチは変化させずに透光格子線と不透光格子線との線幅の割合を変えることによって、投影された被測定体上の縞コントラストを高めることが可能であり、これにより測定感度を変化させることなく測定誤差の少ない高精度な測定結果を得ることができる。   According to the lattice pattern projection shape measuring apparatus according to the present invention, the lattice pitch of the first reference lattice is changed even when measuring a measurement object having translucency with respect to the wavelength of the light source to be used. Without changing the measurement sensitivity, it is possible to increase the fringe contrast on the projected object by changing the ratio of the line width between the light-transmitting and non-light-transmitting lattice lines. A highly accurate measurement result with little measurement error can be obtained.

以下、本発明の実施形態について、図面を参照しながら説明する。
図1は本発明の一実施形態に係る格子パターン投影形状測定装置の全体構成を示す斜視図である。図1に示すように、本実施形態に係る格子パターン投影形状測定装置10(以下、単に「測定装置10」と称することがある)は、測定ヘッド12,電源機器駆動部14,制御部16,およびモニタ18を備えてなり、測定ヘッド12において被測定体2の立体形状情報および模様(テクスチャ)情報を取り込み、これら立体形状情報および模様情報を、電源機器駆動部14を介して制御部16へ出力し、制御部16において立体形状情報と模様情報とを合成処理して被測定体2の3次元イメージを生成し、これをモニタ18に表示するようになっている。制御部16には、キーボード20およびマウス22が接続されており、これらを操作することにより、モニタ18における3次元イメージの表示角度の変更等その表示内容の切換え操作を行なうことができるようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing the overall configuration of a lattice pattern projection shape measuring apparatus according to an embodiment of the present invention. As shown in FIG. 1, the lattice pattern projection shape measuring apparatus 10 (hereinafter sometimes simply referred to as “measuring apparatus 10”) according to this embodiment includes a measuring head 12, a power supply device driving unit 14, a control unit 16, And the monitor 18, the measuring head 12 takes in the three-dimensional shape information and pattern (texture) information of the measurement object 2, and these three-dimensional shape information and pattern information are supplied to the control unit 16 via the power supply device driving unit 14. The three-dimensional shape information and the pattern information are synthesized by the control unit 16 to generate a three-dimensional image of the measurement object 2 and displayed on the monitor 18. A keyboard 20 and a mouse 22 are connected to the control unit 16, and by operating these, it is possible to change the display contents such as changing the display angle of the three-dimensional image on the monitor 18. ing.

また、上記測定ヘッド12における立体形状情報の取り込みは、格子投影型モアレトポグラフィを利用して行なうようになっている。図1において、測定ヘッド12の前方に2点鎖線で示す格子面Pgが、格子投影型モアレトポグラフィにおける仮想基準格子面である。この測定ヘッド12の格子投影型モアレ装置としての基本構成および機能を、図2を用いて説明する。図2は、測定ヘッド12の格子投影型モアレ装置としての基本構成および機能を示す平面図である。   Further, the three-dimensional shape information is taken in by the measurement head 12 by using a lattice projection type moire topography. In FIG. 1, a lattice plane Pg indicated by a two-dot chain line in front of the measurement head 12 is a virtual reference lattice plane in the lattice projection type moire topography. The basic configuration and function of the measurement head 12 as a lattice projection type moire device will be described with reference to FIG. FIG. 2 is a plan view showing the basic configuration and function of the measurement head 12 as a grating projection type moire device.

図2に示すように測定ヘッド12は、投影光学系26および観測光学系28を備えてなる。投影光学系26は、投影用ランプ,熱線カットフィルタおよびコンデンサレンズからなる格子照明系(不図示)と、第1の基準格子としての投影格子40と、投影レンズ42とを備えてなり、一方、観測光学系28は、撮影レンズ44と、第2の基準格子としての観測用基準格子(撮影格子)46と、フィールドレンズ,折り返しミラーおよびCCDカメラからなるテレビ光学系(不図示)とを備えてなる。   As shown in FIG. 2, the measurement head 12 includes a projection optical system 26 and an observation optical system 28. The projection optical system 26 includes a grating illumination system (not shown) including a projection lamp, a heat ray cut filter, and a condenser lens, a projection grating 40 as a first reference grating, and a projection lens 42. The observation optical system 28 includes an imaging lens 44, an observation reference grating (imaging grating) 46 as a second reference grating, and a television optical system (not shown) including a field lens, a folding mirror, and a CCD camera. Become.

また、上記投影レンズ42および撮影レンズ44は、その各光軸Ax1およびAx2が互いに平行になるようにして取り付けられており、図示せぬ上記格子照明系は、光軸Ax1に対して左斜め後方から投影格子40を照射するように配置されており、その投影用ランプの像は、投影レンズ42の入射瞳位置に略結像されるようになっている。   The projection lens 42 and the photographic lens 44 are mounted so that their optical axes Ax1 and Ax2 are parallel to each other, and the grating illumination system (not shown) is obliquely left rearward with respect to the optical axis Ax1. The projection grating 40 is arranged so as to irradiate the projection grating 40, and the image of the projection lamp is substantially formed at the entrance pupil position of the projection lens 42.

一方、上記観測用基準格子46は、図示せぬ上記テレビ光学系のフィールドレンズおよび折り返しミラーと共に光軸Ax2上に配置されており、上記CCDカメラは、光軸Ax2に対して折り返しミラーにより直角に折り返された光軸上に配置されている。   On the other hand, the observation reference grating 46 is disposed on the optical axis Ax2 together with a field lens and a folding mirror (not shown) of the television optical system, and the CCD camera is perpendicular to the optical axis Ax2 by the folding mirror. It is arranged on the folded optical axis.

投影格子40および観測用基準格子46は、いずれも互いに等しいピッチで上下方向(紙面に垂直な方向)に延びる格子線を有しており、光軸Ax1およびAx2と直交する同一平面内に設けられている。そして、投影格子40は、該投影格子40の像が仮想基準格子面Pgに結像されるように仮想基準格子面Pgと共役の位置関係で配置されており、一方、観測用基準格子46も、仮想基準格子面Pgの像が観測用基準格子46に結像されるように仮想基準格子面Pgと共役の位置関係で配置されている。   Both the projection grating 40 and the observation reference grating 46 have lattice lines extending in the vertical direction (direction perpendicular to the paper surface) at equal pitches, and are provided in the same plane orthogonal to the optical axes Ax1 and Ax2. ing. The projection grating 40 is arranged in a positional relationship conjugate with the virtual reference grating plane Pg so that an image of the projection grating 40 is formed on the virtual reference grating plane Pg. The virtual reference grating plane Pg is arranged in a conjugate positional relationship with the virtual reference grating plane Pg so that the image on the observation reference grating 46 is formed.

そして測定ヘッド12は、投影光学系26により投影格子40の像を被測定体2上に投影するとともに、この投影により被測定体2上に形成された変形格子像を観測光学系28により観測用基準格子46上に結像させ、この結像により生じるモアレ縞を観測するように構成されている。   Then, the measuring head 12 projects an image of the projection grating 40 onto the measurement object 2 by the projection optical system 26 and uses the observation optical system 28 to observe the deformed grating image formed on the measurement object 2 by this projection. An image is formed on the reference grating 46, and moiré fringes generated by the image formation are observed.

図2において1点鎖線で示す仮想基準格子面Pgおよび仮想基準格子面Pgと平行な実線で示す複数の面が次数の異なる等次数モアレ面(以下「モアレ面」と称する)を形成しており、これら各モアレ面と被測定体2が交差する曲線に沿ってモアレ縞が形成されることとなる。図2には、仮想基準格子面Pgの手前側(図中下側)にのみ実線でモアレ面を示しているが、仮想基準格子面Pgの奥側(図中上側)にも複数のモアレ面が形成される。したがって、被測定体2が仮想基準格子面Pgを前後にまたがるように配置された場合においてもモアレ縞は形成される。   In FIG. 2, a virtual reference lattice plane Pg indicated by a one-dot chain line and a plurality of surfaces indicated by solid lines parallel to the virtual reference lattice plane Pg form equal order moire surfaces (hereinafter referred to as “moire surfaces”) having different orders. Then, moire fringes are formed along a curve where each of these moire surfaces and the measured object 2 intersect. In FIG. 2, the moire surface is indicated by a solid line only on the front side (lower side in the figure) of the virtual reference grid surface Pg, but a plurality of moire surfaces are also provided on the back side (upper side in the figure) of the virtual reference grid surface Pg. Is formed. Accordingly, moire fringes are formed even when the DUT 2 is arranged so as to straddle the virtual reference lattice plane Pg.

図2に示す被測定体2は、人体(顔面部)を模式的に表したものである。上述したように、人体等の生体やアルミナ等の細かい粒子からなるセラミックス、あるいは発泡スチロール等の発泡プラスチック、発泡ガラスやオパールガラス等の拡散ガラスなど、投影光の波長に対して半透過性を有しているため内部散乱が生じ易いものをモアレ装置により測定する場合には、そのような特性を持たないものを測定した際には良好なコントラストが得られるにもかかわらず、モアレ縞のコントラストが大きく低下する現象が見られる。   A measured body 2 shown in FIG. 2 schematically represents a human body (face part). As described above, it is semi-transparent to the wavelength of projection light, such as a living body such as a human body, ceramics made of fine particles such as alumina, foamed plastic such as expanded polystyrene, diffused glass such as foamed glass and opal glass. Therefore, when measuring with a moire device that tends to cause internal scattering, the contrast of moire fringes is large even though good contrast is obtained when measuring those that do not have such characteristics. A decreasing phenomenon is observed.

本実施形態に係る格子パターン投影形状測定装置10は、被測定体2が投影光の波長に対して半透過性を有するような場合においても、縞コントラストを調整して高い測定精度を得ることができるようにするため、以下の特徴を備えている。   The lattice pattern projection shape measuring apparatus 10 according to the present embodiment can adjust the fringe contrast and obtain high measurement accuracy even when the measured object 2 is semi-transparent to the wavelength of the projection light. In order to be able to do so, it has the following features.

すなわち、図2に示す投影格子40は、不透光格子線と透光格子線との間で投影光の透過率が略2値的に変化するバイナリ格子であり、不透光格子線と透光格子線との線幅の割合を連続的に変化させることができるように構成されている。   That is, the projection grating 40 shown in FIG. 2 is a binary grating in which the transmittance of the projection light changes approximately in a binary manner between the non-transparent grid line and the translucent grid line. It is configured so that the ratio of the line width with the optical lattice line can be continuously changed.

