JP4613920B2 - Fuel injection device for internal combustion engine - Google Patents

Fuel injection device for internal combustion engine Download PDF

Info

Publication number
JP4613920B2
JP4613920B2 JP2007068035A JP2007068035A JP4613920B2 JP 4613920 B2 JP4613920 B2 JP 4613920B2 JP 2007068035 A JP2007068035 A JP 2007068035A JP 2007068035 A JP2007068035 A JP 2007068035A JP 4613920 B2 JP4613920 B2 JP 4613920B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
gain
temperature
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007068035A
Other languages
Japanese (ja)
Other versions
JP2008231919A (en
Inventor
真一 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007068035A priority Critical patent/JP4613920B2/en
Priority to DE102008000681.5A priority patent/DE102008000681B4/en
Publication of JP2008231919A publication Critical patent/JP2008231919A/en
Application granted granted Critical
Publication of JP4613920B2 publication Critical patent/JP4613920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/003Measuring variation of fuel pressure in high pressure line

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、高圧燃料を蓄えるための蓄圧器を備える内燃機関用燃料噴射装置に関する。   The present invention relates to a fuel injection device for an internal combustion engine including a pressure accumulator for storing high-pressure fuel.

従来の内燃機関用燃料噴射装置は、吸入した燃料を加圧して高圧燃料を蓄圧器へ圧送する高圧ポンプや、この高圧ポンプの燃料圧送量を調整する調整弁等からなる燃料ポンプを備えている。そして、この燃料ポンプから蓄圧器への燃料圧送量を制御して蓄圧器内の燃料圧力を目標圧に制御するようにしている。その際、燃料ポンプの操作量を所定のゲインに基づいて設定することにより、目標燃料圧の変化に対して蓄圧器内燃料圧力が応答よく追従するようにしている。   A conventional fuel injection device for an internal combustion engine includes a fuel pump including a high-pressure pump that pressurizes sucked fuel and pumps high-pressure fuel to an accumulator, and an adjustment valve that adjusts the fuel pumping amount of the high-pressure pump. . The fuel pressure from the fuel pump to the pressure accumulator is controlled to control the fuel pressure in the pressure accumulator to the target pressure. At this time, the operation amount of the fuel pump is set based on a predetermined gain, so that the fuel pressure in the accumulator follows the change in the target fuel pressure with good response.

このゲインは、例えば機関回転数や圧力偏差毎に設定される。また、燃料ポンプにより圧送される燃料の圧力や温度等が変化すると、蓄圧器内燃料圧力の変化量が変わるため、それを予め打ち消すために体積弾性係数によりゲインを補正するようにしている(例えば、特許文献1参照)。
特開2000−234543号公報
This gain is set for each engine speed and pressure deviation, for example. Further, when the pressure or temperature of the fuel pumped by the fuel pump changes, the amount of change in the fuel pressure in the accumulator changes, so that the gain is corrected by the bulk elastic coefficient in order to cancel it in advance (for example, , See Patent Document 1).
JP 2000-234543 A

ここで、高圧燃料噴射系では、インジェクタの動リーク、静リーク、さらには燃料ポンプの内部リークがある。これらのリーク量は、燃料温度、燃料圧力、機関回転数によって変化する。そして、このリークの影響によって、燃料ポンプの所定の操作量に対する蓄圧器内燃料圧力の変化速度が異なったものとなり、上記した従来装置では、燃料温度や燃料圧力が高い領域ではリーク量が多くなるため、蓄圧器内燃料圧力の変化速度が小さくなって蓄圧器内燃料圧力の制御応答性が低下し、一方、燃料温度や燃料圧力が低い領域ではリーク量が少なくなるため、蓄圧器内燃料圧力の変化速度が大きくなって蓄圧器内燃料圧力がオーバーシュートを起こし易くなるという問題があった。   Here, in the high-pressure fuel injection system, there are a dynamic leak and a static leak of the injector, and further an internal leak of the fuel pump. The amount of leakage varies depending on the fuel temperature, fuel pressure, and engine speed. Due to the influence of this leak, the rate of change of the fuel pressure in the accumulator with respect to a predetermined operation amount of the fuel pump becomes different. In the above-described conventional device, the leak amount increases in a region where the fuel temperature and the fuel pressure are high. Therefore, the change rate of the fuel pressure in the pressure accumulator is reduced and the control responsiveness of the fuel pressure in the pressure accumulator is reduced. On the other hand, the amount of leak is reduced in the region where the fuel temperature and the fuel pressure are low. There is a problem that the rate of change of the pressure increases and the fuel pressure in the pressure accumulator easily causes overshoot.

本発明は上記点に鑑みて、リークの影響による蓄圧器内燃料圧力のオーバーシュートや制御応答性の低下を防止ないしは抑制することを目的とする。   The present invention has been made in view of the above points, and it is an object of the present invention to prevent or suppress an overshoot of fuel pressure in the accumulator and a decrease in control response due to the influence of a leak.

上記目的を達成するため、請求項1に記載の発明では、高圧ポンプ(52)の燃料圧送量を調整する調整弁(53)の作動を圧力制御手段(3)によりフィードバック制御して、蓄圧器(1)内の高圧燃料の圧力を目標圧に制御する内燃機関用燃料噴射装置であって、圧力制御手段(3)は、高圧燃料の圧力が高くなるのに伴って、フィードバック制御のゲインを大きくすることを特徴とする。 In order to achieve the above object, according to the first aspect of the present invention, the operation of the regulating valve (53) for adjusting the fuel pumping amount of the high-pressure pump (52) is feedback-controlled by the pressure control means (3), thereby (1) A fuel injection device for an internal combustion engine that controls the pressure of the high-pressure fuel in the internal combustion engine to a target pressure, wherein the pressure control means (3) increases the feedback control gain as the pressure of the high-pressure fuel increases. It is characterized by being enlarged.

このようにすれば、高圧燃料の圧力が変化しても蓄圧器内燃料圧力の変化速度を略一定にすることができるため、蓄圧器内燃料圧力のオーバーシュートや制御応答性の低下を防止ないしは抑制することができる。 In this way, it is possible to change the speed of the pressure accumulator in the fuel pressure even if the pressure changes in the high-pressure fuel to a substantially constant, preventing a decrease in overshoot and control response of the accumulator in the fuel pressure or Can be suppressed.

請求項2に記載の発明では、高圧ポンプ(52)の燃料圧送量を調整する調整弁(53)の作動を圧力制御手段(3)によりフィードバック制御して、蓄圧器(1)内の高圧燃料の圧力を目標圧に制御する内燃機関用燃料噴射装置であって、圧力制御手段(3)は、高圧燃料の温度および圧力のうち少なくとも一方が高くなるのに伴って、フィードバック制御のゲインを大きくし、さらに、圧力制御手段(3)は、PID制御によるフィードバック制御を実行するものであり、高圧燃料の圧力が高くなるのに伴って、比例項のゲインおよび積分項のゲインを大きくすることを特徴とする。
このようにすれば、高圧燃料の圧力が変化しても蓄圧器内燃料圧力の変化速度を略一定にすることができるため、蓄圧器内燃料圧力のオーバーシュートや制御応答性の低下を防止ないしは抑制することができる。
According to the second aspect of the present invention, the operation of the regulating valve (53) for adjusting the fuel pumping amount of the high-pressure pump (52) is feedback-controlled by the pressure control means (3), and the high-pressure fuel in the pressure accumulator (1). The pressure control means (3) increases the gain of feedback control as at least one of the temperature and pressure of the high-pressure fuel increases. Further, the pressure control means (3) executes feedback control by PID control, and increases the gain of the proportional term and the gain of the integral term as the pressure of the high-pressure fuel increases. Features.
In this way, even if the pressure of the high-pressure fuel changes, the rate of change of the fuel pressure in the accumulator can be made substantially constant. Can be suppressed.

また、高圧燃料の圧力が高くなるのに伴って、比例項のゲインおよび積分項のゲインを二次曲線的に大きくすれば、高圧燃料の圧力が変化しても蓄圧器内燃料圧力の変化速度を精度よく略一定にすることができるため、蓄圧器内燃料圧力のオーバーシュートや制御応答性の低下を確実に防止ないしは抑制することができる。   In addition, if the gain of the proportional term and the gain of the integral term are increased in a quadratic curve as the pressure of the high-pressure fuel increases, the rate of change of the fuel pressure in the accumulator even if the pressure of the high-pressure fuel changes Therefore, it is possible to reliably prevent or suppress an overshoot of the fuel pressure in the accumulator and a decrease in control responsiveness.

また、圧力制御手段(3)は、PID制御によるフィードバック制御を実行するものであり、高圧燃料の温度が高くなるのに伴って、比例項のゲインおよび積分項のゲインを大きくすれば、高圧燃料の温度が変化しても蓄圧器内燃料圧力の変化速度を略一定にすることができるため、蓄圧器内燃料圧力のオーバーシュートや制御応答性の低下を防止ないしは抑制することができる。   The pressure control means (3) executes feedback control by PID control. If the gain of the proportional term and the gain of the integral term are increased as the temperature of the high pressure fuel increases, the high pressure fuel is increased. Since the rate of change of the fuel pressure in the accumulator can be made substantially constant even if the temperature of the accumulator changes, overshoot of the fuel pressure in the accumulator and a decrease in control response can be prevented or suppressed.

請求項5に記載の発明では、高圧ポンプ(52)の燃料圧送量を調整する調整弁(53)の作動を圧力制御手段(3)によりフィードバック制御して、蓄圧器(1)内の高圧燃料の圧力を目標圧に制御する内燃機関用燃料噴射装置であって、圧力制御手段(3)は、高圧燃料の温度および圧力のうち少なくとも一方が高くなるのに伴って、フィードバック制御のゲインを大きくし、さらに、圧力制御手段(3)は、PID制御によるフィードバック制御を実行するものであり、高圧燃料の温度が設定温度以下の領域では、高圧燃料の温度が低くなるのに伴って比例項のゲインを小さくするとともに、高圧燃料の温度が設定温度を超える領域では比例項のゲインを一定にすることを特徴とする。
このようにすれば、高圧燃料の温度が低いときには蓄圧器内燃料圧力の変化速度が小さくなるため、蓄圧器内燃料圧力のオーバーシュートを確実に防止ないしは抑制することができる。
In the invention according to claim 5, the operation of the regulating valve (53) for adjusting the fuel pumping amount of the high-pressure pump (52) is feedback-controlled by the pressure control means (3), and the high-pressure fuel in the accumulator (1) is controlled. The pressure control means (3) increases the gain of feedback control as at least one of the temperature and pressure of the high-pressure fuel increases. Further, the pressure control means (3) executes feedback control by PID control, and in the region where the temperature of the high pressure fuel is lower than the set temperature, the proportional term increases as the temperature of the high pressure fuel decreases. The gain is reduced, and the gain of the proportional term is made constant in a region where the temperature of the high-pressure fuel exceeds the set temperature.
In this way, when the temperature of the high pressure fuel is low, the rate of change of the fuel pressure in the accumulator is reduced, so that overshoot of the fuel pressure in the accumulator can be reliably prevented or suppressed.

また、高圧燃料の温度が設定温度を超える領域では、高圧燃料の温度が高くなるのに伴って積分項のゲインを大きくすれば、高圧燃料の温度が高いときの定常偏差が小さくなり、レール圧を目標レール圧に正確に制御することができる。   Also, in the region where the temperature of the high-pressure fuel exceeds the set temperature, if the gain of the integral term is increased as the temperature of the high-pressure fuel increases, the steady-state deviation when the temperature of the high-pressure fuel is high decreases, and the rail pressure Can be accurately controlled to the target rail pressure.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in a claim and this column shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の一実施形態について説明する。図1は一実施形態に係る内燃機関用燃料噴射装置の全体構成を示す図である。   An embodiment of the present invention will be described. FIG. 1 is a diagram illustrating an overall configuration of a fuel injection device for an internal combustion engine according to an embodiment.

図1に示すように、燃料噴射装置は、高圧燃料が蓄えられる蓄圧器1を備えている。蓄圧器1には複数のインジェクタ2が接続され、インジェクタ2は、電子制御装置(以下、ECUという)3に制御されて所定の時期に所定の期間開弁して、蓄圧器1に蓄えられた高圧燃料を内燃機関(より詳細には、ディーゼルエンジン。図示せず)の各気筒内に噴射する。   As shown in FIG. 1, the fuel injection device includes a pressure accumulator 1 in which high-pressure fuel is stored. A plurality of injectors 2 are connected to the pressure accumulator 1, and the injector 2 is controlled by an electronic control unit (hereinafter referred to as ECU) 3 to open a valve for a predetermined period at a predetermined time and is stored in the pressure accumulator 1. High pressure fuel is injected into each cylinder of an internal combustion engine (more specifically, a diesel engine, not shown).

インジェクタ2は、具体的には、その内部に形成された背圧室の燃料圧力が制御されることにより開弁・閉弁が制御されるようになっている。そして、インジェクタ2には噴射系リーク配管L1が接続されており、インジェクタ2の余剰燃料や背圧室から排出された燃料は、噴射系リーク配管L1および共通リーク配管L2を介して燃料タンク4に戻される。   Specifically, the injector 2 is controlled to open and close by controlling the fuel pressure in the back pressure chamber formed therein. An injection system leak pipe L1 is connected to the injector 2, and surplus fuel in the injector 2 and fuel discharged from the back pressure chamber are supplied to the fuel tank 4 via the injection system leak pipe L1 and the common leak pipe L2. Returned.

燃料ポンプ5は、燃料タンク4から燃料を吸入し、吸入した燃料を高圧に加圧して蓄圧器1に圧送する。この燃料ポンプ5は、燃料タンク4から燃料を吸い上げるフィードポンプ51と、フィードポンプ51から送られた燃料をプランジャ(図示せず)の往復動に基づいて加圧して蓄圧器1に圧送する高圧ポンプ52と、フィードポンプ51から高圧ポンプ52に至る燃料通路の開口面積を調整する調整弁53とを備えている。   The fuel pump 5 sucks fuel from the fuel tank 4, pressurizes the sucked fuel to a high pressure, and pumps the fuel to the pressure accumulator 1. The fuel pump 5 includes a feed pump 51 that sucks fuel from the fuel tank 4, and a high-pressure pump that pressurizes the fuel sent from the feed pump 51 based on the reciprocation of a plunger (not shown) and pumps the fuel to the accumulator 1. 52 and an adjustment valve 53 that adjusts the opening area of the fuel passage from the feed pump 51 to the high-pressure pump 52.

フィードポンプ51および高圧ポンプ52は、内燃機関によって駆動され、機関回転数に比例した回転数で駆動される。調整弁53は、電磁弁にて構成され、ECU3によって制御される。より詳細には、調整弁53は、コイル(図示せず)に供給される電流の大きさに応じて弁体(図示せず)の位置が連続的に変化して、燃料通路の開口面積を連続的に調整可能になっている。そして、調整弁53により燃料通路の開口面積が変更されることにより、高圧ポンプ52の燃料吸入量が調整され、ひいては燃料圧送量が調整される。   The feed pump 51 and the high-pressure pump 52 are driven by an internal combustion engine and are driven at a rotational speed proportional to the engine rotational speed. The adjustment valve 53 is configured by an electromagnetic valve and is controlled by the ECU 3. More specifically, the adjustment valve 53 continuously changes the position of the valve body (not shown) according to the magnitude of the current supplied to the coil (not shown), thereby reducing the opening area of the fuel passage. It is continuously adjustable. Then, by changing the opening area of the fuel passage by the adjustment valve 53, the fuel intake amount of the high-pressure pump 52 is adjusted, and consequently the fuel pumping amount is adjusted.

燃料ポンプ5にはポンプ系リーク配管L3が接続されており、高圧ポンプ52から排出された燃料は、ポンプ系リーク配管L3および共通リーク配管L2を介して燃料タンク4に戻される。   A pump system leak pipe L3 is connected to the fuel pump 5, and the fuel discharged from the high pressure pump 52 is returned to the fuel tank 4 via the pump system leak pipe L3 and the common leak pipe L2.

蓄圧器1には、蓄圧器1内の燃料圧力(以下、レール圧という)を検出する圧力センサ61、蓄圧器1内の燃料温度を検出する温度センサ62が設けられている。また、内燃機関には、機関回転数を検出する回転数センサ63が設けられている。   The accumulator 1 is provided with a pressure sensor 61 that detects fuel pressure in the accumulator 1 (hereinafter referred to as rail pressure) and a temperature sensor 62 that detects fuel temperature in the accumulator 1. Further, the internal combustion engine is provided with a rotation speed sensor 63 for detecting the engine rotation speed.

ECU3は、図示しないCPU、ROM、RAM、EEPROM等からなる周知のマイクロコンピュータを備え、マイクロコンピュータに記憶したプログラムに従って演算処理を行うものである。ECU3には、圧力センサ61、温度センサ62、および回転数センサ63からの信号が入力されるとともに、図示しない各種センサからアクセル開度等の種々の情報が随時入力される。   The ECU 3 includes a well-known microcomputer including a CPU, ROM, RAM, EEPROM, etc. (not shown), and performs arithmetic processing according to a program stored in the microcomputer. The ECU 3 receives signals from the pressure sensor 61, the temperature sensor 62, and the rotation speed sensor 63, and various information such as the accelerator opening from various sensors (not shown) as needed.

そして、ECU3は、内燃機関や車両の運転状態に応じた最適の噴射時期、噴射量(噴射期間)を算出して、各インジェクタ2の開弁時期および開弁期間を制御する。   Then, the ECU 3 calculates the optimal injection timing and injection amount (injection period) according to the operating state of the internal combustion engine and the vehicle, and controls the valve opening timing and valve opening period of each injector 2.

また、ECU3は、調整弁53を制御して高圧ポンプ52に吸入される燃料量を調整し、これにより高圧ポンプ52の燃料圧送量を調整して、レール圧を目標圧に一致させるように制御する。なお、本実施形態では、ECU3は調整弁53の作動をPID制御によりフィードバック制御する。   In addition, the ECU 3 controls the adjustment valve 53 to adjust the amount of fuel sucked into the high-pressure pump 52, thereby adjusting the fuel pumping amount of the high-pressure pump 52 and controlling the rail pressure to match the target pressure. To do. In the present embodiment, the ECU 3 performs feedback control of the operation of the adjustment valve 53 by PID control.

次に、圧力制御手段としてのECU3によって実行されるレール圧の制御について説明する。図2は、レール圧を目標圧(以下、目標レール圧という)に一致させるための手順を示したフローチャートである。ECU3はこの処理ルーチンを内燃機関の所定のクランク角毎の割込処理として実行する。   Next, rail pressure control executed by the ECU 3 as pressure control means will be described. FIG. 2 is a flowchart showing a procedure for matching the rail pressure with a target pressure (hereinafter referred to as a target rail pressure). The ECU 3 executes this processing routine as an interrupt process for each predetermined crank angle of the internal combustion engine.

まず、燃料噴射量および回転数センサ63にて検出した機関回転数NE等に基づいて、目標レール圧を算出する(ステップS100)。この燃料噴射量および機関回転数NEと目標レール圧との関係は関数データとしてECU3のメモリに記憶されている。ECU3はこの関数データを参照して目標レール圧を算出する。なお、燃料噴射量は、本ルーチンとは別のルーチンにおいてアクセルペダルの踏み込み量および機関回転数NEに基づいて算出され、ECU3のメモリに記憶されている値である。   First, the target rail pressure is calculated based on the fuel injection amount and the engine speed NE detected by the engine speed sensor 63 (step S100). The relationship between the fuel injection amount and the engine speed NE and the target rail pressure is stored in the memory of the ECU 3 as function data. The ECU 3 refers to this function data to calculate the target rail pressure. The fuel injection amount is a value that is calculated based on the accelerator pedal depression amount and the engine speed NE in a routine different from this routine and stored in the memory of the ECU 3.

続いて、圧力センサ61にて現在のレール圧を検出し(ステップS101)、目標レール圧と現在のレール圧との差ΔP(以下、圧力偏差という)を求める(ステップS102)。   Subsequently, the current rail pressure is detected by the pressure sensor 61 (step S101), and a difference ΔP (hereinafter referred to as a pressure deviation) between the target rail pressure and the current rail pressure is obtained (step S102).

続いて、ステップS102で求めた圧力偏差ΔPおよび機関回転数NEに基づいて、PID制御式における基本となる比例項ゲインMKP、積分項ゲインMKI、微分項ゲインMKDを算出する(ステップS103)。この圧力偏差ΔPおよび機関回転数NEと各ゲインMKP、MKI、MKDとの関係は予め実験により求められ、関数データとしてECU3のメモリに記憶されており、ECU3はこの関数データを参照して各ゲインMKP、MKI、MKDを算出する。   Subsequently, based on the pressure deviation ΔP and the engine speed NE obtained in step S102, a basic proportional term gain MKP, integral term gain MKI, and differential term gain MKD in the PID control equation are calculated (step S103). The relationship between the pressure deviation ΔP and the engine speed NE and the respective gains MKP, MKI, and MKD is obtained in advance by experiment, and is stored in the memory of the ECU 3 as function data. The ECU 3 refers to the function data and determines each gain. MKP, MKI, and MKD are calculated.

続いて、機関回転数NEが所定値(例えば1000rpm)以上の場合、すなわちステップS104がYESの場合は、ステップS105、106にて、ステップS103で求めた各ゲインMKP、MKI、MKDの補正を行う。   Subsequently, when the engine speed NE is equal to or higher than a predetermined value (for example, 1000 rpm), that is, when step S104 is YES, in steps S105 and 106, the gains MKP, MKI, and MKD obtained in step S103 are corrected. .

具体的には、温度センサ62で検出した蓄圧器1内の燃料温度に基づいて、比例項温度ゲイン係数KPT、積分項温度ゲイン係数KIT、微分項温度ゲイン係数KDTを算出するとともに、レール圧に基づいて比例項圧力ゲイン係数KPP、積分項圧力ゲイン係数KIP、微分項圧力ゲイン係数KDPを算出する(ステップS105)。   Specifically, based on the fuel temperature in the pressure accumulator 1 detected by the temperature sensor 62, the proportional term temperature gain coefficient KPT, the integral term temperature gain coefficient KIT, and the differential term temperature gain coefficient KDT are calculated, and the rail pressure is calculated. Based on this, a proportional term pressure gain coefficient KPP, an integral term pressure gain coefficient KIP, and a derivative term pressure gain coefficient KDP are calculated (step S105).

ここで、図3は燃料温度とリーク量との関係を示すものである。なお、図3のリーク量は、インジェクタ2の動リーク、静リーク、さらには燃料ポンプ5の内部リークの総量である。図3に示すように、リーク量は燃料温度が高くなるのに比例して増加する。   Here, FIG. 3 shows the relationship between the fuel temperature and the leak amount. 3 is the total amount of dynamic leak and static leak of the injector 2, and further the internal leak of the fuel pump 5. In FIG. As shown in FIG. 3, the amount of leak increases in proportion to the increase in fuel temperature.

ECU3のメモリには、図4に示すような、比例項温度ゲイン係数KPTおよび微分項温度ゲイン係数KDTと燃料温度との関係が関数データとして記憶されている。図4に示すように、高圧燃料の温度が設定温度Tb(例えば、40℃)以下の領域では、高圧燃料の温度が低くなるのに伴って比例項温度ゲイン係数KPTおよび微分項温度ゲイン係数KDTを小さくする(但し、KPT≦1、KDT≦1)。また、高圧燃料の温度が設定温度Tbを超える領域では、KPT=1、KDT=1とし、実質的な補正がなされないようにしている。そして、ECU3は、図4に示す関数データを参照することにより、比例項温度ゲイン係数KPTおよび微分項温度ゲイン係数KDTを算出する。   In the memory of the ECU 3, the relationship between the proportional term temperature gain coefficient KPT and the differential term temperature gain coefficient KDT and the fuel temperature as shown in FIG. 4 is stored as function data. As shown in FIG. 4, in the region where the temperature of the high pressure fuel is equal to or lower than the set temperature Tb (for example, 40 ° C.), the proportional term temperature gain coefficient KPT and the differential term temperature gain coefficient KDT as the temperature of the high pressure fuel decreases. (However, KPT ≦ 1, KDT ≦ 1). In the region where the temperature of the high-pressure fuel exceeds the set temperature Tb, KPT = 1 and KDT = 1 are set so that no substantial correction is made. Then, the ECU 3 calculates the proportional term temperature gain coefficient KPT and the differential term temperature gain coefficient KDT by referring to the function data shown in FIG.

また、ECU3のメモリには、図5に示すような、積分項温度ゲイン係数KITと燃料温度との関係が関数データとして記憶されている。図5に示すように、高圧燃料の温度が設定温度Tb以下の領域では、KIT=1とし、実質的な補正がなされないようにしている。また、高圧燃料の温度が設定温度Tbを超える領域では、高圧燃料の温度が高くなるのに伴って積分項温度ゲイン係数KITを大きくする(但し、KIT≧1)。そして、ECU3は、図5に示す関数データを参照することにより、積分項温度ゲイン係数KITを算出する。   Further, the memory of the ECU 3 stores the relation between the integral term temperature gain coefficient KIT and the fuel temperature as function data as shown in FIG. As shown in FIG. 5, in the region where the temperature of the high-pressure fuel is equal to or lower than the set temperature Tb, KIT = 1 is set so that no substantial correction is made. Further, in the region where the temperature of the high pressure fuel exceeds the set temperature Tb, the integral term temperature gain coefficient KIT is increased as the temperature of the high pressure fuel becomes higher (where KIT ≧ 1). Then, the ECU 3 calculates the integral term temperature gain coefficient KIT by referring to the function data shown in FIG.

図6はレール圧とリーク量との関係を燃料温度毎に示すものである。なお、図6のリーク量は、インジェクタ2の動リーク、静リーク、さらには燃料ポンプ5の内部リークの総量である。図6に示すように、リーク量はレール圧が高くなるのに伴って増加し、より詳細には、レール圧が略80MPa以下の領域ではリーク量の変化は少なく、レール圧が略80MPaを超える領域ではリーク量は二次曲線的に増加する。   FIG. 6 shows the relationship between rail pressure and leak amount for each fuel temperature. Note that the leak amount in FIG. 6 is the total amount of dynamic leak, static leak, and internal leak of the fuel pump 5 of the injector 2. As shown in FIG. 6, the leak amount increases as the rail pressure increases, and more specifically, there is little change in the leak amount in the region where the rail pressure is approximately 80 MPa or less, and the rail pressure exceeds approximately 80 MPa. In the region, the leak amount increases in a quadratic curve.

ECU3のメモリには、図7に示すような、比例項圧力ゲイン係数KPP、積分項圧力ゲイン係数KIP、および微分項圧力ゲイン係数KDPとレール圧との関係が関数データとして記憶されている。図7に示すように、高圧燃料の圧力が設定圧力Pb(例えば、80MPa)以下の領域では、KPP=1、KIP=1、KDP=1とし、実質的な補正がなされないようにしている。また、高圧燃料の圧力が設定圧力Pbを超える領域では、高圧燃料の圧力が高くなるのに伴って各圧力ゲイン係数KPP、KIP、KDPを二次曲線的に大きくする(但し、KPP≧1、KIP≧1、KDP≧1)。そして、ECU3は、図7に示す関数データを参照することにより、各圧力ゲイン係数KPP、KIP、KDPを算出する。   In the memory of the ECU 3, the relationship between the proportional term pressure gain coefficient KPP, the integral term pressure gain coefficient KIP, the differential term pressure gain coefficient KDP and the rail pressure as shown in FIG. 7 is stored as function data. As shown in FIG. 7, in a region where the pressure of the high-pressure fuel is equal to or lower than the set pressure Pb (for example, 80 MPa), KPP = 1, KIP = 1, and KDP = 1 are set so that no substantial correction is made. In the region where the pressure of the high pressure fuel exceeds the set pressure Pb, each pressure gain coefficient KPP, KIP, KDP increases in a quadratic curve as the pressure of the high pressure fuel increases (provided that KPP ≧ 1, KIP ≧ 1, KDP ≧ 1). Then, the ECU 3 calculates each pressure gain coefficient KPP, KIP, KDP by referring to the function data shown in FIG.

そして、ステップS103で求めた基本となる各ゲインMKP、MKI、MKDと、ステップS105で求めた各ゲイン係数KPT、KIT、KDT、KPP、KIP、KDPとに基づいて、最終的な比例項ゲインKP(但し、KP=MKP*KPT*KPP)、最終的な積分項ゲインKI(但し、KI=MKI*KIT*KIP)、最終的な微分項ゲインKD(但し、KD=MKD*KDT*KDP)を算出する(ステップS106)。   Then, based on the basic gains MKP, MKI, MKD obtained in step S103 and the gain coefficients KPT, KIT, KDT, KPP, KIP, KDP obtained in step S105, the final proportional term gain KP (Where KP = MKP * KPT * KPP), final integral term gain KI (where KI = MKI * KIT * KIP), final differential term gain KD (where KD = MKD * KDT * KDP) Calculate (step S106).

続いて、比例項QFP(但し、QFP=KP*ΔP)、積分項QFI(但し、QFI=KI*∫ΔPdt)、微分項QFD(但し、QFD=KD*dΔP/dt)を演算した後、それらを加算して基本となる要求吐出量QFB(但し、QFB=QFP+QFI+QFD)を算出する(ステップS107)。因みに、要求吐出量は、レール圧を目標レール圧に一致させるために必要な高圧ポンプ52の燃料圧送量に相当する。   Subsequently, after calculating the proportional term QFP (where QFP = KP * ΔP), the integral term QFI (where QFI = KI * ∫ΔPdt), and the differential term QFD (where QFD = KD * dΔP / dt) Is added to calculate the basic required discharge amount QFB (QFB = QFP + QFI + QFD) (step S107). Incidentally, the required discharge amount corresponds to the fuel pumping amount of the high-pressure pump 52 necessary for making the rail pressure coincide with the target rail pressure.

続いて、蓄圧器1内の燃料温度およびレール圧に基づいて、ECU3のメモリに記憶された特性式から燃料の体積弾性係数PCREFを算出する(ステップS108)。なお、体積弾性係数PCREFは、燃料温度やレール圧が高くなるほど小さくなる。   Subsequently, based on the fuel temperature in the pressure accumulator 1 and the rail pressure, the volume elastic modulus PCREF of the fuel is calculated from the characteristic equation stored in the memory of the ECU 3 (step S108). The bulk modulus of elasticity PCREF decreases as the fuel temperature and rail pressure increase.

続いて、ステップS107で求めた基本となる要求吐出量QFBと、ステップS108で求めた体積弾性係数PCREFとに基づいて、最終的な要求吐出量QPMPを下式(1)により算出する(ステップS109)。   Subsequently, the final required discharge amount QPMP is calculated by the following equation (1) based on the basic required discharge amount QFB obtained in step S107 and the bulk elastic modulus PCREF obtained in step S108 (step S109). ).

QPMP=QFB*PCREF/KVOL…(1)
なお、KVOLは高圧部の容積である。より詳細には、KVOLは、高圧ポンプ52から蓄圧器1に至る間の燃料通路の容積と蓄圧器1内の容積との和である。
QPMP = QFB * PCREF / KVOL (1)
KVOL is the volume of the high pressure part. More specifically, KVOL is the sum of the volume of the fuel passage between the high pressure pump 52 and the accumulator 1 and the volume in the accumulator 1.

続いて、ステップS109で求めた最終的な要求吐出量QPMPに基づいて、調整弁53に供給する電流値を算出し、調整弁53を作動させるための駆動信号を出力する(ステップS110)。最終的な要求吐出量QPMPと調整弁53に供給する電流値との関係は予め実験により求められ、関数データとしてECU3のメモリに記憶されており、ECU3はこの関数データを参照して電流値を算出する。   Subsequently, based on the final required discharge amount QPMP obtained in step S109, a current value to be supplied to the regulating valve 53 is calculated, and a drive signal for operating the regulating valve 53 is output (step S110). The relationship between the final required discharge amount QPMP and the current value to be supplied to the regulating valve 53 is obtained in advance by experiment and is stored in the memory of the ECU 3 as function data. The ECU 3 refers to this function data and determines the current value. calculate.

ステップS110で調整弁53に供給される電流値を制御することにより、高圧ポンプ52の燃料吸入量が調整され、ひいては燃料圧送量が調整され、レール圧が目標レール圧に制御される。そして、ステップS110の処理を実行した後、ECU3は本処理ルーチンを一旦終了する。   By controlling the current value supplied to the regulating valve 53 in step S110, the fuel suction amount of the high-pressure pump 52 is adjusted, the fuel pumping amount is adjusted, and the rail pressure is controlled to the target rail pressure. And after performing the process of step S110, ECU3 once complete | finishes this process routine.

なお、図8は機関回転数NEとリーク量との関係を示すものであり、機関回転数NEが低い領域(略1000rpm以下)では、リーク量の変化率が極めて大きくなっており、機関回転数NEが低い領域でのリーク量は回転数依存性が支配的になる。そこで、機関回転数NEが所定値未満の場合、すなわちステップS104がNOの場合は、KP=MKP、KI=MKI、KD=MKDとして、ステップS103で求めた各ゲインMKP、MKI、MKDの補正を行わないようにしている(ステップS111)。   FIG. 8 shows the relationship between the engine speed NE and the leak amount. In a region where the engine speed NE is low (approximately 1000 rpm or less), the rate of change of the leak amount is extremely large, and the engine speed is low. The amount of leak in the region where NE is low is dominated by the rotational speed dependency. Therefore, when the engine speed NE is less than the predetermined value, that is, when step S104 is NO, KP = MKP, KI = MKI, KD = MKD, and each gain MKP, MKI, MKD obtained in step S103 is corrected. This is not performed (step S111).

本実施形態では、高圧燃料の温度および圧力が高くなるのに伴ってフィードバック制御のゲインを大きくしているため、高圧燃料の温度や圧力の変化によりリーク量が変化してもレール圧の変化速度を略一定にすることができ、レール圧のオーバーシュートや制御応答性の低下を防止ないしは抑制することができる。   In this embodiment, since the gain of feedback control is increased as the temperature and pressure of the high-pressure fuel increase, the rate of change of the rail pressure even if the amount of leak changes due to a change in the temperature or pressure of the high-pressure fuel. Can be made substantially constant, and rail pressure overshoot and control response degradation can be prevented or suppressed.

また、高圧燃料の圧力が高くなるのに伴って比例項のゲインおよび積分項のゲインを二次曲線的に大きくしているため、レール圧の変化速度を精度よく略一定にすることができ、レール圧のオーバーシュートや制御応答性の低下を確実に防止ないしは抑制することができる。   In addition, as the pressure of the high-pressure fuel increases, the gain of the proportional term and the gain of the integral term are increased in a quadratic curve, so the change speed of the rail pressure can be made substantially constant with high accuracy. Rail pressure overshoot and control responsiveness can be reliably prevented or suppressed.

さらに、高圧燃料の温度が設定温度Tb以下の領域では、高圧燃料の温度が低くなるのに伴って比例項のゲインを小さくしているため、高圧燃料の温度が低いときにはレール圧の変化速度が小さくなり、レール圧のオーバーシュートを確実に防止ないしは抑制することができる。   Further, in the region where the temperature of the high-pressure fuel is equal to or lower than the set temperature Tb, the gain of the proportional term is reduced as the temperature of the high-pressure fuel decreases. As a result, the rail pressure overshoot can be reliably prevented or suppressed.

さらにまた、高圧燃料の温度が設定温度Tbを超える領域では、高圧燃料の温度が高くなるのに伴って積分項のゲインを大きくしているため、高圧燃料の温度が高いときの定常偏差が小さくなり、レール圧を目標レール圧に正確に制御することができる。   Furthermore, in the region where the temperature of the high pressure fuel exceeds the set temperature Tb, the gain of the integral term is increased as the temperature of the high pressure fuel increases, so that the steady-state deviation when the temperature of the high pressure fuel is high is small. Thus, the rail pressure can be accurately controlled to the target rail pressure.

(他の実施形態)
上記実施形態では、調整弁53として、電流の大きさに応じて燃料通路の開口面積を連続的に調整するものを用いたが、フィードポンプ51から高圧ポンプ52に至る燃料通路を開閉する形式の調整弁を用いてもよい。なお、この形式の調整弁を用いた場合は、高圧ポンプ52の吸入行程中に調整弁53が開弁して高圧ポンプ52の燃料吸入が開始され、吸入行程の途中で調整弁53が閉弁して燃料吸入が終了される。そして、調整弁53の開弁期間中に高圧ポンプ52に吸入された燃料の全てが、吸入行程に続く圧送行程において加圧されて蓄圧器1に圧送される。従って、調整弁53の開弁期間を変更することにより、高圧ポンプ52の燃料圧送量が調整される。
(Other embodiments)
In the above embodiment, the adjustment valve 53 is a valve that continuously adjusts the opening area of the fuel passage according to the magnitude of the current. However, the adjustment valve 53 is of a type that opens and closes the fuel passage from the feed pump 51 to the high-pressure pump 52. A regulating valve may be used. When this type of regulating valve is used, the regulating valve 53 is opened during the intake stroke of the high-pressure pump 52 and fuel suction of the high-pressure pump 52 is started, and the regulating valve 53 is closed during the intake stroke. As a result, the fuel intake is terminated. All of the fuel sucked into the high-pressure pump 52 during the valve opening period of the regulating valve 53 is pressurized and pumped to the pressure accumulator 1 in the pumping stroke following the suction stroke. Therefore, the fuel pumping amount of the high-pressure pump 52 is adjusted by changing the valve opening period of the adjusting valve 53.

本発明の一実施形態に係る内燃機関用燃料噴射装置の全体構成を示す図である。It is a figure showing the whole fuel injection device for internal-combustion engines concerning one embodiment of the present invention. 一実施形態におけるレール圧の制御手順を示すたフローチャートである。It is a flowchart which showed the control procedure of the rail pressure in one Embodiment. 燃料温度とリーク量との関係を示す図である。It is a figure which shows the relationship between fuel temperature and the amount of leaks. 比例項温度ゲイン係数KPTおよび微分項温度ゲイン係数KDTと燃料温度との関係を示す図である。It is a figure which shows the relationship between the proportional term temperature gain coefficient KPT and the differential term temperature gain coefficient KDT, and fuel temperature. 積分項温度ゲイン係数KITと燃料温度との関係を示す図である。It is a figure which shows the relationship between integral term temperature gain coefficient KIT and fuel temperature. レール圧とリーク量との関係を示す図である。It is a figure which shows the relationship between rail pressure and leak amount. 比例項圧力ゲイン係数KPP、積分項圧力ゲイン係数KIP、および微分項圧力ゲイン係数KDPとレール圧との関係を示す図である。It is a figure which shows the relationship between a proportional term pressure gain coefficient KPP, an integral term pressure gain coefficient KIP, a differential term pressure gain coefficient KDP, and rail pressure. 図8は機関回転数NEとリーク量との関係を示す図である。FIG. 8 is a graph showing the relationship between the engine speed NE and the leak amount.

符号の説明Explanation of symbols

1…蓄圧器、2…インジェクタ、3…電子制御装置、52…高圧ポンプ、53…調整弁。   DESCRIPTION OF SYMBOLS 1 ... Accumulator, 2 ... Injector, 3 ... Electronic control unit, 52 ... High pressure pump, 53 ... Adjusting valve.

Claims (7)

高圧燃料を蓄える蓄圧器(1)と、
この蓄圧器(1)に蓄えられた高圧燃料を内燃機関に噴射するインジェクタ(2)と、
吸入した燃料を加圧して高圧燃料を前記蓄圧器(1)へ圧送する高圧ポンプ(52)と、
この高圧ポンプ(52)の燃料圧送量を調整する調整弁(53)と、
この調整弁(53)の作動をフィードバック制御して前記蓄圧器(1)内の高圧燃料の圧力を目標圧に制御する圧力制御手段(3)とを備え、
この圧力制御手段(3)は、高圧燃料の圧力が高くなるのに伴って、フィードバック制御のゲインを大きくすることを特徴とする内燃機関用燃料噴射装置。
A pressure accumulator (1) for storing high-pressure fuel;
An injector (2) for injecting high-pressure fuel stored in the pressure accumulator (1) into the internal combustion engine;
A high pressure pump (52) for pressurizing the sucked fuel and pumping high pressure fuel to the accumulator (1);
An adjustment valve (53) for adjusting the fuel pumping amount of the high-pressure pump (52);
Pressure control means (3) for feedback-controlling the operation of the regulating valve (53) to control the pressure of the high-pressure fuel in the accumulator (1) to a target pressure,
The internal combustion engine fuel injection device, wherein the pressure control means (3) increases the gain of feedback control as the pressure of the high-pressure fuel increases.
高圧燃料を蓄える蓄圧器(1)と、
この蓄圧器(1)に蓄えられた高圧燃料を内燃機関に噴射するインジェクタ(2)と、
吸入した燃料を加圧して高圧燃料を前記蓄圧器(1)へ圧送する高圧ポンプ(52)と、
この高圧ポンプ(52)の燃料圧送量を調整する調整弁(53)と、
この調整弁(53)の作動をフィードバック制御して前記蓄圧器(1)内の高圧燃料の圧力を目標圧に制御する圧力制御手段(3)とを備え、
この圧力制御手段(3)は、高圧燃料の温度および圧力のうち少なくとも一方が高くなるのに伴って、フィードバック制御のゲインを大きくし、
さらに、前記圧力制御手段(3)は、PID制御によるフィードバック制御を実行するものであり、高圧燃料の圧力が高くなるのに伴って、比例項のゲインおよび積分項のゲインを大きくすることを特徴とする内燃機関用燃料噴射装置。
A pressure accumulator (1) for storing high-pressure fuel;
An injector (2) for injecting high-pressure fuel stored in the pressure accumulator (1) into the internal combustion engine;
A high pressure pump (52) for pressurizing the sucked fuel and pumping high pressure fuel to the accumulator (1);
An adjustment valve (53) for adjusting the fuel pumping amount of the high-pressure pump (52);
Pressure control means (3) for feedback-controlling the operation of the regulating valve (53) to control the pressure of the high-pressure fuel in the accumulator (1) to a target pressure,
The pressure control means (3) increases the feedback control gain as at least one of the temperature and pressure of the high-pressure fuel increases.
Further, the pressure control means (3) performs feedback control by PID control, and increases the gain of the proportional term and the gain of the integral term as the pressure of the high pressure fuel increases. A fuel injection device for an internal combustion engine.
前記圧力制御手段(3)は、高圧燃料の圧力が高くなるのに伴って、前記比例項のゲインおよび前記積分項のゲインを二次曲線的に大きくすることを特徴とする請求項2に記載の内燃機関用燃料噴射装置。   The pressure control means (3) increases the gain of the proportional term and the gain of the integral term in a quadratic curve as the pressure of the high-pressure fuel increases. Fuel injection device for internal combustion engine. 前記圧力制御手段(3)は、PID制御によるフィードバック制御を実行するものであり、高圧燃料の温度が高くなるのに伴って、比例項のゲインおよび積分項のゲインを大きくすることを特徴とする請求項1ないし3のいずれか1つに記載の内燃機関用燃料噴射装置。   The pressure control means (3) executes feedback control by PID control, and increases the gain of the proportional term and the gain of the integral term as the temperature of the high-pressure fuel increases. The fuel injection device for an internal combustion engine according to any one of claims 1 to 3. 高圧燃料を蓄える蓄圧器(1)と、
この蓄圧器(1)に蓄えられた高圧燃料を内燃機関に噴射するインジェクタ(2)と、
吸入した燃料を加圧して高圧燃料を前記蓄圧器(1)へ圧送する高圧ポンプ(52)と、
この高圧ポンプ(52)の燃料圧送量を調整する調整弁(53)と、
この調整弁(53)の作動をフィードバック制御して前記蓄圧器(1)内の高圧燃料の圧力を目標圧に制御する圧力制御手段(3)とを備え、
この圧力制御手段(3)は、高圧燃料の温度および圧力のうち少なくとも一方が高くなるのに伴って、フィードバック制御のゲインを大きくし、
さらに、前記圧力制御手段(3)は、PID制御によるフィードバック制御を実行するものであり、高圧燃料の温度が設定温度以下の領域では、高圧燃料の温度が低くなるのに伴って比例項のゲインを小さくするとともに、高圧燃料の温度が前記設定温度を超える領域では前記比例項のゲインを一定にすることを特徴とする内燃機関用燃料噴射装置。
A pressure accumulator (1) for storing high-pressure fuel;
An injector (2) for injecting high-pressure fuel stored in the pressure accumulator (1) into the internal combustion engine;
A high pressure pump (52) for pressurizing the sucked fuel and pumping high pressure fuel to the accumulator (1);
An adjustment valve (53) for adjusting the fuel pumping amount of the high-pressure pump (52);
Pressure control means (3) for feedback-controlling the operation of the regulating valve (53) to control the pressure of the high-pressure fuel in the accumulator (1) to a target pressure,
The pressure control means (3) increases the feedback control gain as at least one of the temperature and pressure of the high-pressure fuel increases.
Further, the pressure control means (3) executes feedback control by PID control, and in a region where the temperature of the high pressure fuel is lower than the set temperature, the gain of the proportional term is increased as the temperature of the high pressure fuel becomes lower. And the gain of the proportional term is made constant in a region where the temperature of the high-pressure fuel exceeds the set temperature.
前記圧力制御手段(3)は、高圧燃料の温度が設定温度以下の領域では、前記積分項のゲインを一定にするとともに、高圧燃料の温度が前記設定温度を超える領域では、高圧燃料の温度が高くなるのに伴って前記積分項のゲインを大きくすることを特徴とする請求項4または5に記載の内燃機関用燃料噴射装置。   The pressure control means (3) makes the gain of the integral term constant in a region where the temperature of the high pressure fuel is lower than or equal to a preset temperature, and in the region where the temperature of the high pressure fuel exceeds the preset temperature, 6. The fuel injection device for an internal combustion engine according to claim 4, wherein the gain of the integral term is increased as the value increases. 前記高圧ポンプ(52)は前記内燃機関に駆動されるものであり、
前記圧力制御手段(3)は、前記内燃機関の回転数が1000rpm以下の領域では、高圧燃料の温度および圧力の変化に基づく前記ゲインの変更を行わないことを特徴とする請求項1ないし6のいずれか1つに記載の内燃機関用燃料噴射装置。
The high-pressure pump (52) is driven by the internal combustion engine,
The pressure control means (3) does not change the gain based on changes in temperature and pressure of the high-pressure fuel in a region where the rotational speed of the internal combustion engine is 1000 rpm or less. The fuel injection device for an internal combustion engine according to any one of the above.
JP2007068035A 2007-03-16 2007-03-16 Fuel injection device for internal combustion engine Expired - Fee Related JP4613920B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007068035A JP4613920B2 (en) 2007-03-16 2007-03-16 Fuel injection device for internal combustion engine
DE102008000681.5A DE102008000681B4 (en) 2007-03-16 2008-03-14 fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068035A JP4613920B2 (en) 2007-03-16 2007-03-16 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008231919A JP2008231919A (en) 2008-10-02
JP4613920B2 true JP4613920B2 (en) 2011-01-19

Family

ID=39868938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068035A Expired - Fee Related JP4613920B2 (en) 2007-03-16 2007-03-16 Fuel injection device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4613920B2 (en)
DE (1) DE102008000681B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550599B (en) * 2016-05-24 2020-05-27 Delphi Tech Ip Ltd Method of controlling fuel injection test equipment
JP7359367B2 (en) * 2019-07-17 2023-10-11 株式会社トランストロン Engine intake system control device and its control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106495A (en) * 1991-10-15 1993-04-27 Nippondenso Co Ltd Accumulator type fuel injection device for internal combustion engine
JPH10288105A (en) * 1997-04-17 1998-10-27 Toyota Motor Corp Fuel injection device for internal combustion engine
JP2000234543A (en) * 1999-02-15 2000-08-29 Toyota Motor Corp Fuel pressure control device for high pressure fuel injection system
JP2000282927A (en) * 1999-03-29 2000-10-10 Unisia Jecs Corp Fuel injection device for engine
JP2000314340A (en) * 1999-04-30 2000-11-14 Toyota Motor Corp Common rail fuel pressure control device for internal combustion engine
JP2004005446A (en) * 2002-03-27 2004-01-08 Denso Corp Linear actuator controller
JP2004011629A (en) * 2002-06-12 2004-01-15 Denso Corp Fuel injection apparatus for internal-combustion engine
JP2004036563A (en) * 2002-07-05 2004-02-05 Denso Corp Common rail type fuel injection system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731995B4 (en) 1997-07-25 2008-02-21 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
JP2001159359A (en) 1999-12-02 2001-06-12 Mitsubishi Electric Corp Fuel pressure control device for cylinder injection engine
DE10155252B4 (en) 2001-11-09 2004-01-08 Siemens Ag Method for checking the plausibility of a fuel pressure value supplied by a pressure sensor in an injection system for internal combustion engines and corresponding injection system
JP4118652B2 (en) 2002-02-20 2008-07-16 株式会社デンソー Accumulated fuel injection system
DE10313615B4 (en) 2002-03-27 2018-02-15 Denso Corporation Linear actuator control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106495A (en) * 1991-10-15 1993-04-27 Nippondenso Co Ltd Accumulator type fuel injection device for internal combustion engine
JPH10288105A (en) * 1997-04-17 1998-10-27 Toyota Motor Corp Fuel injection device for internal combustion engine
JP2000234543A (en) * 1999-02-15 2000-08-29 Toyota Motor Corp Fuel pressure control device for high pressure fuel injection system
JP2000282927A (en) * 1999-03-29 2000-10-10 Unisia Jecs Corp Fuel injection device for engine
JP2000314340A (en) * 1999-04-30 2000-11-14 Toyota Motor Corp Common rail fuel pressure control device for internal combustion engine
JP2004005446A (en) * 2002-03-27 2004-01-08 Denso Corp Linear actuator controller
JP2004011629A (en) * 2002-06-12 2004-01-15 Denso Corp Fuel injection apparatus for internal-combustion engine
JP2004036563A (en) * 2002-07-05 2004-02-05 Denso Corp Common rail type fuel injection system

Also Published As

Publication number Publication date
DE102008000681A1 (en) 2008-11-20
DE102008000681B4 (en) 2022-02-10
JP2008231919A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
US7025050B2 (en) Fuel pressure control device for internal combination engine
US6450147B2 (en) Fuel pressure control apparatus of internal combustion engine
US6966300B2 (en) Valve opening degree control system and common rail type fuel injection system
JP5212501B2 (en) Fuel injection device
US7284539B1 (en) Fuel pressure controller for direct injection internal combustion engine
JP4475205B2 (en) Control device for common rail fuel injection system
US20100274467A1 (en) Fuel-pressure controller for direct injection engine
US6715470B2 (en) Fuel supply device for an internal combustion engine
JP4111123B2 (en) Common rail fuel injection system
JP3818011B2 (en) Fuel pressure control device for internal combustion engine
JP6146274B2 (en) Control device for internal combustion engine
JP4569598B2 (en) Pressure reducing valve control device and fuel injection system using the same
JP4220992B2 (en) High pressure fuel pump control device for engine
JP4605182B2 (en) Pump control device and fuel injection system using the same
JP4613920B2 (en) Fuel injection device for internal combustion engine
JPH1130150A (en) Accumulator fuel injection device
JP4941498B2 (en) Control device for fuel injection system
JP2011144711A (en) Fuel injection device
JP2000234543A (en) Fuel pressure control device for high pressure fuel injection system
JP5630280B2 (en) In-vehicle internal combustion engine controller
JP3719641B2 (en) Fuel pressure control device for in-cylinder injection engine
JP4670832B2 (en) Pressure control device and fuel injection control system
JP2000314340A (en) Common rail fuel pressure control device for internal combustion engine
JP3777340B2 (en) Fuel supply control device for internal combustion engine
JP2006037746A (en) Drive device control system and common rail fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R151 Written notification of patent or utility model registration

Ref document number: 4613920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees