JP5202722B2 - Control device for accumulator fuel injector - Google Patents

Control device for accumulator fuel injector Download PDF

Info

Publication number
JP5202722B2
JP5202722B2 JP2011500446A JP2011500446A JP5202722B2 JP 5202722 B2 JP5202722 B2 JP 5202722B2 JP 2011500446 A JP2011500446 A JP 2011500446A JP 2011500446 A JP2011500446 A JP 2011500446A JP 5202722 B2 JP5202722 B2 JP 5202722B2
Authority
JP
Japan
Prior art keywords
pressure pump
low
pressure
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011500446A
Other languages
Japanese (ja)
Other versions
JPWO2010095282A1 (en
Inventor
博隆 金子
宏 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2011500446A priority Critical patent/JP5202722B2/en
Publication of JPWO2010095282A1 publication Critical patent/JPWO2010095282A1/en
Application granted granted Critical
Publication of JP5202722B2 publication Critical patent/JP5202722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/09Fuel-injection apparatus having means for reducing noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、蓄圧式燃料噴射装置の制御装置に関し、特に、低圧燃料を加圧して圧送する高圧ポンプと、高圧ポンプに低圧燃料を供給する電動低圧ポンプとを備えた蓄圧式燃料噴射装置の制御を行う蓄圧式燃料噴射装置の制御装置に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an accumulator fuel injection device, and more particularly, to control an accumulator fuel injection device including a high pressure pump that pressurizes and pumps low pressure fuel and an electric low pressure pump that supplies the high pressure pump with low pressure fuel. The present invention relates to a control device for an accumulator fuel injection device.

従来、ディーゼルエンジンをはじめとする内燃機関に燃料を供給する装置として、複数の燃料噴射弁が接続されるとともに高圧燃料が蓄積されるコモンレールを備え、高圧燃料が各燃料噴射弁に供給された状態で燃料噴射弁の通電制御を行うことによって、燃料の緻密な噴射制御を可能にした蓄圧式燃料噴射装置が用いられている。   Conventionally, as a device for supplying fuel to an internal combustion engine such as a diesel engine, a state in which a plurality of fuel injection valves are connected and a common rail for storing high-pressure fuel is provided, and high-pressure fuel is supplied to each fuel injection valve Thus, an accumulator fuel injection device that enables precise fuel injection control by performing energization control of the fuel injection valve is used.

このような蓄圧式燃料噴射装置は、低圧ポンプと、高圧ポンプと、コモンレールと、燃料噴射弁とを主たる要素として構成されており、この蓄圧式燃料噴射装置では、燃料タンク内の燃料が低圧ポンプによって高圧ポンプに圧送されるとともに高圧ポンプによって加圧されてコモンレールに圧送され、各燃料噴射弁に高圧燃料が供給される。そして、この状態で燃料噴射弁の通電制御によって燃料噴射弁の開弁時間及び開弁タイミングが制御されることで、内燃機関への様々な燃料噴射パターンが実現可能となっている。   Such an accumulator fuel injection device is mainly composed of a low pressure pump, a high pressure pump, a common rail, and a fuel injection valve. In this accumulator fuel injection device, the fuel in the fuel tank is transferred to the low pressure pump. And is pressurized by the high-pressure pump and pumped to the common rail, and high-pressure fuel is supplied to each fuel injection valve. In this state, various fuel injection patterns to the internal combustion engine can be realized by controlling the valve opening time and valve opening timing of the fuel injection valve by energization control of the fuel injection valve.

ここで、蓄圧式燃料噴射装置に備えられる低圧ポンプとして、高圧ポンプと別体に備えられた電動低圧ポンプが用いられる場合がある。この場合、電動低圧ポンプの出力は通常一定にされ、電動低圧ポンプから高圧ポンプの加圧室までの間に設けられたオーバーフローバルブから余剰の燃料をオーバーフローさせながら、高圧ポンプの加圧室に対して必要な流量の低圧燃料の供給が行われる(例えば、特許文献1参照)。   Here, there is a case where an electric low-pressure pump provided separately from the high-pressure pump is used as the low-pressure pump provided in the pressure accumulation fuel injection device. In this case, the output of the electric low-pressure pump is normally constant, and the excess fuel is overflowed from the overflow valve provided between the electric low-pressure pump and the high-pressure pump pressurization chamber, while flowing to the pressurization chamber of the high-pressure pump. Thus, low pressure fuel is supplied at a necessary flow rate (see, for example, Patent Document 1).

特開2006−329033号公報 (図1)JP 2006-329033 A (FIG. 1)

このような蓄圧式燃料噴射装置において、電動低圧ポンプは一定周期で低圧燃料を圧送するため、この電動低圧ポンプの圧送に起因して、電動低圧ポンプと高圧ポンプとの間の低圧燃料通路内に圧力脈動が発生する。一方、高圧ポンプにおいても、高圧ポンプを駆動するカムが回転し、プランジャ等の部品が移動することによって高圧ポンプ内の圧力脈動が発生し、ひいては高圧ポンプに低圧燃料を導く低圧燃料通路内にまで圧力脈動を生じさせる場合がある。   In such an accumulator fuel injection device, the electric low-pressure pump pumps low-pressure fuel at a constant cycle. Therefore, the electric low-pressure pump pumps the low-pressure fuel into the low-pressure fuel passage between the electric low-pressure pump and the high-pressure pump. Pressure pulsation occurs. On the other hand, even in the high pressure pump, the cam driving the high pressure pump rotates and the plunger and other parts move to cause pressure pulsation in the high pressure pump, and thus into the low pressure fuel passage that leads the low pressure fuel to the high pressure pump. It may cause pressure pulsation.

これらの、電動低圧ポンプの駆動に起因して低圧燃料通路内に生じる圧力脈動のn1次周波数と、高圧ポンプの駆動に起因して低圧燃料通路内に生じる圧力脈動のn2次周波数とが近似すると、圧力の振幅の増大や低圧燃料通路に設けられた低圧配管や燃料フィルタ等の振動を引き起こし、部品の損傷や異音の原因となるおそれがある。These, and n 1-order frequency of the pressure pulsation generated in the low pressure fuel passage due to the driving of the electric low-pressure pump, and the n 2-order frequency of the pressure pulsation generated in the low pressure fuel passage due to the driving of the high pressure pump If approximated, an increase in pressure amplitude or vibration of a low-pressure pipe or a fuel filter provided in the low-pressure fuel passage may cause damage to parts or abnormal noise.

このような圧力脈動の共振に対する対策として、電動低圧ポンプや高圧ポンプにダンパを設けることも可能ではあるが、それぞれの圧力脈動を引き起こす箇所に対してダンパを設けることが必要になり、部品点数の増加やコストの増加につながりやすい。   As a countermeasure against such pressure pulsation resonance, it is possible to provide a damper in the electric low-pressure pump or high-pressure pump, but it is necessary to provide a damper at the location that causes each pressure pulsation. It tends to lead to increase and cost increase.

そこで、本発明の発明者は鋭意努力し、電動低圧ポンプの出力を可変とし、蓄圧式燃料噴射装置の制御装置が、電動低圧ポンプのn1次圧送周波数が高圧ポンプの駆動によって高圧ポンプに生じる圧力脈動のn2次周波数と近似しないように電動低圧ポンプの出力を制御する低圧ポンプ出力制御部を備えることにより上述した問題を解決できることを見出し、本発明を完成させたものである。すなわち、本発明は、電動低圧ポンプによって低圧燃料通路に生じる圧力脈動と、高圧ポンプの駆動によって生じる低圧燃料通路の圧力脈動とが共振することで生じる不具合の低減が図られる蓄圧式燃料噴射装置の制御装置を提供することを目的とする。Accordingly, the inventors of the present invention made extensive efforts, the output of the electric low-pressure pump is variable, the controller of the accumulator fuel injection device, resulting in a high-pressure pump n 1 primary pumping frequency of the electric low-pressure pump is driven by the high pressure pump It can solve the problems described above by providing a low pressure pump output control unit for controlling the output of the electric low-pressure pump so as not to approximate n 2 order frequency of the pressure pulsation, in which the present invention has been completed. That is, the present invention relates to a pressure accumulating fuel injection device in which the pressure pulsation generated in the low-pressure fuel passage by the electric low-pressure pump and the pressure pulsation in the low-pressure fuel passage generated by driving the high-pressure pump are resonated. An object is to provide a control device.

本発明によれば、燃料タンク内の燃料を電動低圧ポンプで圧送するとともに燃料を高圧ポンプで加圧して複数の燃料噴射弁が接続されたコモンレールに圧送し、内燃機関の気筒内に燃料を噴射する蓄圧式燃料噴射装置の制御を行う蓄圧式燃料噴射装置の制御装置において、電動低圧ポンプのn1次(n1は1以上の整数)圧送周波数が高圧ポンプの駆動によって生じる燃料の圧力脈動のn2次(n2は1以上の整数)周波数と近似しないように電動低圧ポンプの出力を制御する低圧ポンプ出力制御部を備えることを特徴とする蓄圧式燃料噴射装置の制御装置が提供され、上述した問題を解決することができる。According to the present invention, the fuel in the fuel tank is pumped by the electric low-pressure pump, the fuel is pressurized by the high-pressure pump, and pumped to the common rail to which the plurality of fuel injection valves are connected, and the fuel is injected into the cylinder of the internal combustion engine. In a control device for an accumulator type fuel injection device that controls an accumulator type fuel injection device, the pressure pulsation of fuel generated by the driving of the high pressure pump by the n 1st order (n 1 is an integer of 1 or more) of the electric low pressure pump n 2 order (n 2 is an integer of 1 or more) control device for accumulator fuel injection system, characterized in that it comprises a low pressure pump output control unit for controlling the output of the electric low-pressure pump so as not to approximate the frequency is provided, The problems described above can be solved.

また、本発明の蓄圧式燃料噴射装置を構成するにあたり、低圧ポンプ出力制御部が、内燃機関の回転数又は高圧ポンプの回転数を検出するとともに、内燃機関の回転数又は高圧ポンプの回転数に応じて電動低圧ポンプの出力を制御することが好ましい。   In constructing the pressure accumulation type fuel injection device of the present invention, the low pressure pump output control unit detects the rotational speed of the internal combustion engine or the rotational speed of the high pressure pump, and determines the rotational speed of the internal combustion engine or the rotational speed of the high pressure pump. Accordingly, it is preferable to control the output of the electric low-pressure pump.

また、本発明の蓄圧式燃料噴射装置を構成するにあたり、電動低圧ポンプの出力が所定量以上変更される領域では、低圧ポンプ出力制御部が、内燃機関の回転数又は高圧ポンプの回転数が所定量以上変化したときに電動低圧ポンプの出力を変更することが好ましい。   Further, when configuring the accumulator fuel injection device of the present invention, in a region where the output of the electric low-pressure pump is changed by a predetermined amount or more, the low-pressure pump output control unit determines the rotational speed of the internal combustion engine or the high-pressure pump. It is preferable to change the output of the electric low-pressure pump when the amount changes more than a fixed amount.

また、本発明の蓄圧式燃料噴射装置を構成するにあたり、低圧ポンプ出力制御部が、内燃機関のアイドル状態において電動低圧ポンプの出力を制御することが好ましい。   In configuring the accumulator fuel injection device of the present invention, it is preferable that the low-pressure pump output control unit controls the output of the electric low-pressure pump in the idling state of the internal combustion engine.

また、本発明の蓄圧式燃料噴射装置を構成するにあたり、低圧ポンプ出力制御部が、内燃機関の回転数又は高圧ポンプの回転数を検出する回転数検出部と、電動低圧ポンプのn1次圧送周波数が高圧ポンプのn2次圧送周波数と近似しないように、内燃機関又は高圧ポンプの回転数に応じて電動低圧ポンプへの供給電圧を制御する電圧制御部と、を備えることが好ましい。In constituting the accumulator fuel injection device of the present invention, the low-pressure pump output control unit, and a rotation speed detector which detects the rotational speed of the rotational speed or a high-pressure pump of an internal combustion engine, n 1 primary pumping of the electric low-pressure pump as the frequency is not approximated to n 2 primary pumping frequency of the high-pressure pump preferably comprises a voltage control unit for controlling the supply voltage to the electric low-pressure pump in accordance with the rotational speed of the internal combustion engine or the high-pressure pump, a.

本発明の蓄圧式燃料噴射装置の制御装置によれば、低圧ポンプ出力制御部が、電動ポンプのn1次圧送周波数が高圧ポンプの駆動によって生じる燃料の圧力脈動のn2次周波数と近似しないように電動低圧ポンプの出力を制御するため、電動低圧ポンプによって低圧燃料通路に生じる圧力脈動と、高圧ポンプの駆動によって低圧燃料通路に生じる圧力脈動との共振を生じるおそれが低減される。したがって、低圧燃料通路を構成する部品の損傷や異音等の不具合の発生が低減される。According to the control apparatus of the accumulator fuel injection device of the present invention, so that the low pressure pump output control unit, n 1 primary pumping frequency of the electric pump is not approximate to the n 2-order frequency of the pressure pulsation of the fuel caused by the driving of the high-pressure pump In addition, since the output of the electric low-pressure pump is controlled, the risk of resonance between the pressure pulsation generated in the low-pressure fuel passage by the electric low-pressure pump and the pressure pulsation generated in the low-pressure fuel passage by driving the high-pressure pump is reduced. Therefore, the occurrence of problems such as damage to parts constituting the low-pressure fuel passage and abnormal noise is reduced.

また、本発明の蓄圧式燃料噴射装置の制御装置において、低圧ポンプ出力制御部が内燃機関の回転数又は高圧ポンプの回転数を検出するとともに当該いずれかの回転数に応じて電動低圧ポンプの出力を制御することにより、高圧ポンプの駆動によって生じる燃料の圧力脈動のn2次周波数と電動低圧ポンプのn1次圧送周波数とが近似しないように電動低圧ポンプから低圧燃料を圧送することができる。In the control device for the accumulator fuel injection device of the present invention, the low-pressure pump output control unit detects the rotational speed of the internal combustion engine or the rotational speed of the high-pressure pump, and outputs the electric low-pressure pump according to any one of the rotational speeds. by controlling the can to pump low pressure fuel from the electric low-pressure pump such that n 1 primary pumping frequency of n 2 order frequency and the electric low-pressure pump of the pressure pulsation of the fuel caused by the driving of the high-pressure pump does not approximate.

また、本発明の蓄圧式燃料噴射装置の制御装置において、低圧ポンプ出力制御部が、内燃機関の回転数又は高圧ポンプの回転数が所定量以上変化したときに電動低圧ポンプの出力を所定量以上変更することにより、内燃機関の回転数又は高圧ポンプの回転数が細かく増減するような不安定な状態で、電動低圧ポンプの出力の大幅な変更が繰返し行われることが避けられる。   Further, in the control device for the accumulator type fuel injection device of the present invention, the low pressure pump output control unit increases the output of the electric low pressure pump by a predetermined amount or more when the rotational speed of the internal combustion engine or the rotational speed of the high pressure pump changes by a predetermined amount or more. By changing, it is possible to avoid repeated significant changes in the output of the electric low-pressure pump in an unstable state in which the rotational speed of the internal combustion engine or the rotational speed of the high-pressure pump is finely increased or decreased.

また、本発明の蓄圧式燃料噴射装置の制御装置において、内燃機関のアイドル状態において低圧ポンプ出力制御部が上記制御を行うことにより、高圧ポンプからの吐出量が比較的少ない状態で電動低圧ポンプの出力制御が行われるため、高圧ポンプに供給される低圧燃料が不足するおそれがない。また、内燃機関のアイドル状態で低圧ポンプ出力制御部が上記制御を行うことで、内燃機関で発生する音が比較的小さい状態であっても異音が聞こえにくくなる。   Further, in the control device for the accumulator fuel injection device of the present invention, the low pressure pump output control unit performs the above control in the idling state of the internal combustion engine, so that the discharge amount from the high pressure pump is relatively small. Since the output control is performed, there is no possibility that the low-pressure fuel supplied to the high-pressure pump is insufficient. In addition, the low-pressure pump output control unit performs the above-described control in the idling state of the internal combustion engine, so that it is difficult to hear abnormal noise even when the sound generated in the internal combustion engine is relatively low.

また、本発明の蓄圧式燃料噴射装置の制御装置において、低圧ポンプ出力制御部が、所定の回転数検出部及び電圧制御部を備えることにより、内燃機関の回転数又は高圧ポンプの回転数に応じて、高圧ポンプのn2次圧送周波数と電動低圧ポンプのn1次圧送周波数とが近似しないように、電動低圧ポンプの出力が制御される。Further, in the control device for an accumulator fuel injection device according to the present invention, the low pressure pump output control section includes a predetermined rotation speed detection section and a voltage control section, so that it can respond to the rotation speed of the internal combustion engine or the rotation speed of the high pressure pump. Te, and n 1 primary pumping frequency of n 2 primary pumping frequency and an electric low-pressure pump of the high-pressure pump is not to approximate the output of the electric low-pressure pump is controlled.

本発明の実施の形態にかかる蓄圧式燃料噴射装置の制御装置が備えられた蓄圧式燃料噴射装置の構成例を示す図である。It is a figure showing an example of composition of an accumulator type fuel injection device provided with a control device of an accumulator type fuel injection device concerning an embodiment of the invention. 第1の実施の形態にかかる蓄圧式燃料噴射装置の制御装置の構成例を説明するための図である。It is a figure for demonstrating the structural example of the control apparatus of the pressure accumulation type fuel injection apparatus concerning 1st Embodiment. 第1の実施の形態にかかる蓄圧式燃料噴射装置の制御装置における電動低圧ポンプへの供給電圧の設定方法を説明するための図である。It is a figure for demonstrating the setting method of the supply voltage to the electric low voltage | pressure pump in the control apparatus of the pressure accumulation type fuel injection apparatus concerning 1st Embodiment. 電動低圧ポンプへの供給電圧をステップ変化させる時期について説明するための図である。It is a figure for demonstrating the time which changes the supply voltage to an electric low pressure pump in steps. 第1の実施の形態にかかる蓄圧式燃料噴射装置の制御装置による電動低圧ポンプの出力制御方法を示すフロー図である。It is a flowchart which shows the output control method of the electric low pressure pump by the control apparatus of the pressure accumulation type fuel injection device concerning a 1st embodiment. 供給電圧の補正方法を示すフロー図である。It is a flowchart which shows the correction method of a supply voltage. 第2の実施の形態にかかる蓄圧式燃料噴射装置の制御装置における電動低圧ポンプへの供給電圧の設定方法を説明するための図である。It is a figure for demonstrating the setting method of the supply voltage to the electric low voltage | pressure pump in the control apparatus of the pressure accumulation type fuel injection apparatus concerning 2nd Embodiment. 第3の実施の形態にかかる蓄圧式燃料噴射装置の制御装置における電動低圧ポンプへの供給電圧の設定方法を説明するための図である。It is a figure for demonstrating the setting method of the supply voltage to the electric low pressure pump in the control apparatus of the pressure accumulation type fuel injection apparatus concerning 3rd Embodiment. 第3の実施の形態にかかる蓄圧式燃料噴射装置の制御装置による電動低圧ポンプの出力制御方法を示すフロー図である。It is a flowchart which shows the output control method of the electric low pressure pump by the control apparatus of the pressure accumulation type fuel injection apparatus concerning 3rd Embodiment.

以下、図面を参照して、本発明の蓄圧式燃料噴射装置の制御装置に関する実施の形態について具体的に説明する。ただし、かかる実施の形態は本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。なお、それぞれの図中、同じ符号を付してあるものは同一の部材を示しており、適宜説明が省略されている。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments relating to a control device for an accumulator fuel injection device according to the present invention will be specifically described below with reference to the drawings. However, this embodiment shows one aspect of the present invention, and does not limit the present invention, and can be arbitrarily changed within the scope of the present invention. In addition, what attached | subjected the same code | symbol in each figure has shown the same member, and description is abbreviate | omitted suitably.

[第1の実施の形態]
1.蓄圧式燃料噴射装置の基本的構成
(1)全体構成
図1は、本発明の第1の実施の形態にかかる蓄圧式燃料噴射装置の制御装置40の制御対象となる蓄圧式燃料噴射装置50の概略構成を示している。
この図1に示す蓄圧式燃料噴射装置50は、車両のディーゼルエンジンの気筒内に燃料を噴射する蓄圧式燃料噴射装置であって、燃料タンク1と、電動低圧ポンプ2と、メインフィルタ4と、高圧ポンプ5と、コモンレール10と、燃料噴射弁13等を主たる要素として構成されている。
[First Embodiment]
1. Basic Configuration of Accumulation Type Fuel Injection Device (1) Overall Configuration FIG. 1 shows an accumulation type fuel injection device 50 to be controlled by the control device 40 of the pressure accumulation type fuel injection device according to the first embodiment of the present invention. A schematic configuration is shown.
An accumulator fuel injection device 50 shown in FIG. 1 is an accumulator fuel injector that injects fuel into a cylinder of a diesel engine of a vehicle, and includes a fuel tank 1, an electric low-pressure pump 2, a main filter 4, The high-pressure pump 5, the common rail 10, the fuel injection valve 13 and the like are configured as main elements.

電動低圧ポンプ2とメインフィルタ4、及びメインフィルタ4と高圧ポンプ5は低圧燃料通路18a、18bで接続され、高圧ポンプ5とコモンレール10、及びコモンレール10と燃料噴射弁13は高圧燃料通路37a、37bで接続されている。また、高圧ポンプ5やコモンレール10、燃料噴射弁13等には、排出される燃料を燃料タンク1に戻すための燃料リーク通路30a〜30cが接続されている。図1では、高圧燃料通路37a、37bが太線で示され、低圧燃料通路18a、18b及び高圧ポンプ5内の低圧燃料通路18cが細線で示され、燃料リーク通路30a〜30cが破線で示されている。   The electric low-pressure pump 2 and the main filter 4, and the main filter 4 and the high-pressure pump 5 are connected by low-pressure fuel passages 18a and 18b. The high-pressure pump 5 and the common rail 10, and the common rail 10 and the fuel injection valve 13 are high-pressure fuel passages 37a and 37b. Connected with. In addition, fuel leak passages 30 a to 30 c for returning discharged fuel to the fuel tank 1 are connected to the high-pressure pump 5, the common rail 10, the fuel injection valve 13, and the like. In FIG. 1, the high-pressure fuel passages 37a and 37b are indicated by thick lines, the low-pressure fuel passages 18a and 18b and the low-pressure fuel passage 18c in the high-pressure pump 5 are indicated by thin lines, and the fuel leak passages 30a to 30c are indicated by broken lines. Yes.

また、電動低圧ポンプ2と高圧ポンプ5とを接続する低圧燃料通路18a、18bの間にはメインフィルタ4が備えられており、このメインフィルタ4によって低圧燃料中の異物が捕集され、高圧ポンプ5に異物が流入しないようになっている。   A main filter 4 is provided between the low-pressure fuel passages 18a and 18b connecting the electric low-pressure pump 2 and the high-pressure pump 5, and foreign matter in the low-pressure fuel is collected by the main filter 4, and the high-pressure pump Foreign matter does not flow into 5.

(2)電動低圧ポンプ
電動低圧ポンプ2は、燃料タンク1内の低圧燃料を吸い上げ、低圧燃料通路18a〜18cを介して高圧ポンプ5の加圧室5aに対して低圧燃料を供給する。図1に示される電動低圧ポンプ2は、低圧燃料が貯蔵された燃料タンク1内に備えられたインタンクの電動低圧ポンプであって、図示しないオルタネータが備えられており、バッテリーから供給される電圧によって駆動され、供給電圧に応じた出力で所定の流量の低圧燃料を圧送する。この電動低圧ポンプ2の燃料吸い込み口にはプレフィルタ3が介在し、このフィルタ3は、燃料タンク1内の燃料に異物が混入している場合に、それらの異物が電動低圧ポンプ2に吸い込まれないように当該異物を捕集する。
(2) Electric Low Pressure Pump The electric low pressure pump 2 sucks up the low pressure fuel in the fuel tank 1 and supplies the low pressure fuel to the pressurizing chamber 5a of the high pressure pump 5 through the low pressure fuel passages 18a to 18c. An electric low-pressure pump 2 shown in FIG. 1 is an in-tank electric low-pressure pump provided in a fuel tank 1 in which low-pressure fuel is stored. The electric low-pressure pump 2 includes an alternator (not shown) and is supplied with a voltage from a battery. The low-pressure fuel having a predetermined flow rate is pumped at an output corresponding to the supply voltage. A pre-filter 3 is interposed in the fuel suction port of the electric low-pressure pump 2, and when the foreign matter is mixed in the fuel in the fuel tank 1, the foreign matter is sucked into the electric low-pressure pump 2. Collect the foreign matter so that it does not.

ただし、低圧ポンプは、ディーゼルエンジンの回転周波数や高圧ポンプの圧送周波数とは独立して回転数を制御可能なものであればよく、その構成自体が機械的に駆動される構成のものであっても電気的に駆動される構成のものであってもよい。   However, the low-pressure pump is not limited as long as the rotational speed can be controlled independently of the rotational frequency of the diesel engine and the pumping frequency of the high-pressure pump, and the configuration itself is mechanically driven. Also, it may be configured to be electrically driven.

図1の蓄圧式燃料噴射装置50では、インタンクの電動低圧ポンプ2としてローラセル型のポンプが用いられている。ローラセル型のポンプでは駆動軸が一回転する間に低圧燃料がセルの数分圧送される。この電動低圧ポンプ2からの低圧燃料の圧送によって、低圧燃料通路18a〜18c、さらにはメインフィルタ4内にも圧力脈動が生じる。
ただし、電動低圧ポンプ2はローラセル型のポンプに限られるものではなく、また、電動低圧ポンプ2は、燃料タンク1の外部に設けられるものであってもよい。
In the accumulator fuel injection device 50 of FIG. 1, a roller cell type pump is used as the electric low-pressure pump 2 for the in-tank. In the roller cell type pump, the low pressure fuel is pumped by the number of cells during one rotation of the drive shaft. Pressure pulsation is generated in the low pressure fuel passages 18 a to 18 c and also in the main filter 4 by the pumping of the low pressure fuel from the electric low pressure pump 2.
However, the electric low-pressure pump 2 is not limited to the roller cell type pump, and the electric low-pressure pump 2 may be provided outside the fuel tank 1.

(3)高圧ポンプ
高圧ポンプ5は、電動低圧ポンプ2によって圧送され、燃料吸入弁6を介して加圧室5aに導入された低圧燃料をプランジャ7によって加圧し、燃料吐出弁9及び高圧燃料通路37aを介して、高圧燃料をコモンレール10に圧送する。図1に示す蓄圧式燃料噴射装置50の例では、低圧燃料通路18a、18bを介して高圧ポンプ5内に送られる低圧燃料は、一旦、カム15が収容されたカム室16内に流れ込み、そこからさらに低圧燃料通路18cを介して加圧室5aに送られる。
(3) High-pressure pump The high-pressure pump 5 is pressure-fed by the electric low-pressure pump 2 and pressurizes the low-pressure fuel introduced into the pressurizing chamber 5a via the fuel intake valve 6 by the plunger 7, and the fuel discharge valve 9 and the high-pressure fuel passage The high pressure fuel is pumped to the common rail 10 via 37a. In the example of the pressure accumulation type fuel injection device 50 shown in FIG. 1, the low pressure fuel sent into the high pressure pump 5 through the low pressure fuel passages 18a and 18b once flows into the cam chamber 16 in which the cam 15 is accommodated. To the pressurizing chamber 5a through the low-pressure fuel passage 18c.

また、カム室16と加圧室5aとを接続する低圧燃料通路18cの途中には流量制御弁8が備えられ、要求されるコモンレール圧及び要求噴射量に応じて、加圧室5aに供給される低圧燃料の流量が調節される。この流量制御弁8は、例えば、供給されるパルス電圧の大きさによって弁体のストローク量が可変である電磁比例式の流量制御弁が用いられ、弁体の移動に伴って低圧燃料通路18c内に脈動が生じる場合がある。   A flow control valve 8 is provided in the middle of the low pressure fuel passage 18c connecting the cam chamber 16 and the pressurizing chamber 5a, and is supplied to the pressurizing chamber 5a according to the required common rail pressure and the required injection amount. The flow of low pressure fuel is adjusted. As the flow control valve 8, for example, an electromagnetic proportional flow control valve in which the stroke amount of the valve body is variable depending on the magnitude of the supplied pulse voltage is used, and in the low pressure fuel passage 18c as the valve body moves. May cause pulsation.

また、流量制御弁8よりも上流側には、低圧燃料流路18cから分岐して接続され、流量制御弁8と並列的に配置された圧力調整弁14が備えられており、圧力調整弁14はさらに燃料タンク1に通じる燃料リーク通路30aに接続されている。この圧力調整弁14は、前後の差圧、すなわち、低圧燃料通路18c内の圧力と、燃料リーク通路30a内の圧力との差が所定値を越えたときに開弁されるオーバーフローバルブが用いられている。したがって、電動低圧ポンプ2によって低圧燃料が圧送されている状態においては、低圧燃料流路18a〜18c及びカム室16内の圧力が、燃料リーク通路30a内の圧力に対して所定の差圧分大きくなるように維持される。   Further, on the upstream side of the flow rate control valve 8, there is provided a pressure adjustment valve 14 that is branched and connected from the low pressure fuel flow path 18 c and is arranged in parallel with the flow rate control valve 8. Is further connected to a fuel leak passage 30a leading to the fuel tank 1. The pressure regulating valve 14 is an overflow valve that is opened when the difference between the front and rear pressures, that is, the difference between the pressure in the low-pressure fuel passage 18c and the pressure in the fuel leak passage 30a exceeds a predetermined value. ing. Therefore, in a state where the low-pressure fuel is being pumped by the electric low-pressure pump 2, the pressures in the low-pressure fuel flow paths 18a to 18c and the cam chamber 16 are larger than the pressure in the fuel leak path 30a by a predetermined differential pressure. To be maintained.

高圧ポンプ5を駆動するカム15は、内燃機関のドライブシャフトにギアを介して連結されたカムシャフトに固定されており、カム15の回転数は、内燃機関の回転数に比例する。
また、図1に示す蓄圧式燃料噴射装置50の高圧ポンプ5は、二本のプランジャ7がカム15によって押し上げられ、二つの加圧室5a内で低圧燃料が加圧されて、各加圧室5aからコモンレール10に対して高圧燃料が圧送される。したがって、カム15が一回転する間に高圧ポンプ5からコモンレール10に向けての高圧燃料の圧送が二回行われる。
A cam 15 that drives the high-pressure pump 5 is fixed to a camshaft connected to a drive shaft of the internal combustion engine via a gear, and the rotational speed of the cam 15 is proportional to the rotational speed of the internal combustion engine.
Further, in the high pressure pump 5 of the pressure accumulating fuel injection device 50 shown in FIG. 1, the two plungers 7 are pushed up by the cams 15, and the low pressure fuel is pressurized in the two pressurizing chambers 5a. High pressure fuel is pumped from 5a to the common rail 10. Therefore, the high pressure fuel is pumped twice from the high pressure pump 5 toward the common rail 10 while the cam 15 rotates once.

このように構成された高圧ポンプ5では、カム15が回転するとともに、このカム15の回転に伴いプランジャ7が上下動することで、高圧ポンプ5内の燃料の圧力に脈動が生じる。すなわち、高圧ポンプ5の駆動によって生じる燃料の圧力脈動の周波数は、高圧ポンプ5による燃料の圧送周波数と一致する。この圧力脈動は、高圧ポンプ5に供給される低圧燃料の圧力にも影響を与え、ひいては、低圧燃料通路18a、18b内にも脈動を生じさせる。   In the high pressure pump 5 configured as described above, the cam 15 rotates, and the plunger 7 moves up and down with the rotation of the cam 15, thereby pulsating the fuel pressure in the high pressure pump 5. That is, the frequency of the pressure pulsation of the fuel generated by driving the high-pressure pump 5 matches the pumping frequency of the fuel by the high-pressure pump 5. This pressure pulsation also affects the pressure of the low-pressure fuel supplied to the high-pressure pump 5 and eventually causes pulsation in the low-pressure fuel passages 18a and 18b.

(4)コモンレール
コモンレール10は、高圧ポンプ5から圧送される高圧燃料を蓄積し、高圧燃料通路37bを介して接続された複数の燃料噴射弁13に対して高圧燃料を供給する。このコモンレール10にはレール圧センサ21及び圧力制御弁12が取り付けられている。圧力制御弁12は、例えば電磁比例制御弁が用いられ、コモンレール10から燃料リーク通路30bに排出する燃料のリーク量が調節され、当該リーク量に応じてコモンレール10内の圧力が調整される。
(4) Common rail The common rail 10 accumulates high-pressure fuel pumped from the high-pressure pump 5 and supplies high-pressure fuel to the plurality of fuel injection valves 13 connected via the high-pressure fuel passage 37b. A rail pressure sensor 21 and a pressure control valve 12 are attached to the common rail 10. For example, an electromagnetic proportional control valve is used as the pressure control valve 12, the amount of fuel leaked from the common rail 10 to the fuel leak passage 30 b is adjusted, and the pressure in the common rail 10 is adjusted according to the amount of leak.

また、コモンレール10に備えられたレール圧センサ21で検出されるレール圧の信号は制御装置40に送られる。制御装置40は、検出されるレール圧が目標レール圧となるように、コモンレール10に備えられた圧力制御弁12及び高圧ポンプ5に備えられた流量制御弁8の制御を行う。   Further, a rail pressure signal detected by a rail pressure sensor 21 provided in the common rail 10 is sent to the control device 40. The control device 40 controls the pressure control valve 12 provided in the common rail 10 and the flow control valve 8 provided in the high-pressure pump 5 so that the detected rail pressure becomes the target rail pressure.

(5)燃料噴射弁
コモンレール10に接続された燃料噴射弁13は、噴射孔が設けられたノズルボディと噴射孔を閉塞するノズルニードルとを備え、ノズルニードルの後端側に作用する背圧が逃されることによって噴射孔が開かれることで、コモンレール10から供給される高圧燃料を内燃機関の気筒内に噴射する。燃料噴射弁13は、例えば、背圧制御部としてソレノイドバルブが備えられた電磁制御型の燃料噴射弁や、背圧制御部としてピエゾ素子が備えられた電歪型の燃料噴射弁が用いられる。
(5) Fuel Injection Valve The fuel injection valve 13 connected to the common rail 10 includes a nozzle body provided with an injection hole and a nozzle needle that closes the injection hole, and a back pressure acting on the rear end side of the nozzle needle is provided. When the injection hole is opened by the escape, the high-pressure fuel supplied from the common rail 10 is injected into the cylinder of the internal combustion engine. As the fuel injection valve 13, for example, an electromagnetic control type fuel injection valve provided with a solenoid valve as a back pressure control unit, or an electrostrictive type fuel injection valve provided with a piezo element as a back pressure control unit is used.

2.蓄圧式燃料噴射装置の制御装置
(1)全体構成
図2は、本実施形態の制御装置40の構成のうち、電動低圧ポンプ2の出力制御に関する部分を機能的なブロックで表した図を示している。
この制御装置40は、公知の構成からなるマイクロコンピュータを中心に構成されており、回転数判定部71と、電圧制御部73と、電圧補正部75と、切換指示部77とを備えている。これらの各部は、具体的にはマイクロコンピュータによるプログラムの実行によって実現される。
なお、この制御装置40は、高圧ポンプに備えられた流量制御弁やコモンレールに備えられた圧力制御弁、内燃機関の燃料噴射弁等の制御を行う制御装置の一部として構成されていてもよく、あるいは、そのような制御装置とは別の制御装置として備えられてもよい。
2. FIG. 2 is a functional block diagram showing a part relating to output control of the electric low-pressure pump 2 in the configuration of the control device 40 of the present embodiment. Yes.
The control device 40 is configured around a microcomputer having a known configuration, and includes a rotation speed determination unit 71, a voltage control unit 73, a voltage correction unit 75, and a switching instruction unit 77. Specifically, each of these units is realized by executing a program by a microcomputer.
The control device 40 may be configured as a part of a control device that controls a flow rate control valve provided in a high-pressure pump, a pressure control valve provided in a common rail, a fuel injection valve of an internal combustion engine, and the like. Alternatively, it may be provided as a control device different from such a control device.

(2)回転数判定部
回転数判定部71は、一定周期で内燃機関の回転数Neを読込むとともに当該回転数Neが所定値Ne0未満であるか否かを判別し、回転数Neが所定値Ne0未満であるときに電圧制御部73に対して制御実行信号S1を出力する。本実施形態の制御装置40は、内燃機関の回転数Neが所定値Ne0未満、すなわち内燃機関のアイドル状態において電動低圧ポンプ2への供給電圧Vfpを制御する一方、内燃機関の回転数Neが所定値Ne0以上の場合には定電圧Vfp0を供給し、常時一定流量の燃料が一定の周期で圧送されるように制御が行われる。
(2) Rotational speed determination unit The rotational speed determination unit 71 reads the rotational speed Ne of the internal combustion engine at a constant period, determines whether the rotational speed Ne is less than a predetermined value Ne0, and the rotational speed Ne is a predetermined value. When it is less than Ne0, the control execution signal S1 is output to the voltage control unit 73. The control device 40 of the present embodiment controls the supply voltage Vfp to the electric low-pressure pump 2 in the idling state of the internal combustion engine when the rotational speed Ne of the internal combustion engine is less than the predetermined value Ne0, while the rotational speed Ne of the internal combustion engine is predetermined. When the value is Ne0 or more, the constant voltage Vfp0 is supplied, and control is performed so that fuel with a constant flow rate is constantly pumped at a constant cycle.

内燃機関の回転数Neが所定値Ne0未満の場合でのみ電動低圧ポンプ2の供給電圧Vfpの制御を行うのは、内燃機関がアイドル状態にない状態では、内燃機関や高圧ポンプ5の振動及び発生する稼動音が比較的大きいため、電動低圧ポンプ2によって生じる低圧燃料通路18a、18b内の圧力脈動と高圧ポンプ5によって生じる低圧燃料通路18a、18b内の圧力脈動との共振による影響が小さいからである。そのため、本実施形態の制御装置40では、制御装置40や電動低圧ポンプ2への負荷が低減されている。   The control of the supply voltage Vfp of the electric low-pressure pump 2 is performed only when the rotational speed Ne of the internal combustion engine is less than the predetermined value Ne0. The vibration and generation of the internal combustion engine and the high-pressure pump 5 are performed when the internal combustion engine is not in an idle state. Because the operating noise is relatively large, the influence of resonance between the pressure pulsation in the low pressure fuel passages 18a and 18b generated by the electric low pressure pump 2 and the pressure pulsation in the low pressure fuel passages 18a and 18b generated by the high pressure pump 5 is small. is there. Therefore, in the control device 40 of the present embodiment, the load on the control device 40 and the electric low-pressure pump 2 is reduced.

なお、回転数判定部71での判定対象は、内燃機関の回転数Neの変わりに高圧ポンプ5の回転数Npを用いてもよい。高圧ポンプ5を駆動するカムシャフトは内燃機関のドライブシャフトに対して所定のギア比で連結されているため、内燃機関の回転数Neの閾値Ne0に対応する高圧ポンプ5の回転数Npの閾値Np0と高圧ポンプ5の回転数Npとを比較することで、同様の判定結果が得られる。   Note that the rotational speed Np of the high-pressure pump 5 may be used instead of the rotational speed Ne of the internal combustion engine as a determination target in the rotational speed determination unit 71. Since the camshaft that drives the high pressure pump 5 is connected to the drive shaft of the internal combustion engine at a predetermined gear ratio, the threshold Np0 of the rotational speed Np of the high pressure pump 5 corresponding to the threshold Ne0 of the rotational speed Ne of the internal combustion engine. And the rotation speed Np of the high-pressure pump 5 are compared to obtain a similar determination result.

(3)電圧制御部
電圧制御部73は、内燃機関の回転数Neに応じて、電動低圧ポンプ2への供給電圧Vfpを調整する。上述したとおり、本実施形態の制御装置40は、内燃機関の回転数Neが所定値Ne0未満のときに電動低圧ポンプ2への供給電圧Vfpを調整する制御を行う一方、内燃機関の回転数Neが所定値Ne0以上のときには、電動低圧ポンプ2へ定電圧Vfp0を供給するように構成されている。
(3) Voltage control unit The voltage control unit 73 adjusts the supply voltage Vfp to the electric low-pressure pump 2 in accordance with the rotational speed Ne of the internal combustion engine. As described above, the control device 40 of the present embodiment performs control to adjust the supply voltage Vfp to the electric low-pressure pump 2 when the rotational speed Ne of the internal combustion engine is less than the predetermined value Ne0, while the rotational speed Ne of the internal combustion engine. Is configured to supply the constant voltage Vfp0 to the electric low-pressure pump 2 when the value is equal to or greater than the predetermined value Ne0.

内燃機関の回転数Neが閾値Ne0未満のときに制御される供給電圧Vfpは、内燃機関の回転数Neに応じてあらかじめ設定されている。高圧ポンプ5の駆動によって低圧燃料通路18a、18b内に生じる圧力脈動と電動低圧ポンプ2からの低圧燃料の圧送によって低圧燃料通路18a、18b内に生じる圧力脈動とが共振しないようにするには、供給電圧Vfpが定電圧Vfp0よりも大きくなるように調整してもよいし小さくなるように調整してもよい。本実施形態の制御装置40では、電動低圧ポンプ2の稼動音が大きくなることや、供給電圧Vfpを定電圧Vfp0よりも大きくする必要性が低いことを考慮して、調整される供給電圧Vfpが定電圧Vfp0よりも小さくなるように設定されている。   The supply voltage Vfp that is controlled when the rotational speed Ne of the internal combustion engine is less than the threshold value Ne0 is set in advance according to the rotational speed Ne of the internal combustion engine. In order to prevent the pressure pulsation generated in the low-pressure fuel passages 18a and 18b by driving the high-pressure pump 5 and the pressure pulsation generated in the low-pressure fuel passages 18a and 18b due to the pumping of the low-pressure fuel from the electric low-pressure pump 2 from resonance. The supply voltage Vfp may be adjusted to be larger than the constant voltage Vfp0 or may be adjusted to be smaller. In the control device 40 of the present embodiment, the supply voltage Vfp to be adjusted is set in consideration of the increase in operating noise of the electric low-pressure pump 2 and the necessity of making the supply voltage Vfp larger than the constant voltage Vfp0. It is set to be smaller than the constant voltage Vfp0.

