JP2005171895A - Common-rail type fuel injection device for internal combustion engine - Google Patents

Common-rail type fuel injection device for internal combustion engine Download PDF

Info

Publication number
JP2005171895A
JP2005171895A JP2003413552A JP2003413552A JP2005171895A JP 2005171895 A JP2005171895 A JP 2005171895A JP 2003413552 A JP2003413552 A JP 2003413552A JP 2003413552 A JP2003413552 A JP 2003413552A JP 2005171895 A JP2005171895 A JP 2005171895A
Authority
JP
Japan
Prior art keywords
common rail
pump
pressure
fuel injection
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003413552A
Other languages
Japanese (ja)
Inventor
Yasuhiro Akashi
靖弘 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003413552A priority Critical patent/JP2005171895A/en
Publication of JP2005171895A publication Critical patent/JP2005171895A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce fluctuation of common rail pressure in a common rail type fuel injection device. <P>SOLUTION: Based on knowledge that common rail pressure fluctuates strongly when rotation cycle of a pump 13 pumping fuel to a common rail 14 is close to integral multiple of a drive cycle of pulse width modulation drive of a solenoid valve adjusting fuel flow rate to the pump 13, a pump control means 15 has a structure capable of switching current command value feed back operation of current supplied to the solenoid valve between when rotation cycle of the pump 13 detected by an engine rotation speed sensor 17 is in a predetermined range established in vicinity of integral multiple of the drive cycle of the pulse width modulation drive and when the rotation cycle is in other range. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は内燃機関のコモンレール式燃料噴射装置に関する。   The present invention relates to a common rail fuel injection device for an internal combustion engine.

今日、内燃機関には、複雑な態様の燃料噴射を自在に実現することのできるコモンレール式燃料噴射装置が広く用いられている。コモンレール式燃料噴射装置は、各気筒のインジェクタに共通のコモンレール内にインジェクタに供給する加圧燃料を蓄えておくようにしたもので、インジェクタを開閉弁することで前記コモンレール内の燃料圧力と略等しい噴射圧にて燃料を噴射する。コモンレールには機関回転動力により作動するポンプより燃料が圧送される。ポンプは、圧送に供する低圧燃料の流量の調整を、例えば、PWM(Pulse Width Modulation)駆動で給電され電流値に応じて開度調整自在な電磁弁により行うようになっており、前記電磁弁に供給する電流は、ポンプ制御手段が、前記コモンレール内の実圧力が目標圧力となるようにフィードバック制御する(特許文献1等)。
特開2001−3791号公報
2. Description of the Related Art Today, common rail fuel injection devices that can freely implement a complicated aspect of fuel injection are widely used in internal combustion engines. The common rail type fuel injection device is configured to store the pressurized fuel supplied to the injector in the common rail common to the injectors of each cylinder, and is substantially equal to the fuel pressure in the common rail by opening and closing the injector. Fuel is injected at the injection pressure. Fuel is pumped to the common rail from a pump that is operated by engine rotational power. The pump adjusts the flow rate of the low-pressure fuel used for pumping by, for example, a solenoid valve that is fed by PWM (Pulse Width Modulation) drive and can adjust the opening according to the current value. The current to be supplied is feedback-controlled by the pump control means so that the actual pressure in the common rail becomes the target pressure (Patent Document 1, etc.).
JP 2001-3791 A

ところで、内燃機関の出力性能や排気の清浄度などは、インジェクタから噴射された燃料の噴霧の微粒化の程度や噴霧貫通力といった燃料噴霧の特性に左右されるが、燃料噴霧の特性は燃料の噴射圧、したがってコモンレール内の圧力で大きく規定される。したがって、コモンレール内の圧力の制御の高精度化は不可欠であり、さらなる改良が要請されている。 By the way, the output performance of the internal combustion engine and the cleanliness of the exhaust gas depend on the characteristics of the fuel spray such as the degree of atomization of the fuel spray injected from the injector and the spray penetration force. It is largely defined by the injection pressure, and hence the pressure in the common rail. Therefore, it is indispensable to control the pressure in the common rail with high accuracy, and further improvement is required.

本発明は前記実情に鑑みなされたもので、コモンレール圧力制御のさらなる高精度化を図ることのできるコモンレール式燃料噴射装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a common rail fuel injection device capable of further increasing the accuracy of common rail pressure control.

請求項1記載の発明では、燃料を筒内に噴射するインジェクタと、該インジェクタに供給する加圧燃料を蓄えるコモンレールと、機関回転動力により前記コモンレールに燃料を圧送し、圧送に供する低圧燃料の流量の調整を、PWM駆動で給電され電流値に応じて開度調整自在な電磁弁により行うポンプと、前記コモンレール内の実圧力が目標圧力となるように前記電磁弁に供給する電流をフィードバック制御により調整するポンプ制御手段とを有する内燃機関のコモンレール式燃料噴射装置において、
前記ポンプの回転周期を検出する回転周期検出手段を具備せしめ、
前記ポンプ制御手段は、前記ポンプの回転周期が、前記PWM駆動の駆動周期の整数倍の近傍に設定した所定の範囲内にあるときとその他のときとで、前記電磁弁に供給する電流の電流指令値のフィードバック演算を切換え自在とする。
In the first aspect of the invention, an injector that injects fuel into the cylinder, a common rail that stores pressurized fuel to be supplied to the injector, and a flow rate of low-pressure fuel that is pumped to the common rail by engine rotational power and used for pumping Is adjusted by a solenoid valve that is fed by PWM drive and can be adjusted according to the current value, and the current supplied to the solenoid valve is controlled by feedback control so that the actual pressure in the common rail becomes the target pressure. In a common rail fuel injection device for an internal combustion engine having a pump control means for adjusting,
A rotation period detecting means for detecting the rotation period of the pump;
The pump control means is configured to supply current to the solenoid valve when the rotation period of the pump is within a predetermined range set in the vicinity of an integral multiple of the drive period of the PWM drive and at other times. The feedback calculation of the command value can be switched freely.

発明者らの実験研究によれば、前記電磁弁への電流供給がPWM駆動でなされる構成のものでは、コモンレール内の圧力にPWM駆動の駆動周期に比して比較的長い周期の脈動(以下,適宜、圧力のうねりという)が生じることが分かった。また、圧力のうねりはポンプの回転周期がPWM駆動の駆動周期の整数倍の近傍で最も顕著に現れ,ポンプの回転周期がPWM駆動の駆動周期の整数倍となる周期から離れるほど目立たなくなる。前記ポンプの回転周期が、前記PWM駆動の駆動周期の整数倍の近傍に設定した所定の範囲内にあるときとその他のときとで、前記電磁弁に供給する電流の電流指令値のフィードバック演算を切換え自在とすることで、圧力のうねりを効果的に除去することができる。   According to the experimental research by the inventors, in the configuration in which current supply to the solenoid valve is performed by PWM driving, the pressure in the common rail is pulsated with a relatively long period compared to the driving period of the PWM driving (hereinafter referred to as the PWM driving period). It was found that pressure swell occurred as appropriate. Further, the pressure undulation appears most prominently when the pump rotation cycle is in the vicinity of an integral multiple of the PWM drive drive cycle, and becomes less noticeable as the pump rotation cycle moves away from a cycle that is an integral multiple of the PWM drive drive cycle. When the rotation cycle of the pump is within a predetermined range set in the vicinity of an integral multiple of the drive cycle of the PWM drive and at other times, feedback calculation of the current command value of the current supplied to the solenoid valve is performed. By making it switchable, it is possible to effectively eliminate pressure undulations.

請求項2記載の発明では、請求項1の発明の構成において、前記ポンプ制御手段には、前記コモンレール内の実圧力と目標圧力との圧力偏差を入力として制御量としての前記電流指令値を演算する制御量演算手段と、前記ポンプの回転周期が前記所定の範囲内にあるときに前記制御量演算手段に加算する補正値を演算する補正値演算手段とを具備せしめる。   According to a second aspect of the present invention, in the configuration of the first aspect of the invention, the pump control means calculates the current command value as a control amount by inputting a pressure deviation between an actual pressure in the common rail and a target pressure. And a correction value calculation means for calculating a correction value to be added to the control amount calculation means when the rotation period of the pump is within the predetermined range.

圧力のうねりが顕著に現れる、前記ポンプの回転周期が、前記PWM駆動の駆動周期の整数倍の近傍に設定した所定の範囲内のときに、電流指令値が補正されることで,圧力のうねりを抑制することができる。基本的な電流指令値を演算するための制御量演算手段は従来の装置のものと同じでよいので、実施が容易である。   When the pump rotation cycle is within a predetermined range set in the vicinity of an integral multiple of the PWM drive cycle, the current command value is corrected, thereby causing pressure undulation. Can be suppressed. Since the control amount calculation means for calculating the basic current command value may be the same as that of the conventional apparatus, it is easy to implement.

請求項3記載の発明では、請求項1の発明の構成において、前記ポンプ制御手段には、前記コモンレール内の実圧力と目標圧力との圧力偏差を入力として少なくとも比例項を含む制御量としての前記電流指令値を演算する制御量演算手段を具備せしめ、該制御量演算手段には、前記ポンプの回転周期が前記所定の範囲内にあるときに前記比例項のゲインを補正する比例ゲイン補正手段を具備せしめる。   According to a third aspect of the present invention, in the configuration of the first aspect of the invention, the pump control means receives the pressure deviation between the actual pressure in the common rail and the target pressure as an input, and the control amount includes at least a proportional term. Control amount calculation means for calculating a current command value is provided, and the control amount calculation means includes proportional gain correction means for correcting the gain of the proportional term when the rotation period of the pump is within the predetermined range. Prepare.

圧力のうねりが顕著に現れる、前記ポンプの回転周期が、前記PWM駆動の駆動周期の整数倍の近傍に設定した所定の範囲内のときに、比例項のゲインが補正されることで,圧力のうねりを抑制することができる。基本的な電流指令値を演算するための制御量演算手段は従来の装置のものと同じでよいので、実施が容易である。   When the pump rotation cycle is within a predetermined range set in the vicinity of an integral multiple of the PWM drive cycle, the pressure of the proportional term is corrected. Swelling can be suppressed. Since the control amount calculation means for calculating the basic current command value may be the same as that of the conventional apparatus, it is easy to implement.

図1に本発明の内燃機関の燃料制御装置を適用したディーゼルエンジン(以下,適宜、単にエンジンという)の構成を示す。本実施形態は例えば自動車に適用したものである。図例のエンジンは4気筒のもので、エンジン本体1の各気筒に1対1に対応してインジェクタ11が設けてあり、開弁時には燃料を噴射する。燃料は各気筒共通のコモンレール14から供給される。コモンレール14には、ポンプである高圧ポンプ13から燃料タンク12の燃料が供給される。高圧ポンプ13は燃料をコモンレール14に圧送供給し、コモンレール14が高圧に保持されている。高圧ポンプ13の構造については後述する。コモンレール14内の燃料の圧力(以下,適宜、コモンレール圧力という)はインジェクタ11の噴射圧力を規定しており、ポンプ制御手段であるECU15が高圧ポンプ13を制御することにより調整される。   FIG. 1 shows a configuration of a diesel engine (hereinafter, simply referred to as an engine as appropriate) to which a fuel control device for an internal combustion engine of the present invention is applied. This embodiment is applied to an automobile, for example. The illustrated engine is a four-cylinder engine, and each cylinder of the engine body 1 is provided with an injector 11 corresponding to one-to-one, and fuel is injected when the valve is opened. Fuel is supplied from a common rail 14 common to each cylinder. Fuel in the fuel tank 12 is supplied to the common rail 14 from a high-pressure pump 13 that is a pump. The high-pressure pump 13 supplies fuel to the common rail 14 by pressure, and the common rail 14 is held at a high pressure. The structure of the high pressure pump 13 will be described later. The fuel pressure in the common rail 14 (hereinafter referred to as “common rail pressure” as appropriate) regulates the injection pressure of the injector 11 and is adjusted by the ECU 15 serving as pump control means controlling the high-pressure pump 13.

ECU15は前記インジェクタ11や高圧ポンプ13など、エンジン各部を制御する。ECU15は、かかるエンジン各部の制御のため、エンジン各部に設けられてエンジンの運転状態を検出するセンサ類の出力信号が入力している。コモンレール14にはコモンレール圧力を検出する圧力センサ16が取付けてある。また、エンジンの動力を出力するクランクシャフトの回転を検出する回転周期検出手段である回転数センサ17が設けてあり、ECU15でクランクシャフトの回転速度(エンジン回転数)が知られるようになっている。その他にも図示はしないが、ディーゼルエンジンとして一般的なセンサ類を備えているのは勿論である。   The ECU 15 controls each part of the engine such as the injector 11 and the high pressure pump 13. In order to control each part of the engine, the ECU 15 receives output signals of sensors provided in each part of the engine to detect the operating state of the engine. A pressure sensor 16 for detecting the common rail pressure is attached to the common rail 14. Further, a rotation speed sensor 17 serving as a rotation period detecting means for detecting rotation of the crankshaft that outputs engine power is provided, and the ECU 15 is made aware of the rotation speed of the crankshaft (engine rotation speed). . Although not shown in the drawings, it is a matter of course that general sensors are provided as a diesel engine.

ECU15は各種の信号処理回路や演算回路からなり、例えばマイクロコンピュータを中心に構成される。   ECU15 consists of various signal processing circuits and arithmetic circuits, for example, is comprised centering on a microcomputer.

次に本発明の特徴部分であるECU15における高圧ポンプ13の制御について説明する。高圧ポンプ13は前記のごとくECU15により制御され、ECU15は、圧力センサ16から知られるコモンレール圧力の実圧力と目標圧力とに基づいて実圧力が目標圧力となるように高圧ポンプ13を制御する。前記目標圧力は、スロットルバルブ開度やエンジン回転数などの運転状態に対応した適正な圧力値が随時、設定される。   Next, control of the high-pressure pump 13 in the ECU 15 that is a characteristic part of the present invention will be described. The high pressure pump 13 is controlled by the ECU 15 as described above, and the ECU 15 controls the high pressure pump 13 so that the actual pressure becomes the target pressure based on the actual pressure of the common rail pressure known from the pressure sensor 16 and the target pressure. As the target pressure, an appropriate pressure value corresponding to the operating state such as the throttle valve opening and the engine speed is set as needed.

高圧ポンプ13はコモンレール式燃料噴射装置に採用される公知の構造のもので、これを図2に示す。高圧ポンプ13にはエンジン動力を受けるポンプ回転軸21が設けられ、ポンプ回転軸21に所定の減速比で伝達されるエンジン動力(機関回転動力)により、燃料タンク12から燃料を吸い上げるフィードポンプ132およびコモンレール14に燃料を圧送する燃料圧送部134が作動するようになっている。燃料圧送部134はポンプ回転軸21にリングカム41が配設され、カム41の外周に前記ポンプ回転軸21の径方向に長さ方向をとってシリンダ401が形成されている。シリンダ401は前記ポンプ回転軸21の周方向に等間隔に複数配置され、各シリンダ401には、それぞれプランジャ42が摺動自在に保持されている。ポンプ回転軸21はその中心軸から偏心したカム山を有し、カム山上昇時にリングカム41を介しプランジャ42を押圧するようになっている。   The high-pressure pump 13 has a known structure that is employed in a common rail fuel injection device, and this is shown in FIG. The high-pressure pump 13 is provided with a pump rotating shaft 21 that receives engine power. A feed pump 132 that sucks fuel from the fuel tank 12 by engine power (engine rotating power) transmitted to the pump rotating shaft 21 at a predetermined reduction ratio, and A fuel pump 134 for pumping fuel to the common rail 14 is activated. A ring cam 41 is disposed on the pump rotating shaft 21 in the fuel pumping portion 134, and a cylinder 401 is formed on the outer periphery of the cam 41 in the radial direction of the pump rotating shaft 21. A plurality of cylinders 401 are arranged at equal intervals in the circumferential direction of the pump rotating shaft 21, and plungers 42 are slidably held in the respective cylinders 401. The pump rotating shaft 21 has a cam crest eccentric from its central axis, and presses the plunger 42 via the ring cam 41 when the cam crest rises.

プランジャ42を挟んでリングカム41とは反対側にプランジャ42とシリンダ401とで形
成される空間はプランジャ42の変位により拡縮する圧力室402としてある。圧力室402には、圧力室402への流入方向を順方向とする逆止弁により構成された吸入弁135を通過する加圧前の燃料が供給され、前記カム山の上昇に伴ってプランジャ42が燃料を圧縮し、加圧された燃料が圧力室402からの流出方向を順方向とする逆止弁により構成された吐出弁136を介してコモンレール14へと供給される。
A space formed by the plunger 42 and the cylinder 401 on the opposite side of the ring cam 41 across the plunger 42 is a pressure chamber 402 that expands and contracts due to the displacement of the plunger 42. The pressure chamber 402 is supplied with pre-pressurized fuel that passes through a suction valve 135 constituted by a check valve whose forward direction is the flow direction into the pressure chamber 402, and the plunger 42 as the cam crest rises. Compresses the fuel, and the pressurized fuel is supplied to the common rail 14 via a discharge valve 136 constituted by a check valve whose forward direction is the outflow direction from the pressure chamber 402.

圧力室40への燃料の供給は、燃料タンク12からの燃料が調圧用のレギュレートバルブ131を介してフィードポンプ132により吸上げられ、フィードポンプ132から燃料調量弁(以下,適宜、SCVという)133および前記吸入弁135を介してなされるようになっている。   The fuel from the fuel tank 12 is supplied to the pressure chamber 40 by the feed pump 132 through the pressure regulating valve 131, and the fuel metering valve (hereinafter referred to as SCV as appropriate) is fed from the feed pump 132. ) 133 and the intake valve 135.

SCV133は、棒状のバルブボディ31の縦穴に挿置した弁体32の変位量により開度(以下,適宜、SCV開度という)を変えて燃料の流量を調整する電磁弁で、SCV開度が開側ほど圧力室402への燃料供給量が増えて吐出量が増え、これがコモンレール圧力を上昇せしめる。SCV133からの燃料はカム山が下降する期間に圧力室402へと吸入される。   The SCV 133 is an electromagnetic valve that adjusts the fuel flow rate by changing the opening degree (hereinafter referred to as the “SCV opening degree” as appropriate) according to the displacement amount of the valve body 32 inserted in the vertical hole of the rod-shaped valve body 31. The fuel supply amount to the pressure chamber 402 increases and the discharge amount increases as the opening side increases, and this increases the common rail pressure. The fuel from the SCV 133 is sucked into the pressure chamber 402 during a period when the cam mountain descends.

弁体32の変位はソレノイド33による電磁駆動でなされ、変位量はソレノイド33への電流量を調整することでなされる。ソレノイド33への電流駆動方法は、一般的なPWM(Pulse Width Modulation)駆動であり、例えば電流指令値に応じたデューティ比のオンオフ時間をソフトで制御する方法が採用し得る。これにより、電流指令値に応じたデューティ比でSCV133のソレノイド33に電流が流れる。なお、ソレノイド33に対する電流駆動の駆動周期(以下,適宜、SCV駆動周期という)は予めECU15に記憶しておく。   The displacement of the valve body 32 is made by electromagnetic drive by the solenoid 33, and the displacement amount is made by adjusting the current amount to the solenoid 33. The current drive method for the solenoid 33 is a general PWM (Pulse Width Modulation) drive. For example, a method of controlling the ON / OFF time of the duty ratio according to the current command value by software can be adopted. Thereby, a current flows through the solenoid 33 of the SCV 133 with a duty ratio corresponding to the current command value. Note that the drive cycle of current drive for the solenoid 33 (hereinafter, referred to as the “SCV drive cycle” as appropriate) is stored in the ECU 15 in advance.

図3はSCV133のソレノイド33に流す駆動電流(以下,適宜、SCV駆動電流という)の平均電流と高圧ポンプ13の吐出量との関係を示す特性線の一例である。図例は平均電流が大きいほど開度が小さくなるSCVのものであり、所定の電流値でSCV開度が0になり吐出量も0となる。平均電流が小さいほどSCV開度が大きくなって吐出量が増大する。平均電流に対して吐出量が漸増する電流域では、吐出量はSCV開度およびポンプ回転軸21のカム山が下降し圧力室402が拡大方向となる期間の長さに略比例する。低電流領域で吐出量が一定値をとるのは、SCV開度が大きい低電流域では、吐出量がプランジャ42のストロークで規定されるからである。このとき、エンジン回転数が低いほど圧力室402が拡大方向となる期間の長さが長くなるので、特性線の傾きが急になり、吐出量が一定値をとる電流域の上限が高電流域側に伸びる。ECU15は要求される吐出量に対して、制御対象であるコモンレール圧力を調整するための制御量として、電流指令値を演算する。電流指令値の演算にあたっては、前記のごとく吐出量に対する依存性を有するエンジン回転数が考慮される。   FIG. 3 is an example of a characteristic line showing the relationship between the average current of the drive current (hereinafter referred to as “SCV drive current” as appropriate) flowing through the solenoid 33 of the SCV 133 and the discharge amount of the high-pressure pump 13. In the example of the figure, the larger the average current is, the smaller the opening becomes, and the SCV opening becomes 0 and the discharge amount becomes 0 at a predetermined current value. The smaller the average current, the larger the SCV opening and the discharge amount. In the current region where the discharge amount gradually increases with respect to the average current, the discharge amount is substantially proportional to the SCV opening and the length of the period in which the cam crest of the pump rotating shaft 21 descends and the pressure chamber 402 is in the expansion direction. The reason why the discharge amount takes a constant value in the low current region is that the discharge amount is defined by the stroke of the plunger 42 in the low current region where the SCV opening is large. At this time, since the length of the period in which the pressure chamber 402 is in the expansion direction becomes longer as the engine speed is lower, the slope of the characteristic line becomes steep, and the upper limit of the current region where the discharge amount takes a constant value is the high current region. Extend to the side. The ECU 15 calculates a current command value as a control amount for adjusting the common rail pressure to be controlled with respect to the required discharge amount. In calculating the current command value, the engine speed having dependency on the discharge amount as described above is taken into consideration.

図4はECU15で実行される高圧ポンプ13の制御を機能ブロックで表している。コモンレール圧力の目標圧力と実圧力との圧力偏差を入力としてPID演算部151を有しており、比例項、積分項、および微分項を加算するPID演算を実行する。演算では電流指令値が求められる。また、前記圧力偏差を入力として、補正値演算部152を有しており、その演算出力により前記PID演算部151の演算出力が加算補正されるようになっている。加算補正される補正値は、圧力偏差に所定の係数を乗じることで求める。係数は、エンジン回転数、燃料の噴射量およびコモンレール圧力などに基づいて設定される。   FIG. 4 shows the control of the high-pressure pump 13 executed by the ECU 15 as functional blocks. A PID calculation unit 151 is provided with a pressure deviation between the target pressure of the common rail pressure and the actual pressure as input, and PID calculation for adding a proportional term, an integral term, and a differential term is executed. In the calculation, a current command value is obtained. In addition, a correction value calculation unit 152 is provided with the pressure deviation as an input, and the calculation output of the PID calculation unit 151 is added and corrected by the calculation output. The correction value to be added and corrected is obtained by multiplying the pressure deviation by a predetermined coefficient. The coefficient is set based on the engine speed, the fuel injection amount, the common rail pressure, and the like.

補正値演算部152では、エンジン回転数をポンプ回転軸21の回転周期(以下,適宜、ポンプ回転周期という)Tpに換算し、ポンプ回転周期TpがSCV駆動周期Tsの整数倍(Ts×n)となる周期の近傍に設定した所定範囲外では補正値を0とし、PID演算部151の演算出力に対し実質的に補正は行わない。また、前記係数は前記エンジン回転数などの運転状態の検出値を入力とするマップを予め記憶しておき、マップを参照して決定するのがよい。   In the correction value calculation unit 152, the engine speed is converted into a rotation period (hereinafter referred to as a pump rotation period) Tp of the pump rotating shaft 21, and the pump rotation period Tp is an integral multiple (Ts × n) of the SCV drive period Ts. The correction value is set to 0 outside the predetermined range set in the vicinity of the period, and the calculation output of the PID calculation unit 151 is not substantially corrected. The coefficient may be determined in advance by storing a map that receives a detection value of an operating state such as the engine speed as an input, and referring to the map.

本コモンレール式燃料噴射装置の作動を説明する。図5にSCV133の開口面積(以下,適宜、SCV開口面積という)および吐出量を時系列的に示す。開口面積はSCV133において弁体32の変位量に応じて変わる燃料流量を規定する通路断面積である。吐出量はポンプ回転周期Tpあたりの吐出量で表している。これは、実質的に、ポンプ回転周期Tpの長さの期間におけるSCV開口面積の積分値に比例する。吐出量としてポンプ回転周期Tpの異なる2つの場合を示している。第1の場合はポンプ回転周期Tp(A)の場合で、ポンプ回転周期Tp(A)はSCV駆動周期Tsの整数倍(Ts×n)の近傍の値をとる。図例ではポンプ回転周期TpがSCV駆動周期Tsの1.125倍程度に設定してある。ポンプ回転周期Tpの異なる2つの場合のうちの第2の場合は、ポンプ回転周期Tp(B)の場合で、ポンプ回転周期Tp(B)はSCV駆動周期Tsの近傍から離れた値をとる。図例ではポンプ回転周期TpがSCV駆動周期Tsの0.5倍程度に設定してある。   The operation of the common rail fuel injection device will be described. FIG. 5 shows the opening area of the SCV 133 (hereinafter referred to as “SCV opening area” as appropriate) and the discharge amount in time series. The opening area is a passage cross-sectional area that defines a fuel flow rate that varies according to the amount of displacement of the valve body 32 in the SCV 133. The discharge amount is expressed as a discharge amount per pump rotation period Tp. This is substantially proportional to the integral value of the SCV opening area in the period of the length of the pump rotation period Tp. Two cases with different pump rotation periods Tp are shown as discharge amounts. The first case is a pump rotation cycle Tp (A), and the pump rotation cycle Tp (A) takes a value in the vicinity of an integral multiple (Ts × n) of the SCV drive cycle Ts. In the illustrated example, the pump rotation period Tp is set to about 1.125 times the SCV drive period Ts. The second of the two cases having different pump rotation cycles Tp is the case of the pump rotation cycle Tp (B), and the pump rotation cycle Tp (B) takes a value that is separated from the vicinity of the SCV drive cycle Ts. In the illustrated example, the pump rotation cycle Tp is set to about 0.5 times the SCV drive cycle Ts.

さて、SCV133はPWM駆動で電流を制御するため、SCV開口面積は図例のごとくSCV駆動周期Tsと同じ周期で変動が生じる。ポンプ回転周期がSCV駆動周期の整数倍の近傍にある時、ポンプ1回転当たりの吐出量は徐々に増減する。これが吐出量のうねりとなり、これに基因してコモンレール圧力にうねりが生じる。また、ポンプ1回転当たりの吐出量の変化率は、SCV駆動周期の整数倍の近傍から遠ざかるにつれて大きくなり、吐出量の脈動は短周期の小刻みなものになり、コモンレール圧力にうねりが生じない。ポンプ回転周期TpがSCV駆動周期Tsの近傍の値であるポンプ回転周期Tp(A)の例では、吐出量にうねりが生じている。一方、ポンプ回転周期Tpが(Ts×1/2)であるポンプ回転周期(B)の例では、SCV駆動周期Tsと同じ周期の脈動が生じるのみである。この場合には吐出量の脈動は短周期の小刻みな振動であり、吐出量やコモンレール圧力において、うねり現象は顕在化しない。   Since the SCV 133 controls the current by PWM driving, the SCV opening area varies in the same cycle as the SCV driving cycle Ts as shown in the figure. When the pump rotation cycle is in the vicinity of an integral multiple of the SCV drive cycle, the discharge rate per pump rotation gradually increases and decreases. This causes a swell of the discharge amount, which causes a swell in the common rail pressure. Further, the rate of change of the discharge amount per pump rotation increases as it moves away from the vicinity of an integral multiple of the SCV drive cycle, and the pulsation of the discharge amount becomes a short-cycle pulsation, and the common rail pressure does not swell. In the example of the pump rotation cycle Tp (A) in which the pump rotation cycle Tp is a value in the vicinity of the SCV drive cycle Ts, the discharge amount is swelled. On the other hand, in the example of the pump rotation cycle (B) in which the pump rotation cycle Tp is (Ts × 1/2), only pulsation with the same cycle as the SCV drive cycle Ts occurs. In this case, the pulsation of the discharge amount is a short-period oscillating vibration, and the undulation phenomenon does not appear in the discharge amount and the common rail pressure.

したがって、本コモンレール式燃料噴射装置では、ポンプ回転周期TpがSCV駆動周期の整数倍(Ts×n)の近傍の値をとるときに制御量としてのSCV133の電流指令値が補正されるので、図6に示すように、コモンレール圧力のうねりを効果的に低減せしめることができる。   Therefore, in this common rail fuel injection device, the current command value of the SCV 133 as the control amount is corrected when the pump rotation cycle Tp takes a value in the vicinity of an integral multiple (Ts × n) of the SCV drive cycle. As shown in FIG. 6, the swell of the common rail pressure can be effectively reduced.

なお、前記のごとく、ポンプ回転周期TpがSCV駆動周期の整数倍(Ts×n)に近いほど圧力のうねりの周期は長くなるから、PID演算部151の演算出力に対して実質的な補正を行うポンプ回転周期Tpの所定範囲は、ポンプ回転周期TpがSCV駆動周期の整数倍(Ts×n)の近傍の範囲に設定することになるが、その範囲を規定する、(Ts×n)に近い側の限界値と(Ts×n)から遠い側の限界値は、要求される圧力うねり抑制作用に応じて設定する。   As described above, as the pump rotation cycle Tp is closer to an integral multiple (Ts × n) of the SCV drive cycle, the pressure undulation cycle becomes longer. Therefore, substantial correction is performed on the calculation output of the PID calculation unit 151. The predetermined range of the pump rotation cycle Tp to be performed is set to a range in which the pump rotation cycle Tp is in the vicinity of an integer multiple (Ts × n) of the SCV drive cycle. The range is defined as (Ts × n). The limit value on the near side and the limit value on the side far from (Ts × n) are set according to the required pressure swell suppression action.

また、前記係数のマップは、前記のごとく、パラメータとなる前記運転状態として燃料噴射量やコモンレール圧力を含めているが、これは、燃料噴射量によって、目標圧力を維持すべく要求される吐出量も変化し、また、吐出弁136の出口側の圧力であるコモンレール圧力によって、吐出圧が変化するので、運転状態によって、コモンレール圧力のうねりの山の高さが変化するからである。   In addition, as described above, the coefficient map includes the fuel injection amount and the common rail pressure as the operating state as a parameter. This is the discharge amount required to maintain the target pressure depending on the fuel injection amount. This is also because the discharge pressure changes depending on the common rail pressure, which is the pressure on the outlet side of the discharge valve 136, and the height of the swell of the common rail pressure changes depending on the operating state.

(第2実施形態)
図7に本発明の第2実施形態になるコモンレール式燃料噴射制御装置のECUにおける高圧ポンプの制御を機能ブロックで示す。第1実施形態において、電流指令値を別の方法で演算するようにしたものである。第1実施形態と実質的に同じ作動をする部分には同じ番号を付して第1実施形態との相違点を中心に説明する。
(Second Embodiment)
FIG. 7 is a functional block diagram showing the control of the high pressure pump in the ECU of the common rail fuel injection control apparatus according to the second embodiment of the present invention. In the first embodiment, the current command value is calculated by another method. Portions that operate substantially the same as in the first embodiment will be assigned the same reference numerals, and differences from the first embodiment will be mainly described.

圧力偏差を入力とする制御量演算手段であるPID演算部151Aは比例項演算部1511、積分項演算部1512、および微分項演算部1513を有しており、各演算出力を加算して制御量としてのSCV133の電流指令値が求められる。比例項演算部1511、積分項演算部1512、および微分項演算部1513は一般的なもので、比例項演算部1511は圧力偏差に比例ゲインを乗じ、積分項演算部1512は圧力偏差の積分値に積分ゲインを乗じ、微分項演算部1513は圧力偏差の微分値に微分ゲインを乗じる。   A PID calculation unit 151A, which is a control amount calculation means that receives a pressure deviation as an input, has a proportional term calculation unit 1511, an integral term calculation unit 1512, and a differential term calculation unit 1513. As a result, the current command value of the SCV 133 is obtained. The proportional term computing unit 1511, the integral term computing unit 1512, and the derivative term computing unit 1513 are general ones. The proportional term computing unit 1511 multiplies the pressure deviation by a proportional gain, and the integral term computing unit 1512 is an integral value of the pressure deviation. Is multiplied by the integral gain, and the differential term calculation unit 1513 multiplies the differential value of the pressure deviation by the differential gain.

PID演算部151Aにはまた、前記比例ゲインを補正する比例ゲイン補正手段であるゲイン補正部1514が設けられており、比例項演算部1511で用いられる比例ゲインが前記補正により更新される。比例ゲインに対して実質的な補正を行うポンプ回転周期Tpの所定範囲は、ポンプ回転周期TpがSCV駆動周期の整数倍(Ts×n)の近傍の範囲に設定することになる。また、比例ゲインの補正は、第1実施形態と同様にエンジン回転数、噴射量、およびコモンレール圧力などを入力とするマッを参照してなされる。   The PID calculation unit 151A is also provided with a gain correction unit 1514 that is a proportional gain correction unit that corrects the proportional gain, and the proportional gain used in the proportional term calculation unit 1511 is updated by the correction. The predetermined range of the pump rotation cycle Tp for performing substantial correction on the proportional gain is set to a range in the vicinity of the pump rotation cycle Tp being an integral multiple of the SCV drive cycle (Ts × n). Further, the correction of the proportional gain is performed with reference to a map that receives the engine speed, the injection amount, the common rail pressure, and the like as in the first embodiment.

本実施形態によってもコモンレール圧力のうねりの現象を効果的に低減し得る。   This embodiment can also effectively reduce the phenomenon of common rail pressure swell.

また、前記各実施形態において、PID演算部151や比例項演算部1511、積分項演算部1512、および微分項演算部1513は従来の装置のものと同じでよいので、実施が容易である。   Moreover, in each said embodiment, since the PID calculating part 151, the proportional term calculating part 1511, the integral term calculating part 1512, and the derivative term calculating part 1513 may be the same as the thing of the conventional apparatus, implementation is easy.

本発明のコモンレール式燃料噴射装置を備える内燃機関の構成図である。It is a block diagram of an internal combustion engine provided with the common rail type fuel injection device of the present invention. 前記コモンレール式燃料噴射装置を構成する高圧ポンプの断面図である。It is sectional drawing of the high pressure pump which comprises the said common rail type fuel injection apparatus. 前記高圧ポンプの特性図である。It is a characteristic view of the high pressure pump. 前記コモンレール式燃料噴射装置を構成するECUで実行される本発明の第1の制御内容を示すブロック図である。FIG. 2 is a block diagram showing a first control content of the present invention that is executed by an ECU constituting the common rail fuel injection device. 前記高圧ポンプの作動を説明するタイミングチャートである。It is a timing chart explaining the action | operation of the said high pressure pump. 前記コモンレール式燃料噴射装置と従来のコモンレール式燃料噴射装置とを比較するタイミングチャートである。It is a timing chart which compares the said common rail type fuel injection device and the conventional common rail type fuel injection device. 前記コモンレール式燃料噴射装置を構成するECUで実行される本発明の第2の制御内容を示すブロック図である。It is a block diagram which shows the 2nd control content of this invention performed by ECU which comprises the said common rail type fuel injection apparatus.

符号の説明Explanation of symbols

11 インジェクタ
12 燃料タンク
13 高圧ポンプ(ポンプ)
132 フィードポンプ
133 SCV(電磁弁)
134 燃料圧送部
136 吐出弁
14 コモンレール
15 ECU(ポンプ制御手段)
151,151A PID演算部(制御量演算手段)
152 補正演算部(補正量演算手段)
1511 比例項演算部
1512 積分項演算部
1513 微分項演算部
1514 比例ゲイン補正部(比例ゲイン補正手段)
17 エンジン回転数センサ(回転周期検出手段)
11 Injector 12 Fuel tank 13 High-pressure pump (pump)
132 Feed pump 133 SCV (solenoid valve)
134 Fuel Pumping Unit 136 Discharge Valve 14 Common Rail 15 ECU (Pump Control Unit)
151,151A PID calculation unit (control amount calculation means)
152 Correction calculation unit (correction amount calculation means)
1511 Proportional term calculation unit 1512 Integral term calculation unit 1513 Differential term calculation unit 1514 Proportional gain correction unit (proportional gain correction means)
17 Engine speed sensor (rotation cycle detection means)

Claims (3)

燃料を筒内に噴射するインジェクタと、該インジェクタに供給する加圧燃料を蓄えるコモンレールと、機関回転動力により前記コモンレールに燃料を圧送し、この圧送に供する低圧燃料の流量の調整を、PWM駆動で給電され電流値に応じて開度調整自在な電磁弁により行うポンプと、前記コモンレール内の実圧力が目標圧力となるように前記電磁弁に供給する電流をフィードバック制御により調整するポンプ制御手段とを有する内燃機関のコモンレール式燃料噴射装置において、
前記ポンプの回転周期を検出する回転周期検出手段を具備せしめ、
前記ポンプ制御手段は、前記ポンプの回転周期が、前記PWM駆動の駆動周期の整数倍の近傍に設定した所定の範囲内にあるときとその他のときとで、前記電磁弁に供給する電流の電流指令値のフィードバック演算を切換え自在としたことを特徴とする内燃機関のコモンレール式燃料噴射装置。
An injector for injecting fuel into the cylinder, a common rail for storing pressurized fuel to be supplied to the injector, and pumping the fuel to the common rail by engine rotational power, and adjusting the flow rate of the low-pressure fuel used for this pumping by PWM drive A pump that is powered by a solenoid valve that can be adjusted according to the current value, and a pump control means that adjusts the current supplied to the solenoid valve by feedback control so that the actual pressure in the common rail becomes a target pressure. In a common rail fuel injection device for an internal combustion engine having
A rotation period detecting means for detecting the rotation period of the pump;
The pump control means is configured to supply current to the solenoid valve when the rotation period of the pump is within a predetermined range set in the vicinity of an integral multiple of the drive period of the PWM drive and at other times. A common rail fuel injection device for an internal combustion engine, wherein feedback calculation of a command value is freely switchable.
請求項1記載の内燃機関のコモンレール式燃料噴射装置において、前記ポンプ制御手段には、前記コモンレール内の実圧力と目標圧力との圧力偏差を入力として制御量としての前記電流指令値を演算する制御量演算手段と、前記ポンプの回転周期が前記所定の範囲内にあるときに前記制御量演算手段に加算する補正値を演算する補正値演算手段とを具備せしめた内燃機関のコモンレール式燃料噴射装置。   2. The common rail fuel injection device for an internal combustion engine according to claim 1, wherein the pump control means calculates the current command value as a control amount by inputting a pressure deviation between an actual pressure in the common rail and a target pressure. A common rail fuel injection apparatus for an internal combustion engine, comprising: a quantity calculation means; and a correction value calculation means for calculating a correction value to be added to the control quantity calculation means when the rotation period of the pump is within the predetermined range. . 請求項1記載の内燃機関のコモンレール式燃料噴射装置において、前記ポンプ制御手段には、前記コモンレール内の実圧力と目標圧力との圧力偏差を入力として少なくとも比例項を含む制御量としての前記電流指令値を演算する制御量演算手段を具備せしめ、該制御量演算手段には、前記ポンプの回転周期が前記所定の範囲内にあるときに前記比例項のゲインを補正する比例ゲイン補正手段を具備せしめた内燃機関のコモンレール式燃料噴射装置。   2. The common rail fuel injection apparatus for an internal combustion engine according to claim 1, wherein the pump control means receives the pressure deviation between the actual pressure in the common rail and the target pressure as an input, and the current command as a control amount including at least a proportional term. Control amount calculation means for calculating a value is provided, and the control amount calculation means includes proportional gain correction means for correcting the gain of the proportional term when the rotation period of the pump is within the predetermined range. Common rail fuel injection device for internal combustion engines.
JP2003413552A 2003-12-11 2003-12-11 Common-rail type fuel injection device for internal combustion engine Pending JP2005171895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413552A JP2005171895A (en) 2003-12-11 2003-12-11 Common-rail type fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413552A JP2005171895A (en) 2003-12-11 2003-12-11 Common-rail type fuel injection device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005171895A true JP2005171895A (en) 2005-06-30

Family

ID=34733660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413552A Pending JP2005171895A (en) 2003-12-11 2003-12-11 Common-rail type fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005171895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005056704A1 (en) * 2005-11-28 2007-06-06 Siemens Ag A method for achieving a scheduled injection amount of fuel in an internal combustion engine
JP2008064053A (en) * 2006-09-08 2008-03-21 Denso Corp Fuel injection control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005056704A1 (en) * 2005-11-28 2007-06-06 Siemens Ag A method for achieving a scheduled injection amount of fuel in an internal combustion engine
DE102005056704B4 (en) * 2005-11-28 2013-05-29 Continental Automotive Gmbh A method for achieving a scheduled injection amount of fuel in an internal combustion engine
JP2008064053A (en) * 2006-09-08 2008-03-21 Denso Corp Fuel injection control system
JP4600371B2 (en) * 2006-09-08 2010-12-15 株式会社デンソー Fuel injection control device

Similar Documents

Publication Publication Date Title
JP4582191B2 (en) Fuel injection control device and fuel injection system using the same
JP4492664B2 (en) Fuel supply amount estimation device and fuel pressure injection system
JP5212501B2 (en) Fuel injection device
US7007662B2 (en) Fuel supply apparatus for internal combustion engine
JP4260136B2 (en) Storage fuel injection device for internal combustion engine
JP4434097B2 (en) Accumulated fuel injection control device
US7216628B2 (en) Fuel injection apparatus having common rail and subject device control system
US6971370B2 (en) Common rail type fuel injection system
JP4609524B2 (en) Fuel pressure control device and fuel pressure control system
JP2006112371A (en) Fuel injection control device of internal combustion engine
JP2008291808A (en) Common rail type fuel injection device and force feed characteristic compensating method of high pressure pump
JP4111123B2 (en) Common rail fuel injection system
JP2010071187A (en) Fuel injection control device
JP4600371B2 (en) Fuel injection control device
JPH10288105A (en) Fuel injection device for internal combustion engine
JP4605182B2 (en) Pump control device and fuel injection system using the same
JP2005155561A (en) Fuel injection device for internal combustion engine
WO2016189803A1 (en) Internal-combustion engine high-pressure pump control device
JP5556209B2 (en) High-pressure fuel pump reference time calculation device
JP2005171895A (en) Common-rail type fuel injection device for internal combustion engine
JP5202722B2 (en) Control device for accumulator fuel injector
JP2007023990A (en) Fuel injection control device
JP2000314340A (en) Common rail fuel pressure control device for internal combustion engine
JP3722218B2 (en) Fuel injection device for internal combustion engine
JP2004108286A (en) Common rail fuel injection system