また、投影格子40は、互いの格子線ピッチが略等しい複数の要素格子が、互いの格子線が平行な状態となるように重ね合わされてなり、これら各要素格子を格子線と直角な方向に互いに横ずらしすることにより上記線幅の割合を変えるように構成されている。   In addition, the projection grating 40 is formed by superimposing a plurality of element gratings having substantially the same lattice line pitch so that the lattice lines are parallel to each other. The line width ratio is changed by laterally shifting each other.

以下、これらの特徴点について、図3〜図5を参照しながらより詳細に説明する。
まず図3を用いて、投影格子40の概略構成およびその移動機構について説明する。図3は投影格子40の構成およびその移動機構を概略的に示す図で、同図(a)はその正面図、同図(b)は投影格子40の一部を拡大して示す断面図、同図(c)は投影格子40の一部を拡大して示す正面図である。
Hereinafter, these feature points will be described in more detail with reference to FIGS.
First, a schematic configuration of the projection grating 40 and a moving mechanism thereof will be described with reference to FIG. FIG. 3 is a diagram schematically showing the configuration of the projection grating 40 and its moving mechanism, in which FIG. 3 (a) is a front view thereof, FIG. 3 (b) is a sectional view showing a part of the projection grating 40 in an enlarged manner, FIG. 3C is a front view showing a part of the projection grating 40 in an enlarged manner.

図3(b)に示すように投影格子40は、不図示の投影用ランプ側に配置された要素格子41と被測定体2(図2参照)側に配置された要素格子43とが、互いの格子線(共に直線状)が平行な状態となるように重ね合わされてなる。2枚の要素格子41,43はそれぞれ、不透光格子線45,47を形成する不透光領域Bと透光格子線61,63を形成する透光領域Wとの間で投影光の透過率が略2値的に変化するバイナリ格子であり、格子線幅、格子ピッチP、および不透光領域Bすなわち不透光格子線45,47と透光領域Wすなわち透光格子線61,63との線幅の割合(1:1)がそれぞれ互いに略等しくなるように構成されている。   As shown in FIG. 3B, the projection grating 40 includes an element grating 41 arranged on the projection lamp side (not shown) and an element grating 43 arranged on the measured object 2 (see FIG. 2) side. The grid lines (both straight) are overlapped so as to be in parallel. The two element gratings 41 and 43 transmit projection light between the opaque area B that forms opaque grating lines 45 and 47 and the transparent area W that forms transparent grating lines 61 and 63, respectively. It is a binary lattice in which the rate changes in a substantially binary manner. The lattice line width, the lattice pitch P, and the light-transmitting region B, that is, the light-transmitting lattice lines 45 and 47, and the light-transmitting region W, that is, the light-transmitting lattice lines 61 and 63. The line width ratio (1: 1) is substantially equal to each other.

また投影格子40は、2枚の要素格子41,43を格子線と直角な移動方向(図中矢線で示す)に互いに横ずらしできるようになっている。詳しくは、この横ずらしは図3(a)に示す1軸移動ステージ49によってなされる。すなわち、この1軸移動ステージ49は、支持フレーム48に取り付けられた一方の要素格子43を支持する上板51と、この上板51を上記移動方向に移動可能に支持するともに他方の要素格子41を固定的に支持する中板53と、調整ネジ54とからなり、オペレータがこの調整ネジ54を操作することによって、一方の要素格子43を支持した上板51を他方の要素格子41を支持した上記中板53に対して相対的に上記移動方向に移動させ、これにより上記横ずらしの調整を行なえるように構成されている。   Further, the projection grating 40 is configured so that the two element gratings 41 and 43 can be laterally shifted from each other in a moving direction (indicated by an arrow in the figure) perpendicular to the grating lines. Specifically, this lateral displacement is performed by a uniaxial moving stage 49 shown in FIG. That is, the uniaxial moving stage 49 supports an upper plate 51 that supports one element lattice 43 attached to the support frame 48, and supports the upper plate 51 so as to be movable in the moving direction, and the other element lattice 41. The upper plate 51 that supports one element lattice 43 is supported by the other element lattice 41 by the operator operating the adjustment screw 54. It is configured to move in the moving direction relative to the middle plate 53, thereby adjusting the lateral shift.

この横ずらし調整により投影格子40は、不透光領域Bと透光領域Wとの線幅の割合を、2枚の要素格子41,43の各不透光格子線45,47が完全に重なり合った状態(線幅比1:1)から各不透光格子線45,47の一部が重なり合った状態(例えば線幅比1.8:1,図3(c)参照)まで任意に変えることが可能になっている。なお、上記調整ネジ54に代えて電動のアクチュエータを設け、図1に示すキーボード20からの入力操作により電源機器駆動部14を介して制御部16から制御信号を出力し、この制御信号に基づき上記アクチュエータを駆動して上記横ずらしの調整を行なうようにしてもよい。   By this lateral shift adjustment, the projection grating 40 causes the ratio of the line widths of the opaque area B and the transparent area W to completely overlap the opaque grating lines 45 and 47 of the two element gratings 41 and 43. The state is arbitrarily changed from a closed state (line width ratio 1: 1) to a state in which a part of each of the opaque lattice lines 45 and 47 overlaps (for example, the line width ratio 1.8: 1, see FIG. 3C). Is possible. An electric actuator is provided in place of the adjustment screw 54, and a control signal is output from the control unit 16 via the power supply device driving unit 14 by an input operation from the keyboard 20 shown in FIG. The lateral displacement adjustment may be performed by driving an actuator.

また、図3(a)に示すように、投影格子40はパルスステージ55に支持されている。このパルスステージ55は、上記中板53とこの中板53を上記移動方向に移動可能に支持する下板57とパルスモータ59とからなり、このパルスモータ59の駆動によって、2枚の要素格子41,43と共に中板53を下板57に対して上記移動方向に沿って移動させることにより、投影格子40を1位相分の長さにわたって往復微動(フリンジスキャン)させるようになっている。なお、パルスステージに代えて圧電素子等を用いてフリンジスキャンを行なうようにしてもよい。   As shown in FIG. 3A, the projection grating 40 is supported by a pulse stage 55. The pulse stage 55 includes a middle plate 53, a lower plate 57 that supports the middle plate 53 so as to be movable in the moving direction, and a pulse motor 59. By driving the pulse motor 59, two element lattices 41 are provided. 43, the intermediate plate 53 is moved along the moving direction with respect to the lower plate 57, thereby causing the projection grating 40 to reciprocate finely (fringe scan) over the length of one phase. Note that a fringe scan may be performed using a piezoelectric element or the like instead of the pulse stage.

この投影格子40の移動により、投影格子40と観測用基準格子46との間の位相が変化し、これに伴ってモアレ縞が移動する。図1に示す測定装置10では、このモアレ縞の像を1/4位相毎に取得することにより、制御部16において被測定体2(図2参照)の高精度な形状測定および凹凸判定を行なうようになっている。   Due to the movement of the projection grating 40, the phase between the projection grating 40 and the observation reference grating 46 changes, and the moire fringes move accordingly. In the measurement apparatus 10 shown in FIG. 1, the moire fringe image is obtained for each ¼ phase, so that the control unit 16 performs highly accurate shape measurement and unevenness determination of the measured object 2 (see FIG. 2). It is like that.

次に図4を用いて、投影格子40における上記線幅比調整の作用について説明する。図4は投影格子40における線幅比調整の作用を示す図で、同図(a)〜(e)は線幅比調整前、同図(a´)〜(e´)は線幅比調整後を示している。また、同図(a),(a´)は投影格子40の一部を拡大して示す断面図、同図(b),(b´)は投影格子40の一部を拡大して示す正面図、同図(c),(c´)は投影光に対する投影格子40の透過率分布を示す図、同図(d),(d´)は被測定体2に形成された縞パターンの一部を示す図、同図(e),(e´)はその光強度分布を示す図である。   Next, the operation of the line width ratio adjustment in the projection grating 40 will be described with reference to FIG. 4A and 4B are diagrams showing the effect of adjusting the line width ratio in the projection grating 40. FIGS. 4A to 4E are before the line width ratio adjustment, and FIGS. 4A to 4E are the line width ratio adjustment. Shows the back. 2A and 2A are enlarged sectional views showing a part of the projection grating 40, and FIGS. 2B and 2B are front views showing an enlarged part of the projection grating 40. FIG. FIGS. 3C and 3C show the transmittance distribution of the projection grating 40 with respect to the projection light, and FIGS. 2D and 2D show one of the fringe patterns formed on the measurement object 2. FIG. The figure which shows a part, The figure (e), (e ') is the figure which shows the light intensity distribution.

図4(a)に示すように、投影格子40を構成する2枚の要素格子41,43の各格子線45,47が互いに略重なり合うようにすると、同図(b)に示すように投影格子40の不透光領域Bと透光領域Wとの線幅比は1:1となる。投影格子40は投影光に対してバイナリ格子として機能するので、投影光の透過率分布は同図(c)に示すように、不透光領域Bと透光領域Wとの境界部分において略2値的(0,1)に変化する。   As shown in FIG. 4A, when the lattice lines 45 and 47 of the two element lattices 41 and 43 constituting the projection lattice 40 are substantially overlapped with each other, as shown in FIG. The line width ratio between the 40 opaque regions B and the transparent regions W is 1: 1. Since the projection grating 40 functions as a binary grating for the projection light, the transmittance distribution of the projection light is approximately 2 at the boundary between the opaque region B and the transparent region W, as shown in FIG. It changes to value (0, 1).

このように線幅比を1:1とした投影格子40を図2に示す被測定体2すなわち人体の顔面部に投影すると、この投影により被測定体2上に形成された縞パターンは図4(d)に示すように、被測定体2の内部散乱の影響を受けることによって、本来暗く見える部分が全体的に薄明るく見えるとともに暗く見える部分の幅が減少する。すなわち、このとき縞パターンの光強度分布は、図4(e)に示すように、バイアス強度βが大きくなるとともに、正弦波形状とはかけ離れたものとなる。縞パターンの光強度分布において、バイアス強度βが大きくなるために投影された縞パターンのコントラストが低下し、これにより図1に示す観測光学系28において観察されるモアレ縞のコントラストも低下する。また縞パターンの光強度分布が正弦波状とならなくなるため、観察されるモアレ縞の光強度分布も正弦波状とはならなくなり、フリンジスキャン測定を実施する際の測定精度に悪影響を及ぼす。   When the projection grating 40 having a line width ratio of 1: 1 is projected onto the measurement object 2 shown in FIG. 2, that is, the face of the human body, the fringe pattern formed on the measurement object 2 by this projection is shown in FIG. As shown in (d), by being affected by the internal scattering of the DUT 2, the part that originally appears dark appears to be entirely light and the width of the part that appears dark decreases. That is, at this time, the light intensity distribution of the fringe pattern is different from the sinusoidal shape as the bias intensity β increases as shown in FIG. In the light intensity distribution of the fringe pattern, the contrast of the projected fringe pattern is lowered due to the increase of the bias intensity β, thereby reducing the contrast of the moire fringes observed in the observation optical system 28 shown in FIG. Further, since the light intensity distribution of the fringe pattern does not become sinusoidal, the light intensity distribution of the observed moire fringe also does not become sinusoidal, which adversely affects the measurement accuracy when performing fringe scan measurement.

一方、図4(a´)に示すように、投影格子40を構成する2枚の要素格子41,43を横ずらしして、各々の格子線45,47が互いに一部分のみ重なり合うようにすると、同図(b´)に示すように投影格子40の不透光領域Bと透光領域Wとの線幅比が変化する(例えば1.3:1)。なお、横ずらししても投影格子40の格子ピッチPは変化せず、また投影格子40は投影光に対してバイナリ格子として機能するので、投影光の透過率分布は同図(c´)に示すような、不透光領域Bと透光領域Wとの境界部分において略2値的(0,1)に変化する形状とされる。   On the other hand, as shown in FIG. 4 (a ′), when the two element lattices 41 and 43 constituting the projection lattice 40 are laterally shifted so that the lattice lines 45 and 47 partially overlap each other, As shown in the diagram (b ′), the line width ratio between the opaque region B and the transparent region W of the projection grating 40 changes (for example, 1.3: 1). Note that the grating pitch P of the projection grating 40 does not change even when shifted laterally, and the projection grating 40 functions as a binary grating with respect to the projection light, so the transmittance distribution of the projection light is shown in FIG. As shown in the figure, the boundary portion between the light-impermeable region B and the light-transmissive region W has a shape that changes in a substantially binary manner (0, 1).

このように線幅比を変えた投影格子40の像を図2に示す被測定体2に投影すると、この投影により被測定体2上に形成された縞パターンは図4(d´)に示すように、被測定体2の内部散乱の影響を受けることによって、本来暗く見える部分の幅が減少するもののコントラストは良くなる。すなわち、このときの縞パターンの光強度分布を見ると、図4(e´)に示すように、バイアス強度β´があまり大きくならず、全体的には正弦波形状に近いものとなる。このとき、図2に示す観測光学系28において観察されるモアレ縞のコントラストも向上し、その光強度分布も正弦波状となる。   When the image of the projection grating 40 with the line width ratio changed in this way is projected onto the measurement object 2 shown in FIG. 2, the fringe pattern formed on the measurement object 2 by this projection is shown in FIG. 4 (d ′). As described above, the influence of the internal scattering of the DUT 2 decreases the width of the portion that originally looks dark but improves the contrast. That is, looking at the light intensity distribution of the fringe pattern at this time, as shown in FIG. 4 (e ′), the bias intensity β ′ does not become so large, and the overall shape is close to a sine wave shape. At this time, the contrast of moire fringes observed in the observation optical system 28 shown in FIG. 2 is also improved, and the light intensity distribution is also sinusoidal.

なお、本実施形態における上記線幅比の調整は、図1に示すモニタ18に表示されたモアレ縞を観察しながら、そのコントラストが良くなるように図3に示す調整ネジ54を操作することによって行なわれる。また、投影格子40の像を図2に示す被測定体2に投影することによって被測定体2上に形成される縞パターンは、被測定体2の凹凸形状を反映して変形を受けたものとなるが、図4(d),(d´)では、縞パターンが変形を受けることについては便宜上無視している。   Note that the adjustment of the line width ratio in the present embodiment is performed by operating the adjustment screw 54 shown in FIG. 3 so as to improve the contrast while observing the moire fringes displayed on the monitor 18 shown in FIG. Done. Further, the fringe pattern formed on the measurement object 2 by projecting the image of the projection grating 40 onto the measurement object 2 shown in FIG. 2 is deformed reflecting the uneven shape of the measurement object 2. However, in FIGS. 4D and 4D, the fact that the fringe pattern is deformed is ignored for the sake of convenience.

次に図5を用いて、観測用基準格子46について説明する。図5は観測用基準格子46の構成および機能を示す図で、同図(a)は観測用基準格子46をその支持フレーム48と共に示す正面図、同図(b)はその一部を拡大して示す正面図、同図(c)は投影光に対する観測用基準格子46の透過率分布を示す図である。   Next, the observation reference grating 46 will be described with reference to FIG. FIG. 5 is a diagram showing the configuration and function of the observation reference grid 46. FIG. 5 (a) is a front view showing the observation reference grid 46 together with its support frame 48, and FIG. FIG. 6C is a diagram showing the transmittance distribution of the observation reference grating 46 with respect to the projection light.

図5(a)に示すように観測用基準格子46は、巨視的には不透光領域Bと透光領域Wとが等間隔で縦縞状に形成されているように見えるが、同図(b)に示すように微視的には、不透光領域Bと透光領域Wの左右の幅および間隔が徐変する繰り返しパターンで構成されている。不透光領域Bおよび透光領域Wの左右の幅および間隔は、同図(c)に示すように投影光の透過率分布が略正弦波状となるように、また巨視的な格子ピッチPが投影格子40の格子ピッチPと等しくなるように設定されている。   As shown in FIG. 5 (a), the observation reference grating 46 macroscopically appears as if the non-transmissive region B and the transparent region W are formed in vertical stripes at equal intervals. As shown in b), it is microscopically constituted by a repetitive pattern in which the left and right widths and intervals of the non-light-transmitting region B and the light-transmitting region W are gradually changed. The left and right widths and intervals of the opaque region B and the transparent region W are set so that the transmittance distribution of the projection light is substantially sinusoidal as shown in FIG. It is set to be equal to the grating pitch P of the projection grating 40.

なお、図5に示す観測用基準格子46は、上記特許文献5に記載された技術に基づくものであるが、上記特許文献3に記載された技術に基づく正弦波格子を観測用基準格子46として用いることもできる。   The observation reference grating 46 shown in FIG. 5 is based on the technique described in Patent Document 5, but a sine wave grating based on the technique described in Patent Document 3 is used as the observation reference grating 46. It can also be used.

以上のように構成された測定装置10によれば、使用する光源の波長に対して半透過性を有するような人体等の被測定体2を測定する場合においても、バイナリ格子である投影格子40の不透光領域Bと透光領域Wとの線幅比を変えることによって、モアレ縞のコントラストを良好として高精度なフリンジスキャン測定を行なうことが可能となり、投影格子40に正弦波格子を用いた場合には得られない良好な測定結果を得ることができる。   According to the measuring apparatus 10 configured as described above, the projection grating 40, which is a binary grating, is used even when measuring the measurement object 2 such as a human body that is semi-transmissive to the wavelength of the light source to be used. By changing the line width ratio between the opaque region B and the transparent region W, it becomes possible to perform high-precision fringe scan measurement with good moire fringe contrast, and use a sine wave grating as the projection grating 40 It is possible to obtain a good measurement result that cannot be obtained if

また、投影格子40を2枚の要素格子41,43により構成し、これら2枚の要素格子41,43の相対的な横ずらし移動により不透光領域Bと透光領域Wとの線幅比を変えるようにしているので、線幅比の調整を手動操作により容易に行なうことが可能である。   Further, the projection grating 40 is constituted by two element gratings 41 and 43, and the line width ratio between the opaque region B and the transparent region W by the relative lateral displacement of the two element gratings 41 and 43. Therefore, it is possible to easily adjust the line width ratio by manual operation.

なお、上記特許文献3に記載されているような、液晶素子により基準格子を作成する技術を用いて、投影光の透過率分布が2値的に変化するバイナリ格子を作成するとともに、その不透光領域と透光領域との線幅比を変えられるように構成したものを本発明の第1の基準格子として用いることも可能である。   A technique for creating a reference grating using a liquid crystal element as described in Patent Document 3 described above is used to create a binary grating in which the transmittance distribution of projection light changes in a binary manner, and the opaqueness thereof. A configuration in which the line width ratio between the light region and the light transmission region can be changed can be used as the first reference grating of the present invention.

また、上記実施形態は本発明を格子投影型モアレ装置に適用した例を示しているが、本発明は上記特許文献1に記載されているような格子照射型モアレ装置や、上記特許文献3,4に記載されているような他の格子パターン投影形状測定装置に対しても同様に適用することが可能である。   Moreover, although the said embodiment has shown the example which applied this invention to the grating | lattice projection type | mold moire apparatus, this invention is a grid irradiation type | mold moire apparatus as described in the said patent document 1, and the said patent document 3, The present invention can be similarly applied to other lattice pattern projection shape measuring apparatuses as described in FIG.

本発明の一実施形態に係る格子パターン投影形状測定装置の全体構成図1 is an overall configuration diagram of a lattice pattern projection shape measuring apparatus according to an embodiment of the present invention. 格子投影型モアレ装置としての基本構成および機能を示す図The figure which shows the basic composition and function as a lattice projection type moire device 投影格子の構成およびその移動機構を概略的に示す図Diagram showing the configuration of the projection grating and its moving mechanism 投影格子における線幅比調整の作用を示す図The figure which shows the effect | action of line width ratio adjustment in a projection grating | lattice 観測用基準格子の構成および機能を示す図Diagram showing the configuration and function of the reference grid for observation

符号の説明Explanation of symbols

2 被測定体
10 格子パターン投影形状測定装置
12 測定ヘッド
14 電源機器駆動部
16 制御部
18 モニタ
26 投影光学系
28 観測光学系
40 投影格子(第1の基準格子)
41,43 要素格子
42 投影レンズ
44 撮影レンズ
45,47 不透光格子線
46 観測用基準格子(第2の基準格子)
48 支持フレーム
49 1軸移動ステージ
51 上板
53 中板
54 調整ネジ
55 パルスステージ
57 下板
59 パルスモータ
61,63 透光格子線
P 格子ピッチ
B 不透光領域
W 透光領域
Ax1、Ax2 光軸
Pg 仮想基準格子面
2 Measurement object 10 Lattice pattern projection shape measuring device 12 Measuring head 14 Power supply device drive unit 16 Control unit 18 Monitor 26 Projection optical system 28 Observation optical system 40 Projection lattice (first reference lattice)
41, 43 Element lattice 42 Projection lens 44 Imaging lens 45, 47 Non-transparent lattice line 46 Observation reference lattice (second reference lattice)
48 support frame 49 1-axis moving stage 51 upper plate 53 middle plate 54 adjusting screw 55 pulse stage 57 lower plate 59 pulse motor 61, 63 light-transmitting lattice line P lattice pitch B light-transmitting region W light-transmitting region Ax1, Ax2 optical axis Pg virtual reference lattice plane

Claims (5)

互いに隣接する不透光格子線および透光格子線を一対として、該一対の双方がそれぞれ全長に亘って少なくとも一方向においては略一定の線幅を持つようにして、前記方向に隙間無く平行に複数対並べてなる第1の基準格子の格子パターンを被測定体に投影し、該格子パターンが該被測定体の形状に応じた変形を受けることにより生じる縞パターンに基づき、前記被測定体の形状を測定する格子パターン投影形状測定装置において、
前記第1の基準格子は、前記不透光格子線と前記透光格子線との間で投影光の透過率が略2値的に変化するバイナリ格子であり、
前記一対のピッチは不変で該ピッチを構成する前記不透光格子線と前記透光格子線の前記線幅の割合が前記方向において可変に構成されていることを特徴とする格子パターン投影形状測定装置。
A pair of non-transparent grid lines and translucent grid lines that are adjacent to each other, and each of the pair has a substantially constant line width in at least one direction over the entire length, and is parallel to the above direction without a gap. The shape of the object to be measured is based on a fringe pattern generated by projecting a plurality of pairs of grid patterns of the first reference grating onto the object to be measured and subjecting the lattice pattern to deformation according to the shape of the object to be measured. In a lattice pattern projection shape measuring apparatus for measuring
The first reference grating is a binary grating in which the transmittance of the projection light changes approximately in a binary manner between the opaque grating line and the transparent grating line.
The pair of pitches is not changed, and the ratio of the line width of the light-transmitting grid lines and the light-transmitting grid lines constituting the pitch is configured to be variable in the direction. apparatus.
前記第1の基準格子は、前記一対のピッチが互いに等しい2枚の要素格子を互いの格子線が平行な状態となるように重ね合わせて構成されており、前記2枚の要素格子を前記方向に相対的に横ずらしすることにより前記線幅の割合を変えるように構成されていることを特徴とする請求項1記載の格子パターン投影形状測定装置。   The first reference grating is configured by superimposing the two element gratings having the same pair of pitches so that the grating lines are parallel to each other, and the two element gratings are arranged in the direction. 2. The lattice pattern projected shape measuring apparatus according to claim 1, wherein the ratio of the line width is changed by laterally shifting the line width. 前記2枚の要素格子の前記格子線が直線状格子線であることを特徴とする請求項2記載の格子パターン投影形状測定装置。   3. The lattice pattern projection shape measuring apparatus according to claim 2, wherein the lattice lines of the two element lattices are linear lattice lines. 前記第1の基準格子の像を前記被測定体上に投影する投影光学系と、
この投影により前記被測定体上に形成された前記縞パターンの像を第2の基準格子上に結像させ、この結像により形成されたモアレ縞を観測する観測光学系とを備えてなることを特徴とする請求項1〜3までのうちいずれか1項記載の格子パターン投影形状測定装置。
A projection optical system that projects an image of the first reference grating onto the measurement object;
An observation optical system that forms an image of the fringe pattern formed on the object to be measured by the projection on a second reference grating and observes the moire fringes formed by the image formation; The lattice pattern projected shape measuring apparatus according to any one of claims 1 to 3, wherein:
前記第2の基準格子は、前記不透光格子線と前記透光格子線とで構成される前記一対の間で光の透過率分布が正弦波状となるものであることを特徴とする請求項1〜4までのうちいずれか1項記載の格子パターン投影形状測定装置。   The second reference grating is characterized in that a light transmittance distribution is a sine wave between the pair of the opaque grating lines and the transparent grating lines. The lattice pattern projection shape measuring apparatus according to any one of 1 to 4.
JP2003408934A 2003-12-08 2003-12-08 Grid pattern projection shape measuring device Withdrawn JP2005172459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408934A JP2005172459A (en) 2003-12-08 2003-12-08 Grid pattern projection shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003408934A JP2005172459A (en) 2003-12-08 2003-12-08 Grid pattern projection shape measuring device

Publications (1)

Publication Number Publication Date
JP2005172459A true JP2005172459A (en) 2005-06-30

Family

ID=34730477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408934A Withdrawn JP2005172459A (en) 2003-12-08 2003-12-08 Grid pattern projection shape measuring device

Country Status (1)

Country Link
JP (1) JP2005172459A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085862A (en) * 2005-09-21 2007-04-05 Omron Corp Patterned light irradiation apparatus, three-dimensional shape measuring apparatus, and patterned light irradiation method
JP2009098146A (en) * 2007-10-18 2009-05-07 Mht Optic Research Ag System for tomographic scanning objects
JP2009128030A (en) * 2007-11-20 2009-06-11 Tokyo Univ Of Agriculture & Technology Grid projection type moire device and shape measuring method
DE102007058590B4 (en) * 2007-12-04 2010-09-16 Sirona Dental Systems Gmbh Recording method for an image of a recording object and recording device
KR101017382B1 (en) 2009-03-27 2011-02-28 세크론 주식회사 Vision inspection system for semiconductor device and method for inspecting semiconductor device using the same
KR101370964B1 (en) 2013-01-23 2014-03-12 주식회사 미르기술 A method for adjusting fringe gap of moire projector
US8954181B2 (en) 2010-12-07 2015-02-10 Sirona Dental Systems Gmbh Systems, methods, apparatuses, and computer-readable storage media for designing and manufacturing custom dental preparation guides
KR20170126833A (en) * 2014-06-27 2017-11-20 캐논 가부시끼가이샤 Position detection apparatus, position detection method, imprint apparatus, and method of manufacturing article
WO2020116028A1 (en) * 2018-12-04 2020-06-11 Ckd株式会社 Projection device and three-dimensional measurement apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701948B2 (en) * 2005-09-21 2011-06-15 オムロン株式会社 Pattern light irradiation device, three-dimensional shape measurement device, and pattern light irradiation method
JP2007085862A (en) * 2005-09-21 2007-04-05 Omron Corp Patterned light irradiation apparatus, three-dimensional shape measuring apparatus, and patterned light irradiation method
JP2009098146A (en) * 2007-10-18 2009-05-07 Mht Optic Research Ag System for tomographic scanning objects
JP2009128030A (en) * 2007-11-20 2009-06-11 Tokyo Univ Of Agriculture & Technology Grid projection type moire device and shape measuring method
DE102007058590B4 (en) * 2007-12-04 2010-09-16 Sirona Dental Systems Gmbh Recording method for an image of a recording object and recording device
JP2011505570A (en) * 2007-12-04 2011-02-24 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for recording an image of an object to be recorded
US8957954B2 (en) 2007-12-04 2015-02-17 Sirona Dental Systems Gmbh Recording method for obtaining an image of an object and recording device
KR101017382B1 (en) 2009-03-27 2011-02-28 세크론 주식회사 Vision inspection system for semiconductor device and method for inspecting semiconductor device using the same
US8954181B2 (en) 2010-12-07 2015-02-10 Sirona Dental Systems Gmbh Systems, methods, apparatuses, and computer-readable storage media for designing and manufacturing custom dental preparation guides
KR101370964B1 (en) 2013-01-23 2014-03-12 주식회사 미르기술 A method for adjusting fringe gap of moire projector
KR20170126833A (en) * 2014-06-27 2017-11-20 캐논 가부시끼가이샤 Position detection apparatus, position detection method, imprint apparatus, and method of manufacturing article
KR20190034178A (en) * 2014-06-27 2019-04-01 캐논 가부시끼가이샤 Position detection apparatus, position detection method, imprint apparatus, and method of manufacturing article
KR101963636B1 (en) 2014-06-27 2019-04-01 캐논 가부시끼가이샤 Position detection apparatus, position detection method, imprint apparatus, and method of manufacturing article
KR102277746B1 (en) 2014-06-27 2021-07-16 캐논 가부시끼가이샤 Position detection apparatus, position detection method, imprint apparatus, and method of manufacturing article
WO2020116028A1 (en) * 2018-12-04 2020-06-11 Ckd株式会社 Projection device and three-dimensional measurement apparatus

Similar Documents

Publication Publication Date Title
US10254111B2 (en) Device for optical 3D measuring of an object
KR100504261B1 (en) Microscopy imaging apparatus and method
JP6907125B2 (en) Methods and cameras for 3D measurement of dental objects
US9039188B2 (en) Illumination device, projection device, and projection-type image display device
US20130016362A1 (en) Device and method using a spatial light modulator to find 3d coordinates of an object
US20100066823A1 (en) Method and device for producing an image of a thin layer of an object
KR20100114843A (en) Dental surface imaging using polarized fringe projection
EP2905575A1 (en) Image sequence and evaluation method and system for structured illumination microscopy for measuring a 3D height map
KR20140033129A (en) High resolution high contrast edge projection
JP2005172459A (en) Grid pattern projection shape measuring device
WO2012057284A1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, manufacturing method of structure, and structure manufacturing system
JP2012532314A (en) Optical comparator with digital gauge
JP6516453B2 (en) Image measuring device and measuring device
KR20170103418A (en) Pattern lighting appartus and method thereof
WO2018229831A1 (en) Endoscope system
JP2004309240A (en) Three-dimensional shape measuring apparatus
JP4133753B2 (en) Method of measuring optical interference of detour surface and interferometer device for detour surface measurement
JP5770495B2 (en) Shape measuring device and lattice projection device
KR101099138B1 (en) A three-dimensional image measuring apparatus
JP6042051B2 (en) Surface illumination device and backlight device
CN108548490B (en) Method and device for determining a shift of a grating image in an imaging plane and method and device for determining an object height
JP4427632B2 (en) High-precision 3D shape measuring device
JP2004177225A (en) Device and method for measuring dynamic shape and dynamic position simultaneously
JP2007155600A (en) Projector for measuring three-dimensional shape, and instrument for measuring three-dimensional shape
JP7225756B2 (en) Inspection device, inspection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306