また、製造時や経時劣化等によって生じる電動低圧ポンプ2の個体差による、同一の供給電圧Vfp下での圧送周波数のばらつきを解消して圧力脈動の共振を確実に防止するために、電圧制御部73に設定される供給電圧Vfpの値は、後述する電圧補正部75で求められる補正係数Kを用いて、電動低圧ポンプ2の個体差に応じて補正されるようになっている。   In addition, a voltage control unit is used to reliably prevent pressure pulsation resonance by eliminating variations in the pumping frequency under the same supply voltage Vfp due to individual differences in the electric low-pressure pump 2 caused by manufacturing or deterioration over time. The value of the supply voltage Vfp set to 73 is corrected according to the individual difference of the electric low-pressure pump 2 using a correction coefficient K obtained by a voltage correction unit 75 described later.

図3は、内燃機関の回転数Neに応じて設定される電動低圧ポンプ2への供給電圧Vfpの設定方法の一例を説明するための図であり、供給電圧Vfpを一度に大きく変化させることができない場合の例が示されている。この図3の供給電圧Vfpは、基準となる電動低圧ポンプ2での設定値であり、補正係数K=1の場合の基準値である。図3の横軸は内燃機関の回転数Ne(rpm)を示し、縦軸は周波数(Hz)を示している。また、図3中の破線は、内燃機関の回転数Neに対応する高圧ポンプ5のn2次(図3ではn2=6、7、8、9)圧送周波数を表し、点線は、電動低圧ポンプ2への供給電圧Vfpごとに電動低圧ポンプ2の圧送周波数を表している。本実施形態の蓄圧式燃料噴射装置50の高圧ポンプ5は、内燃機関のドライブシャフトと所定のギア比で連結されたカムシャフトの回転によって駆動するため、高圧ポンプ5の回転数Npや高圧ポンプ5のn2次圧送周波数は内燃機関の回転数Neに対応して規定される。FIG. 3 is a diagram for explaining an example of a method for setting the supply voltage Vfp to the electric low-pressure pump 2 set in accordance with the rotational speed Ne of the internal combustion engine. The supply voltage Vfp can be greatly changed at one time. An example of when this is not possible is shown. The supply voltage Vfp in FIG. 3 is a set value in the electric low-pressure pump 2 serving as a reference, and is a reference value when the correction coefficient K = 1. The horizontal axis in FIG. 3 represents the rotational speed Ne (rpm) of the internal combustion engine, and the vertical axis represents the frequency (Hz). Also, the broken line in FIG. 3 represents the n 2 order (n 2 = 6, 7, 8, 9 in FIG. 3) pumping frequency of the high pressure pump 5 corresponding to the rotational speed Ne of the internal combustion engine, and the dotted line represents the electric low pressure The pumping frequency of the electric low-pressure pump 2 is represented for each supply voltage Vfp to the pump 2. The high-pressure pump 5 of the accumulator fuel injection device 50 of the present embodiment is driven by the rotation of the camshaft connected to the drive shaft of the internal combustion engine at a predetermined gear ratio, so the rotational speed Np of the high-pressure pump 5 and the high-pressure pump 5 n 2 primary pumping frequency is defined corresponding to the rotation speed Ne of the internal combustion engine.

本実施形態では、電動低圧ポンプ2への供給電圧Vfpを制御しない状態では、供給電圧Vfpが13Vの定電圧Vfp0に固定され、このときの電動低圧ポンプ2による低圧燃料の圧送周波数が約200Hzとなる。電動低圧ポンプ2に定電圧Vfp0が供給されている場合、図3で示される内燃機関の回転数Neの範囲において、内燃機関の回転数Neが約750rpmのときに、高圧ポンプ5の8次圧送周波数と電動低圧ポンプ2の25次圧送周波数とが一致する(黒点P1で図示)とともに、内燃機関の回転数Neが約860rpmのときに、高圧ポンプ5の7次圧送周波数と電動低圧ポンプ2の29次圧送周波数とが近似する(黒点P2で図示)。   In this embodiment, when the supply voltage Vfp to the electric low-pressure pump 2 is not controlled, the supply voltage Vfp is fixed to a constant voltage Vfp0 of 13 V, and the pumping frequency of the low-pressure fuel by the electric low-pressure pump 2 at this time is about 200 Hz. Become. When the constant voltage Vfp0 is supplied to the electric low-pressure pump 2, when the rotational speed Ne of the internal combustion engine is about 750 rpm in the range of the rotational speed Ne shown in FIG. When the frequency and the 25th-order pumping frequency of the electric low-pressure pump 2 coincide (illustrated by a black dot P1) and the rotational speed Ne of the internal combustion engine is about 860 rpm, the seventh-order pumping frequency of the high-pressure pump 5 and the electric low-pressure pump 2 The 29th pumping frequency approximates (illustrated by a black dot P2).

この他、図3には、電動低圧ポンプ2への供給電圧Vfpが10V、11V、12V、14Vの場合での、高圧ポンプ5のn2次圧送周波数と電動低圧ポンプ2のn1次圧送周波数とが近似する点についても黒点で示されている。
すなわち、この図3において、高圧ポンプ5のn2次圧送周波数を表す破線が、電動低圧ポンプ2の圧送周波数を表す点線と交差する点が、低圧燃料通路18a、18bやメインフィルタ4内で生じる圧力脈動の共振点となる。このとき、低圧燃料通路18a、18bやメインフィルタ4の振動が大きくなったり異音が発生したりしやすくなる。
In addition, in FIG. 3, the supply voltage Vfp is 10V to the electric low-pressure pump 2, 11V, 12V, in the case of 14 V, n 2 primary pumping frequency and n 1 primary pumping frequency of the electric low-pressure pump 2 in the high-pressure pump 5 The points that are approximated by are also indicated by black dots.
That is, in FIG. 3, the broken lines representing the n 2-order pumping frequency of the high-pressure pump 5, a point which intersects the dashed line representing the pumping frequency of the electric low-pressure pump 2 occurs at low pressure fuel passage 18a, 18b and the main filter within 4 Resonance point of pressure pulsation. At this time, the vibrations of the low-pressure fuel passages 18a and 18b and the main filter 4 are likely to increase or abnormal noise is likely to occur.

そのため、本実施形態の制御装置40では、これらの共振点に重ならないように、電動低圧ポンプ2への供給電圧Vfpが内燃機関の回転数Neに応じて設定されている。図3中の実線が電動低圧ポンプ2への供給電圧Vfpの設定値を示しており、複数存在する共振点と重ならないように、かつ、供給電圧Vfpがステップ変化する点ができるだけ少なくなるように、内燃機関の回転数Neに応じた供給電圧Vfpが設定されている。   Therefore, in the control device 40 of the present embodiment, the supply voltage Vfp to the electric low-pressure pump 2 is set according to the rotational speed Ne of the internal combustion engine so as not to overlap these resonance points. The solid line in FIG. 3 indicates the set value of the supply voltage Vfp to the electric low-pressure pump 2 so that it does not overlap with a plurality of resonance points and the number of points at which the supply voltage Vfp changes step by step is minimized. A supply voltage Vfp corresponding to the rotational speed Ne of the internal combustion engine is set.

具体的には、内燃機関の回転数Neが800rpm未満の運転領域においては、高圧ポンプ5の7次圧送周波数のラインと8次圧送周波数のラインとの間を推移するように、内燃機関の回転数Neが増加するに連れて電動低圧ポンプ2への供給電圧Vfpが12Vから13Vの間で比例的に変化する。この運転領域での供給電圧Vfpは下記式(1)に基づいて設定されている。
Vfp=a・Ne+b …(1)
Specifically, in the operating range where the rotational speed Ne of the internal combustion engine is less than 800 rpm, the rotation of the internal combustion engine changes so as to transit between the 7th pumping frequency line and the 8th pumping frequency line of the high-pressure pump 5. As the number Ne increases, the supply voltage Vfp to the electric low-pressure pump 2 changes proportionally between 12V and 13V. The supply voltage Vfp in this operation region is set based on the following formula (1).
Vfp = a · Ne + b (1)

また、電動低圧ポンプ2への供給電圧Vfpが13Vになると、供給電圧Vfpが定電圧Vfp0を越え、電動低圧ポンプ2の稼動音も大きくなり始めるため、電動低圧ポンプ2への供給電圧Vfpが13Vになる内燃機関の回転数Neが800rpmの地点を境に、供給電圧Vfpが12Vまで低下させられる。そして、内燃機関の回転数Neが800rpm以上の運転領域においては、高圧ポンプ5の6次圧送周波数のラインと7次圧送周波数のラインとの間を推移するように、内燃機関の回転数Neが増加するに連れて電動低圧ポンプ2への供給電圧Vfpが12Vから13Vの間で比例的に変化する。この運転領域での供給電圧Vfpは、下記式(2)に基づいて設定されている。
Vfp=α(a・Ne+b) …(2)
Further, when the supply voltage Vfp to the electric low-pressure pump 2 becomes 13V, the supply voltage Vfp exceeds the constant voltage Vfp0 and the operation sound of the electric low-pressure pump 2 starts to increase, so the supply voltage Vfp to the electric low-pressure pump 2 is 13V. The supply voltage Vfp is lowered to 12V at the point where the rotational speed Ne of the internal combustion engine becomes 800 rpm. In the operating region where the rotational speed Ne of the internal combustion engine is 800 rpm or more, the rotational speed Ne of the internal combustion engine is changed between the sixth pumping frequency line and the seventh pumping frequency line of the high-pressure pump 5. As the voltage increases, the supply voltage Vfp to the electric low-pressure pump 2 changes proportionally between 12V and 13V. The supply voltage Vfp in this operation region is set based on the following formula (2).
Vfp = α (a · Ne + b) (2)

すなわち、内燃機関の回転数Neが800rpm以上の運転領域においては、回転数Neが800rpm未満の運転領域での供給電圧Vfpの演算式(1)で得られる値に係数αを掛けた値で供給電圧Vfpが設定される。   That is, in the operating region where the rotational speed Ne of the internal combustion engine is 800 rpm or higher, the value obtained by the equation (1) of the supply voltage Vfp in the operating region where the rotational speed Ne is less than 800 rpm is multiplied by the coefficient α. The voltage Vfp is set.

そして、再び電動低圧ポンプ2への供給電圧Vfpが13Vになる内燃機関の回転数Neが920rpmの地点では、内燃機関や高圧ポンプ5の振動及び発生する稼動音が比較的大きくなり始めるため、内燃機関の回転数Neが920rpm以上の運転領域では、電動低圧ポンプ2への供給電圧Vfpは定電圧Vfp0に固定される。すなわち、この図3の例では、回転数判定部71で電動低圧ポンプ2の供給電圧Vfpの制御の実行の有無を判定する際の内燃機関の回転数Neの閾値Ne0は、内燃機関のアイドル状態に近い状態となる920rpmに設定されている。   Then, when the rotational speed Ne of the internal combustion engine at which the supply voltage Vfp to the electric low-pressure pump 2 is 13 V is 920 rpm, the vibration of the internal combustion engine and the high-pressure pump 5 and the generated operating noise begin to become relatively large. In the operation region where the engine speed Ne is 920 rpm or more, the supply voltage Vfp to the electric low-pressure pump 2 is fixed to the constant voltage Vfp0. That is, in the example of FIG. 3, the threshold value Ne0 of the internal combustion engine speed Ne when the rotational speed determination unit 71 determines whether or not the control of the supply voltage Vfp of the electric low-pressure pump 2 is executed is the idle state of the internal combustion engine. It is set to 920 rpm which becomes a state close to.

なお、この図3に実線で示される供給電圧Vfpの設定値はあくまでも一例にすぎず、供給電圧Vfpが共振点に重ならないようにさえすれば、種々の設定が可能である。また、電動低圧ポンプ2の供給電圧Vfpの制御の実行の有無が識別される内燃機関の回転数Neの閾値Ne0についても、所望の回転数に設定することができ、あるいは、閾値Ne0を設けずに、内燃機関の回転数Neの全域で電動低圧ポンプ2の供給電圧Vfpの制御を行うようにしてもよい。   Note that the set value of the supply voltage Vfp shown by the solid line in FIG. 3 is merely an example, and various settings are possible as long as the supply voltage Vfp does not overlap the resonance point. Further, the threshold value Ne0 of the internal combustion engine speed Ne for identifying whether or not the control of the supply voltage Vfp of the electric low-pressure pump 2 is executed can also be set to a desired speed, or the threshold value Ne0 is not provided. In addition, the supply voltage Vfp of the electric low-pressure pump 2 may be controlled over the entire rotation speed Ne of the internal combustion engine.

(4)電圧補正部
電動低圧ポンプ2は、その個体差によって、同じ電圧を供給してもポンプ回転数にばらつきが生じる場合がある。このポンプ回転数のばらつきが生じると、電圧制御部73にあらかじめ設定された供給電圧Vfpを電動低圧ポンプ2に供給した場合であっても、電動低圧ポンプ2による実際の圧送周波数が、想定していた圧送周波数からずれる場合がある。その結果、電動低圧ポンプ2への供給電圧Vfpの調整をしたにもかかわらず、高圧ポンプ5の回転数のn2次周波数と電動低圧ポンプ2のn1次圧送周波数とが近似してしまい、低圧燃料通路18a、18bやメインフィルタ4内での共振が低減されないおそれがある。
(4) Voltage correction unit The electric low-pressure pump 2 may vary in pump rotation speed even if the same voltage is supplied due to individual differences. When the variation in the pump rotation speed occurs, the actual pumping frequency by the electric low-pressure pump 2 is assumed even when the supply voltage Vfp preset in the voltage control unit 73 is supplied to the electric low-pressure pump 2. It may deviate from the pumping frequency. As a result, in spite of the adjustment of the supply voltage Vfp to the electric low-pressure pump 2, and n 1 primary pumping frequency of n 2 order frequency and the electric low-pressure pump 2 rotation speed of the high-pressure pump 5 will approximate, There is a possibility that resonance in the low-pressure fuel passages 18a and 18b and the main filter 4 is not reduced.

そのため、本実施形態の制御装置40は、電圧制御部73に供給電圧Vfpを設定する際の基準とされた電動低圧ポンプと、実際に使用される電動低圧ポンプ2との個体差によるポンプ回転数のばらつきを考慮して、高圧ポンプ5のn2次圧送周波数と電動低圧ポンプ2のn1次圧送周波数とを近似させない制御が確実に行われるようにするための電圧補正部75が備えられている。Therefore, the control device 40 of the present embodiment is configured so that the number of rotations of the pump depends on the individual difference between the electric low-pressure pump that is used as a reference when setting the supply voltage Vfp in the voltage controller 73 and the electric low-pressure pump 2 that is actually used. taking into account the variation in, provided with a voltage correction unit 75 so that control not to approximate the n 1-order pumping frequency of n 2 primary pumping frequency and the electric low-pressure pump 2 in the high-pressure pump 5 is ensured Yes.

本実施形態の制御装置40の電圧補正部75は、電動低圧ポンプ2への供給電圧Vfpが定電圧Vfp0に設定されている運転領域において、電動低圧ポンプ2に通電される電流値Afpを検出し、当該電流値Afpに基づいて電動低圧ポンプ2の回転数Nfpを求める。また、電圧補正部75は、求められた回転数Nfpに基づいて電動低圧ポンプ2からの圧送周波数Ffpを求め、電圧制御部73に記憶されている定電圧Vfp0時の圧送周波数Ffp0と比較することで、設定されている圧送周波数Ffp0との偏差ΔFfpを求める。   The voltage correction unit 75 of the control device 40 according to the present embodiment detects a current value Afp that is supplied to the electric low-pressure pump 2 in an operation region in which the supply voltage Vfp to the electric low-pressure pump 2 is set to the constant voltage Vfp0. Then, the rotational speed Nfp of the electric low-pressure pump 2 is obtained based on the current value Afp. Further, the voltage correction unit 75 obtains the pumping frequency Ffp from the electric low-pressure pump 2 based on the obtained rotation speed Nfp, and compares it with the pumping frequency Ffp0 at the constant voltage Vfp0 stored in the voltage control unit 73. Thus, the deviation ΔFfp from the set pumping frequency Ffp0 is obtained.

そして、求められた圧送周波数の偏差ΔFfpから、実際に使用される電動低圧ポンプ2において圧送周波数FfpがFfp0となる供給電圧Vfp’を算出し、補正係数K=Vfp’/Vfpを求める。この補正係数Kが求められると、電圧補正部75は、電圧制御部73に対して補正係数Kを出力する。
その結果、電圧制御部73では、内燃機関の回転数Neに応じてあらかじめ設定されている供給電圧の値に補正係数Kが乗じられて、供給電圧Vfpの設定値が更新される。
Then, a supply voltage Vfp ′ at which the pumping frequency Ffp is Ffp0 in the actually used electric low-pressure pump 2 is calculated from the determined pumping frequency deviation ΔFfp to obtain a correction coefficient K = Vfp ′ / Vfp. When the correction coefficient K is obtained, the voltage correction unit 75 outputs the correction coefficient K to the voltage control unit 73.
As a result, the voltage control unit 73 multiplies the supply voltage value set in advance according to the rotational speed Ne of the internal combustion engine by the correction coefficient K to update the set value of the supply voltage Vfp.

電圧補正部75が補正係数Kを求める時期については、電動低圧ポンプ2に対して定電圧Vfp0が供給されている時期でなくても構わない。ただし、電動低圧ポンプ2に対して定電圧Vfp0が供給されている時期であれば、電動低圧ポンプ2は一定の圧送周期で低圧燃料を圧送している状態であるので、圧送周波数の偏差ΔFfpを正確に求めやすい。
また、本実施形態の制御装置40の電圧補正部75は、圧送周波数の偏差ΔFfpを基に補正係数Kを求めているが、この他、使用する電動低圧ポンプ2を所定の回転数で駆動させるために必要な供給電圧を、電圧制御部73にあらかじめ設定された供給電圧と比較し、同一の回転数を得るために必要な供給電圧の偏差を算出して、補正係数Kを求めるようにしてもよい。
The time when the voltage correction unit 75 obtains the correction coefficient K may not be the time when the constant voltage Vfp0 is supplied to the electric low-pressure pump 2. However, when the constant voltage Vfp0 is being supplied to the electric low-pressure pump 2, the electric low-pressure pump 2 is in a state of pumping low-pressure fuel at a constant pumping cycle. Easy to find accurately.
In addition, the voltage correction unit 75 of the control device 40 of the present embodiment obtains the correction coefficient K based on the deviation ΔFfp of the pumping frequency. In addition to this, the electric low-pressure pump 2 to be used is driven at a predetermined rotational speed. The correction voltage K is calculated by comparing the supply voltage required for the above with the supply voltage preset in the voltage controller 73, calculating the deviation of the supply voltage required to obtain the same rotation speed. Also good.

(5)切換指示部
本実施形態の制御装置40では、電圧制御部73で電動低圧ポンプ2への供給電圧Vfpを制御する際に、あらかじめ設定された供給電圧Vfpが所定量以上変更される領域において、内燃機関の回転数Neの変化量ΔNeが所定量以上変化したときにのみ供給電圧Vfpが変更されるように、電圧制御部73に対して算定式の切換指示を行う切換指示部77が設けられている。
(5) Switching instruction unit In the control device 40 of the present embodiment, when the voltage control unit 73 controls the supply voltage Vfp to the electric low-pressure pump 2, a region in which the preset supply voltage Vfp is changed by a predetermined amount or more. The switching instruction unit 77 that instructs the voltage control unit 73 to switch the calculation formula so that the supply voltage Vfp is changed only when the change amount ΔNe of the rotational speed Ne of the internal combustion engine changes by a predetermined amount or more. Is provided.

上述した図3に示す例では、内燃機関の回転数Neが約800rpmを境にして供給電圧Vfpの算定式が式(1)と式(2)とで切換えられ、供給電圧Vfpが13Vと12Vとでステップ変化する設定となっている。そのため、例えば、内燃機関のアイドル状態において、内燃機関の回転数Neが不安定な状態となって800rpm前後で細かく増減すると、電動低圧ポンプ2への供給電圧Vfpも13Vと12Vとで繰返し切換えられる。このように、電動低圧ポンプ2の出力が細かく切換えられると、制御に追従遅れが生じるおそれがある。また、高圧ポンプ5に圧送される低圧燃料の流量が繰り返し変わるため、低圧燃料通路内の低圧燃料の圧力を調節している圧力調整弁14の応答性によっては、流量制御弁8入口の圧力制御が不能になって、正確にレール圧を制御することができなくなるおそれがある。   In the example shown in FIG. 3 described above, the calculation formula of the supply voltage Vfp is switched between Formula (1) and Formula (2) when the rotational speed Ne of the internal combustion engine is about 800 rpm, and the supply voltage Vfp is 13V and 12V. The setting changes step by step. Therefore, for example, in the idling state of the internal combustion engine, when the rotational speed Ne of the internal combustion engine becomes unstable and finely increases or decreases around 800 rpm, the supply voltage Vfp to the electric low-pressure pump 2 is repeatedly switched between 13V and 12V. . As described above, when the output of the electric low-pressure pump 2 is finely switched, there is a possibility that a follow-up delay occurs in the control. Further, since the flow rate of the low-pressure fuel pumped to the high-pressure pump 5 changes repeatedly, the pressure control at the inlet of the flow control valve 8 depends on the responsiveness of the pressure adjustment valve 14 that adjusts the pressure of the low-pressure fuel in the low-pressure fuel passage. May become impossible, and the rail pressure may not be accurately controlled.

そのため、本実施形態の制御装置40は、内燃機関の回転数Neが800rpm前後で細かく増減するような不安定な状態であっても、電動低圧ポンプ2への供給電圧Vfpが13Vから12V、あるいは12Vから13Vに切換えられないように構成されている。具体的には、現在の供給電圧Vfpの設定値の基準となる算定式が式(1)を基準としているか式(2)を基準としているかによって、算定式を式(1)から式(2)、あるいは式(2)から式(1)に切換える回転数Neの閾値が異ならせてある。   For this reason, the control device 40 of the present embodiment allows the supply voltage Vfp to the electric low-pressure pump 2 to be from 13V to 12V, even in an unstable state where the rotational speed Ne of the internal combustion engine increases or decreases finely around 800 rpm. It is configured not to be switched from 12V to 13V. Specifically, the calculation formula is changed from Formula (1) to Formula (2) depending on whether the calculation formula that is the reference for the set value of the current supply voltage Vfp is based on Formula (1) or Formula (2). Alternatively, the threshold value of the rotational speed Ne for switching from the expression (2) to the expression (1) is varied.

例えば、現在、電圧制御部73において、式(1)を基準として供給電圧Vfpが設定されている場合に、切換指示部77は、内燃機関の回転数Neが800rpm近傍の第1の切換閾値Ne1未満のときには算定式を切換えることなくそのまま式(1)を基準として供給電圧Vfpを設定するよう電圧制御部73に算定式指示信号S2を出力する。一方、式(1)を基準として供給電圧Vfpが設定されている場合に、切換指示部77は、内燃機関の回転数Neが第1の切換閾値Ne1以上になると、算定式を式(1)から式(2)に切換え、式(2)を基準として供給電圧Vfpを設定するよう電圧制御部73に算定式指示信号S2を出力する。   For example, when the voltage control unit 73 currently sets the supply voltage Vfp on the basis of the expression (1), the switching instruction unit 77 displays the first switching threshold value Ne1 when the internal combustion engine speed Ne is around 800 rpm. If it is less, the calculation formula instruction signal S2 is output to the voltage control unit 73 so that the supply voltage Vfp is set with reference to the formula (1) without switching the calculation formula. On the other hand, when the supply voltage Vfp is set with reference to the formula (1), the switching instruction unit 77 calculates the formula from the formula (1) when the rotational speed Ne of the internal combustion engine becomes equal to or higher than the first switching threshold value Ne1. The calculation formula instruction signal S2 is output to the voltage control unit 73 so as to set the supply voltage Vfp with reference to the formula (2).

また、現在、電圧制御部73において、式(2)を基準として供給電圧Vfpが設定されている場合に、切換指示部77は、内燃機関の回転数Neが第1の切換閾値Ne1よりも小さい値の第2の切換閾値Ne2を越えるときには算定式を切換えることなくそのまま式(2)を基準として供給電圧Vfpを設定するよう電圧制御部73に算定式指示信号S2を出力する。一方、式(2)を基準として供給電圧Vfpが設定されている場合に、切換指示部77は、内燃機関の回転数Neが第2の切換閾値Ne2以下になると、算定式を式(2)から式(1)に切換え、式(1)を基準として供給電圧Vfpを設定するよう電圧制御部73に算定式指示信号S2を出力する。   Further, when the supply voltage Vfp is currently set in the voltage control unit 73 with reference to the expression (2), the switching instruction unit 77 indicates that the rotational speed Ne of the internal combustion engine is smaller than the first switching threshold value Ne1. When the value exceeds the second switching threshold value Ne2, the calculation formula instruction signal S2 is output to the voltage control unit 73 so that the supply voltage Vfp is set with reference to the formula (2) without switching the calculation formula. On the other hand, when the supply voltage Vfp is set on the basis of the formula (2), the switching instruction unit 77 calculates the formula from the formula (2) when the rotational speed Ne of the internal combustion engine becomes equal to or less than the second switching threshold value Ne2. The calculation formula instruction signal S2 is output to the voltage controller 73 so as to set the supply voltage Vfp based on the formula (1).

この切換指示部77によって算定式の切換時期が調整される結果、内燃機関の回転数Neが概ね800rpm未満から800rpm以上に推移するときには、図4(a)に示すように、例えば、内燃機関の回転数Neが第1の切換閾値Ne1である805rpmのときに電動低圧ポンプ2への供給電圧Vfpが13Vから12Vにステップ変化させられる。また、内燃機関の回転数Neが概ね800rpm以上から800rpm未満に推移するときには、図4(b)に示すように、内燃機関の回転数Neが第2の切換閾値Ne2である795rpmのときに電動低圧ポンプ2への供給電圧Vfpが12Vから13Vにステップ変化させられる。   As a result of adjusting the switching timing of the calculation formula by the switching instruction unit 77, when the rotational speed Ne of the internal combustion engine changes from less than 800 rpm to approximately 800 rpm or more, as shown in FIG. When the rotation speed Ne is 805 rpm, which is the first switching threshold value Ne1, the supply voltage Vfp to the electric low-pressure pump 2 is step-changed from 13V to 12V. When the rotational speed Ne of the internal combustion engine changes from approximately 800 rpm to less than 800 rpm, as shown in FIG. 4 (b), the motor is operated when the rotational speed Ne of the internal combustion engine is 795 rpm, which is the second switching threshold value Ne2. The supply voltage Vfp to the low pressure pump 2 is step-changed from 12V to 13V.

したがって、内燃機関の回転数Neが800rpm付近では、内燃機関の回転数Neが少なくとも10rpm変化しない限りは、電動低圧ポンプ2への供給電圧Vfpがステップ変化しないようになっている。そのため、供給電圧Vfpが12Vと13Vとで繰返し切換えられることがない。   Therefore, when the rotational speed Ne of the internal combustion engine is around 800 rpm, the supply voltage Vfp to the electric low-pressure pump 2 does not change stepwise unless the rotational speed Ne of the internal combustion engine changes by at least 10 rpm. Therefore, the supply voltage Vfp is not repeatedly switched between 12V and 13V.

3.電動低圧ポンプの出力制御方法
次に、図2に示す本実施形態の蓄圧式燃料噴射装置の制御装置40によって行われる電動低圧ポンプ2の出力制御方法について、図5及び図6のフローに基づいて説明する。
この出力制御フローの例では、まず、図5のステップS1で、電圧補正部75が、内燃機関の回転数Neに応じて電圧制御部73にあらかじめ設定された供給電圧Vfpの値を、電動低圧ポンプ2の個体差に応じて補正する。
3. Output Control Method for Electric Low Pressure Pump Next, an output control method for the electric low pressure pump 2 performed by the control device 40 of the accumulator fuel injection device of the present embodiment shown in FIG. 2 is based on the flow of FIGS. 5 and 6. explain.
In the example of the output control flow, first, in step S1 of FIG. 5, the voltage correction unit 75 sets the value of the supply voltage Vfp preset in the voltage control unit 73 according to the rotational speed Ne of the internal combustion engine to the electric low voltage. Correction is made according to individual differences of the pump 2.

図6は、ステップS1を具体的に示すフローであり、まず、ステップS51で、電圧制御部73が電動低圧ポンプ2に定電圧Vfp0を供給するよう、オルタネータに対して指示を出力する。次いで、ステップS52で、電圧補正部75が、電動低圧ポンプ2に通電されている電流値Afpを検出した後、ステップS53で、当該電流値Afpに対応する電動低圧ポンプ2の回転数Nfp及び圧送周波数Ffpを算出する。   FIG. 6 is a flowchart specifically showing step S <b> 1. First, in step S <b> 51, the voltage control unit 73 outputs an instruction to the alternator so as to supply the constant voltage Vfp <b> 0 to the electric low-pressure pump 2. Next, in step S52, the voltage correction unit 75 detects the current value Afp that is energized to the electric low-pressure pump 2, and then in step S53, the rotational speed Nfp and the pressure feed of the electric low-pressure pump 2 corresponding to the current value Afp. Calculate the frequency Ffp.

次いで、ステップS54で、電圧補正部75が、求められた圧送周波数Ffpと、電圧制御部73にあらかじめ設定された定電圧Vfp0供給時の圧送周波数Ffp0との偏差ΔFfpを求めた後、ステップS55で、使用している電動低圧ポンプ2において圧送周波数FfpがFfp0となる供給電圧Vfp’を算出する。
そして、ステップS56で、電圧補正部75が補正係数K=Vfp’/Vfpを算出するとともに電圧制御部73に補正係数Kの出力を行い、ステップS57で、電圧制御部73が、あらかじめ設定されている供給電圧Vfpの値に補正係数Kを乗じて、供給電圧Vfpの設定値を更新することで、ステップS1の供給電圧Vfpの補正が終了する。
Next, in step S54, the voltage correction unit 75 obtains a deviation ΔFfp between the obtained pumping frequency Ffp and the pumping frequency Ffp0 when the constant voltage Vfp0 preset in the voltage control unit 73 is supplied, and then in step S55. The supply voltage Vfp ′ at which the pumping frequency Ffp becomes Ffp0 in the electric low-pressure pump 2 being used is calculated.
In step S56, the voltage correction unit 75 calculates the correction coefficient K = Vfp ′ / Vfp and outputs the correction coefficient K to the voltage control unit 73. In step S57, the voltage control unit 73 is set in advance. The correction of the supply voltage Vfp in step S1 is completed by multiplying the value of the supplied voltage Vfp by the correction coefficient K and updating the set value of the supply voltage Vfp.

図5に戻り、次いで、ステップS2で、回転数判定部71が内燃機関の回転数Neを検出する。次いで、ステップS3で、回転数判定部71が、検出された回転数Neが所定値Ne0未満であるか否かを判別する。回転数Neが所定値Ne0以上であれば、低圧燃料通路18a、18bやメインフィルタ4の振動や内燃機関の稼動音等が比較的大きいため、電動低圧ポンプ2への供給電圧Vfpを調整する必要性が低いことから、ステップS12に進んで、電圧制御部73が供給電圧Vfpを定電圧Vfp0に設定し、電動低圧ポンプ2のオルタネータに対して制御信号を出力した後、ステップS1に戻る。   Returning to FIG. 5, next, in step S <b> 2, the rotational speed determination unit 71 detects the rotational speed Ne of the internal combustion engine. Next, in step S3, the rotation speed determination unit 71 determines whether or not the detected rotation speed Ne is less than a predetermined value Ne0. If the rotational speed Ne is equal to or greater than the predetermined value Ne0, vibrations of the low-pressure fuel passages 18a and 18b and the main filter 4, operating noise of the internal combustion engine, and the like are relatively loud, so the supply voltage Vfp to the electric low-pressure pump 2 needs to be adjusted. Since the performance is low, the process proceeds to step S12, the voltage control unit 73 sets the supply voltage Vfp to the constant voltage Vfp0, outputs a control signal to the alternator of the electric low-pressure pump 2, and then returns to step S1.

一方、内燃機関の回転数Neが所定値Ne0未満であれば、ステップS4に進み、切換指示部77が、現在の電動低圧ポンプ2への供給電圧Vfpを設定する基準となる算定式が上記式(1)であるか否かを判別する。現在の供給電圧Vfpが式(1)を基準として設定されている場合、すなわち、前回までの内燃機関の回転数Neが概ね800rpm未満であったときには、ステップS5に進み、切換指示部77が、内燃機関の回転数Neが第1の切換閾値Ne1である805rpm以上であるか否かを判別する。   On the other hand, if the rotational speed Ne of the internal combustion engine is less than the predetermined value Ne0, the process proceeds to step S4, and the calculation formula serving as a reference for the switching instruction unit 77 to set the current supply voltage Vfp to the electric low-pressure pump 2 is the above formula. It is determined whether or not (1). When the current supply voltage Vfp is set on the basis of the formula (1), that is, when the rotation speed Ne of the internal combustion engine up to the previous time is approximately less than 800 rpm, the process proceeds to step S5, where the switching instruction unit 77 It is determined whether or not the rotational speed Ne of the internal combustion engine is equal to or higher than 805 rpm, which is the first switching threshold value Ne1.

内燃機関の回転数Neが第1の切換閾値Ne1未満の場合には、ステップS6に進んで、切換指示部77が、電圧制御部73に対して、そのまま式(1)を基準として供給電圧Vfpの設定を継続するよう指示を出力する。一方、内燃機関の回転数Neが第1の切換閾値Ne1以上の場合には、ステップS7に進んで、切換指示部77が、電圧制御部73に対して、供給電圧Vfpを設定する基準となる算定式を式(1)から式(2)に切換え、式(2)を基準として供給電圧Vfpの設定を行うよう指示を出力する。   When the rotational speed Ne of the internal combustion engine is less than the first switching threshold value Ne1, the process proceeds to step S6, and the switching instruction unit 77 directly supplies the voltage Vfp to the voltage control unit 73 based on the formula (1). An instruction is output to continue setting. On the other hand, when the rotational speed Ne of the internal combustion engine is equal to or greater than the first switching threshold value Ne1, the process proceeds to step S7, and the switching instruction unit 77 serves as a reference for setting the supply voltage Vfp to the voltage control unit 73. The calculation formula is switched from formula (1) to formula (2), and an instruction is output to set the supply voltage Vfp based on formula (2).

ステップS4において、現在の電動低圧ポンプ2への供給電圧Vfpを設定する基準となる算定式が上記式(1)でない、すなわち、前回までの内燃機関の回転数Neが概ね800rpm以上であり、算定式として式(2)が用いられていると判定されたときには、ステップS8に進み、切換指示部77が、内燃機関の回転数Neが第2の切換閾値Ne2である795rpm以下であるか否かを判別する。   In step S4, the calculation formula as a reference for setting the current supply voltage Vfp to the electric low-pressure pump 2 is not the above formula (1), that is, the rotation speed Ne of the internal combustion engine up to the previous time is approximately 800 rpm or more and is calculated. When it is determined that the expression (2) is used as an expression, the process proceeds to step S8, and the switching instruction unit 77 determines whether or not the rotational speed Ne of the internal combustion engine is equal to or less than 795 rpm, which is the second switching threshold value Ne2. Is determined.

内燃機関の回転数Neが第2の切換閾値Ne2を超えている場合には、ステップS9に進んで、切換指示部77が、電圧制御部73に対して、そのまま式(2)を基準として供給電圧Vfpの設定を継続するよう指示を出力する。一方、内燃機関の回転数Neが第2の切換閾値Ne2以下の場合には、ステップS10に進んで、切換指示部77が、電圧制御部73に対して、供給電圧Vfpを設定する基準となる算定式を式(2)から式(1)に切換え、式(1)を基準として供給電圧Vfpの設定を行うよう指示を出力する。   When the rotational speed Ne of the internal combustion engine exceeds the second switching threshold value Ne2, the process proceeds to step S9, and the switching instruction unit 77 supplies the voltage control unit 73 as it is based on the formula (2). An instruction is output to continue setting the voltage Vfp. On the other hand, when the rotational speed Ne of the internal combustion engine is equal to or less than the second switching threshold value Ne2, the process proceeds to step S10, and the switching instruction unit 77 serves as a reference for setting the supply voltage Vfp to the voltage control unit 73. The calculation formula is switched from formula (2) to formula (1), and an instruction is output to set the supply voltage Vfp based on formula (1).

ステップS6、S7、S9又はS10において、電圧制御部73が、供給電圧Vfpを設定する基準となる算定式の指示を受け取った後、ステップS11で、電圧制御部73は、内燃機関の回転数Neに応じて規定されている電動低圧ポンプ2への供給電圧Vfpを設定し、電動低圧ポンプ2のオルタネータに対して制御信号を出力した後、ステップS1に戻る。   In step S6, S7, S9, or S10, after the voltage control unit 73 receives an instruction of a calculation formula serving as a reference for setting the supply voltage Vfp, in step S11, the voltage control unit 73 determines the rotational speed Ne of the internal combustion engine. The supply voltage Vfp to the electric low-pressure pump 2 defined according to is set, a control signal is output to the alternator of the electric low-pressure pump 2, and the process returns to step S1.

以上のように行われる電動低圧ポンプ2の出力制御方法によれば、内燃機関の回転数Neが比較的低いアイドリング状態等において、電動低圧ポンプ2のn1次圧送周波数が高圧ポンプ5の駆動によって生じる燃料の圧力脈動のn2次周波数に近似することが避けられる。したがって、低圧燃料通路やメインフィルタにおいて、電動低圧ポンプ2に起因する圧力脈動と高圧ポンプ5に起因する圧力脈動とが共振することによる、これらの部品の損傷や異音の発生が低減される。According to the output control method of the electric low-pressure pump 2 is performed as above, in the rotational speed Ne is relatively low idling state of the internal combustion engine, n 1 primary pumping frequency of the electric low-pressure pump 2 is driven by the high pressure pump 5 it is avoided that approximates n 2 order frequency of the pressure pulsation of the resulting fuel. Therefore, in the low pressure fuel passage and the main filter, the damage of these components and the generation of abnormal noise due to the resonance of the pressure pulsation caused by the electric low pressure pump 2 and the pressure pulsation caused by the high pressure pump 5 are reduced.

また、本実施形態で説明した電動低圧ポンプ2の出力制御方法であれば、製造時や経時劣化等によって生じる電動低圧ポンプ2の個体差によって、同一の供給電圧Vfp下での圧送周波数Ffpのばらつきが解消されるため、電動低圧ポンプ2のn1次圧送周波数が高圧ポンプ5の駆動によって生じる燃料の圧力脈動のn2次周波数に近似することが確実に避けられる。Further, in the output control method of the electric low-pressure pump 2 described in the present embodiment, variations in the pumping frequency Ffp under the same supply voltage Vfp due to individual differences of the electric low-pressure pump 2 caused by manufacturing or deterioration with time. There to be eliminated, is reliably avoided that n 1 primary pumping frequency of the electric low-pressure pump 2 is approximated to n 2-order frequency of the pressure pulsation of the fuel caused by the driving of the high-pressure pump 5.

さらに、本実施形態で説明した電動低圧ポンプ2の出力制御方法であれば、電動低圧ポンプ2への供給電圧Vfpがステップ変化する領域において、供給電圧Vfpが繰返し切換えられることがないため、制御に追従遅れが生じたり、レール圧制御が不能になったりすることも防止される。   Furthermore, in the output control method for the electric low-pressure pump 2 described in the present embodiment, the supply voltage Vfp is not repeatedly switched in a region where the supply voltage Vfp to the electric low-pressure pump 2 changes stepwise. It is also possible to prevent the following delay and the rail pressure control from being disabled.

[第2の実施の形態]
本発明の第2の実施の形態にかかる蓄圧式燃料噴射装置の制御装置は、電動低圧ポンプ2のn1次圧送周波数が高圧ポンプ5の駆動によって生じる燃料の圧力脈動のn2次周波数と近似しないように電動低圧ポンプ2の出力を制御するだけでなく、電動低圧ポンプ2の圧送周波数が、流量制御弁8の弁体の往復運動の周波数とも近似しないように電動低圧ポンプ2の出力を制御するように構成されている。
[Second Embodiment]
Control device for accumulator fuel injection system according to a second embodiment of the present invention, the approximation n 1 primary pumping frequency of the electric low-pressure pump 2 and n 2-order frequency of the pressure pulsation of the fuel caused by the driving of the high pressure pump 5 In addition to controlling the output of the electric low-pressure pump 2 so as not to cause a failure, the output of the electric low-pressure pump 2 is controlled so that the pumping frequency of the electric low-pressure pump 2 does not approximate the frequency of the reciprocating motion of the valve body of the flow control valve 8. Is configured to do.

図7は、本実施形態の制御装置の電圧制御部に設定された、電動低圧ポンプ2への供給電圧Vfpの設定例を説明するための図であり、図7の横軸及び縦軸や、破線及び点線は、図3と同一の内容を表している。この図7には、さらに、流量制御弁8の弁体の往復運動の周波数(約185Hz)が一点鎖線で示されている。   FIG. 7 is a diagram for explaining a setting example of the supply voltage Vfp to the electric low-pressure pump 2 set in the voltage control unit of the control device of the present embodiment. Broken lines and dotted lines represent the same contents as in FIG. In FIG. 7, the frequency (about 185 Hz) of the reciprocating motion of the valve body of the flow control valve 8 is further indicated by a one-dot chain line.

本実施形態の制御装置では、内燃機関の回転数Neが所定値Ne0(=920rpm)未満の運転領域においては、基本的には、高圧ポンプ5の6次圧送周波数のラインと7次圧送周波数のラインとの間を推移するように、内燃機関のNeが増加するにつれて電動低圧ポンプ2への供給電圧Vfpが比例的に変化する。   In the control device of the present embodiment, basically, in the operation region where the rotational speed Ne of the internal combustion engine is less than a predetermined value Ne0 (= 920 rpm), the sixth pumping frequency line and the seventh pumping frequency line of the high-pressure pump 5 are basically. The supply voltage Vfp to the electric low-pressure pump 2 changes proportionally as Ne of the internal combustion engine increases so as to change between the lines.

ただし、電動低圧ポンプ2への供給電圧Vfpが約12.3V近傍になると、電動低圧ポンプ2の圧送周波数と流量制御弁8の弁体の往復運動の周波数とが近似してくることから、電動低圧ポンプ2への供給電圧Vfpが12Vから12.6Vの間には設定されないようになっている。すなわち、内燃機関の回転数Neが820rpmから890rpmの間の運転領域では、供給電圧Vfpの設定値が、高圧ポンプ5の6次圧送周波数のライン以下の領域で、内燃機関の回転数Neが増加するに連れて比例的に変化するように切換えられる。   However, when the supply voltage Vfp to the electric low-pressure pump 2 is about 12.3 V, the pumping frequency of the electric low-pressure pump 2 and the frequency of the reciprocating motion of the valve body of the flow control valve 8 are approximated. The supply voltage Vfp to the low pressure pump 2 is not set between 12V and 12.6V. That is, in the operating region where the rotational speed Ne of the internal combustion engine is between 820 rpm and 890 rpm, the rotational speed Ne of the internal combustion engine increases when the set value of the supply voltage Vfp is below the sixth pumping frequency line of the high-pressure pump 5. As it is done, it is switched so as to change proportionally.

図7に示すように電動低圧ポンプ2への供給電圧Vfpが設定されていれば、電動低圧ポンプ2に起因する圧力脈動と流量制御弁8に起因する圧力脈動とが低圧燃料通路18a、18bやメインフィルタ4内で共振することも避けられ、低圧燃料通路18a、18bやメインフィルタ4の損傷や異音がさらに低減される。
また、本実施形態の制御装置においても、電動低圧ポンプ2への供給電圧Vfpがステップ変化する、内燃機関の回転数Neが820rpm及び890rpm付近の運転領域において、内燃機関の回転数Neが不安定になって供給電圧Vfpが繰返し切換えられることがないようにすることができる。
If the supply voltage Vfp to the electric low-pressure pump 2 is set as shown in FIG. 7, the pressure pulsation caused by the electric low-pressure pump 2 and the pressure pulsation caused by the flow control valve 8 are reduced to the low-pressure fuel passages 18a, 18b, Resonance in the main filter 4 is also avoided, and damage and abnormal noise of the low-pressure fuel passages 18a and 18b and the main filter 4 are further reduced.
Also in the control device of the present embodiment, the rotational speed Ne of the internal combustion engine is unstable in the operating region where the rotational speed Ne of the internal combustion engine changes around 820 rpm and 890 rpm where the supply voltage Vfp to the electric low-pressure pump 2 changes stepwise. Thus, the supply voltage Vfp can be prevented from being repeatedly switched.

[第3の実施の形態]
上述した第1及び第2の実施の形態にかかる蓄圧式燃料噴射装置の制御装置は、電動低圧ポンプ2への供給電圧Vfpを一度に大きく変化させることができない場合に適用される構成である。一方、本発明の第3の実施の形態にかかる蓄圧式燃料噴射装置の制御装置は、蓄圧式燃料噴射装置に電動低圧ポンプ2へ供給する電圧の可変器が備えられている場合等、電動低圧ポンプ2への供給電圧Vfpを一度に大きく変化させることができる場合に適用可能な構成となっている。
[Third Embodiment]
The control device of the accumulator fuel injection device according to the first and second embodiments described above is configured when the supply voltage Vfp to the electric low-pressure pump 2 cannot be changed greatly at a time. On the other hand, the control device for an accumulator fuel injection apparatus according to the third embodiment of the present invention includes an electric low pressure in the case where the accumulator fuel injection apparatus is provided with a voltage variable to be supplied to the electric low pressure pump 2. This configuration is applicable when the supply voltage Vfp to the pump 2 can be greatly changed at once.

1.蓄圧式燃料噴射装置の制御装置
(1)回転数判定部及び電圧補正部
本実施形態の制御装置に備えられた回転数判定部及び電圧補正部は、第1の実施の形態の制御装置と同様に構成されている。
1. Control device for accumulator fuel injection device (1) Rotational speed determination unit and voltage correction unit The rotational speed determination unit and voltage correction unit provided in the control device of this embodiment are the same as those of the control device of the first embodiment. It is configured.

(2)電圧制御部
本実施形態の制御装置に備えられた電圧制御部は、内燃機関の回転数Neに応じて、電動低圧ポンプ2への供給電圧Vfpを第1の定電圧Vfp1(第1の実施の形態における定電圧Vfp0に相当)と第2の定電圧Vfp2とで切換える制御を行う。具体的には、制御装置は、内燃機関の回転数Neが所定値Ne0未満のときに電動低圧ポンプ2への供給電圧Vfpを第2の定電圧Vfp2に設定する一方、内燃機関の回転数Neが所定値Ne0以上のときには、電動低圧ポンプ2への供給電圧Vfpを第1の定電圧Vfp1に設定するように構成されている。
(2) Voltage Control Unit The voltage control unit provided in the control device of the present embodiment changes the supply voltage Vfp to the electric low-pressure pump 2 according to the rotational speed Ne of the internal combustion engine to a first constant voltage Vfp1 (first And the second constant voltage Vfp2 are controlled to be switched. Specifically, the control device sets the supply voltage Vfp to the electric low-pressure pump 2 to the second constant voltage Vfp2 when the rotational speed Ne of the internal combustion engine is less than a predetermined value Ne0, while the rotational speed Ne of the internal combustion engine. Is equal to or greater than a predetermined value Ne0, the supply voltage Vfp to the electric low-pressure pump 2 is set to the first constant voltage Vfp1.

第2の定電圧Vfp2は、内燃機関の回転数Neが、内燃機関のアイドル状態に近い状態となる所定値Ne0よりも低く、かつ、内燃機関のアイドル状態に想定し得る回転数Ne以上の範囲内において、高圧ポンプ5のn2次圧送周波数と電動低圧ポンプ2のn1次圧送周波数との共振点が存在しなくなるようにその値が設定されている。
ただし、高圧ポンプ5への低圧燃料の供給量が不足することがないように、第2の定電圧Vfp2は設定される。
The second constant voltage Vfp2 is a range in which the rotational speed Ne of the internal combustion engine is lower than a predetermined value Ne0 that is close to the idle state of the internal combustion engine and is greater than or equal to the rotational speed Ne that can be assumed in the idle state of the internal combustion engine. in inner, a value so that the resonance point of the n 2 primary pumping frequency and n 1 primary pumping frequency of the electric low-pressure pump 2 in the high-pressure pump 5 does not exist is set.
However, the second constant voltage Vfp2 is set so that the supply amount of the low-pressure fuel to the high-pressure pump 5 is not short.

図8は、内燃機関の回転数Neに応じて設定される電動低圧ポンプ2への供給電圧Vfpの設定方法を説明するための図であり、図8の横軸及び縦軸や、破線及び点線は、図3と同一の内容を表している。
この図8で示される本実施形態の供給電圧Vfpの設定例では、内燃機関の回転数Neが920rpm以上の領域では、電動低圧ポンプ2への供給電圧Vfpが第1の定電圧Vfp1である13Vに固定される一方、内燃機関の回転数Neが920rpm未満の運転領域においては、供給電圧Vfpが第2の定電圧Vfp2である10Vに固定される。したがって、内燃機関の回転数Neが920rpm未満の運転領域では高圧ポンプ5のn2次圧送周波数と電動低圧ポンプ2のn1次圧送周波数とが近似するおそれがない。
FIG. 8 is a diagram for explaining a method of setting the supply voltage Vfp to the electric low-pressure pump 2 set in accordance with the rotational speed Ne of the internal combustion engine. The horizontal and vertical axes, the broken line and the dotted line in FIG. Represents the same contents as FIG.
In the setting example of the supply voltage Vfp of the present embodiment shown in FIG. 8, in the region where the rotational speed Ne of the internal combustion engine is 920 rpm or more, the supply voltage Vfp to the electric low-pressure pump 2 is 13V, which is the first constant voltage Vfp1. On the other hand, in the operating region where the rotational speed Ne of the internal combustion engine is less than 920 rpm, the supply voltage Vfp is fixed to 10 V, which is the second constant voltage Vfp2. Therefore, the rotation speed Ne of the internal combustion engine and n 1 primary pumping frequency of n 2 primary pumping frequency and the electric low-pressure pump 2 in the high-pressure pump 5 is in the operating area of less than 920rpm there is no fear of approximation.

本実施形態の制御装置の例のように、内燃機関の回転数Neが920rpm未満のときに電動低圧ポンプ2への供給電圧Vfpを10Vまで低下させたとしても、内燃機関がアイドル状態に近い状態にあり高圧ポンプ5からコモンレール10への圧送量が比較的少なく済むため、高圧ポンプ5の加圧室5aへの低圧燃料の供給量が不足することはなく、実現可能である。
第2の定電圧Vfp2の設定値は10Vに限られないが、供給電圧の可変器の能力と、高圧ポンプ5の加圧室5aへの低圧燃料の供給量等を考慮して設定されることが好ましい。
Even when the supply voltage Vfp to the electric low-pressure pump 2 is reduced to 10 V when the rotational speed Ne of the internal combustion engine is less than 920 rpm, as in the example of the control device of the present embodiment, the internal combustion engine is in a state close to the idle state Therefore, since the pumping amount from the high-pressure pump 5 to the common rail 10 is relatively small, the supply amount of the low-pressure fuel to the pressurizing chamber 5a of the high-pressure pump 5 is not short and can be realized.
The set value of the second constant voltage Vfp2 is not limited to 10V, but should be set in consideration of the ability of the supply voltage variable, the amount of low-pressure fuel supplied to the pressurizing chamber 5a of the high-pressure pump 5, and the like. Is preferred.

なお、本実施形態の制御装置においても、製造時や経時劣化等によって生じる電動低圧ポンプ2の個体差による、同一の供給電圧Vfp下での圧送周波数のばらつきを解消して圧力脈動の共振を確実に防止するために、電圧制御部73に設定される供給電圧Vfpの値は、電圧補正部75で求められる補正係数Kを用いて、電動低圧ポンプ2の個体差に応じて補正されるようになっている。   In the control device of this embodiment, the pressure pulsation resonance is reliably eliminated by eliminating variations in the pumping frequency under the same supply voltage Vfp due to individual differences in the electric low-pressure pump 2 caused by manufacturing or deterioration over time. Therefore, the value of the supply voltage Vfp set in the voltage control unit 73 is corrected according to the individual difference of the electric low-pressure pump 2 by using the correction coefficient K obtained by the voltage correction unit 75. It has become.

(3)切換指示部
本実施形態の制御装置に備えられた切換指示部は、基本的には、第1の実施の形態の制御装置に備えられた切換指示部と同様の機能を有している。ただし、第1の実施の形態の制御装置の切換指示部は、電動低圧ポンプ2への供給電圧Vfpがステップ変化する、内燃機関の回転数Neが800rpm付近の運転領域において、内燃機関の回転数Neが不安定になって供給電圧Vfpが繰返し切換えられることがないようにされているが、本実施形態の制御装置の切換指示部は、供給電圧Vfpが第1の定電圧Vfp1と第2の定電圧Vfp2とで切換えられる、内燃機関の回転数Neが920rpm付近の運転領域において、内燃機関の回転数Neが不安定になって供給電圧Vfpが繰返し切換えられることがないように構成されている。
(3) Switching instruction unit The switching instruction unit provided in the control device of the present embodiment basically has the same function as the switching instruction unit provided in the control device of the first embodiment. Yes. However, the switching instruction unit of the control device according to the first embodiment is configured so that the rotation speed of the internal combustion engine is in the operating range where the supply voltage Vfp to the electric low-pressure pump 2 changes stepwise and the rotation speed Ne of the internal combustion engine is around 800 rpm. Although the supply voltage Vfp is not repeatedly switched due to Ne becoming unstable, the switching instruction unit of the control device of the present embodiment is configured such that the supply voltage Vfp is equal to the first constant voltage Vfp1 and the second constant voltage Vfp1. In the operating region where the rotational speed Ne of the internal combustion engine is switched to the constant voltage Vfp2, the rotational speed Ne of the internal combustion engine becomes unstable and the supply voltage Vfp is not repeatedly switched. .

2.電動低圧ポンプの出力制御方法
次に、本実施形態の蓄圧式燃料噴射装置の制御装置40によって行われる電動低圧ポンプ2の出力制御方法について、図9のフローに基づいて説明する。
この出力制御フローの例では、まず、ステップS21で、第1の実施の形態の出力制御フローのステップS1と同様に、内燃機関の回転数Neに応じて電圧制御部にあらかじめ設定された供給電圧Vfpの値を補正する。
2. Output Control Method for Electric Low Pressure Pump Next, an output control method for the electric low pressure pump 2 performed by the control device 40 of the accumulator fuel injection device of this embodiment will be described based on the flow of FIG.
In this example of the output control flow, first, in step S21, similarly to step S1 of the output control flow of the first embodiment, the supply voltage preset in the voltage control unit in accordance with the rotational speed Ne of the internal combustion engine. Correct the Vfp value.

次いで、ステップS22で回転数判定部が内燃機関の回転数Neを検出した後、ステップS23で、切換指示部が、現在の電動低圧ポンプ2への供給電圧Vfpの設定が第1の定電圧Vfp1であるか否かを判別する。現在の供給電圧Vfpの設定が第1の定電圧Vfp1である場合には、ステップ24に進み、切換指示部が、ステップS22で検出された内燃機関の回転数Neが第2の切換閾値Ne2である915rpm以下であるか否かを判別する。   Next, after the rotational speed determination unit detects the rotational speed Ne of the internal combustion engine in step S22, in step S23, the switching instruction unit sets the current supply voltage Vfp to the electric low-pressure pump 2 to the first constant voltage Vfp1. It is determined whether or not. When the current supply voltage Vfp is set to the first constant voltage Vfp1, the process proceeds to step 24, where the switching instruction unit determines that the rotational speed Ne of the internal combustion engine detected at step S22 is the second switching threshold value Ne2. It is determined whether or not it is a certain 915 rpm or less.

内燃機関の回転数Neが第2の切換閾値Ne2を超えている場合には、ステップS25に進んで、切換指示部が、電圧制御部に対して、供給電圧Vfpを第1の定電圧Vfp1のままで維持するよう指示を出力する。一方、内燃機関の回転数Neが第2の切換閾値Ne2以下である場合には、ステップS26に進んで、切換指示部が、電圧制御部に対して、供給電圧Vfpを第2の定電圧Vfp2に切換えるよう指示を出力する。   When the rotational speed Ne of the internal combustion engine exceeds the second switching threshold value Ne2, the process proceeds to step S25, where the switching instruction unit supplies the supply voltage Vfp to the first constant voltage Vfp1 to the voltage control unit. An instruction is output to keep it as it is. On the other hand, when the rotational speed Ne of the internal combustion engine is equal to or smaller than the second switching threshold value Ne2, the process proceeds to step S26, and the switching instruction unit sends the supply voltage Vfp to the second constant voltage Vfp2 to the voltage control unit. An instruction to switch to is output.

ステップS23において、現在の電動低圧ポンプ2への供給電圧Vfpの設定が第1の定電圧Vfp1でない、すなわち、第2の定電圧Vfp2である場合には、ステップS27に進み、切換指示部が、ステップS22で検出された内燃機関の回転数Neが第1の切換閾値Ne1である925rpm以上であるか否かを判別する。   In step S23, if the current setting of the supply voltage Vfp to the electric low-pressure pump 2 is not the first constant voltage Vfp1, that is, the second constant voltage Vfp2, the process proceeds to step S27, where the switching instruction unit It is determined whether or not the rotational speed Ne of the internal combustion engine detected in step S22 is not less than 925 rpm which is the first switching threshold value Ne1.

内燃機関の回転数Neが第1の切換閾値Ne1未満の場合には、ステップS28に進んで、切換指示部が、電圧制御部に対して、供給電圧Vfpを第2の定電圧Vfp2のままで維持するよう指示を出力する。一方、内燃機関の回転数Neが第1の切換閾値Ne1以上である場合には、ステップS29に進んで、切換指示部が、電圧制御部に対して、供給電圧Vfpを第1の定電圧Vfp1に切換えるよう指示を出力する。   When the rotational speed Ne of the internal combustion engine is less than the first switching threshold value Ne1, the process proceeds to step S28, and the switching instruction unit keeps the supply voltage Vfp as the second constant voltage Vfp2 with respect to the voltage control unit. Output instructions to maintain. On the other hand, when the rotational speed Ne of the internal combustion engine is equal to or greater than the first switching threshold value Ne1, the process proceeds to step S29, where the switching instruction unit sends the supply voltage Vfp to the first constant voltage Vfp1 to the voltage control unit. An instruction to switch to is output.

ステップS25、S26、S28又はS29において、電圧制御部が、供給電圧Vfpの指示を受け取った後、ステップS30で、電圧制御部は、電動低圧ポンプ2のオルタネータに対して制御信号を出力した後、ステップS21に戻る。   In step S25, S26, S28 or S29, after the voltage control unit receives an instruction of the supply voltage Vfp, in step S30, the voltage control unit outputs a control signal to the alternator of the electric low-pressure pump 2, Return to step S21.

以上のように行われる本実施形態の電動低圧ポンプ2の出力制御方法においても、内燃機関の回転数Neが比較的低いアイドリング状態等において、電動低圧ポンプ2のn1次圧送周波数が高圧ポンプ5の駆動によって生じる燃料の圧力脈動のn2次周波数に近似することが避けられる。したがって、低圧燃料通路やメインフィルタにおいて、電動低圧ポンプ2に起因する圧力脈動と高圧ポンプ5に起因する圧力脈動とが共振することによる、これらの部品の損傷や異音の発生が低減される。Also in the output control method of the electric low-pressure pump 2 of the present embodiment is performed as above, in the rotational speed Ne is relatively low idling state of the internal combustion engine, n 1 primary pumping frequency high-pressure pump 5 of the electric low-pressure pump 2 Approximation to the n second order frequency of the fuel pressure pulsation caused by the driving of is avoided. Therefore, in the low pressure fuel passage and the main filter, the damage of these components and the generation of abnormal noise due to the resonance of the pressure pulsation caused by the electric low pressure pump 2 and the pressure pulsation caused by the high pressure pump 5 are reduced.

また、本実施形態で説明した電動低圧ポンプ2の出力制御方法であれば、製造時や経時劣化等によって生じる電動低圧ポンプ2の個体差によって、同一の供給電圧Vfp下での圧送周波数Ffpのばらつきが解消されるため、電動低圧ポンプ2のn1次圧送周波数が高圧ポンプ5の駆動によって生じる燃料の圧力脈動のn2次周波数に近似することが確実に避けられる。Further, in the output control method of the electric low-pressure pump 2 described in the present embodiment, variations in the pumping frequency Ffp under the same supply voltage Vfp due to individual differences of the electric low-pressure pump 2 caused by manufacturing or deterioration with time. There to be eliminated, is reliably avoided that n 1 primary pumping frequency of the electric low-pressure pump 2 is approximated to n 2-order frequency of the pressure pulsation of the fuel caused by the driving of the high-pressure pump 5.

また、本実施形態で説明した電動低圧ポンプ2の出力制御方法であれば、電動低圧ポンプ2への供給電圧Vfpがステップ変化する領域において、供給電圧Vfpが繰返し切換えられることがないため、制御に追従遅れが生じたり、レール圧制御が不能になったりすることも防止される。   Further, in the output control method of the electric low-pressure pump 2 described in the present embodiment, the supply voltage Vfp is not repeatedly switched in a region where the supply voltage Vfp to the electric low-pressure pump 2 changes stepwise. It is also possible to prevent the following delay and the rail pressure control from being disabled.

Claims (5)

燃料タンク内の燃料を電動低圧ポンプで圧送するとともに前記燃料を高圧ポンプで加圧して複数の燃料噴射弁が接続されたコモンレールに圧送し、内燃機関の気筒内に前記燃料を噴射する蓄圧式燃料噴射装置の制御を行う蓄圧式燃料噴射装置の制御装置において、
前記電動低圧ポンプのn1次(n1は1以上の整数)圧送周波数が前記高圧ポンプの駆動によって生じる前記燃料の圧力脈動のn2次(n2は1以上の整数)周波数と近似しないように前記電動低圧ポンプの出力を制御する低圧ポンプ出力制御部を備えることを特徴とする蓄圧式燃料噴射装置の制御装置。
An accumulator fuel that pumps fuel in a fuel tank with an electric low-pressure pump, pressurizes the fuel with a high-pressure pump, pumps the fuel into a common rail connected to a plurality of fuel injection valves, and injects the fuel into a cylinder of an internal combustion engine In a control device for an accumulator fuel injection device that controls an injection device,
The n 1st order (n 1 is an integer greater than or equal to 1 ) pumping frequency of the electric low-pressure pump does not approximate the n 2nd order (n 2 is an integer greater than or equal to 1) frequency of the fuel pressure pulsation caused by driving the high pressure pump. And a low-pressure pump output control unit for controlling the output of the electric low-pressure pump.
前記低圧ポンプ出力制御部が、前記内燃機関の回転数又は前記高圧ポンプの回転数を検出するとともに、前記内燃機関の回転数又は前記高圧ポンプの回転数に応じて前記電動低圧ポンプの出力を制御することを特徴とする請求項1に記載の蓄圧式燃料噴射装置の制御装置。  The low-pressure pump output control unit detects the rotational speed of the internal combustion engine or the rotational speed of the high-pressure pump, and controls the output of the electric low-pressure pump according to the rotational speed of the internal combustion engine or the rotational speed of the high-pressure pump. The control device for a pressure-accumulation fuel injection device according to claim 1. 前記電動低圧ポンプの出力が所定量以上変更される領域では、前記低圧ポンプ出力制御部が、前記内燃機関の回転数又は前記高圧ポンプの回転数が所定量以上変化したときに前記電動低圧ポンプの出力を変更することを特徴とする請求項2に記載の蓄圧式燃料噴射装置の制御装置。  In a region where the output of the electric low-pressure pump is changed by a predetermined amount or more, the low-pressure pump output control unit controls the electric low-pressure pump when the rotation speed of the internal combustion engine or the rotation speed of the high-pressure pump changes by a predetermined amount or more. The control device for an accumulator fuel injection device according to claim 2, wherein the output is changed. 前記低圧ポンプ出力制御部が、前記内燃機関のアイドル状態において前記電動低圧ポンプの出力を制御することを特徴とする請求項1〜3のいずれか一項に記載の蓄圧式燃料噴射装置の制御装置。  The said low-pressure pump output control part controls the output of the said electric low-pressure pump in the idle state of the said internal combustion engine, The control apparatus of the pressure accumulation type fuel-injection apparatus as described in any one of Claims 1-3 characterized by the above-mentioned. . 前記低圧ポンプ出力制御部が、
前記内燃機関の回転数又は前記高圧ポンプの回転数を検出する回転数検出部と、
前記電動低圧ポンプの前記n1次圧送周波数が前記高圧ポンプのn2次圧送周波数と近似しないように、前記内燃機関又は高圧ポンプの回転数に応じて前記電動低圧ポンプへの供給電圧を制御する電圧制御部と、
を備えることを特徴とする請求項1に記載の蓄圧式燃料噴射装置の制御装置。
The low-pressure pump output control unit is
A rotational speed detector for detecting the rotational speed of the internal combustion engine or the rotational speed of the high-pressure pump;
As the n 1 primary pumping frequency of the electric low-pressure pump is not approximated to n 2 primary pumping frequency of the high-pressure pump, to control the voltage supplied to the electric low-pressure pump in accordance with the rotational speed of the internal combustion engine or the high-pressure pump A voltage controller;
The control apparatus for an accumulator fuel injection device according to claim 1, comprising:
JP2011500446A 2009-02-20 2009-05-22 Control device for accumulator fuel injector Expired - Fee Related JP5202722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500446A JP5202722B2 (en) 2009-02-20 2009-05-22 Control device for accumulator fuel injector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009038020 2009-02-20
JP2009038020 2009-02-20
JP2011500446A JP5202722B2 (en) 2009-02-20 2009-05-22 Control device for accumulator fuel injector
PCT/JP2009/059400 WO2010095282A1 (en) 2009-02-20 2009-05-22 System for controlling accumulator type fuel injection device

Publications (2)

Publication Number Publication Date
JPWO2010095282A1 JPWO2010095282A1 (en) 2012-08-16
JP5202722B2 true JP5202722B2 (en) 2013-06-05

Family

ID=42633580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011500446A Expired - Fee Related JP5202722B2 (en) 2009-02-20 2009-05-22 Control device for accumulator fuel injector

Country Status (2)

Country Link
JP (1) JP5202722B2 (en)
WO (1) WO2010095282A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062770A (en) * 2010-09-14 2012-03-29 Bosch Corp Rail pressure control method and common rail type fuel injection control device
JP2014190180A (en) * 2013-03-26 2014-10-06 Toyota Motor Corp Fuel injection device of internal combustion engine
JP6233200B2 (en) * 2014-06-19 2017-11-22 トヨタ自動車株式会社 Fuel supply device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643077U (en) * 1987-06-24 1989-01-10
JPH05180172A (en) * 1991-12-27 1993-07-20 Nippondenso Co Ltd Fuel pump for vehicle
JP2002295337A (en) * 2001-03-29 2002-10-09 Nippon Soken Inc Fuel injection device for internal combustion engine
JP2007032454A (en) * 2005-07-28 2007-02-08 Toyota Motor Corp Fuel system control device for internal combustion engine
JP2009002262A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Fuel supply device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643077U (en) * 1987-06-24 1989-01-10
JPH05180172A (en) * 1991-12-27 1993-07-20 Nippondenso Co Ltd Fuel pump for vehicle
JP2002295337A (en) * 2001-03-29 2002-10-09 Nippon Soken Inc Fuel injection device for internal combustion engine
JP2007032454A (en) * 2005-07-28 2007-02-08 Toyota Motor Corp Fuel system control device for internal combustion engine
JP2009002262A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Fuel supply device of internal combustion engine

Also Published As

Publication number Publication date
JPWO2010095282A1 (en) 2012-08-16
WO2010095282A1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP4453623B2 (en) Fuel injection device and abnormality detection method for fuel injection device
US7234439B2 (en) Fuel injection system executing overlap injection operation
JP4434097B2 (en) Accumulated fuel injection control device
JP5288049B2 (en) Fuel injection control system for internal combustion engine
US7216628B2 (en) Fuel injection apparatus having common rail and subject device control system
US20100274467A1 (en) Fuel-pressure controller for direct injection engine
JP4317133B2 (en) Operating method of common rail fuel injection system for internal combustion engine
JP5939227B2 (en) Pump control device
JP4111123B2 (en) Common rail fuel injection system
JP5202722B2 (en) Control device for accumulator fuel injector
JP3818011B2 (en) Fuel pressure control device for internal combustion engine
JP4600371B2 (en) Fuel injection control device
JP2004218611A (en) Fuel injection device for internal-combustion engine
JP2010216370A (en) Fuel supply control device
JP4941498B2 (en) Control device for fuel injection system
JP5975571B2 (en) Accumulated fuel injection control device and control method of accumulator fuel injection control device
JP3982516B2 (en) Fuel injection device for internal combustion engine
JP3719641B2 (en) Fuel pressure control device for in-cylinder injection engine
JP5110109B2 (en) Fuel pressure control device
JP2006037746A (en) Drive device control system and common rail fuel injection device
JP4091516B2 (en) Common rail fuel injection device and control method thereof
JP4613920B2 (en) Fuel injection device for internal combustion engine
JP2007032454A (en) Fuel system control device for internal combustion engine
JP2004036563A (en) Common rail type fuel injection system
JP4026063B2 (en) Accumulated fuel injection system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5202722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees